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Parity symmetry as the origin of ‘spin’ in the quantum spin Hall effect
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The quantum spin Hall effect arises due to band inversion in topological insulators, and has the defining
characteristic that it hosts helical edge channels at zero magnetic field, leading to a finite spin Hall conductivity.
The spin Hall conductivity is understood as the difference of the contributions of two spin states. In the
effective four-band Bernevig-Hughes-Zhang model, these two spin states appear as two uncoupled blocks in
the Hamiltonian matrix. However, this idea breaks down if additional degrees of freedom are considered. The
two blocks cannot be identified by proper spin Sz or total angular momentum Jz, both not conserved quantum
numbers. In this work, we discuss a notion of block structure for the more general k · p model, defined by a
conserved quantum number that we call isoparity, a combination of parity z → −z and spin. Isoparity remains
a conserved quantity under a wide range of conditions, in particular in presence of a perpendicular external
magnetic field. From point-group considerations, isoparity is fundamentally defined as the action of z → −z on
the spatial and spinorial degrees of freedom. Since time reversal anticommutes with isoparity, the two blocks act
as Kramers partners. The combination of conductivity and isoparity defines spin conductivity. This generalized
notion of spin Hall conductivity uncovers the meaning of ‘spin’: It is not the proper spin Sz, but a crystal
symmetry that is realized by a spinorial representation.
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I. INTRODUCTION

The experimental realization [1,2] and theoretical predic-
tion [3,4] of the quantum spin Hall effect have initiated a
huge interest in the physics of topological insulators in the
past two decades. As opposed to the quantum Hall effect, that
is generated by an external magnetic field [5], the quantum
spin Hall effect is rooted in the intrinsic band inversion of the
material [1,4]. The quantum spin Hall effect is tied to time-
reversal symmetry: In the absence of an external magnetic
field, the Hall conductance vanishes, but at the same time
the system hosts a pair of counterpropagating edge channels,
giving rise to so-called spin Hall conductance [4]. In practice,
these counterpropagating edge channels can be observed as a
quantized longitudinal conductance G = 2e2/h in the absence
of a magnetic field [1,6].

The mechanism of band inversion giving rise to helical
edge channels has been elegantly explained in the model pro-
posed by Bernevig, Hughes, and Zhang (BHZ) [4]. In order
to explain the transition from trivial to topological behavior
in HgTe/(Hg,Cd)Te quantum wells at the critical thickness
dc = 6.3 nm, it is sufficient to project the Hamiltonian to the
subspace of the four subbands |E1,±〉 and |H1,±〉, the spin-
degenerate pairs of the first subband in both the conduction
and valence bands. The two spin states are uncoupled, so that
the 4 × 4 matrix Hamiltonian splits into two 2 × 2 blocks [4].

The BHZ model is obtained by an expansion of the Hamil-
tonian near the � point projected to the four subband states
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of its basis. It is extracted from k · p models which contain
many more degrees of freedom and describe more aspects of
the band structure in an accurate manner [7–11]. The four-
band BHZ model is unable to capture physics where these
other degrees of freedom are essential. For example, it does
not predict the dispersion of the camel back, a maximum in
the dispersion of the valence band at finite momentum, that
arises due to hybridization of the E1 subband with higher-
order heavy-hole subbands like H2 [12,13]. The camel back
can play a dominant role in the transport properties of HgTe
quantum wells of thickness d � 7 nm, already quite close to
dc. A proper description thus requires band structures obtained
from the k · p model [13] or from extended BHZ models with
more than four subbands [14].

The necessity of considering these more advanced models
motivates the question whether they admit a similar block
structure as the four-band BHZ model. Extended BHZ models
do, but the grouping of the subbands is not entirely intuitive:
The subband |H2,+〉 couples with |E1,−〉 and |H1,−〉 [14],
where the label ± refers to 〈sgn(Jz )〉, where Jz is total angular
momentum with quantization axis along the growth direc-
tion z. This example shows that the blocks are not defined
by spin only, but by a combination of spin and parity: the
envelope function g(z) of |H2,±〉 is odd under parity z → −z,
whereas that of |H1,±〉 is even [15]. The idea of a discrete
symmetry that acts on spin and parity z → −z simultaneously
extends to the k · p model as well [16].

In this work, we elaborate on the role of the combina-
tion of parity and spin, called isoparity P̃z, in defining a
block structure in the k · p model in the inversion-symmetric
approximation [17]. Isoparity is a conserved quantity with
respect to the k · p Hamiltonian Hk (i.e., [Hk, P̃z] = 0) even
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at finite momentum, unlike spin Sz and total angular mo-
mentum Jz. Uniaxial strain, encoded by the Pikus-Bir strain
Hamiltonian [10,18], and couplings with the magnetic fields
in the perpendicular direction (B ‖ ẑ) also preserve isopar-
ity. While isoparity is not conserved if the symmetry z →
−z is broken by, e.g., a perpendicular electric field (gate
voltage) or in an asymmetric geometry like a type-II topo-
logical insulator device [19], it can be convenient to define
the basis in terms of isoparity eigenstates; the inversion-
asymmetric terms then appear in the off-diagonal block,
analogous to the structure known in the context of the BHZ
model [15,19].

From analysis of the representations of the relevant dou-
ble point group (in the inversion-symmetric model, Õh or
D̃4h for bulk and quantum well geometry, respectively), we
confirm that isoparity is identical to the mirror transforma-
tion mz in the z direction, up to the imaginary factor i.
The blocklike structure of the Hamiltonian, given by invari-
ance under isoparity, is thus fundamentally a consequence
of crystal symmetry. By identifying the action of time re-
versal in the context of representation theory, we show that
isoparity and time reversal anticommute. Time reversal thus
maps one block to the other. Importantly, this relation proves
that the two blocks are Kramers partners, establishing it as
generalization of this idea known from the BHZ model [4].
The combination of the ordinary conductance tensor σi j with
isoparity yields the spin conductance σ̃i j . By construction,
spin conductance is odd under time reversal, unlike ordi-
nary conductance which is even; these properties are dictated
by crystal and time-reversal symmetry as well as Onsager’s
relation [20,21]. This difference is related to the fundamen-
tally different origins of the Hall effect and spin Hall effect,
respectively [22].

With these ingredients, we establish an unambiguous in-
terpretation of the word ‘spin’ in “quantum spin Hall effect”:
It does not indicate proper spin Sz, which is not a conserved
quantum number, but it refers to the crystal symmetry mz.
The name ‘spin’ is appropriate nevertheless, as it involves
an operation that is inherently spinlike in nature, namely, it
acts according to a spin representation onto the half-integer
angular momentum degrees of freedom and it anticommutes
with time reversal.

The outline of the paper is as follows. In Sec. II, we briefly
introduce our model, with further details in the Appendix. In
Sec. III, we provide the ideas of the splitting into blocks in
more detail, and define isoparity based on those observations.
We then prove that isoparity is invariant, and how external
effects (magnetic, electric, and strain couplings) affect this
invariance. In Sec. IV, we interpret isoparity in the context
of spin representations of the point group. We discuss time
reversal in Sec. V. The notions of conductivity and spin
conductivity are defined and analyzed in Sec. VI. The con-
cluding Sec. VII discusses some practical applications and
implications for the interpretation of the term ‘spin’ in this
framework.

II. MODELING

As the basis for our analysis, we use the eight-orbital
k · p model for (Hg,Cd)Te and (Hg,Mn)Te presented in

Refs. [8–10] as a starting point. The eight-orbital basis is∣∣�6,+ 1
2

〉 = |S〉 ⊗ |↑〉,∣∣�6,− 1
2

〉 = |S〉 ⊗ |↓〉,∣∣�8,+ 3
2

〉 = 1√
2
|X + iY 〉 ⊗ |↑〉,∣∣�8,+ 1

2

〉 = 1√
6
(|X + iY 〉 ⊗ |↓〉 − 2|Z〉 ⊗ |↑〉),∣∣�8,− 1

2

〉 = 1√
6
(−|X − iY 〉 ⊗ |↑〉 − 2|Z〉 ⊗ |↓〉),∣∣�8,− 3

2

〉 = − 1√
2
|X − iY 〉 ⊗ |↓〉,∣∣�7,+ 1

2

〉 = 1√
3
(|X + iY 〉 ⊗ |↓〉 + |Z〉 ⊗ |↑〉),∣∣�7,− 1

2

〉 = 1√
3
(|X − iY 〉 ⊗ |↑〉 − |Z〉 ⊗ |↑〉), (1)

in terms of the s orbital labeled S and the p orbitals labeled
X , Y , and Z , as well as the two spin states ↑ and ↓. For
convenience of notation, we split the Hamiltonian H into or-
bital blocks Hpq with p, q = 6, 7, 8 labeling the orbital sectors
|�p, ·〉:

H =
⎛
⎝ H66 H68 H67

H86 H88 H87

H76 H78 H77

⎞
⎠. (2)

Hermiticity of H implies that Hqp = H†
pq. Our investigation

will mostly be targeted at the inversion-symmetric part of the
k · p Hamiltonian, denoted Hk . The blocks of Hk are given in
Appendix A, together with the matrix representations of spin
Si and total angular momentum Ji (i = x, y, z). Strain, mag-
netic and electric couplings, as well as inversion-asymmetric
terms will be discussed separately.

III. SPIN, PARITY, ISOPARITY

A. Incentive

The Hamiltonian Hk preserves neither spin Sz nor total
angular momentum Jz,

[Hk, Sz] 
= 0, [Hk, Jz] 
= 0, (3)

for k 
= 0. This can be demonstrated straightforwardly by
examining the eigenstate expectation values 〈Sz〉 and 〈Jz〉
in a typical quantum well dispersion, e.g., for 7-nm-thick
HgTe between (Hg,Cd)Te barriers, as illustrated in Fig. 1.
In Figs. 1(a) and 1(b), we have plotted the dispersion with
the coloring based on the expectation values 〈Sz〉 and 〈Jz〉,
respectively. The curves not being uniformly colored indicates
that these expectation values are momentum dependent. Thus,
Sz and Jz do not define good quantum numbers.

The widespread terminology “spin-up” and “spin-down”
states (with notation typically + and −, respectively, some-
times ↑ and ↓, respectively) is typically understood in the
sense Jz > 0 and Jz < 0; the word ‘spin’ should be read as
‘pseudospin.’ Whereas this is an intuitive and workable defi-
nition in some limited contexts, in particular in the four-band
BHZ model [4], it can be problematic in other cases that
require consideration of more degrees of freedom. First, for
large in-plane momentum (kx, ky), hybridization may occur
between subbands, e.g., between the subbands labeled E1 and
H2 in Fig. 1, leading to the typical camel-back feature [13].
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FIG. 1. Dispersion for a 7-nm HgTe quantum well be-
tween Hg1−xCdxTe (x = 0.68) barriers in the inversion-symmetric
approximation. The momentum is parametrized as (kx, ky ) =
k(1/

√
2, 1/

√
2), along the (110) crystal direction. (a) Colors indicate

spin expectation value 〈Sz〉. The visible subbands (labeled) belong
to the same block; the states of the other block are degenerate, but
not shown. (b) Same, with colors indicating 〈Jz〉. (c) Colors indicate
〈P̃z〉. We show the two degenerate copies of each state separately
(left/right column), with the subbands grouped according to a six-
band BHZ-type model [see Introduction and Eq. (4)].

The hybridization is strong enough that 〈Jz〉 changes sign at
k ≈ 0.15 nm−1, as shown by the color of the band labeled
E1+ in Fig. 1(b) changing from red to blue. Second, extension
of the original four-band BHZ model with additional sub-
bands cannot be done in a naive manner: For example, if one
adds the second heavy-hole subbands |H2,±〉 to the “spin-up”
and “spin-down” blocks of the four-band BHZ model, the two
blocks are grouped [14,15]

{|E1,+〉, |H1,+〉, |H2,−〉},
{|E1,−〉, |H1,−〉, |H2,+〉}, (4)

where the H2 bands are in the opposite block from what
one could naively expect. Thus, in extended BHZ-type mod-
els, one is no longer able to label the two blocks by ‘spin’
meaning 〈sgn(Jz )〉. Likewise, for the k · p model, containing
many more degrees of freedom, this notion of “spin-up” and
“spin-down” blocks cannot work properly. The notions of
spin defined by Sz, Jz, and sgn(Jz ) not being good quantum
numbers make them unsuitable for labeling the blocks.

FIG. 2. Wave functions for the subbands |E1, ±〉, |H1, ±〉, and
|H2, ±〉 for a 7-nm HgTe quantum well at (kx, ky ) = (0, 0). The
colors distinguish the orbital contributions. Zero and negligible con-
tributions (among which the |�7, ± 1

2 〉 orbitals) are not shown. Solid
and dashed curves denote the real and imaginary parts, respectively.
The vertical dotted lines indicate the interfaces between quantum
well (HgTe) and barriers (Hg1−xCdxTe). We label the envelope func-
tions fi (even parity) and gi (odd parity).

The particular grouping of the subband states given by
Eq. (4) can be readily understood from their expansion into
orbitals and envelope functions [15]

|E1,±〉 = − f1(z)
∣∣�6,± 1

2

〉 − ig1(z)
∣∣�8,± 1

2

〉
,

|H1,±〉 = f2(z)
∣∣�8,± 3

2

〉
, (5)

|H2,±〉 = g3(z)
∣∣�8,± 3

2

〉
,

where the small contributions from |�7,± 1
2 〉 have been ne-

glected. The real functions fi are even, gi are odd under
z → −z (see Fig. 2). The extended BHZ Hamiltonian thus
groups states together which have either have identical spin
and identical parity, or have opposite spin and opposite parity.

B. Isoparity

The fact that block-diagonal extensions of the BHZ model
exist already hints at the possibility to find a similar block
structure for the k · p model, from which the former is de-
rived. The blocks are distinguished by a conserved quantum
number; the previous observations suggest that it must involve
both angular momentum and parity under the transformation
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FIG. 3. Parity structure of the Hamiltonian Hk and construction
of the isoparity matrix Q. The labels “E” and “O” denote even
and odd parity, respectively, under Pz : z → −z, kz → −kz, of the
particular entry of the Hamiltonian. Even-parity entries contain even
powers of kz only (including constants), whereas odd-parity entries
contain only odd powers. An empty position means that the matrix
entry is identically zero. On the right-hand side, we indicate the
diagonal matrix values 〈o|Q|o〉 for each of the orbitals |o〉 in the basis.

z → −z. That is, the operator encoding this quantity should
be the composition of the parity operation Pz : z �→ −z, kz �→
−kz acting on spatial coordinates with a diagonal matrix Q in
orbital space:

P̃z = PzQ. (6)

We name this operator isoparity because of its nature being a
combination of spatial parity with another degree of freedom
(spin).

The matrix Q in orbital space contains eigenvalues ±1,
such that opposite spins (Jz = ±mJ ) come with opposite
signs. In order for the operator P̃z to be a conserved quantity,
[H, P̃z] = 0, it is required that Q satisfies

H evenQ = QH even and HoddQ = −QHodd, (7)

where the Hamiltonian H = H even + Hodd is separated into
parts that are even and odd under the mirror operation Pz,
i.e., containing even and odd powers of z or kz, as indicated
by the entries labeled “E” and “O” in Fig. 3. In other words,
Q commutes (anticommutes) with the even (odd) part of the
Hamiltonian under Pz. Thus, we find

Q = diag(+1,−1,+1,−1,+1,−1,−1,+1). (8)

This matrix can simply be constructed by assigning the same
diagonal value for all orbitals connected by even-parity matrix
elements of the Hamiltonian, as shown in Fig. 3. This top-
down construction of isoparity provides a suitable practical
definition that is a conserved quantity by construction. In
Sec. IV, we will provide a bottom-up derivation of this matrix
from a fundamental perspective using representation theory
of the crystallographic point group, that explains why it is
conserved.

The conservation of isoparity in the k · p model is illus-
trated in Fig. 1(c) with dispersion curves colored according to
the eigenstate expectation value 〈P̃z〉. Every eigenstate of the
Hamiltonian is also an eigenstate of isoparity, with eigenvalue
P̃z = ±1. The expectation values 〈P̃z〉 are consequently mo-
mentum independent: In the color coding of Fig. 1(c), states
are either uniformly red or uniformly blue, indicating that they

have isoparity eigenvalue of P̃z = +1 and −1, respectively. In
conclusion, the Hamiltonian admits a natural decomposition
into two decoupled blocks defined by the isoparity eigenvalue.

Whereas we could also have chosen the opposite overall
sign for Q, the definition of Eq. (8) intuitively connects to the
blocks of the four-band BHZ model. The basis states |E1,±〉
and |H1,±〉 are eigenstates of isoparity with eigenvalues ±1,

P̃z|E1,±〉 = ±|E1,±〉 and P̃z|H1,±〉 = ±|H1,±〉. (9)

The block quantum numbers defined by isoparity thus corre-
spond to the + and − (or “up” and “down”) labels for the
blocks of the four-band BHZ model. For these four subband
states, the isoparity eigenvalues happen to be equal to sgn(Jz ),
but that is not generically true: For other subbands, the eigen-
values may be opposite, e.g., P̃z|H2,±〉 = ∓|H2,±〉. Thus,
the common interpretation of the two blocks as “spin blocks”
is appropriate for the four-band BHZ model, but it breaks
down for extended BHZ-type models. This observation under-
lines the need for the labeling to be defined unambiguously.
Here, we use the conventional notation +,− in terms of
sgn(Jz ) = ±1. The other choice would be for +,− to mean
the isoparity eigenvalue. If both P̃z = ±1 and sgn(Jz ) = ±1
need to be considered, two distinct pairs of symbols need to be
used, e.g., ⊕,� and +,−. The notation ↑,↓ is discouraged.

C. Conservation laws

Let us verify invariance under isoparity P̃z, using the
k · p Hamiltonian split into orbital blocks Hpq, as in
Eq. (2). These blocks need to satisfy H even

pq Qq = QpH even
pq

and Hodd
pq Qq = −QpHodd

pq , where Q6 = diag(+1,−1), Q8 =
diag(+1,−1,+1,−1), and Q7 = diag(−1,+1) are the parts
of Q [Eq. (8)] belonging to each orbital sector. We test these
conditions for a selection of blocks Hpq explicitly, whereas
the other conditions can be worked out along analogous lines.
The blocks Hpq are written in a formal manner in Appendix
A, following the notation of Ref. [11].

The diagonal blocks H66 and H77 are proportional to the
identity matrix in the orbital basis, and thus automatically sat-
isfy H even

pp Qp = QpH even
pp . The block H88 [Eq. (A5)] contains a

term proportional to the identity, as well as the two terms

γ2
[(

J2
x − 1

3 J2
)
k2

x + (
J2

y − 1
3 J2

)
k2

y + (
J2

z − 1
3 J2

)
k2

z

]
, (10)

γ3[{Jx, Jy}{kx, ky}+{Jx, Jz}{kx, kz}+{Jy, Jz}{ky, kz}], (11)

where J2 = J2
x + J2

y + J2
z and {A, B} = AB + BA denotes the

anticommutator. The γ2 term is purely even in Pz, and com-
mutes with Q8 by virtue of [J2

i , Q8] = 0. For the γ3 term,
the even part is proportional to {kx, ky}, whereas {kx, kz} and
{ky, kz} constitute the odd part. The identities [{Jx, Jy}, Q8] =
0 and {{Ji, Jz}, Q8} = 0 (i = x, y) then provide invariance of
this term under isoparity. The invariance of the off-diagonal
blocks [Eqs. (A6)–(A8)] can be worked out in an analogous
manner. Combining these results, we thus establish that Hk

commutes with isoparity P̃z.

D. External fields: Magnetic, electric, and strain couplings

In order to describe realistic experimental settings, the
Hamiltonian describing the band structure acquires several
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terms related to external forces in addition to the purely
momentum-dependent k · p Hamiltonian. Here, electric and
magnetic fields are perhaps the first ones coming into mind,
but also strain (in response to external stress) is of a similar
nature.

Let us illustrate the implications of the field being intrinsic
or external by the example of the Zeeman coupling acting on
the �6 orbitals,

HZ,6 = S · B = SxBx + SyBy + SzBz (12)

= 1

2

(
Bz Bx − iBy

Bx + iBy −Bz

)
, (13)

where S = (Sx, Sy, Sz ) is the spin operator and B the magnetic
field. If we assume the magnetic field to be intrinsic (or if we
consider the transformation to be a pure coordinate transfor-
mation), both S and B transform as axial vectors. For example,
under Pz,

(Sx, Sy, Sz ) → (−Sx,−Sy, Sz ),

(Bx, By, Bz ) → (−Bx,−By, Bz ), (14)

so that S · B is invariant. (The transformation of S follows
from Si → Q†

6SiQ6.)
In contrast, if one considers the symmetry of the system

subjected to an external magnetic field, then the latter should
be considered as an external parameter that is unaffected by
the transformation (or, in other words, transforms trivially),
while S, being intrinsic to the system, still transforms as an
axial vector. Then we have

(Sx, Sy, Sz ) → (−Sx,−Sy, Sz ),

(Bx, By, Bz ) → (Bx, By, Bz ), (15)

such that

HZ,6 → Q†
6HZ,6Q6 = 1

2

(
Bz −(Bx − iBy)

−(Bx + iBy) −Bz

)
,

(16)
i.e., SxBx + SyBy + SzBz → −SxBx − SyBy + SzBz. The in-
variance of S · B is thus broken under this transformation
if Bx 
= 0 or By 
= 0. Thus, the Zeeman-type term preserves
isoparity if the field is perpendicular, B = (0, 0, Bz ). For the
Zeeman couplings in the other orbital sectors [11], the same
conclusion follows analogously.

These observations keep their validity if the coupling is of
the form S · m, where m is a magnetic moment with the same
transformation properties as B. In particular, in Hg1−xMnxTe,
the exchange coupling couples the carrier spins to the (aver-
age) magnetic moments of the Mn ions. The response m(B)
is paramagnetic [10], so that m transforms like B. Thus, the
magnetic couplings of HgTe and Hg1−xMnxTe have identical
symmetry properties.

The magnetic field also modifies the k · p Hamiltonian
following the Peierls substitution k → k + eA/h̄, where A
is the gauge potential, defined such that ∇ × A = B. For
isoparity to remain preserved, it is required that A transforms
in a vectorlike manner under Pz : z → −z, i.e., (Ax, Ay, Az ) →
(Ax, Ay,−Az ), similar to the transformation of momentum k.
However, unlike momentum k, the vector potential is de-
fined with respect to the external magnetic field B: Fixing

the gauge A = (−Bzy + Byz,−Bxz, 0) and applying the trans-
formation Pz, we find that A transforms to A′ = (−Bzy −
Byz, Bxz, 0). The transformation A → A′ is vectorlike exactly
if the in-plane components vanish, Bx = By = 0. A nonzero
out-of-plane component Bz preserves isoparity. Importantly,
these conditions are identical to that of the Zeeman-type
couplings. Consequently, isoparity remains a good quantum
number in a perpendicular external magnetic field, but not if
the in-plane components are nonzero.

An electric field (uniform in the in-plane coordinates x, y)
can be modeled as an external potential V (z) times the identity
matrix 1 in the orbital basis. In view of condition (7), isoparity
is preserved if

[V even(z)1, Q] = 0 and {V odd(z)1, Q} = 0, (17)

where the function V (z) = V even(z) + V odd(z) is split into
even and odd parts under z → −z. Thus, isoparity remains a
good quantum number provided the odd part V odd(z) vanishes.
It should be noted that the electric potential induced by a
gate voltage has a nontrivial odd component, so that isoparity
symmetry is broken. Consequently, the Rashba effect involves
matrix elements off diagonal in isoparity (block quantum
number). This result is well known in the context of BHZ
[15,19], but thus also applies to the more generic setting of
k · p.

The deformation of the lattice as a result of matching
the lattice constant to a substrate material is encoded as the
rank-two symmetric strain tensor εi j [9,10]. Strain can be con-
sidered as the response to stress, the pressure applied to bring
the lattice out of its equilibrium geometry. These forces are ap-
plied externally, and hence stress and strain must be treated as
external fields. The strain Hamiltonian H str describes the cou-
plings between the orbitals and the strain tensor εi j . According
to the formalism of Pikus and Bir, the possible couplings
can be found from the k · p Hamiltonian by the substitutions
1
2 {ki, k j} → εi j [9,10,18]. (See Appendix B for details.) As an
external field, εi j transforms trivially, in contrast to {ki, k j}:
whereas under parity in z, {kx, kz} and {ky, kz} are odd and
{kx, ky} and k2

i (i = x, y, z) are even, all components of εi j are
even. From the invariance conditions of the k · p Hamiltonian
derived above, we thus find that strain preserves isoparity if
εxz = εyz = 0. This is the case for a material lattice strained to
a substrate, where these shear strain components are typically
assumed to vanish.

Figure 4 illustrates the effect of a magnetic field on isopar-
ity on dispersions of the aforementioned quantum well in a
strip geometry, 500 nm wide in the transversal direction ŷ and
translationally symmetric in the direction x̂. This configura-
tion models the devices used in experiments [1,13,23]. We
have used the eight-orbital k · p model from Ref. [10]. We
include strain from lattice matching the HgTe crystal to the
lattice constant of the Cd0.96Zn0.04Te substrate. The values
of the coefficients are provided in Table II in the Appendix.
The magnetic field is modeled by the Peierls substitution k →
k + eA/h̄ with the vector potential A = (−Bzy, 0, 0) in Lan-
dau gauge. For the confinement in ŷ direction, we have used
hard-wall boundary conditions. While a different choice of the
boundary condition could affect the edge channel dispersion
and the particular position of the Dirac point (the energy

115428-5



WOUTER BEUGELING PHYSICAL REVIEW B 104, 115428 (2021)

FIG. 4. Dispersion for the 7-nm HgTe quantum well in a strip
geometry, 500 nm wide. (a) At zero field, B = 0, the eigenstates are
degenerate, and can be separated into P̃z = ±1 states, as indicated
by the color (see legend). (b) Dispersion for nonzero perpendicular
field B = Bzẑ with Bz = 0.05 T. (c) Dispersion for nonzero in-plane
field B = Bxx̂ with Bx = 0.05 T.

where the dispersions cross) [24–26], it does not change the
symmetry properties.

In absence of a magnetic field, the Hamiltonian eigenstates
have block degeneracy; since [H, P̃z] = 0, all eigenstates can
be classified as P̃z = ±1 [Fig. 4(a)]. In a finite perpendicular
magnetic field B = Bzẑ the block degeneracy is lifted, but each
Hamiltonian eigenstate is still an eigenstate of P̃z [Fig. 4(b)].
For an in-plane field B = Bxx̂, P̃z no longer commutes with
the Hamiltonian: In Fig. 4(c), we thus observe that the disper-
sion curves are colored nonuniformly, especially at the top of
the valence band.

With the ‘spin’ of the edge channels being particularly
important for spin transport, we can raise the question whether
the existing interpretation of spin as sgn(Jz ) = ±1 is ade-
quate. In view of Eq. (9), the eigenvalues of sgn(Jz ) and P̃z

coincide for the |E1,±〉 and |H1,±〉 subband states. For the
configurations of Figs. 4(a) and 4(b), the combined overlaps of
each edge channel wave function with |E1,±〉 and |H1,±〉 are
>0.8 for all momenta |kx| � 0.1 nm−1. Thus, in the regime
where the edge states cross the bulk gap, sgn(Jz ) may be
used safely as a substitute for isoparity. Nonetheless, isoparity
remains preferred in any configuration where it is an exactly
conserved quantum number.

E. Inversion-symmetry breaking

For the k · p Hamiltonian, we have only included
inversion-symmetric terms so far. Since the zinc-blende lat-
tice structure does not possess inversion symmetry, the
Hamiltonian may contain inversion-breaking terms. These are
collectively known as bulk inversion asymmetry (BIA).

In order to demonstrate how BIA affects the block structure
in the k · p Hamiltonian defined by isoparity, let us study the
linear BIA term of the �8 block [11],

HBIA,C = Ck
[{

Jx, J2
y − J2

z

}
kx + {

Jy, J2
z − J2

x

}
ky

+{
Jz, J2

x − J2
y

}
kz

]
. (18)

The kx and ky terms constitute the even part and the kz term
is the odd part. Using the definitions of the matrices Ji, we
calculate {{

Jx, J2
y − J2

z

}
, Q8

} = 0,{{
Jy, J2

z − J2
x

}
, Q8

} = 0,[{
Jz, J2

x − J2
y

}
, Q8

] = 0. (19)

For the even and odd parts of the Hamiltonian, this yields

H evenQ = −QH even and HoddQ = QHodd, (20)

i.e., the even part anticommutes with Q (here, Q8) while
the odd part commutes, the opposite from the behavior of
inversion-symmetric terms [see Eq. (7)]. Thus, we find that
HBIA,C anticommutes with isoparity,

HBIA,CP̃z = −P̃zHBIA,C . (21)

The same property is valid for other bulk-inversion-
asymmetric terms (see, e.g., Ref. [11]).

While the bulk-inversion antisymmetric terms are typ-
ically weaker than the symmetric terms [17], this is not
generically valid for other inversion-asymmetric contribu-
tions. For example, structural inversion asymmetry (SIA)
intrinsic to the geometry of the type-II heterostructure
AlSb/InAs/GaSb/AlSb can be comparable to the topological
gap [19]. Electrostatic gating can also induce asymmetries
well above ∼10 meV.

Even if isoparity is not a symmetry, it may be useful to
write the Hamiltonian in a basis of isoparity eigenstates. It
then takes the form

H =
(

H+ HIA

H†
IA H−

)
, (22)

where the blocks H± contain inversion-symmetric matrix
elements of P̃z = ±1 states and HIA contains the inversion-
asymmetric terms. This structure is fully analogous to
BHZ-type models in the basis |E1,+〉, |H1,+〉, |E1,−〉,
|H1,−〉, where BIA and SIA terms appear in the off-diagonal
block that couples + and − states [19,27]. Only if the off-
diagonal blocks are small, isoparity is weakly broken and the
inversion-asymmetric terms can be considered perturbatively.

IV. CRYSTAL SYMMETRY: POINT GROUP ANALYSIS

In the previous section, we have derived the isoparity
operator P̃z in an a posteriori manner, using invariance con-
ditions with respect to a given Hamiltonian. In this section,
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TABLE I. For each of the two-dimensional spinor subspaces in the top row, which together span the eight-orbital basis of the k · p model,
the table provides: the angular momentum quantum numbers L, S, J , and mJ ; the representation of the double point group D̃4h (Mulliken
notation in parentheses); representation matrices r(g) in for a selected subset of group elements g; the matrix θ of time reversal T = θK . We
follow the conventions of the point group tables of Ref. [29].

Subspace |�6, ± 1
2 〉 |�7, ± 1

2 〉 |�8, ± 1
2 〉 |�8, ± 3

2 〉
L 0 1 1 1

S 1
2

1
2

1
2

1
2

J 1
2

1
2

3
2

3
2

mJ ± 1
2 ± 1

2 ± 1
2 ± 3

2

D̃4h rep. E1/2,g(Ē1g) E1/2,u(Ē1u) E1/2,u(Ē1u) E3/2,u(Ē2u)

mz

(−i 0
0 i

) (
i 0
0 −i

) (
i 0
0 −i

) (−i 0
0 i

)

mx

(
0 −i
−i 0

) (
0 i
i 0

) (
0 −i
−i 0

) (
0 −i
−i 0

)

my

(
0 −1
1 0

) (
0 1

−1 0

) (
0 −1
1 0

) (
0 1

−1 0

)

TR θ

(
0 −1
1 0

) (
0 −1
1 0

) (
0 1

−1 0

) (
0 −1
1 0

)

we will derive a suitable notion of block quantum number
from the fundamental principles of crystal symmetries. Since
the Hamiltonian is necessarily compatible with crystal sym-
metry, statements about invariance follow automatically, by
construction.

The symmetries of the k · p model around k = � are
described by one of the crystallographic point groups. The
appropriate point group for unstrained bulk zinc-blende crys-
tals is Td (tetrahedral symmetry). If the system is confined
and/or strained in the z direction, the point group is reduced
to D2d . Here, we consider the inversion-symmetric approxi-
mation; adding inversion to these groups, we obtain Oh and
D4h, respectively. In order to describe fermionic degrees of
freedom, we need to extend these groups with the 2π rotation
1̃. The resulting double covering groups are the double point
groups Õh and D̃4h [28].

We consider the transformations of the orbitals in the basis
in Eq. (1). The four spin representations of the relevant double
point group D̃4h are E1/2,g, E3/2,g, E1/2,u, and E3/2,u, where the
subscripts 1

2 and 3
2 denote the quantum number mJ of the total

angular momentum Jz and the subscripts g and u denote the
parity under spatial inversion I : (x, y, z) → (−x,−y,−z),
being gerade (even) and ungerade (odd), respectively. This
parity corresponds to the orbital angular momentum L being
an even or odd integer. We follow the notation used in the
tables of Ref. [29], that is a slight modification of the common
“Mulliken notation,” used in Refs. [28,30,31] for example.
The aforementioned four spin representations are written as
Ē1g, Ē2g, Ē1u, and Ē2u, respectively, in the Mulliken notation.

In Table I, we list the orbitals of the k · p together with
the angular momentum values L, S, and J (orbital, spin,
and total, respectively) and mJ . From these values, we iden-
tify the appropriate spin representation. We subsequently
provide the representation matrices r(g) for several rele-
vant group elements g: the mirrors mi along the axes i =
x, y, z. These representation matrices encode linear trans-

formation on the two-dimensional vector spaces with basis
|�p,+mJ〉, |�p,−mJ〉 (mJ > 0), where the positive mJ is the
first component. We have followed the conventions of the
point group tables of Ref. [29], which we also recommend as a
reference for additional information about this and other point
groups. We remark that |�7,± 1

2 〉 and |�8,± 1
2 〉 transform both

according to representation E1/2,u, but the representation ma-
trices are different, related by a unitary transformation.

The representation R for the eight-orbital k · p basis de-
fined by Eq. (1) can simply be composed from those of the
two-dimensional subspaces listed in Table I. Thus, the matrix
R(mz ) for mz reads as

R(mz ) = diag(−i,+i,−i,+i,−i,+i,+i,−i). (23)

This matrix is identical to the matrix Q [Eq. (8)] for isoparity
up to a factor: R(mz ) = −iQ. In view of the action of mz

on spatial quantities being given by Pz, we conclude that
isoparity P̃z is nothing else than the mirror operation in z
up to the factor i. The two factors Pz and Q have a common
origin, as the actions of mz on the spatial and orbital degrees
of freedom, respectively. This observation establishes why
isoparity is conserved: the symmetry is of crystallographic
origin. The transformations of the spinors follow naturally
from the spin representations of the point group. By analogy,
the matrices for R(mx ) and R(my) may be used to construct
“in-plane isoparity.”

V. TIME REVERSAL

Time reversal T acts differently on position and momen-
tum x → x and k → −k, respectively, as opposed to crystal
symmetries where position and momentum transform in the
same way. Consequently, time reversal also reverses angular
momentum, including spin. Time reversal is required to be
antiunitary in order the preserve the canonical quantization
rules. In order to achieve these properties, time reversal is
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typically realized as the combination T = θK of a matrix θ in
orbital space and complex conjugation, denoted K . For states
with angular momentum J , this operator is most commonly
represented by θ = exp(−iπ Ĵy), itself a real matrix. The for-
mal definition of time reversal requires the point group to be
extended with time-reversed symmetry elements [32,33], but
for the present case of crystals without magnetic ordering, it
suffices to do the algebra by inserting complex conjugation K
at the appropriate positions.

We specify the form of θ in all orbital subspaces of the
k · p basis in Table I. In all four two-dimensional subspaces,
θ = r(2y) = ±r(my), with + and − for gerade (L = 0) and
ungerade (L = 1) representations, where 2y denotes the π

rotation around the y axis. From r(2y)r(mz ) = −r(mz )r(2y)
and the fact that r(mz ) is purely imaginary, it follows that time
reversal commutes with mz:

Tr(mz ) = θKr(mz ) = −θr(mz )K = r(mz )θK

= r(mz )T . (24)

Consequently, for a state belonging to one block, i.e., an
eigenstate |�〉 of r(mz ) with r(mz )|�〉 = ±i|�〉, we find that
r(mz )T |�〉 = ∓iT |�〉, due to the complex conjugation in T .

Analogously, isoparity P̃z anticommutes with time reversal
T , so that for |	〉 with P̃z|	〉 = ±|	〉, we have P̃zT |	〉 =
∓T |	〉. Thus, the two members |�〉 and T |�〉 of a Kramers
pair have opposite block quantum numbers. This property
allows the interpretation of the two blocks as being Kramers
partners. This fundamental idea, well known in the context the
BHZ model, is also valid in the more generic k · p framework.
As such, the division of the k · p Hamiltonian into isoparity
subspaces P̃z = ±1 can be considered as a full generalization
of the blocks in the BHZ model.

VI. MAGNETOTRANSPORT OBSERVABLES

While symmetry forces the transversal conductivity σxy to
vanish at zero magnetic field, the salient feature of the quan-
tum spin Hall effect is the presence of helical edge channels,
that carry a spin Hall current. These edge channels come as
a counterpropagating pair of Kramers partners. Their contri-
butions σ±

xy to the Hall conductivity cancel out, σxy = σ+
xy +

σ−
xy = 0, as to preserve the symmetry relation σxy = 0. On the

other hand, the difference σ̃xy = σ+
xy − σ−

xy is not required to
vanish. The two partners being related by time reversal, they
can be interpreted as two states with opposite spin, and one
can thus call σ̃xy the spin Hall conductivity [34].

With the interpretation of the blocks P̃z = ±1 as Kramers
partners, we can utilize isoparity to generalize the concept
of spin conductance to the k · p framework: The difference
between the conductivity tensor associated to either block is
simply a composition of the conductivity tensor σ with the
isoparity operator P̃z,

σ̃i j = σi jP̃z. (25)

While ordinary conductivity σ satisfies Ohm’s law j = σE,
spin conductivity satisfies the analogous equation ȷ̃ = σ̃E ,
involving the spin current ȷ̃ = jP̃z, that can be viewed in terms
of two types of carriers with opposite charge depending on the
isoparity eigenvalue.

The transformation rules of σ and σ̃ under mirror sym-
metries readily follow from the group-theoretical analysis of
Sec. IV: isoparity P̃z = imz commutes with mz and anticom-
mutes with mx and my. Under the latter two transformations,
spin conductivity σ̃ obtains an opposite sign compared to
charge conductivity σ , so that

σxy(−Bz ) = −σxy(Bz ), σ̃xy(−Bz ) = σ̃xy(Bz ). (26)

Unlike the ordinary Hall conductivity σxy, the spin Hall con-
ductivity σ̃xy is not required to vanish at zero magnetic field.
In other words, spin Hall conductivity may be nonzero at
zero magnetic field, which makes the existence of helical
counterpropagating edge channels possible.

The transformation of transport tensors Li j under time
reversal T is subject to the principle of Onsager’s relation
[20,21]

Li j (S, B) = Lji(−S,−B), (27)

where S encodes the spin configuration of the system. The
key property of S is that S → −S under time reversal. Here,
isoparity plays this role. The conductivity contributions σ±

i j

from the isoparity blocks P̃z = ±1 thus satisfy

σ±
i j (B) = σ∓

ji (−B). (28)

(We note that in Chern insulator models with a single spin
or isoparity block, see Refs. [22,35] for example, there is no
such relation.) For the ordinary conductivity σi j = σ+

i j + σ−
i j ,

the symmetric σ s
i j = 1

2 (σi j + σ ji ) and antisymmetric σ a
i j =

1
2 (σi j − σ ji ) parts are even and odd under time reversal, re-
spectively,

σ s
i j (−B) = σ s

i j (B), σ a
i j (−B) = −σ a

i j (B). (29)

In contrast, spin conductivity σ̃i j = σ+
i j − σ−

i j obtains opposite
signs compared to σi j ,

σ̃ s
i j (−B) = −σ̃ s

i j (B), σ̃ a
i j (−B) = σ̃ a

i j (B). (30)

The opposite signs originate in the isoparity component P̃z

[see Eq. (25)], which anticommutes with time reversal.
For B = 0, Eqs. (29) and (30) thus express the idea that

time reversal forces Hall conductivity σxy to vanish while spin
Hall conductivity σ̃xy may be finite. For finite magnetic fields
B 
= 0, Onsager’s relation merely connects the two opposite
isoparity blocks at B and −B. The values σ+

xy (B) and σ−
xy (B)

are independent and may be finite, which permits the quantum
Hall effect as well as the quantum anomalous Hall effect
[36]. We conclude from this discussion that the concepts and
properties of these transport tensors known from the BHZ
formalism extend to k · p. The key property of isoparity that
accommodates this generalization is the idea that the isoparity
sectors are Kramers partners.

VII. CONCLUSION AND DISCUSSION

The term quantum spin Hall effect is more subtle than
it appears at first sight: The effect pairs a zero total Hall
conductivity with a nonzero spin Hall conductivity, being the
sum and difference, respectively, of contributions from two
‘spin’ states. Here, we have demonstrated that these two ‘spin’
states are neither proper spin Sz nor total angular momentum
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Jz, but the eigenvalues of the mirror transformation mz or the
equivalent observable that we dubbed isoparity P̃z. The block
structure of the Hamiltonian is defined by the quantum num-
bers defined by mz or P̃z (values are ±i or ±1, respectively).
The conservation of these quantities naturally follows from
crystal symmetries. The key property that makes isoparity
“behave like spin” is the fact that it anticommutes with time
reversal. As time reversal maps the P̃z = +1 subspace to the
P̃z = −1 subspace, they constitute Kramers partners, analo-
gous to the same idea in the BHZ model framework. Thus, by
analogy, spin conductivity is defined as the transport tensor
σ̃i j = σi jP̃z, defined by combining ordinary conductivity ten-
sor σi j with isoparity. These analogies establish the isoparity
subspaces as a complete generalization of the notion of the
block structure of the BHZ model. In conclusion, while ‘spin’
in “quantum spin Hall” should be more accurately understood
as isoparity, the analogy justifies the colloquial usage of the
word ‘spin.’

The conservation of isoparity requires mz to be a crys-
tal symmetry, which is, however, not contained in the point
group T̃d of (unstrained bulk) zinc-blende materials. The
block structure can thus be defined by isoparity only in the
inversion-symmetric approximation: By neglecting inversion-
asymmetric terms, the point group is enlarged to Õh, or one
of its subgroups that contain inversion. While actual topolog-
ical insulator devices are often not symmetric under z → −z,
modeling of the band structures in the inversion-symmetric
approximation (including BHZ-type models) is ubiquitous
in literature. Even in absence of this symmetry, a basis of
isoparity eigenstates may be chosen. This will lead to a block
structure of the Hamiltonian with isoparity-preserving terms
in the diagonal blocks, and the isoparity-breaking terms in the
off-diagonal blocks, again in full analogy to the BHZ model.
A perturbative treatment of the symmetry-breaking terms is
possible if they are sufficiently small.

In practice, the isoparity operator can be applied in k · p
numerics in order to lift degeneracy between the blocks, by
addition of a small term εP̃z to the Hamiltonian. Whereas
one could successfully lift degeneracy with diagonal operators
like εJz or ε sgn(Jz ), these have the disadvantage that they
do not constitute conserved quantum numbers. In fact, we
have demonstrated that the expectation values 〈Jz〉 can change
signs at larger momentum values, which leads to acciden-
tal crossings, that complicates the study of the properties of
single bands. These issues are avoided if the lifting term is
given by the conserved quantity P̃z. Despite the operator P̃z

being nondiagonal, it can be implemented conveniently and
efficiently in sparse-matrix form.
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APPENDIX A: INVERSION-SYMMETRIC k · p
HAMILTONIAN

The inversion-symmetric k · p Hamiltonian Hk is split into
orbital blocks Hpq (p, q = 6, 7, 8) according to Eq. (2). (We
drop the subscript k in the orbital block notation.) We provide
an abstract notation in terms of angular momentum matrices
[11]. The latter notation is especially convenient for test-
ing invariance. The explicit matrix forms can be found in
Refs. [9–11], for example, or from substitution of the angular
momentum matrices.

For the diagonal blocks, the relevant angular momentum
matrices are the 2 × 2 Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

(A1)
and the 4 × 4 J = 3

2 angular momentum matrices

Jx =

⎛
⎜⎝

0 θ 0 0
θ 0 1 0
0 1 0 θ

0 0 θ 0

⎞
⎟⎠, Jy = i

⎛
⎜⎝

0 −θ 0 0
θ 0 −1 0
0 1 0 −θ

0 0 θ 0

⎞
⎟⎠,

Jz =

⎛
⎜⎜⎝

3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞
⎟⎟⎠, (A2)

with θ = 1
2

√
3, as well as the respective identity matrices. The

diagonal blocks of Hk are

H66 =
(

E6 + h̄2

2m′ k
2

)
12×2, (A3)

H77 =
(

E7 − h̄2

2m0
γ1k2

)
12×2, (A4)

and

H88 =
(

E8 − h̄2

2m0
γ1k2

)
14×4 + h̄2

2m0
2γ2

[(
J2

x − 1

3
J2

)
k2

x

+
(

J2
y − 1

3
J2

)
k2

y +
(

J2
z − 1

3
J2

)
k2

z

]

+ h̄2

2m0
γ3[{Jx, Jy}{kx, ky} + {Jx, Jz}{kx, kz}

+ {Jy, Jz}{ky, kz}], (A5)

where J2 = J2
x + J2

y + J2
z and k2 = k2

x + k2
y + k2

z , Ep (p =
6, 7, 8) are the energies of the band edges at k = 0, m0 is
the electron mass, m′ is the �6 effective mass, and γ1,2,3 are
the Luttinger parameters [9,11]. The curly brackets denote the
anticommutator {A, B} = AB + BA. The off-diagonal blocks
are

H67 = −1

3

√
3P(σxkx + σyky + σzkz ), (A6)

H68 = −
√

3P(Txkx + Tyky + Tzkz ), (A7)
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TABLE II. Coefficients of the inversion-symmetric k · p Hamiltonian Hk and the strain Hamiltonian H str . The values are adapted from
Refs. [9,10], with values for HgTe provided as is, and those for Hg0.32Cd0.68Te obtained from interpolation between HgTe and CdTe.

E6 E7 E8 m′/m0 P γ1 γ2 γ3 C a b d ε‖ ε⊥
(meV) (meV) (meV) (meV nm) (eV) (eV) (eV) (eV) (10−3) (10−3)

HgTe −303 −1080 0 1 846 4.1 0.50 1.30 −3.83 0.00 −1.50 −2.08 0.76 −1.04
Hg0.32Cd0.68Te 587 −1343 −379 1.14 846 2.3 −0.02 0.43 −3.99 −0.48 −1.26 −2.44 −1.11 1.54

H78 = h̄2

2m0
6γ2

(
Txxk2

x + Tyyk2
y + Tzzk

2
z

)

+ h̄2

2m0
6γ3(Txy{kx, ky}+Tyz{ky, kz}+Tzx{kz, kx})

(A8)

in terms of the 2 × 4 angular momentum matrices Ti and Ti j

(i, j = 1, 2, 3; see Ref. [11]), the Kane matrix element P =
−(h̄/m0)〈S|px|X 〉 [7], and the Luttinger parameters γ2,3.

The dispersions and wave functions of Figs. 1 and 2 have
been calculated in a layer stack geometry with a 7-nm HgTe
quantum well between barriers of Hg1−xCdxTe with x = 0.68.
The thickness of the barriers in the simulation is 10 nm, suffi-
cient for the wave functions to decay. In this geometry, there is
no translational symmetry in the z direction. The appropriate
Hamiltonian in this geometry has the form H (kx, ky, z) and
is obtained from the bulk Hamiltonian H (kx, ky, kz ) by the
substitution kz → −i∂z. The coefficients of the k · p Hamilto-
nian being material dependent, they are realized as piecewise
constant functions of z with smooth interpolation near the
interface. The values for HgTe [10] and Hg1−xCdxTe at x =
0.68 are summarized in Table II.

The z coordinate is discretized in steps of 0.25 nm. The
resulting Hamiltonian H (kx, ky) has dimensions N × N with
N = 8nz, where nz is the number of discrete coordinates in
the z direction. The dispersions En(kx, ky) are obtained by
numerical diagonalization of this matrix. The wave functions
and expectation values (〈Sz〉, 〈Jz〉, etc.) are extracted from the
eigenstates. In the strip calculation of Fig. 4, the Hamiltonian
H (kx, y, z) is discretized additionally in the y direction. This
leads to a Hamiltonian matrix H (kx ) of dimension N × N with
N = 8nzny, where ny is the number of discrete coordinates
in the y direction. In view of the large matrix sizes, diag-
onalization has been performed with sparse matrix methods
at a high-performance-computing infrastructure with a high
degree of parallelization.

APPENDIX B: STRAIN HAMILTONIAN

The uniaxial strain induced by lattice matching of the
materials to the substrate is modeled by the Pikus-Bir strain

Hamiltonian H str in terms of the strain tensor εi j (i, j =
x, y, z) [18]. In the Pikus-Bir formalism, the strain Hamil-
tonian is obtained by substitution of quadratic momenta
1
2 {ki, k j} → εi j from the k · p Hamiltonian Hk . The coeffi-
cients of the terms are the deformation potentials C, a, b, and
d [9,10]. (Other notations are common, e.g., C1 = C, Dd = a,
Du = − 3

2 b, and D′
u = − 1

2

√
3d in Ref. [11].) The values pro-

vided in Table II are extracted from Ref. [9].
The substitution from Hk yields the diagonal blocks

H str
66 = C tr ε 12×2, (B1)

H str
77 = a tr ε 12×2, (B2)

H str
88 = atrε 14×4 − b

[(
J2

x − 1

3
J2

)
εxx

+
(

J2
y − 1

3
J2

)
εyy +

(
J2

z − 1

3
J2

)
εzz

]

− d√
3

[{Jx, Jy}εxy + {Jx, Jz}εxz + {Jy, Jz}εyz], (B3)

with trε = εxx + εyy + εzz. Furthermore, we have the off-
diagonal block

H str
78 = −3b(Txxεxx + Tyyεyy + Tzzεzz )

−
√

3d (Txyεxy + Tyzεyz + Tzxεzx ). (B4)

The off-diagonal blocks H str
68 and H str

67 vanish as the corre-
sponding blocks of Hk do not contain terms of quadratic or
higher order in k (under the assumption of inversion symme-
try).

The strain tensor εi j is determined by matching the
in-plane lattice constants of the quantum-well and barrier
layers are matched to the lattice constant 0.6467 nm of the
Cd0.96Zn0.04Te substrate. The equilibrium lattice constants for
HgTe (quantum well) and Hg0.32Cd0.68Te (barrier) are 0.6462
and 0.6474 nm, respectively. This leads to a strain tensor
ε = diag(ε‖, ε‖, ε⊥) with ε‖ and ε⊥ given in Table II.
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