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Finite-momentum excitons in rubrene single crystals
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Excitons with nonzero momenta and their energy dependence are important for time dependent phenomena
such as transport properties or the coupling to external or internal fields, for example in electron energy loss
spectroscopy. In this paper we calculate the momentum dependent energy landscape of excitons in rubrene
single crystals. We show that singlet excitons exhibit a dispersion that is qualitatively similar to the electronic
valence and conduction bands, namely a relatively large bandwidth along �–Y and much flatter bands along
�–X and �–Z. However, the absolute value of the bandwidths is significantly weaker than for both electronic
bands. Triplet excitons, on the other hand, show much less dispersion and the exciton bands are much flatter than
their singlet counterparts.
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I. INTRODUCTION

Single crystals of rubrene ((5,6,11,12)-tetraphenyl-
tetracene) have received much attention for their remarkable
charge transport properties. The hole mobility of up to 40
cm2/V s is one of the highest among organic systems [1].
Another interesting feature is the anisotropy of the charge
transport, which is much higher along the direction of the
close stacking of the molecules than along the two orthogonal
directions [2–4]. This is thought to be a consequence of
bandlike carrier transport (as opposed to molecular hopping)
as suggested by various experiments [5–7].

Experimental measurements [8,9] and theoretical calcula-
tions [10,11] of the electronic band structure show the same
anisotropic behavior. Along the close-stacked direction (�–Y)
a large bandwidth/dispersion is found, whereas the bands
along the other directions are much flatter.

However, if rubrene single crystals are to be used in or-
ganic optoelectronic devices such as light emitting diodes or
organic solar cells, as is proposed and investigated by various
studies [12–16], the properties of excitons are also relevant.
While the optical absorption energies have been determined
theoretically [17] as well as experimentally [11,18,19], we
are not aware of any theoretical investigations of the finite-
momentum landscape for the excitons. This landscape may
be relevant in determining the exciton transport properties,
which are important design criteria for optoelectronic devices,
and can for example be measured by electron energy loss
spectroscopy.

Similar to the electrons and holes in the electronic band
structure excitons can also be classified according to their
total momentum (which relates to their center-of-mass mo-
tion) into an exciton band structure. In this paper we calculate
the momentum dependence of the exciton energies in order
to determine whether there is a similar anisotropy as in the
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electronic band structure or if the electron-hole interaction
leads to a different behavior.

Our calculations use the GW/Bethe-Salpeter equation
(BSE) framework of many-body perturbation theory which
has become one of the standard procedures for the calcu-
lation of optical properties of extended (molecular) crystals
[20,21] as well as molecules and polymers [22–26]. Recently
it also has increasingly been used for the calculation of finite-
momentum excitons [27–31].

Within GW/BSE an excitonic state |S, Q〉 with exciton
momentum Q is a linear combination of all possible transi-
tions between occupied valence states |v, k〉 and unoccupied
conduction bands |c, k′〉 whose momenta differ by Q. It can
therefore be expressed as

|S, Q〉 =
occ∑
v

empty∑
c

∑
k

(
AS,Q

vc,k |v, k → c, (k + Q)〉

+ BS,Q
vc,k |v, (k + Q) ← c, k〉). (1)

Here resonant transitions (excitations) are accompanied by co-
efficients AS,Q

vc,k and antiresonant transitions (de-excitations) by

coefficients BS,Q
vc,k. The exciton energies can then be obtained

by solving the BSE(
DA + Kd

AA + 2Kx
AA Kd

AB + 2Kx
AB

Kd
BA + 2Kx

BA DB + Kd
BB + 2Kx

BB

)(
AS

BS

)

= �S

(
AS

−BS

)
(2)

for singlet excitations and(
DA + Kd

AA Kd
AB

Kd
BA DB + Kd

BB

)(
AS

BS

)
= �S

(
AS

−BS

)
(3)

for triplet excitations. These equations have to be solved sep-
arately for each individual exciton momentum.

In Eqs. (2) and (3) the diagonal matrices D contain the
quasiparticle energy differences of the relevant transitions,
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FIG. 1. Atomic structure of rubrene single crystals. (a) isolated molecule, (b) view of the crystal along the c axis showing the herringbone-
like arrangement, and (c) view of the crystal along the a axis showing the two separated ab planes. For better visibility the second ab plane is
not shown in (b). Carbon atoms are shown in cyan and hydrogen atoms in gray. The unit cell is drawn in blue.

i.e., EQP
c,k+Q − EQP

v,k for DA and EQP
c,k − EQP

v,k+Q for DB. Kd and
Kx represent the direct and exchange part of the electron-hole
interaction, respectively. They are for the resonant-resonant
part given by

Kd,AA
vck,v′c′k′ = −

∫
dxdx′ ψ∗

c,k+Q(x)ψc′,k′+Q(x)W (r, r′)

× ψv,k(x′)ψ∗
v′,k′ (x′) (4)

and

Kx,AA
vck,v′c′k′ =

∫
dxdx′ ψv,k(x)ψ∗

c,k+Q(x)v(r, r′)

× ψ∗
v′,k′ (x′)ψc′,k′+Q(x′). (5)

Here v and W represent the bare and screened Coulomb inter-
action, respectively. The screened interaction W is obtained
as W = ε−1v, i.e., via the convolution of the inverse dielec-
tric function ε−1(r, r′, ω) and the bare Coulomb interaction.
The dielectric function describes all dielectric polarizability
mechanisms within the system. Each ψ in Eqs. (4) and (5)
denotes the indicated quasiparticle wave function. For the
interaction matrices involving antiresonant transitions (B) the
corresponding indices v′ and c′ have to be switched on the
right-hand side of each equation.

More detailed discussions of this formalism can be found
in Refs. [32,33].

An often used approximation is the Tamm-Dancoff ap-
proximation (TDA) that neglects the resonant-antiresonant
coupling (KAB = KBA = 0) and thereby decouples the ex-
citations and de-excitations. However, it has been shown
numerous times that this is problematic for singlet excitons
in small organic molecules [33–38]. As rubrene molecules
should be considered small for this purpose, we will use the
full BSE in addition to the simpler TDA calculations through-
out this work.

II. COMPUTATIONAL DETAILS

Rubrene crystallizes in an orthorhombic unit cell contain-
ing four molecules arranged in a herringbonelike structure.
Depictions of this arrangement can be seen in Fig. 1.
Within the unit cell the four molecules are arranged in two
herringbone-like ab planes of two molecules each. The planes
are separated by c/2 and shifted slightly in the b direction [see
Fig. 1(c)]. This results in closely stacked molecules in the b
direction, whereas the molecules are further apart in the a and
c directions.

In this work we use the experimental structure measured by
Jurchescu et al. via x-ray diffraction (Ref. [39]) without any
theoretical optimizations. They obtained lattice constants of
a = 14.433 Å, b = 7.193 Å, and c = 26.86 Å at a temperature
of 293 K.

In addition to the bulk crystal, we also calculated thin films
of rubrene single crystals. For this we chose a slab of two ab
planes (i.e., one unit cell, 26.86 Å-thick) with 100 Å vacuum
added in the c direction.

Our density functional theory (DFT) calculations, which
are used as a starting point for the GW/BSE calculations,
were carried out with the local density approximation (LDA)
functional and norm-conserving Hamann pseudopotentials
[40] in the Kleinman-Bylander form [41]. The basis set
consisted of atom-centered gaussians [42] with three de-
cay constants per atom each up to angular momentum l =
2, i.e., 30 basis functions per atom. The decay constants
were α = [0.13, 0.78, 3.60] a−2

B for hydrogen atoms and
α = [0.26, 0.89, 3.48] a−2

B for carbon atoms. The Brillouin
zone was sampled by a grid of 2 × 4 × 2 k points deter-
mined by the scheme developed by Monkhorst and Pack
[43].

Tests with varying decay constants and also larger basis
sets of 40 functions per atom revealed changes in the Kohn-
Sham energies, band gaps, and bandwidths of just 5 meV at
most. Changing the k-point grid to a sparser 1 × 2 × 1 or
a denser 4 × 8 × 4 grid has virtually no effect on the DFT
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results. As the Kohn-Sham energies are anyways corrected by
the later GW calculations this seems to be an adequate setup.

In our GW/BSE calculations the dielectric function ε is
calculated via the random-phase approximation (RPA) and
then described by a generalized plasmon-pole model. The
plasmon-pole model is in the form originally introduced by
von der Linden and Horsch [44,45]. Its parameters are deter-
mined by two independent calculations of the dielectric matrix
at ω = 0 and on the imaginary axis at ω = i Ry.

Although in principle the self-energy � would have to be
calculated iteratively this is unfeasible. Instead, we calculate
the Green functions G and the screened Coulomb interaction
W only once from the DFT results. This approach is also
known as G0W0.

When calculating the self-energy, we use an additional
Gaussian basis set to represent the occurring two-point quan-
tities, such as ε or W , as matrices in this basis [45].
This corresponds to density-fitting resolution-of-identity tech-
niques. We use the same decay constants as for the DFT basis
set but with functions up to l = 3 for the two larger decay
constants, which results in 50 basis functions per atom for the
auxiliary GWA basis. We also tested other setups for the decay
constants, but this produced only minor changes in the results.

The k-point sampling for the RPA and the calculation of
� was also done by a 2 × 4 × 2 grid. The sum over states
required for the calculation of ε and � is taken over the first
2000 (spin-degenerated) states available from the DFT.

For the BSE calculations the electron-hole interaction was
calculated on a 3 × 7 × 1 k-point grid, which included the
� point (where the closest quasiparticle gap is located). The
active space for the transitions included in the BSE consisted
of 60 valence bands and 100 conduction bands at each point
of the grid.

With these parameters the quasiparticle band gap at � is
converged within 0.05 eV and the bandwidths of the highest
valence and lowest conduction bands are converged within
0.01 eV. With those GW results the exciton energies are con-
verged within 0.01 eV.

Further technical details can be found in
Refs. [32–34,45,46].

III. ELECTRONIC BAND STRUCTURE

Our result for the electronic band structure along the path
Z–�–Y–X–� is shown in Fig. 2. Overall, our result agrees
with previous calculations [10,17,47] and experimental mea-
surements [8,9] in having a relatively large bandwidth along
�–Y (which corresponds to the b direction in real space), a
small bandwidth along �–X (a direction), and virtually flat
bands along �–Z (c direction). For the comparison with our
exciton energies (see Sec. IV), the different bandwidths and
the quasiparticle gap are listed in Table I.

In general our bandwidths roughly agree with those cal-
culated in Ref. [10] (for both DFT and GWA), although they
are up to 0.06 eV larger along �–Y. Experimentally (angle-
resolved photoelectron spectroscopy) the bandwidth of the
valence band along �–Y was determined as (larger than)
0.4 eV [8,9], compared to our calculated value of 0.55 eV. Our
band gap of 2.6 eV is within the range of previously calculated
values. A model geometry with just two molecules per unit

FIG. 2. Electronic band structure within LDA and GWA along
Z–�–Y–X–�. The two band structures are aligned at the valence
band maximum at � which is set to zero energy. The band structure
has a large bandwidth along �–Y for the highest valence and lowest
conduction bands. The bandwidths along �–X and especially �–Z
are much smaller.

cell yielded a band gap of 2.8 eV [17], whereas theoretically
optimized structures gave rise to band gaps of 2.5 eV [47] and
2.34 eV [10]. The latter study also took the van der Waals
interaction into account.

All in all, our band structure therefore agrees with those
previously reported. This should provide a reliable basis for
our subsequent BSE calculations. The remaining (small) dif-
ferences are probably due to the different atomic structures
and a slightly different theoretical treatment.

The band structure of the thin film is very similar to that of
the bulk crystal. The only difference (apart from the missing
�–Z direction) is a larger quasiparticle band gap of about
3.0 eV. The bandwidths of the bands near the band gap are
unchanged compared to the bulk crystal.

TABLE I. The bandwidths W of the highest valence band (VB)
and the lowest conduction band (CB) along the �–Y and �–X direc-
tions for LDA and GWA. The band gap at � is also listed. All values
are given in eV.

LDA GWA

WVB(�–Y) 0.41 0.55
WCB(�–Y) 0.18 0.30
WVB(�–X) 0.06 0.07
WCB(�–X) 0.03 0.04
EGap(�) 1.11 2.60
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FIG. 3. Imaginary parts of the macroscopic dielectric function of
bulk rubrene single crystals for different exciton momenta. The mo-
menta are in Qy direction and range from zero momentum (Q = �)
to momenta spanning half the Brillouin zone (Q = Y). For these
calculations the full BSE without the TDA was used. The lowest
exciton energy increases with increasing exciton momentum.

IV. FINITE-MOMENTUM EXCITONS

A. Bulk crystal

Figure 3 shows the imaginary parts of the macroscopic
dielectric function (Im ε

Q
M) for different exciton momenta Q

in the Qy direction, i.e., parallel to �–Y. For zero exciton
momentum (denoted as Q = � in Fig. 3) this corresponds to
the optical absorption spectrum.

The macroscopic dielectric functions are calculated as a
sum of δ peaks located at the exciton energies �S [32]

Im ε
Q
M (ω) = 16πe2

ω2

∑
S

|E · 〈0|v|S, Q〉|2δ(ω − �S ), (6)

where E is the normalized polarization vector of the light
field (We use unpolarized light, i.e., an average over all three
cartesian directions). v is the single-particle velocity operator.
The transition matrix element can be expanded in terms of the
exciton state [see Eq. (1)] and is given by

〈0|v|S, Q〉 =
∑
vck

(
AS,Q

vck〈v, k|v|c, k + Q〉

+ BS,Q
vck〈c, k|v|v, k + Q〉). (7)

For better visibility the functions in Fig. 3 were drawn with
artificially broadened Lorentz peaks instead of the δ peaks in
Eq. (6).

From Fig. 3 it is already apparent that the lowest exciton
energy increases as the exciton momentum increases. Fig. 4
then shows the lowest exciton energies in a band structurelike
plot that also includes momenta in Qx direction. Additionally
Fig. 4 also includes the energy of the lowest triplet exciton
as well as the energies resulting from calculations using the
TDA. The triplet energies do not contribute to the dielectric
functions shown in Fig. 3 due to the selection rules (they are
spin forbidden).

First of all, we obtain an optical absorption energy (at the
� point, i.e., Q = 0) of 2.12 eV for the TDA and 1.97 eV

FIG. 4. Plot of the band structure of singlet and triplet excitons of
bulk rubrene single crystals along X–�–Y. The results of the full BSE
are shown with solid lines and those for the TDA-BSE with dotted
lines. The dispersion of the triplet energies is much lower than that
of the singlet energies.

for the full BSE. This is in reasonably good agreement with
experimental values, which range from 2.35 eV [18] via
2.2 eV [11,19] down to 2.04 eV [19]. The remaining dis-
crepancies are a result of the limitations of the mathematical
approach, which usually result in slightly lower theoretical ex-
citon energies. Our value is lower than a previously calculated
absorption energy of 2.32 eV [17], which was obtained within
the TDA. But the difference to our value is solely a result of
the higher quasiparticle gap (2.8 eV compared to our band gap
of 2.6 eV.) due to the use of a model geometry (see Sec. III).
The exciton binding energies obtained in Ref. [17] agree with
our values.

Fig. 4 shows that for the singlet excitons employing the
TDA leads to energies that are roughly 0.2 eV larger than
for the full BSE. This is in the expected range for organic
molecules of this size [33,34]. The triplet energies are, as
usual, much less affected by the TDA. For them the difference
is only about 0.06 eV.

The dispersion of the singlet exciton energies is quali-
tatively similar to the valence and conduction bands of the
electronic band structure. Quantitatively, however, the disper-
sion is significantly weaker than for both electronic bands.
The bandwidths are about 0.2 eV along �–Y (roughly two
thirds of the bandwidth of the conduction band) and less than
0.02 eV along �–X. In contrast the triplet energies show
much less dispersion. Here the bandwidth along �–Y is only
about 0.05 eV and along �–X the bands are virtually flat. The
concrete values for the bandwidths of both types of excitons
are listed in Table II.

All excitons (singlets and triplets) whose energies are de-
picted in Fig. 4 are mainly composed of transitions from
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TABLE II. The bandwidths W of the lowest energy singlet and
triplet excitons of bulk rubrene single crystals along the �–Y and
�–X directions calculated with and without the Tamm-Dancoff ap-
proximation. For reference the absolute energy at � is also listed. All
energy values are given in eV.

TDA-BSE full BSE

Wsing(�–Y) 0.20 0.17
Wtrip(�–Y) 0.05 0.05
Wsing(�–X) 0.02 0.01
Wtrip(�–X) 0.001 0.001
Esing(�) 2.12 1.97
Etrip(�) 1.10 1.06

the highest valence bands into the lowest conduction bands
(and vice versa for the full BSE). However, the singlet and
triplet excitons differ in their contributions from the different
k points in the Brillouin zone and the spatial extent of the
wave function in real space, which explains the differences in
the dispersion/bandwidths.

For the singlet excitons Fig. 5 shows as an example the
probability density of the electron for a fixed hole position
as well as the contributions from the different k points for a
relatively large exciton momentum near Y. The k-point distri-
bution on the right shows that singlet excitons mainly consist
of transitions that start (or end for the full BSE) from (on)
the valence band at or near �. For zero exciton momentum
(not shown here) the highest contribution would be directly at
� and symmetric around it. For larger exciton momenta, as in
Fig. 5, the distribution shifts slightly to ky �= 0 and is no longer
symmetric because the direction of the exciton momentum
breaks the spatial symmetry.

This means that the highest contributing transitions all
enter with very similar quasiparticle gaps into the BSE. As the
exciton momentum changes these quasi-particle gaps follow
the dispersion of the conduction band, which consequently
leads to the large exciton dispersion along �–Y and the small
exciton dispersion along �–X depicted in Fig. 4. Since the
quasiparticle gap for transitions that start at ky �= 0 is always
smaller than that for those starting at ky = 0, this should lead
to a reduced bandwidth compared to the conduction band
(compare Tables I and II ).

FIG. 6. Expectation values of the different elements of the BSE
for the investigated singlet and triplet excitons within the TDA as
functions of the exciton momentum Q. (a) Expectation value of
the quasiparticle gap EQP

c,k+Q − EQP
v,k, (b) expectation value of the

exchange electron-hole interaction (only singlet) and (c) of the direct
electron-hole interaction. Note the different scale of the energy axis
in the different subfigures and the break in the energy axis of the
direct interaction in (c).

To investigate this in more detail Fig. 6 shows the ex-
pectation values of the quasiparticle gap and the two parts
of the electron-hole interaction for the different excitons as
functions of the exciton momentum Q. As just discussed,
the expectation value of the quasi-particle gap is qualitatively

FIG. 5. Left: Probability density |χ (x, xh )|2 for a singlet exciton with a total momentum near Y, calculated within the Tamm-Dancoff
approximation. The hole was fixed at xh on the center molecule as indicated by the red dots (these correspond to density maxima of the valence
band). The volume enclosed by the indicated isosurface contains 64 % of the probability. Right: Contributions of the different k points of the
3 × 7 × 1 grid to the same exciton wave function. The contributions are symmetric around kx = 0 due to symmetry. With respect to ky the
symmetry is broken due to the nonzero exciton momentum.
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FIG. 7. Left: Probability density |χ (x, xh )|2 for a triplet exciton with a total momentum near Y, calculated within the Tamm-Dancoff
approximation. The hole was fixed at xh on the center molecule as indicated by the red dots (these correspond to density maxima of the valence
band). The volume enclosed by the indicated isosurface contains 92 % of the probability. Right: Contributions of the different k points of the
3 × 7 × 1 grid to the same exciton wave function. The contributions are symmetric around kx = 0 due to symmetry. With respect to ky the
symmetry is broken due to the nonzero exciton momentum.

similar to the conduction band, but has a reduced bandwidth
of just over 0.2 eV. Note that due to the k dependence of
AS,Q

vc,k, gaps at various k contribute to this expectation value

with different weights |AS,Q
vc,k|2.

Figure 6 also shows that the variations of the expectation
values of the electron-hole interaction for different momenta
are an order of magnitude smaller than for the quasiparticle
gaps. These variations further reduce the exciton bandwidth as
they generally result in a more attractive electron-hole interac-
tion for larger exciton momenta. While the expectation values
of the exchange interaction are generally more repulsive for
increasing momenta (except for the largest momenta in �–Y
direction), this is counteracted by the direct interaction, which
gets more attractive by even larger amounts (note the different
energy scales).

In addition to the k-point distribution, Fig. 5 also shows
an exemplary real space probability density for the singlet
exciton. This density is widely spread over multiple molecules
and is very similar irrespective of the exciton momentum
as a result of the very small variations of the electron-hole
interaction (see Fig. 6). The probability to find the electron on
the same molecule as the hole is about 17 % for all exciton
momenta. Finding the electron on the two nearest neighbors
in the b direction (horizontal in Fig. 5) has a probability of
42 % for zero exciton momentum. For larger exciton momenta
the probability increases up to about 64 %. For the second
nearest neighbors in the b direction the probability ranges
from 6 % to 1 % and for the neighbors in the a direction
(vertical in Fig. 5) the probability is between 20 % and 12 %.
Overall, the general magnitude of these probabilities agrees
with previously reported ones for zero exciton momentum
[17]. The concrete values differ, probably due to a different
definition of what constitutes “on a molecule” (within 2 Å of
an atom of said molecule in our case). The more compact
densities for larger momenta are in line with the slightly more
attractive electron-hole interaction observed in Fig. 6.

The triplet excitons on the other hand are very different,
as is apparent from the distributions in Fig. 7. The prob-
ability density on the left shows a much larger probability
to find the electron on the same molecule as the hole than
for the singlets. In fact this probability is over 90% in all
cases (Previously reported results for zero exciton momentum
show a similar distribution [17]). This is a consequence of

the missing repulsive exchange interaction and an increased
direct electron-hole interaction that leads to the lower overall
excitation energy.

Within k space this distribution means that all k points con-
tribute roughly equally to the electron-hole amplitude (wave
function). See also the right plot in Fig. 7. Because the differ-
ent transitions start at different points in the Brillouin zone,
they are associated with different quasiparticle gaps that enter
into the BSE. These quasiparticle gaps react/change differ-
ently when the exciton momentum changes. For transitions
starting near � the gap increases as the exciton momentum
increases (as already discussed for the singlet excitons). Tran-
sitions starting at ky near the edge of the Brillouin zone (near
Y), on the other hand, are associated with a quasiparticle gap
that decreases if the exciton momentum increases from zero.
Together these changes partly counteract each other, so that
the average quasiparticle gap of the triplet excitons has a much
smaller dispersion. This dispersion is then further reduced by
the increasing (in absolute terms) electron-hole interaction.
Both of these effects can be seen in the expectation values
in Fig. 6. Together these effects then result in the much flatter
triplet bands in Fig. 4.

B. Thin films

The thin film geometry consisted of to ab planes of
molecules and 100 Å of vacuum along the c direction (see
Sec. II). For this geometry Fig. 8 shows the imaginary parts
of the macroscopic dielectric function for the same momenta
as for the bulk crystal in Fig. 3. Figure 9 then shows the
corresponding band structure of the lowest energy excitons.

At first glance it is obvious that the momentum depen-
dence of the exciton energies is similar to that of the bulk
crystal. Furthermore the concrete exciton energies differ by
only up to about 0.05 eV from the bulk crystal. For the band-
widths the difference is even smaller (see the values listed
in Table III). This is remarkable because the quasiparticle
gap of the electronic band structure of the thin film is about
0.4 eV larger than for the bulk crystal. The electron-hole
interaction must therefore be larger by a similar amount.
Reasons for this include a reduced screening due to the miss-
ing three-dimensional environment and due to the geometric
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FIG. 8. Imaginary parts of the macroscopic dielectric function of
rubrene thin films for different exciton momenta. The momenta are in
the Qy direction and range from no momentum (Q = �) to momenta
spanning half the Brillouin zone (Q = Y). For these calculations the
full BSE without the TDA was used. The lowest exciton energy again
increases with increasing exciton momentum.

confinement of the wave functions to just two ab planes of
molecules.

It is commonly observed in nanostructured systems that
increased environmental polarizability (due to adsorbates,

FIG. 9. Plot of the band structure of singlet and triplet excitons
of rubrene thin films along X–�–Y. The results of the full BSE are
shown with solid lines and those for the TDA-BSE with dotted lines.
Again, the dispersion of the triplet energies is much lower than that
of the singlet energies. The overall energies are similar to those of
the bulk crystal.

TABLE III. The bandwidths W of the lowest energy singlet and
triplet excitons of rubrene thin films along the �–Y and �–X direc-
tions calculated with and without the TDA. For reference the absolute
energy at � is also listed. All energy values are given in eV.

TDA-BSE Full BSE

Wsing(�–Y) 0.17 0.15
Wtrip(�–Y) 0.05 0.05
Wsing(�–X) 0.002 0.01
Wtrip(�–X) 0.000 0.000
Esing(�) 2.10 1.93
Etrip(�) 1.05 1.01

substrates, additional layers, etc.) reduces both the funda-
mental band gap and the electron-hole interaction, largely
compensating each other such that exciton energies change
very little [48–51]. Removing layers (as in this study) has the
opposite effect (increased gap, increased excitonic binding,
but similar exciton energies), as observed here.

Although not shown here in detail, the real space probabil-
ity densities and k-point distributions of the thin film excitons
do not significantly differ from the bulk ones shown in Fig. 5
and Fig. 7.

V. CONCLUSIONS

To summarize, we found that for bulk rubrene single crys-
tals the momentum dependence of the singlet excitons is
qualitatively similar to that of the valence and conduction
bands of the electronic band structure. We found a significant
bandwidth along �–Y and a smaller one along �–X, although
both were smaller than those of both electronic bands. The
triplet excitons on the other hand show much smaller band-
widths of just 0.05 eV along �–Y and virtually no bandwidth
along �–X, compared to about 0.2 eV and less than 0.02 eV
for the singlet excitons, respectively.

As the main reason for this difference between singlets
and triplets we identified the k-point distributions of the
transitions contributing to the excitons. Singlet excitons were
mainly located at and around �, whereas triplet excitons were
spread over the whole Brillouin zone.

Concomitantly triplet excitons are much more strongly lo-
calized in real space and nearly confined to a single molecule
(“Frenkel excitons”), whereas singlet excitons include hop-
ping to neighbors and are much more delocalized (“Wannier
excitons”).

For the thin film geometry, we found exciton energies that
were generally similar to the bulk ones, even though the quasi-
particle band gap was about 0.4 eV larger. Here the increased
quasiparticle energy difference seems to be counteracted by
the similarly increased electron-hole interaction.
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