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Structural defects can crucially impact the optical response of monolayer (ML) thick materials as they are
considered as efficient trapping sites for excitons. These trapped excitons are located below the free exciton
emission. This phenomenon can give rise to a new type of emitters, known as ”single-photon emitters” (SPEs).
In this paper we outline the criteria, within our framework, by which single-photon emissions can be enabled
in two-dimensional materials and we explore how these criteria can be fulfilled in atomically thin transition-
metal dichalcogenides (TMD). In particular, we model the defects effect, in accordance with the most common
experimental realisations, on the spatial autocorrelation function of the random disorder potential. Moreover, we
provide a way to control the radiative lifetime of these emissions by a hybrid heterostructrue of a ML TMD with
a graphene sheet separated by a dielectric material with a controlled thickness, which enables Förster resonance
energy transfer process. Our paper predicts that the corresponding SPEs quenched radiative lifetime, which
depends strongly on the dielectric environment, will be in the picosecond range. The range of our calculated
exciton radiative lifetime in graphene-TMD heterostructure is consistent with that found in recent measurements.
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I. INTRODUCTION

TMDs have become a hot spot for two-dimensional ma-
terial investigations. In fact, atomically thin TMDs, which
follow the common formula MX2 (M = Mo, W and X =
Se, S) have raised considerable attention in both physical
science and material engineering due to their unique optical
properties [1–5]. Indeed, owing to the large carrier effective
masses, the two-dimensional spatial confinement and the re-
duced screening arising from the dielectric environment, the
excitons in TMD benefit of a gigantic binding energies of
about 200–500 meV. Hence, the excitonic states dominate the
optical spectra even at room temperature [3,6–8]. Moreover,
the truly two-dimensional nature of these materials offers a
straightforward integration into existing photonic chip tech-
nology and this leads to a rich playground in manipulating
their optoelectronic proprieties [3,6–9].

More recently, these monolayer (ML)-thick crystals have
also emerged as promising materials for quantum information
processing, where their optical response are characterised by
the presence of a new type of SPE provided by the defects
[2,10,11]. A single-photon emitter is one that produces a sin-
gle photon in a single mode and that mode must be the same
each time [2,10,11]. In this context, single-photon generation,
which is an important building blocks for quantum technol-
ogy has been achieved with a variety of systems in the past,
most notably with, semiconductor quantum dots (QDs) [12],
atomic defects such as nitrogen-vacancy centers in diamond
[13], organic molecules [14], parametric down conversion
[15], and more recently two-dimensional atomic crystals such

as hBN [16–18]. Each system has its advantages, but also
its limitations. In fact, the usability of single-photon sources
critically depends on the stability of photon emission. It is,
for example, still a challenge to find a single-photon source
that is stable, can be replicated, and can be easily interfaced
with electrical contacts, all desirable, if not essential, and fea-
tures for efficient quantum communication devices [2,10,11].
For example, due to the large surface-to-volume ratio, col-
loidal semiconductor quantum dots with diameters of a few
nanometers suffer from off times (blinking), spectral jumps
(diffusion), and even disappearance of photon emission (pho-
tobleaching) [2,19–22]. However, the results on ML TMD are
promising on various fronts. These materials are inorganic,
stable and could be easily used to form an heterostruc-
ture with other two-dimensional materials, such as graphene
[2,10,11].

In fact, many experimental groups such as Tonndorf et al.
[2] have reported the observation of single-quantum emitters
in atomically thin WSe2. In their measurements they have not
observed photo bleaching of the emitters for hours. Indeed,
they prove that the same single center is still present after
several days and cycling of the temperature between 10 and
300 K. This single-photon emission arises from the excitons
trapped in local potential wells created by structural defects
in the sample. The resulting localized excitons occur 50–
120 meV below the free neutral exciton state in WSe2 [2].
The defect in the TMD ML will introduces a confinement
in all directions. İn this case atomically thin semiconductor
WSe2 can be considered as a host for quantum dot-like defects
[2,10,11].
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These observations make evidence that TMDs can be
emerged as a novel platform in which to realize stable single-
photon emitter. This is the key future of the TMDs materials,
combining thin structure with stable SPE source, where other
systems such as InGaAs-QDs need to be buried about 100 nm
away from any surface in order to escape noise from charge
traps appearing there [23,24]. In the TMD ML case, this
surrounding material is not only absent but can be designed
purposefully by encapsulating the TMD by different mate-
rials. This proximity of TMD-QDs like to a surface allows
potential for complete control over the emitter’s surroundings.
As proof of concept demonstration we are going to study
the effect of coupling a TMD ML to a plasmonic structure
(such as graphene [25]). The corresponding heterostructure
requires nanometre-scale proximity to enable the Förster res-
onance energy transfer (FRET) mechanism [26–28]. This
last process manifests in the transfer of a photoexcitation
energy from a donor material (TMD) to an acceptor ma-
terial (graphene) [29–31]. In other words, this effect is the
conversion of an optical radiation emitted from a quantum
device into so-called surface plasmon-polaritons on a weakly
doped graphene [32–34]. We have chosen the weakly doped
graphene as a quencher firstly because of its TMD matching
structure and secondly because it is affordable and environ-
mentally friendly [35,36]. Graphene derivatives like graphene
oxide find extensive applications in biosensors and chemo-
sensors because of their properties, in which they exhibit a
remarkable quenching efficiency through FRET process up to
97% [37–43]. We highlight that in our theoretical work the
quenching efficiency has reached 99% for very small separa-
tion distances.

We shall state that in our paper, we are not going to
take into account variations in the trapping potential due to
the atomic structure nor defect-induced changes in phonon
characteristics. Our main focus lies on providing qualitative
microscopic insights into the impact of localized bright ex-
citon states on the optical responses of TMD ML. In this
paper we are going to firstly state a dependence within our
framework that is going to allow us to determine the con-
ditions for which we obtain a SPE and prove its existing.
Secondly, we are going to introduce the graphene induced
quenching rate expression, which is applicable for all TMD
materials. Thirdly, we are going to study the effect of a va-
riety of spacers with ranging thickness on the SPE radiative
lifetime of an exemplary TMD ML(WSe2) with a weakly
doped graphene sheet as a quencher material where we show
the dependence of this radiative lifetime of the TMDs SPEs
on this different spacer materials and its separation distance
from the plasmonic material. Furthermore, we are going to
highlight the effect of the random disorder parameters on the
quenched radiative lifetime for an exemplary heterostructure
(WSe2/SiO2/graphene). Finally, we are going to briefly de-
termine the quenched radiative lifetime as a function of the
interlayer distance for different ML TMD materials MX2.

II. DEFECT AS A SPE SOURCE

The most trivial way to observe SPE is to ensure
that, within a given detection spot size, only one quan-

tum emitter exists. In this context, photoluminescence
excitation spectroscopy reveals the excitonic nature of the
emitters and provides evidence that these single excitons can
be originate from free excitons trapped in local potential
wells created by structural defects in the ML. In an exper-
imental device these defects will be detuned and that this
could generate single-photon emission even for large num-
bers of defects. Most commonly, defects in TMDs and other
two-dimensional materials can be created by different mecha-
nisms, like alpha-particle irradiation [44], residual impurities
[45], atomic vacancy formation [46], strain from the substrate,
high-temperature annealing, impurity doping [47] and chemi-
cal functionalization [45]. These localized sites are randomly
distributed over each ML and it gives rise to a localization of
excitons, which eventually causes stable and sharp emission
lines, i.e., the single-photon emitters.

We model this structural imperfection (the inhomogeneous
disorder that derived from defects), using a Gaussian random
disorder potential that binds the center of mass of the electron-
hole pair. This potential is created from a superposition of N
random plane waves with random direction θi, random phase
φi, V0 the fluctuation amplitude, and finally L the correlation
length:

V (R) =
√

2

N
V0

N∑
i=1

cos

(
2π

L
X cos θi + 2π

L
Y sin θi + φi

)
.

(1)

In the presence of defect, the momentum of the center-of-mass
motion is no longer a good quantum number as in the case
of free exciton. Such effect introduce an additional confine-
ment in all directions similar to self-assembled (”natural”)
semiconductor QDs. However, the exciton in ML TMDs be-
haves as a massive particle subject to a disordered potential,
leading to spatially localized eigenstates of the center-of-
mass motion. To carry out the calculations of the energy and
the wave function of localized exciton in disorder potential
derived from defects, we need to resolve numerically the four-
dimensional Wannier equations HX �X (ρ, R) = EX �X (ρ, R)
(see Appendix A and Ref. [48] for more details about the
localized exciton Hamiltonian HX and the different approxi-
mations taken in our numerical calculation).

A. Effect of the correlation length on the
localization-delocalization of energy states

Experimental and theoretical studies have proven that a
disorder derived from defects can lead to a dramatic change
in the physical behavior of the interband excitations, pro-
ducing inhomogeneous spectral broadening and localization
of all states, particularly in low-dimensional systems. In the
same context, localization can also occur in time due to the
fluctuations [42], even in the presence of interactions between
particles, which is popularized in the recent publication with
the term many-body localization [43]. We show in this part
that for a random disorder potential and when its correlation
length L is approximated to the average defect size, we have
no localization of the exciton center-of-mass motion when the
defect size is too small (in order of 1 nm), while for big defect
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FIG. 1. [(a)–(c)] 3D-Schematic showing potential energy landscape due to defects under the influence of the correlation length, [(d)–(f)]
a cut of the potential energy landscape for a fixed value of y. [(g)–(i)] The autocorrelation function C is shown as a function of |R2 − R1|
where we highlight its dependence on the correlation length. [(j)–(l)] PL spectrum’s of defects in ML WSe2 for (j) L < Rcm, (k) L ≈ Rcm, and
(l) L > Rcm where we observe low-intensity PL peaks that are assigned to emissions from free excitons (pristine ML) and very intense peaks
that are assigned to localized excitons we attribute this attenuation to the trapping of free exciton in the potential wells resulting in localized
exciton. We note that the WSe2 ML is deposited on the SiO2/Si substrate and exposed to the air.

size (in order of 1 μm) the localization is maximized and it’s
impossible to obtain one SPE. It is important to note here, that
we only obtain a SPE for an average defect size close to the
center-of-mass localization length magnitude (≈10 nm).

In this section, in order to assure the localization of one
single state we are going to further investigate our theoretical
model given in Ref. [48] to determine the autocorrelation
function C(R1, R2), which determines the so-called scale of
roughness of the potential surface through the correlation
length L and by that we confirm the conditions for which
we have a SPE. The spatial autocorrelation function of the

disorder potential V (R) between two position vectors of the
center of mass R1 and R2 can be written as [48]

C(R1, R2) = 〈V (R1)V (R2)〉 − 〈V (R1)〉〈V (R2)〉
〈V 2(R1)〉

1
2 〈V 2(R2)〉

1
2

= J0

(
2π

L
|R1 − R2|

)
, (2)

here, J0(X ) represents the Bessel function of the first kind
order 0. The correlation function is quasi-periodic with respect
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to the lag |R1 − R2| as soon as |R1 − R2| � L, with a pseudo-
period roughly equal to L. Notably, for R ∈ R2 our disorder
potential is characterized by zero-mean 〈V (R)〉 = 0 and con-

stant standard deviation equal to σV = 〈V 2(R)〉
1
2 = V0. It

is worth noting that we can also define the autocovariance
function, which is just the unnormalized correlation function
C0(R1, R2) = σ 2

V .C(R1, R2). Note that C0(R1, R2) tend to σ 2
V

when |R1 − R2| → 0.
In the following we only address the property of the auto-

correlation function, an important feature for this function is
the decay shape, which represents the roughness degree of the
random surfaces [for a truly random rough surface, C(R1, R2)
usually decays to zero with the increase of |R1 − R2|, where
for a not really rough surface the autocorrelation function
fluctuates around zero with the increase of |R1 − R2|, and the
larger the fluctuations are the less the roughness is] while
the spatial decay rate depends on the distance over which
two points on this potential surface become uncorrelated and
this represents the correlation length L of an autocorrelation
function [49].

In order to investigate the effect of the correlation length
L on the roughness of the random surface and hence its
effect on the localization of the exciton center-of-mass mo-
tion, we plot in Fig. 1 the disorder potential landscapes (3D
and 1D) as well as the auto correlation function for three
different value of L. We can clearly notice that the correla-
tion length strongly affect the shape of the autocorrelation
function as well as the potential roughness, which controls
the localization/delocalization of the exciton states. In fact,
the roughness of the potential surface decreases with the
increasing of the correlation length L. Therefore, center-of-
mass localization radius in the harmonic potential description
Rcm =

√
h̄

MX ωcm
where ωcm is the frequency of a 2D harmonic

oscillator, three regimes can be distinguishable: (i) L < Rcm

[Fig. 1(a), 1(d), and 1(g)], this correspond to strong roughness
of the potential surface and lead to unbound exciton center-
of-mass states in a random potential, which can be explained
by the expansion of its wave function over the heights of
the potential lowering the role of potential fluctuation. This
delocalized states regime is confirmed by the autocorrelation
function where C(R1, R2) decreases monotonically from 1 to
0 with the increase |R1 − R2|. (ii) L > Rcm, Figs. 1(c), 1(f),
and 1(i)], this gives rise to a large potential width, which
lead to strong disorder. In this case, the potential surface is
smoother than the other regime [see Fig. 1(i)], and the exciton
center-of-mass motion is strongly localized in the random
disorder potential. In fact, in this regime since the localiza-
tion length is very small compared to the correlation length,
the confinement energy is large, so the quantification of the
exciton center-of-mass motion into only one state is not likely
to occur at these potential wells and we cannot obtain a SPE
source in this regime. Hence, in order to assure the presence
of a SPE we shall define the third regime (iii) where L is of
the order of Rcm we obtain one single localized state in the
disorder potential. We interpret this by the fact that defect size
is approximated to the correlation length. Taken ML WSe2

as an exemplary TMD, these results are clearly shown in
Figs. 1(j)–1(l), in which we calculate the PL spectrum at T

FIG. 2. (a) Schematic representation of the hybrid heterostruc-
ture of the FRET system, (b) the FRET mechanism from the
TMD-QD like system to the graphene sheet.

= 4 K, using the following expression:

PX ∝ |φ1̃s(ρ = 0)|2
∣∣∣∣∣
∫

ψCM
nx,ny

(R) d2R

∣∣∣∣∣
2

σ (h̄ω − h̄ωX ),

where the Lorentzian σ (h̄ω − h̄ωX ) = σX

π[(h̄ω−h̄ωX )2+σ 2
X ]

ex-
press the energy conservation taking into account the state
broadening. Here, ωX is is the optical transition frequency
with EX = h̄ωX , the phenomenological parameter σX is the
half-width at half-maximum of the lines. ψCM

nx,ny
(R) is the

center-of-mass wave function of localized exciton, φ1̃s(ρ) is
the relative wave function of the exciton.

For L > Rcm, i.e., larger potential, the calculated spectra
display several anharmonic peaks, which simulate in a real-
istic manner the low-energy peaks observed experimentally,
while for L 	 Rcm and deep potential, we found a single lo-
calized state, which is also in an argument with the experience
and the last one for L < Rcm where the center-of-mass motion
is free. In the follow we will concentrate our study on WSe2

ML where L = 100 and Rcm = 80 in which we have a SPE
that confirms what found in the experimental work [2]. After
obtaining the SPE source we shall present the way to control
this TMD-QD like system radiative lifetime by allowing the
Förster resonance energy transfer process to occur when the
ML TMD is coupled with the doped graphene sheet.

III. FRET: THEORETICAL APPROACH

In this part we are going to introduce the FRET quenching
rate expression, which we have derived it from Velizhanin
et al. [32] calculations in a way that fits our heterostructures.
The procedure to make these FRET allowing structures con-
sists of growing a dielectric spacer on top of a graphene sheet
with a controllable thickness, then depositing a TMD ML on
top of the dielectric spacer. The schematic hybrid system and
FRET process are presented in Fig. 2.

The energy transfer from the TMD ML to the graphene
sheet is based on the Coulomb interaction between the quasi-
particle plasmon in graphene and the exciton of TMD-QD like
system, corresponding to the Förster coupling. We define this
interaction by the following expression:

Hint =
∫

drVdip(r)(|�X 〉〈�0| + |�0〉〈�X |)ρ̂(r), (3)

where ρ̂(r) = −eχ (r)χ∗(r) is the the charge density of
graphene, with χ (r) and χ∗(r) are the created and destroyed
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operators of an electron at position r within the graphene
ML. The absolute value of the electron charge is denoted by
e = |e|. |�X 〉 and |�0〉 denote the localized exciton and the
vacuum states respectively. The theoretical investigation of
the FRET rate is done by evaluating the quenching rate that
is expressed using the Fermi’s golden rule and it results in
[32]

�q = − 2

(2π )2h̄

∫
dq|Vdip(q)|2Im[�r pa(q, h̄ω)]. (4)

We have been using the polarization operator �r pa of the
graphene that we have calculated with in the random phase
approximation (RPA) because the polarization operator within
the bare bubble approximation �0(q, h̄ω) does not include
the graphene’s polarization self-consistently, which can be-
come crucial at nonzero doping levels (μ > 0), where the
finite carrier density at the Fermi level leads to the effi-
cient Coulomb screening within the graphene sheet [33].
Here μ is the chemical potential of the graphene sheet.
So we evaluate the polarization operator within RPA as
�r pa(q, h̄ω) = �0(q,h̄ω)

1−V (q)�0(q,h̄ω) [34] where V (q) = 2πe2/k̃q is
the two-dimensional Fourier transform of the Coulomb poten-
tial within the graphene plane and k̃ = εspacer+εvac

2 donates the
effective dielectric constant encapsulating the graphene sheet.
In this paper we are going to consider that D < z where z is the
interlayer distance (spacer thickness) between the TMD-QD
like and the graphene, and D is the defect potential diameter.
In Appendix B we detail the calculation of Vdip and it results
[Eqs. (B12)] in the next expression of the quenching rate:

�q = − 2πe2

h̄ ε2
spacer

(
2d2

z + d2
‖
) ∫ ∞

0
dq qIm[�r pa(q, h̄ω)]e−2qz,

(5)
where d‖ and dz are the projections of the ML TMD transition
dipole d onto the graphene plane and the normal to this plane,
respectively. We average these quantities over all the possible
orientations with respect to the graphene plane, which yields
in 〈dz〉 and 〈d‖〉. Here, 〈dz〉 = e.a0 where a0 is the thickness
of TMD ML, or 〈d‖〉 can be expressed as a function of optical
dipole transitions by electromagnetic waves perpendicular to
the layer, and its evaluated through elements of the optical
matrix, which are related to the rate of spontaneous recombi-
nation of the exciton:

〈d‖〉2 = e2

m2
0ω

2
X

|φñl (ρ = 0)|2|
∫

ψCM
nx,ny

(R)d2R
∣∣2

× ∣∣〈uc|ελ
q .p̂|uv〉

∣∣2
, (6)

here ελ
q is a unit vector characterizing the optical mode polar-

ization λ, q is the photon wave vector and p̂ is the electron
momentum operator.

∫
ψCM

nx,ny
(R)d2R represents the Fourier

transform of the center-of-mass wave function taken at K = 0.
The momentum matrix element 〈uc|ελ

q .p̂|uv〉 and the exciton
wave function give rise to different selection rules. For the
exciton center-of-mass wave function only the wave function
with even nx, ny quantum number, giving a nonzero contri-
bution in the calculation of the dipole moment. Also, d‖ = 0
only for 1̃s states in which the angular momentum l = 0. The
selection rules come also from 〈uc| p̂|uv〉, which depends on
the nature of the Bloch functions. For bright exciton emission,

the only nonzero elements of the valence-conduction coupling
terms are 〈uc| p̂±|uv〉 for circularly polarized light σ± propa-
gating along the normal to the sample (p± = px±py√

2
), so that

only optical modes with in-plane polarization components
couple to these excitons. Therefore, using the k.p two-
band model approximation, the momentum matrix element is
given by

〈uc|ε±.p̂±|uv〉 =
√

m0Ep

2
. (7)

with Ep = m0Eg

me
is the Kane energy for TMD materials ob-

tained in the two band modes, Eg is the band-gap energy and
me is the electron mass. Now, inserting the Eqs. (6) and (7) in
the Eq. (5) the quenching rate can be rewritten as follows:

�q = − 3πe2c3

4n0ω
3
X ε2

spacer

(
2(e.a0)2

〈d‖〉2
+ 1

)
�T MD

×
∫ ∞

0
dq qIm[�r pa(q, h̄ω)]e−2qz

=
∫ ∞

0
dq F (q, h̄ω), (8)

with �T MD is the spontaneous emission rate of the localized
exciton state j, which is given by

�T MD = 4e2

3h̄m0c3
n0ωX Ep|φñl (ρ = 0)|2

∣∣∣∣
∫

ψCM
nx,ny

(R)d2R

∣∣∣∣
2

= 8n0ω
3
X

3h̄c3
〈d‖〉, (9)

here n0 =
√

k̃ is the effective optical refraction index of the
crystal environment. Using the above relations, we can now
calculate the quenched radiative lifetime τ , which is given by
τ−1(z) = �q + �T MD, we obtain

τ−1(z) = �T MD

[
1 − 3πe2c3

4n0ω
3
X ε2

spacer

(
2(e.a0)2

〈d‖〉2
+ 1

)

×
∫ ∞

0
dq qIm[�r pa(q, h̄ω)]e−2qz

]
. (10)

We can also define the quenching efficiency as follows [41]:

ϕeff (z) = �q

�q + �T MD
= �q

τ−1(z)
. (11)

Our result coincides nicely with the result given in Ref. [33].
Note that we obtain a different expression compared to it since
we are interested in the TMDs behavior and focused on its
exciton’s radiative decay rates. Using the last equations we
gain the disired way to control the SPE radiative lifetime.

A. Investigation of the graphene effect on the TMDs SPEs

We exploit the derived equations to calculate the Förster
induced quenching rate, efficiency and radiative lifetime of
the SPE, for an exemplary TMD donor material, ML tungsten
diselenide (WSe2) in a hybrid heterostructure with a graphene
sheet as a quencher material and SiO2 as a spacer. We are go-
ing to adopt the data provided by the first part where we prove
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FIG. 3. (a) Plot of the Im[�r pa(q, h̄ω)]e−2qz for a fixed distance between the TMD and the graphene layer (z = 5 nm). (�) represents only
the standard Im[�r pa(q, h̄ω)] plot, the white color emphasizes Region 1B (q < ω, q < 2qf − ω/v f ) of the phase space and it is protected
from Landau damping arising from both interband and intraband transitions. The coloured regions are 1A (ω/v f < q < 2qf − ω/v f ) and 2A
(ω/v f < q < 2qf + ω/v f , q > 2qf − ω), dominated by Landau damping resulting from intraband transitions, and 2B (2qf − ω/v f < q <

ω/v f , ω/v f < 2qf + q) and 3B (q < ω/v f − 2qf ) dominated by indirect and direct interband transitions, respectively [33]. (b) represents the
quenching rate of the SPE for an interlayer distance z = 5 nm and for a fixed excitation energy EX = 1.654 eV. (c) the red line represents
the shape of the density-density imaginary part operator as a function of wave vector q and for the same fixed values where the hatched part
represents the quenching rate as a function of the wave vector q.

that for a given L, V0, Rcm, and N we have an SPE source with
an energy of 1.654 eV and a decay rate of �T MD = 0.625 ns−1.
These disorder parameters will be the first key in enabling
the FRET process. We begin our work by exploiting Eq. (8),
where we show in Fig. 3(a), a plot of the imaginary part of
the polarization operator of the weakly doped graphene layer
multiplied by the distance quenching factor e−2qz as a func-
tion of the excitation energy h̄ω (eV) and the wave vector
q (nm−1) where we consider that the Fermi energy EF =
0.2 eV and the Fermi velocity v f = 1015 nm/s. We find rates
of Im[�r pa(q, h̄ω)]e−2qz ranging from (−105 eV−1nm−2 to
0 eV−1nm−2) for z = 5 nm. We also show in Fig. 3(a) the
electron-hole continuum or single-particle excitation regions
in (q, EX ) space, which determines the absorption (Landau
damping) of the external field at a given frequency and wave
vector. İn general the single-particle excitation continuum is
defined by the nonzero value of the imaginary part of the

polarizability function, Im[�r pa(q, h̄ω)] = 0. İn the graphene
case both the intraband and the interband transition of the
single-particle excitation are possible, and the boundaries are
as showing in the inset of Fig. 3(a). In general, if the collective
mode lies inside the single-particle excitation continuum then
we expect the mode to be damped. For graphene, the plasmon
lies inside the interband single-particle excitation continuum
decaying into electron-hole pairs. Only in the region 1A of
Fig. 3(a) that the plasmon is not damped, also the graphene
plasmon does not enter into the intraband single-particle exci-
tation and it exists for all wave vectors. The highest absorption
rate is observed in the single-particle excitation interband
regime (2B region), for the lowest excitation energy and for
q → 0 where the exponent e−2qz in this term decays rapidly
with q, which guarantees that when h̄ω is fixed the dominant
contribution to this term comes from lowest possible q where
the imaginary part of the polarization operator is still nonzero.
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TABLE I. The used spacer dielectric constant for determining the ML WSe2 relative SPE energy EX , radiative lifetime τmax and its
correspondent quenched radiative lifetime τ and quenching efficiency ϕeff for z = 6 nm and z = 10 nm.

Substrate sapphire Si3N4 h-BN SiO2 SiO2 vacuum

εspacer 10 7 4.5 3.9 2.1 1
EX (eV) 2.107 2.064 1.967 1.922 1.65 1.317
τmax(ns) 179 100 15 12.8 1.6 0.24
τ (z = 6 nm)(ns) 1.37 1.05 0.72 0.63 0.27 0.04
ϕeff (z = 10 nm)% 88.5 84.3 50.6 50.6 19 19

We also mention that the optical absorption of the graphene
layer decreases as a function of the increase of the interlayer
distance. Now, to investigate the dependence of quenching
rate �q on the excitation energy we show in Fig. 3(b) the
quenching rate for the adopted excitation energy of the WSe2

QD like with a fixed interlayer distance (z = 5 nm) multiplied
by the Dirac function δ(h̄ω − EX ), where we obtain a photo-
luminescence replica with an intensity corresponding to the
quenching rate (8.54 ns−1) for that given distance and energy.
In Fig. 3(c), we investigate the variation of the quenching rate
as a function of the wave vector q where it represents a cut of
the quenched polarizability of Fig. 3(a) for a fixed excitation
energy EX = 1.654 eV. We also find that the FRET quenching
rate has a maximum at q = 0.6 nm−1 and its shape is governed
by the Im[�r pa(q, EX )]. This function is relative for two point
charges located at the innermost portion of the graphene sheet.
We state that for very small wave vectors, Im[�r pa(q, EX )] ≈
0 (there is no screening inside the sheet) since very long wave-
length perturbations correspond to charges being so far apart
that they only experience the screening of the surrounding
environment. For increasing wave vector q, the charges get
closer, so more of the field lines connecting them are confined
to the interior of the graphene sheet.

We conclude that Im[�r pa(q, EX )] increases with q until
it reaches near a maximum, and subsequently decreases with
increasing q after the maximum due to the intrinsic inability
of the medium to screen very short-wavelength excitations.

B. The environment effect on the SPEs
quenched radiative lifetime

We investigate the effect of the spacer dielectric constant
on the SPEs quenched radiative lifetime in a way to gain
control over it. To get a first impression of this effect, we ex-
ploit Eq. (10) where the dielectric constant of the spacer (see
Table I) interferes in the quenched radiative lifetime through
the energy given by the QD-like WSe2, its relative oscillator
strength and finally through the screened excitations of the
graphene translated by the RPA approximation. In Fig. 4,
we evaluate all possible spacers materials, this will give us a
control over the desired radiative lifetime where the dielectric
constant is considered as a gate to tone the apparent radia-
tive lifetime of the TMD material. This quenched radiative
lifetime of the SPE is shown in Fig. 4(a) as a function of
the spacer thickness for different dielectric constant, while
in Fig. 4(c) we try to extrapolate the general behavior of this
SPEs quenched radiative lifetime as a function of the dielec-
tric constant taking into account the effect of εspacer on the
RPA and for a spacer thickness z ranging from 0 nm to 40 nm.
We find that this Förster induced radiative lifetime exhibits a

smooth decay as a function of the spacer dielectric constant
ranging from (τ sapphire

max = 179 ns; τ
sapphire
min = 3.26 fs) relative

to the lowest excitation energy, which corresponds to the
highest spacer dielectric constant that of the sapphire spacer
to (τ vacuum

max = 0.24 ns; τ vacuum
min = 0.968 fs) for the highest ac-

cessible excitation energy corresponding to the lowest spacer
constant and that is of the vacuum. We show in Fig. 4(b)
that changing the spacer material can push the limit of the
quenching distance by 12 nm. We can mention that the lowest
efficiency by distance curve is observed for the vacuum, and
the biggest one is for the sapphire. We attribute this change
to the direct effect of spacer dielectric constant on the SPEs
energy and its corresponding radiative lifetime and also on
the screening in the graphene sheet.

C. SPEs quenched radiative lifetime in the presence
of different TMDs

We are going to shed light on the effect of the graphene
sheet on other TMDs SPEs. Firstly, we should mention that
the big difference between these materials in our framework

FIG. 4. (a) Numerical evaluation of quenched radiative lifetime
of the TMD QD like system as a function of the interlayer distance
(spacer thickness) and the spacer dielectric constant. (b) The FRET
efficiency as a function of the interlayer distance and the spacer di-
electric constant. (c) Extrapolation of the quenched radiative lifetime
of the TMD QD-like system as a function of the spacer dielectric
constant and the interlayer distance (color bar) ranging from 0 nm to
40 nm
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TABLE II. Different ML TMD materials deposited on a SiO2 substrate and their relative electron and hole effective masses me(h), Eg gap
energy, correspondent SPE energy EX and radiative lifetime τmax we also provide the quenched radiative lifetime τ and the quenching efficiency
ϕeff for a z = 5 nm spacer thickness.

TMD/SiO2 WSe2 WS2 MoSe2 MoS2

me(m0) [50–53] 0.29 0.31 0.5 0.45
mh(m0) [50–53] 0.36 0.42 0.6 0.54
Eg(eV) [54] 2.08 2.43 2.18 2.48
EX (eV) 1.65 1.99 1.544 1.77
τmax(ns) 1.6 0.7 0.12 0.19
τ (z = 6 nm)(ps) 275 249 59 101
ϕeff (z = 5 nm)(%) 83 83 74 71

consists mainly in the electron and hole effective masses,
which are given in the Table II. Secondly, we show the dif-
ference in the SPEs radiative lifetime of TMD sheets (for a
SiO2 substrate) when the system is isolated from the graphene
sheet, τWSe2

max − τMoSe2
max = 1.41 ns where the biggest radiative

lifetime is attributed to ML WSe2 τWSe2
max = 1.6 ns or the lowest

one is attribute for MoSe2 τMoSe2
max = 0.15 ps. In the presence of

graphene and in close proximity the difference of the radiative
lifetime becomes in order of τ

WSe2
min − τ

MoSe2
min = 1.28 fs where

the lowest was attributed to the MoSe2 with τ
MoSe2
min = 1.12 fs

and the highest was for the WSe2 with τ
WSe2
min = 2.4 fs. Chang-

ing the TMD material has proved, in the inset of Fig. 5(a), that
it pushes the limit of the quenching distance by 4–6 nm and
we can mention that the lowest efficiency by distance curve
is observed for ML MoSe2 while the biggest one is for the
WSe2 ML. The dominant variable here, which is considerably
affecting the radiative lifetime, is the SPEs corresponding en-
ergies. To further investigate the effect of the excitation energy
on the saturation regime defined as the radiative life time of
the isolated source, we are going to compare the quenched
radiative lifetime of three different energy regions. The first
one is attributed to the TMD region of energy (1.3–2.3 eV),
while the second is attributed to the low energy region (below
1.3 eV) and finally the third, which represents the high energy
region (above 2.3 eV). We have plotted the quenched radiative
lifetime of Fig. 5(b) as a function of the interlayer distance and

FIG. 5. (a) Numerical calculation of the the FRET radiative life-
time as a function of the interlayer distance for the different TMD
materials on an SiO2 substrate with an inset of their relative quench-
ing efficiency. (b) The general behavior of the quenched radiative
lifetime as a function of the excitation energy and the interlayer
distance.

the excitation energy, which is ranging from 0.5 eV to 4 eV,
where we suppose that (1/�T MD = 1.6 ns). Figure 5 shows
that in the case of low excitation energies, the quenching of the
radiative lifetime is mainly conducted by large spacer thick-
nesses but for small separation distances we have mainly the
same effect (value). We observe also, that for high excitation
energy the saturation regime is achieved within few nanome-
tres (3–5nm). Compared to the TMD region, which have a
smooth transition and make it possible to access any desirable
quenched radiative lifetime easily from 0 nm to 20 nm.

IV. CONCLUSION

In conclusion, we have discussed in the first part the
localization of excitons in ML TMD due to a disordered
structural potential, and the conditions for which each lo-
calization site can be viewed as a SPE. In the second
part, we have showed that the localized exciton energy of
this SPE can be transferred, via FRET to an adjacent 2D
sheet of doped graphene. We have also proposed a method
of manipulating single-photon emitter radiative lifetime in
transition-metal dichalcogenides through FRET to graphene
and we have analysed the fluorescence quenching efficiency
in this TMD (SPE)-graphene complex. We predicted that
the Förster quenching rate leads to a low radiative lifetime
of this single-photon emission and we gained control over
this quenching through two major gates, the dielectric spacer
nature and the choice of the ML TMD material. Our paper
predicts that the corresponding SPEs quenched radiative life-
time will be in the picoseconds range for a given distance, this
time scale is in agreement with the recently measured exciton
lifetime in these heterostructures [55–58].
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APPENDIX A: LOCALIZED EXCITON STATES

To estimate the energies and the oscillator strength of the
localized exciton, we use 2D effective-mass approximation.
It is convenient to work in the center-of-mass frame and the
physics of exciton is described by the following Schrödinger

115426-8



MANIPULATING SINGLE-PHOTON EMITTER RADIATIVE … PHYSICAL REVIEW B 104, 115426 (2021)

equation:

[
Eg − h̄2∇2

ρ

2μ
+ Vky(ρ) − h̄2∇2

R

2MX
+ V (R)

]
�X (ρ, R)

= EX �X (ρ, R), (A1)

with R = meρe+mhρh

MX
, ρ = ρe − ρh are the position vector of the

exciton center of mass and relative distance of the electron
from the hole, respectively. Here ρe and ρh are the in-plane
position vectors for the electron and the hole, respectively, Eg

is the gap energy and V (R) is the disorder potential derived
from structural imperfections given by Eq. (1) in the main text.
The electron-hole direct Coulomb interaction is treated here
using the Rytova-Keldysh potential Vky(ρ) according to the
widely accepted approach. μ = memh

MX
is the reduced effective

mass, MX is the exciton mass, me (mh) is the electron (hole)
effective mass given in terms of free electron effective mass
units (m0).

In our paper, it is assumed that the perturbation introduced
by disorder is not sufficient to produce a transition from the
exciton 1s state to higher states of the relative electron-hole
motion. Hence, the exciton stays always in the 1s state and
only its center-of-mass motion is affected by disorder. We
make the following factorization ansatz for the localized exci-
ton wave function solution of Eq. (A1):

�X (ρ, R) = φñl (ρ) × ψCM
nx,ny

(R), (A2)

where φñl (ρ, θ ) = ∑
n,|l|<n C(n, l )ϕn,l (ρ) are the

eigenvalue solutions of the relative Hamiltonian.
φñl (ρ) expanded in terms of 2D-hydrogenic states
ϕn,l (ρ, θ ). n = 1, 2, 3... is the principal quantum
number, l = 0,±1,±2,±3, ... ± n − 1 is the angular
momentum number and ψCM

nx,ny
(R) = ∑

nx,ny
D(nx, ny)

1√
nx!ny!

1√
2nx ,ny

√
1

πR2
cm

Hnx ( X
Rcm

)Hny ( Y
Rcm

)e
− (X2+Y 2 )

2R2
cm is the

center-of-mass wave function, obtained by the numerical
diagonalization of the matrix resulting from the projection of
the center-of-mass Hamiltonian on the basis of 2D harmonic
oscillator. Rcm =

√
h̄

MX ωcm
is the center-of-mass localization

radius in the harmonic potential description and ωcm is the
frequency of a 2D harmonic oscillator. Hnx(y) are the Hermite
polynomials. In this notation, the integers nx, ny are quantum
numbers.

The solution of the Schrödinger equation for a localized
exciton in a solid is

ζX (R, ρ, ze, zh) = �X (ρ, R)uc,k (re)u∗
v,k (rh),

where uc,k (re) and u∗
v,k (rh) are the Bloch functions taken at

the points of high symmetry (Kτ , τ = ±1) of the valence (v)
and conduction (c) bands. In our case, we neglect the possible
mixtures with the other excitonic states. re(h) = (ρe(h), ze(h) ) is
the electron (hole) coordinates.

In order to calculate the optical matrix element obtained by
considering the interaction with the first order electromagnetic
field, it is convenient to introduce the Fourier transforms of
the envelope-function φn,l (ρ, θ ) and ψCM

nx,ny
(R) defined in the

plane of the 2D crystal:

ψCM
nx,ny

(R) = 1

(2π )2

∫∫
eiK.Rψ̄CM

nx,ny
(K )d2K, (A3)

φn,l (ρ) = 1

(2π )2

∫∫
eik.ρφ̄n,l (k)d2k. (A4)

We thus obtain the alternative expression

ζX (R, ρ, ze, zh) = 1

(2π )4

∫∫∫ ∫
d2Kd2kei(K.R+k.ρ)

× ψ̄CM
nx,ny

(K )φ̄n,l (k)uc,k (re)u∗
v,k (rh), (A5)

with the center of mass K and relative k wave vectors are
given, respectively by {

K = ke + kh

k = mhke−mekh
MX

.
(A6)

Using the following change of variables (K, k) � (ke, kh),
with d2Kd2k = d2ked2kh, we can write

ζX (R, ρ, ze, zh) = 1

(2π )4

∫∫∫ ∫
d2ked2khei(ke.ρe+kh.ρh )

× ψ̄CM
nx,ny

(K )φ̄n,l (k)uc,k (re)u∗
v,k (rh). (A7)

We can then pass to discrete summations on the allowed
states of the first Brillouin zone (BZ), because |K| ∼ 1

L �
|b1|, |b2|, |k| ∼ 1

aB
� |b1|, |b2| where b1 and b2 are the ba-

sis vectors of the reciprocal 2D lattice. Using the following
approximation: ∑

k

()
. ≡ S

(2π )2

∫∫
d2k

()
,

the Eq. (A7) can be rewritten as

ζX (R, ρ, ze, zh) = 1

S2

∑
ke∈ZB

∑
kh∈ZB

ei(ke.ρe+kh.ρh )

× ψ̄CM
nx,ny

(K )φ̄n,l (k)uc,k (re)u∗
v,k (rh). (A8)

The Bloch functions uc,k (re) and u∗
v,k (rh) = uh,−k (rh) vary

slowly when ke and kh vary around the K point. We can write
then

ζX (R, ρ, ze, zh) = 1

S2

∑
ke∈ZB

∑
kh∈ZB

ψ̄CM
nx,ny

(K )φ̄n,l (k)eike.ρe

× uc,ke (re)eikh.ρh u∗
v,kh

(rh), (A9)

ζX (R, ρ, ze, zh) = 1

S

∑
ke,kh∈ZB

ψ̄CM
nx,ny

(K )φ̄n,l (k)ϒc,ke (re)

× ϒ∗
v,kh

(rh), (A10)

where

ϒc,ke (re) = 1√
S

eike.ρe uc,ke (re), (A11)

ϒv,kh (rh) = 1√
S

eikv .ρh uv,kh (rh), (A12)
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here kh = −kv . In fact, the hole state is related to the valence
electron state by ϒkh (r) = K̂ϒkv

(r), with K̂ being the time-
reversal operator. In Fock representation, the electromagnetic
field is written as

Â
λ

q (r, t ) =
(

2π h̄c

n0qV

)

× [
ελ

qei(q.r−ωqt )aq,λ + ελ
qe−i(q.r−ωqt )a+

q,λ

]
, (A13)

ελ
q is a unit vector characterizing the optical mode polariza-

tion λ. The operator a+
q,λ (aq,λ) creates (annihilates) a photon

with wave vector q and polarization λ. The optical angular
frequency is defined by ωq = c

n0
|q|, here n0 is the effective

optical refraction index of the crystal environment, c is the
light velocity, and V is the normalized volume. The quan-
tum mechanical interaction between radiation and matter is
given by

Ĥλ
opt = e

2m0c
(Â(r).p̂ + p̂.Â(r)) + e2

m0c2
Â(r)2. (A14)

We treat the modification of the 2D system by the fields
using the first order time-dependent perturbation theory, by
ignoring the terms in Â

2
, in Eq. (A14), i.e., for sufficiently

weak electromagnetic fields. In the Coulomb Gauge the terms
A(r).p̂ and p̂.Â(r) coincide. So, in the Coulomb Gauge
(div Â = 0), the light-matter interaction Hamiltonian can be
rewritten as

Ĥλ
opt = eÂ(r)

m0c
p̂, (A15)

where p̂ is the electron momentum operator, e is the ele-
mentary charge. The light-matter coupling can be evaluated
in the basis {|..., nq,λ....〉 ⊗ |ζX 〉}. Here, {|..., nq,λ....〉} are
the electromagnetic field states in Fock representation. The
vector potential operator in the second quantization can be
written as

Â
λ

q (r, t ) = Â
λ

q (r)e−iωqt + Â
+λ

q (r)eiωqt . (A16)

In our case, the initial state consists of an excitonic state
without a photon |i〉 = |ζX 〉 ⊗ |0q,λ〉 while the final state con-
sists of the crystal ground state |�0〉 with one photon | f 〉 =
|�0〉 ⊗ |1q,λ〉. The optical matrix element characterizing the
transition from the 2D crystal ground state to the exciton state
can be written as

Mq,λ = (〈1q,λ| ⊗ 〈�0|)Âλ

q (r) p̂(|ζX 〉 ⊗ |0q,λ〉
)
. (A17)

Hence, the optical matrix element can be rewritten as

Mq,λ =
√(

2π h̄c

n0qV

)
〈�0|eiq.rελ

q p̂|ζX 〉. (A18)

We define the oscillator strength of a transition by the dimen-
sionless expression

fελ
q
= 2

m0 h̄ω0
|M̄q,λ|, (A19)

where the optical transition frequency is ω0 = |ωi − ω f |.
Here, ω0 = ωX , with EX = h̄ωX and

M̄q,λ = ελ
q〈�0|eiq.r p̂|ζX 〉, (A20)

M̄q,λ = 1

S

∑
ke,kh

ψ̄CM
nx,ny

(K )φ̄n,l (k)
〈
ϒc,ke

∣∣〈ϒ∗
v,−kh

∣∣eiq.rελ
q .p̂|�0〉

=1

S

∑
ke,kh

ψ̄CM
nx,ny

(K )φ̄n,l (k)
〈
ϒc,ke

∣∣eiq.rελ
q .p̂

∣∣ϒv,kv

〉
, (A21)

since ke, kv ∈ BZ, and |q| � |b1|, |b2|〈
ϒc,ke

∣∣eiq.rελ
q p̂

∣∣ϒv,kv

〉 = δke,kv+q
〈
uc,kτ

∣∣ελ
q .p̂

∣∣uv,kτ

〉
,

hence

M̄q,λ = 1

S

∑
ke,kh

ψ̄CM
nx,ny

(K )φ̄n,l (k)
〈
uc,kτ

∣∣ελ
q .p̂

∣∣uv,kτ

〉
δke,kv+q.

(A22)

In Eq. (A22), the Kronecker δ ensures the momentum conser-
vation. The center of mass and relative wave vectors can be
rewritten as

K = ke + kh = ke − kv = q,

k∗ = mhke − mekh

MX
= ke − me

MX
q,

or |q| � π
L , on the scale of |q| ψ̄CM

nx,ny
(q) is slowly varying,

therefore ψ̄CM
nx,ny

(q) = ψ̄CM
nx,ny

(0),

M̄q,λ = 1

S
ψ̄CM

nx,ny
(K = 0)

∑
ke

φ̄n,l (ke)ελ
q

〈
uc,kτ

∣∣ p̂
∣∣uv,kτ

〉
(A23)

or ∑
ke

φ̄n,l (ke) = S

(2π )2

∫∫
d2keφ̄n,l (ke) = Sφn,l (ρ = 0)

and

ψ̄CM
nx,ny

(K = 0) =
∫∫

ψCM
nx,ny

(R)d2R.

Finally, the optical matrix element M̄q,λ can be written as

M̄q,λ =
( ∫∫

ψCM
nx,ny

(R)d2R
)

φn,l (ρ = 0)ελ
q

〈
uc,kτ

∣∣ p̂
∣∣uv,kτ

〉
,

(A24)

then we can rewrite the oscillator strength as

fελ
q
= 2

m0 h̄ωX

∣∣∣∣
( ∫∫

ψCM
nx,ny

(R)d2R
)∣∣∣∣

2

|φn,l (ρ = 0)|2

× ∣∣〈uc,kτ

∣∣ελ
q .p̂

∣∣uv,kτ

〉∣∣2
. (A25)

The oscillator strength can also be expressed in terms of the
dipole matrix element as

fελ
q
= 2m0ω

X
j

h̄

∣∣〈�0|ελ
q r̂|ζX 〉∣∣2

. (A26)

For circularly polarized light σ± propagating along the
normal to the sample (p± = px±ipy

2 ), so that only optical
modes with in-plane polarization components couple to these
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excitons:

|d‖|2 = e2
∣∣〈�0|ελ

q r̂|�X 〉∣∣2

= e2

(m0ωX )2

∣∣∣∣
( ∫∫

ψCM
nx,ny

(R)d2R
)∣∣∣∣

2

|φn,l (ρ = 0)|2

× ∣∣〈uc,kτ

∣∣ p̂±
∣∣uv,kτ

〉∣∣2
. (A27)

APPENDIX B: 2D-COULOMB FOURIER
TRANSFORMATION

1. The Coulomb potential due to a point charge

First, we find the 2D Fourier transform of Coulomb po-
tential, created in-plane, by a unit charge positioned at a
distance z out of plane. Specific coordinates of the charge are
(x0; y0; z0) and the plane is defined by z = 0. The real-space
Coulomb potential of the unit charge is

V (r) = Q

εspacer

√
z2

0 + (x − x0)2 + (y − y0)2
, (B1)

where the in-plane vector r = (x; y; 0). Its 2D Fourier trans-
form is

V (q) = Q

εspacer

∫
dr

e−i(q.r)√
z2

0 + (x − x0)2 + (y − y0)2
. (B2)

By substituting x − x0 → x and y − y0 → y we obtain

V (q) = Qe−i(q.r0 )

εspacer

∫
dr

e−i(q.r)√
z2

0 + x2 + y2
, (B3)

where r0 = (x0; y0; 0). Rewriting the integral equivalently in
polar coordinates produces

V (q) = Q e−i(q.r0 )

εspacer

∫
r dr

1√
z2

0 + r2

∫
dθe−iqr cos θ . (B4)

The angular integral is evaluated (in Mathematica, or using
integral tables by, for example, Gradshteyn and Ryzhik) to
produce ∫ 2π

0
e−iqr cos θdθ = 2πJ0(q.r), (B5)

where J0(x) is the Bessel function of the first kind. This results
in

V (q) = 2π Q

εspacer
e−i(q.r0 )

∫
r dr

1√
z2

0 + r2
J0(q.r). (B6)

This integral is also evaluated in Mathematica or using Grad-
shteyn & Ryzhik to produce

V (q) = 2π Q

εspacer q
e−i(q.r0 )e−qz0 . (B7)

2. The Coulomb potential due to a dipole

The simplest way to obtain an in-plane potential of a
dipole, located out of the plane, is to use the result for
point charge Eq. (7), and treat dipole as a collection of point
charges. We substitute z0 → z + δzi, and similarly for x0 and
y0. Then, the total potential of collection of charge Qi with
coordinates (x +δxi; y + δyi; z + δzi) is

Vdip(q) = 2π

εspacerq

∑
i

Qie
−q(z+δzi )e−iqx (x+δxi )e−iqy (y+δyi ),

(B8)
assuming δxi, δyi, and δzi small and performing the Taylor
expansion of exponents yields

Vdip(q) = 2π

εspacerq

[ ∑
i

Qie
−qze−iqxxe−iqyy +

∑
i

Qi(−qδzi

− iqxδxi − iqyδyi )e
−qze−iqr

]
. (B9)

The first right-hand side term disappears once we assume that∑
i Qi = 0 as is always the case for dipoles. The expression,

then becomes:

Vdip(q) = 2eπ

εspacer q
(−qdz − iqxdx − iqydy)e−qze−iq.r, (B10)

where dα , α = x; y; z are components of the dipole vector. It
straightforwardly transformed into

Vdip(q) = 2eπ i

εspacer

(
− idz − qxdx

q
− qydy

q

)
e−qze−iq.r. (B11)

Further, we rewrite the scalar product as qxdx + qydy =
qd‖ cos θ , where d‖ = (dx; dy; 0) and θ is the angle between
q and d‖. The result is then:

Vdip(q) = 2eπ i

εspacer
(−idz − d‖cos θ )e−qze−iq.r. (B12)

This expression is very similar to Eq. (A7) in [32], except
for some sign differences in the brackets, related to certain
conventions of how the dipole is positioned with respect to the
plane. The specific signs become irrelevant when calculating
the rate of energy transfer, since the energy transfer will only
depend on |V (q)|2. Another way to think about it is that the
sign of specific projects of a transition dipole must not matter
when obtaining results for experimentally observed rate since,
semiclassically, the transition dipole is the amplitude of an
oscillating dipole.
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