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Motivated by recent experimental findings on the low-energy spectrum of Kekulé-patterned graphene, the
optoelectronic signatures of graphene superlattices with a spatial modulation that triples the size of the unit
cell and folds the valleys to the center of the Brillouin zone are studied. For superlattices, such as those
visualized in recent experiments, the optoelectronic response reveals multiple species of carriers distinguished
by their effective masses or Fermi velocities. Their signatures are similar to those of systems hosting multifold
fermions in which different frequency intervals are dominated by different types of quasiparticles. Remarkably,
the response of these systems exhibits a characteristic peak in the optical conductivity suggesting a kind of
interference between the different species of carriers. We also discuss a related superlattice that exhibits merging
Dirac cones and band flattening with a Hamiltonian that resembles a version of the chiral model for twisted
bilayer graphene where the long-range moiré modulation has been substituted by a two-parameter bias.
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I. INTRODUCTION

The exotic effects that spatial modulations can induce in
the electronic properties of two-dimensional materials has
been the focus of many theoretical and experimental works
in the past years [1–6]. More recently, this interest has been
further accelerated by the discovery of intriguing correlation
phenomena in twisted bilayer graphene (TBG) [7–18] where a
slight mismatch between two rotated graphene lattices leads to
large-scale spatial modulations, known as moiré patterns. The
study of spatial modulations has also played a main role in the
field of valleytronics [19–24], which focuses in the control of
the valley degree of freedom to search for novel mechanisms
in quantum transport or for information storage.

One of the most interesting examples of superlattices re-
sulting from spatial modulation in a two-dimensional material
is Kekulé-patterned graphene. This phase was first proposed
as a novel platform hosting fractionally charged topological
excitations [1,25] and later considered in a mechanism for
unconventional superconductivity in graphite [26]. Very re-
cently, Kekulé ordering has been predicted to arise in the
correlated insulating states of TBG [27,28], increasing the
interest in the study of Kekulé-patterned superlattices.

There has also been increasing interest in the transport
properties of Kekulé-patterned graphene for applications in
valleytronics [29–35] since the symmetry of the modula-
tion folds the K, K ′ valleys to the center of the Brillouin
zone and enables intervalley transport for low-energy carri-
ers [36–39]. Kekulé ordering has been predicted to arise in
graphene due to multiple mechanisms, such as the ordering
of adatoms [36,40], substrate mismatch [41–43], isotropic
strain [44], electron-phonon coupling [45], and spin-phonon
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coupling [46]. However, the experimental realization of
Kekulé-patterned graphene and the probing of its electronic
structure was not achieved until very recently [42,47,48].
The measurement of the low-energy density of states [47]
supported predictions about the existence of two Kekulé-
ordered phases: one preserving the Dirac point and the other
opening a gap [37]. However, further studies are required to
support the presence of other important features, such as the
valley-momentum locking [37,47], which refers to a coupling
between the momentum p and the valley isospin τ = K, K ′
introduced by the Kekulé order. This coupling is described by
an additional term p · τ in the Dirac Hamiltonian, analogous
to the helicity operator p · σ describing momentum and pseu-
dospin σ = A, B coupling in pristine graphene.

There are three main contributions of this paper: (1)
Focusing on the types of superlattices that were recently
reported in experiments by Eom and Koo [47], we discuss
the optical signatures that might prove useful in their ex-
perimental characterization by, for example, confirming the
momentum-valley locking [37]. (2) We probe the robustness
and generality of such signatures by analyzing multiple super-
lattices. This is important since multiple phases can be present
[47] and because other factors, such as second-neighbor inter-
actions [49] or a substrate-induced ionic potential [37], might
become important. This also gives information about which
signatures are a direct consequence of the symmetry induced
by the modulation. (3) We discuss a model for a related su-
perlattice which, due to the Brillouin-zone folding, exhibits
merging Dirac cones and presents some qualitative similari-
ties to the process of band flattening in TBG. The mechanism
of Brillouin-zone folding has been recently demonstrated as
an alternative route to TBG for inducing flat bands in a
graphene superlattice [50], and this model might provide an
interesting related platform.
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FIG. 1. Superlattices hosting different species of carriers and
their low-energy dispersions. (a) Superlattice associated with HK

(Kek-Y phase). All on-site energies are equal but there are two
different bond strengths. The optical response of this superlattice
reveals quasiparticles with velocities v+ and v−. (b) Superlattice
associated with HQ (Kek-M phase). All bond strengths are equal but
there are three different on-site energies. The optical response of this
superlattice reveals quasiparticles with effective masses m+ and m−.
In (c) and (d) the low-energy dispersions of the Kek-Y, Kek-O, and
Kek-M phases are shown for different values of the parameters.

In the following, we introduce the models to be studied
and discuss the lattices and their low-energy Hamiltonians,
focusing first on superlattices with the symmetries of those
experimentally identified by Eom and Koo [47]. Then, we
study the dynamic polarizabilities and optical conductivities
of these systems and find the signatures in their optoelec-
tronic response that might be useful for their experimental
characterization as has been the case for strained graphene
[6,51]. An emphasis is made here on the characteristic sig-
nature that could help verify the theoretical prediction of a
valley-momentum locking [37].

II. KEKULÉ-PATTERNED GRAPHENE

We begin our discussion with the model corresponding to
a Kekulé-patterned graphene superlattice in which the modu-
lation is introduced by a bond-density wave tripling the size
of the unit cell. Figure 1(a) illustrates one of such phases.
These bond modulations have been predicted to originate
from strain [44,47], electron-phonon coupling [45], and other
mechanisms [36,41–43,46,52]. The low-energy Hamiltonian

is given by [37]

HK =

⎛
⎜⎜⎝

0 v0k− �Q∗
ν,+ 0

v0k+ 0 0 �Q∗
ν,−

�Qν,+ 0 0 v0k−
0 �Qν,− v0k+ 0

⎞
⎟⎟⎠, (1)

acting on the spinor � = (ψK,A, ψK,B,−ψK ′,B, ψK ′,A) with
Qν,± = v0|ν|(νkx − iky) ± 3t0(1 − |ν|), k± = kx ± iky, v0 is
the Fermi velocity in pristine graphene, and the (real) parame-
ter � is the coupling amplitude. The index ν = 0,±1 leads to
the Kek-O phase for ν = 0 and the Kek-Y phase for |ν| = 1.
Recent experiments have supported this model [47]. The band
structures for both Kek-O and Kek-Y exhibit the two valleys
folded into the � point. As seen in Fig. 1, the Kek-O phase
opens a gap whereas the Kek-Y phase retains the gapless
dispersion [37]. The band touching in the Kek-Y phase is
protected by the threefold rotation symmetry around the sites
of one sublattice [53], which is absent in the Kek-O phase.
Therefore, the Kek-O phase is not expected to exhibit optical
activity for low frequencies and small doping, and, thus, our
discussion will be focused on the Kek-Y phase. Nevertheless,
as we discuss below, some results apply to both the Kek-Y and
the Kek-O phases. The energy dispersion of the Kek-Y phase
is

Eβ

kα
= α(v0 + β�v0)k, (2)

with α, β = ±. Taking � → 0 leads to the case of no mod-
ulation (pristine graphene). The low-energy dispersions for
the Kek-Y and Kek-O phases are shown in Fig. 1(c). After
introducing two sets of Pauli matrices, one for the pseudospin
σi and one for the valley degree of freedom τi (i = 0, x, y, z),
the Hamiltonian for the Kek-Y phase can be written in the
compact form HK = v0(k · σ) ⊗ τ0 + �v0σ0 ⊗ (k · τ), where
the second term defines the valley-momentum locking [37].

We introduce now a model for a graphene superlattice
sharing the same symmetry, and, thus, also exhibiting a tripled
unit cell with the two valleys folded into the � point. In this
model, however, the superlattice is produced due to the on-site
energies of the atoms being modulated by, for example, the
interaction with a substrate [41,54] [see Fig. 1(b)]. The study
of this second model will help us to understand how does
the optoelectronic response depend on the physical origin of
the modulation and to identify the more robust signatures
that are inherent to the symmetry. This model was used in
Ref. [54] to study the realization of the quantum anoma-
lous Hall effect in graphene introduced by the influence of
a suitable substrate. Also, a similar structure has been pre-
dicted for graphene-In2Te2 bilayers [41]. Moreover, since a
substrate-induced ionic potential or second-neighbor interac-
tions (which might become important in experiments) produce
a similar patterning in the Kekulé phases [37,55], these are
additional reasons to consider this model. The lattice is shown
in Fig. 1(b). It consists of three different on-site energies with
all the bond strengths being the same. The corresponding
low-energy Hamiltonian can be written as [54]

HQ =

⎛
⎜⎜⎝

m0v
2
0 v0k− 0 2t0�0

v0k+ −m0v
2
0 0 0

0 0 −m0v
2
0 v0k−

2t0�0 0 v0k+ m0v
2
0

⎞
⎟⎟⎠, (3)
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acting on the same spinor basis � =
(ψK,A, ψK,B,−ψK ′,B, ψK ′,A). The parameter t0 is the hopping
integral defining the energy scale, �0 introduces a valley
coupling, and m0, an effective mass, breaks the sublattice
symmetry. The low-energy dispersion for this Hamiltonian is

Eβ

kα
= β�m0v

2
0 + α

√
v2

0k2 + (m0 + β�m0)2v4
0, (4)

with α, β = ± and after scaling the coupling parameter as
� = t0�0/m0v

2
0 for convenience. Taking �0, m0 → 0 leads

to the case of no modulation (pristine graphene). In the follow-
ing we refer to this as the Kek-M phase. The corresponding
energy dispersion [Eq. (4)] is shown in Fig. 1(d). For more
details on the Hamiltonians see Appendix A.

From the energy dispersions in Eqs. (2) and (4) it is easy
to see that the index α distinguishes between conduction
(α = +) and valence (α = −) bands as in the case of pris-
tine graphene (� → 0). Due to the valley degeneracy in the
� → 0 case, the description is usually reduced to that of a
single-valley Hamiltonian, requiring a single index α = ± to
label the eigenstates. On the other hand, when the Kekulé
order introduces the valley-coupling � > 0, the states of both
valleys K, K ′ are considered, and an additional index β must
to be introduced. Note, however, that the index β does not
label K- and K ′-polarized states. Instead, it distinguishes
between energy dispersions with different Fermi velocities
vβ = v0 + β�v0 (in the the Kek-Y phase) or effective masses
mβ = m0 + β�m0 (in the Kek-M phase). This is already ap-
parent in Eqs. (2) and (4).

In the following section we show that, indeed, the opto-
electronic response of these phases (within linear-response
theory) is that of two species of Dirac quasiparticles with
different Fermi velocities v± or effective masses m± plus a
term producing an “interference” signature, and that such a re-
sponse can be written in terms of single-valley polarizabilities.
This shows that, at least, in the context of the optoelectronic
response, the Dirac quasiparticle behavior is not completely
destroyed by the Kekulé order. This is a nontrivial result
since the Dirac quasiparticle picture in graphene is based on
a single-valley definition and, in general, a modulation that
couples or folds the valleys could destroy such a picture.

III. OPTICAL CONDUCTIVITY

The optoelectronic response within linear-response theory
is given by the dynamical polarizability, which can be written
as [56–58]

�(ω, q) = −gs

∑
αα′ββ ′

∫
d2k

4π2

f β

kα
− f β ′

k′α′

Eβ

kα
− Eβ ′

k′α′ + ω+ Fββ ′
αα′ (k, k′),

(5)

where f β

kα
= [exp(Eβ

kα
− μ)/kBT + 1]−1 is the Fermi-Dirac

distribution, gs = 2 is the spin degeneracy and ω+ = ω + iη0

is the frequency with an infinitesimally small imaginary part
added for convergence. The scattering probability is given by
the form factor Fββ ′

αα′ (k, k′) = |〈�β

kα
|�β ′

k′α′ 〉|2 with k′ = k + q.
In the following we discuss the signatures in the optical

conductivity, which can be obtained directly from Eq. (5)
in the limit of q → 0 [39,56]. In Fig. 2 we plot the optical

FIG. 2. Optical conductivity of Kekulé superlattices, showing
fingerprints of different species of carriers originating from different
types of Kekulé patterning. (a) Optical conductivity of the Kek-Y
phase for a coupling of � = 0.1. The inset shows different activation
frequencies for massless carriers with velocities v± and (b) optical
conductivity of the Kek-M phase for the parameters �0 = 0.2 and
m0v

2
0/t0 = 0.3. The inset shows different activation frequencies for

carriers with effective masses m±. The conductivity is shown in units
of 4e2/h. (c) Summary of the signatures of each phase (estimations
of ωM correspond to m0v

2
0/t0 ∼ 0.2 and μ ∼ 0.5 eV).

conductivities obtained for the Kek-Y and the Kek-M phases
using the low-energy models introduced above. Two interest-
ing features are seen to appear in the optical conductivities of
both superlattices: (1) Whereas the interband conductivity of
pristine graphene starts at an onset frequency of ω0 = 2μ (due
to Pauli blocking), for the two Kekulé superlattices two onset
frequencies ω± ≈ 2μ(1 ± �) are seen instead. (2) An absorp-
tion peak arises at low frequencies in the optical conductivity
of both superlattices. The resonance occurs at a frequency
given by

ωM = ω+ − ω−
2

. (6)

Interestingly, this last relation coincides with the expression
for the frequency of a pattern arising from the interference
of two slightly mismatching spatial or temporal scales defined
by frequencies ω+ and ω−. In fact, the periodicity of the large-
scale moiré patterns that arise in moiré superlattices are given
by analogous expressions. Because of this, we refer to the res-
onance at ωM as an inteference signature. We make the remark
that the relation in Eq. (6) holds for both models regardless of
the fact that HK and HQ describe modulations with different
physical origins, have different energy dispersions, and that
the expressions for ω± and ωM as a function of the valley
coupling are different in each case. This points to the signa-
ture being originated from the symmetry alone. In terms of
coupling parameters, the resonance peak for the Kek-M phase
is given by ωM ≈ 2�0t0 (at high doping). For the case of the
Kek-Y phase, the peak occurs at ωM ≈ 2�μ. The resonance at
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ωM corresponds to optical transitions between the upper bands
(assuming μ > 0), which in pristine graphene correspond to
different valleys. Since in pristine graphene these transitions
are completely absent, its observation would provide evidence
for the predicted valley-momentum locking [37,47].

Remarkably, the features at ω± in the optical conductivity
belong to the response of two species of quasiparticles in each
superlattice: massless Dirac fermions with Fermi velocities
v± = v0 ± �v0 in the Kek-Y phase and Dirac fermions with
masses m± = m0 ± �m0 for the Kek-M phase. We refer to the
Dirac quasiparticles with velocities v+ and v− in the Kek-Y
phase as “fast” and “slow” fermions and to the Dirac quasi-
particles with masses m+ and m− in the Kek-M as “heavy”
and “light” fermions, respectively.

To better illustrate that the optoelectronic response corre-
sponds to two species of Dirac quasiparticles in each Kekulé
phase, we show that the full polarizability can be expressed in
terms of the same response functions that correspond to Dirac
fermions in pristine graphene. Specifically, the polarizability
is given by the sum of the responses of two species of Dirac
fermions plus a term describing transitions between their en-
ergy dispersions, which produces the interference signature at
ωM . In order to see this, we use the fact that the full scattering
probability Fββ ′

αα for Kekulé-patterned graphene can be written
in terms of the single-valley scattering probability Fαα′ used in
the calculation [57,58] of the (single-valley) polarizability of
pristine graphene (for details see Appendix B),

Fββ ′
αα′ (k, q) = δβ,β ′Fαα′ (k, q) − ββ ′

(
q sin ϕ

2|k + q|
)2

. (7)

For the superlattices introduced above, this property allows us
to separate �(ω, q) into three contributions when summing
over the β, β ′ indices.

For pristine graphene, the valleys are degenerated and sep-
arated in momentum space. Therefore, the total polarizability
for low-energy carriers in graphene is simply given by two
times (accounting for valley degeneracy) the single-valley
polarizability, �

g
v0 (ω, q) [56–58]. That is,

�(ω, q) = 2 × �g
v0

(ω, q) (graphene), (8)

where the subscript stands for a Fermi velocity v0 in the en-
ergy dispersion E = v0k of graphene. Equivalently, �g

v0 (ω, q)
can be understood as the polarizability for massless Dirac
fermions with Fermi velocity v0. When a spatial modula-
tion that couples the valleys is introduced Eq. (8) no longer
holds since new terms accounting for electronic transitions
between bands that corresponded to different valleys are now
possible. Furthermore, the coupling could destroy the Dirac
quasiparticle picture and then the polarizability would not be
given solely or even partially by �

g
v0 (ω, q). It can be shown,

however, by using Eqs. (5) and (7) (see Appendix B) that
the total polarizability of the Kek-Y phase �Y (ω, q) can be
written as

�Y (ω, q) = �g
v+ (ω, q) + �g

v− (ω, q) + �M
vM

(ω, q), (9)

where the first two terms on the right side correspond to the
same polarizabilities for massless Dirac fermions �

g
v0 (ω, q),

only with the original Fermi velocity v0 replaced by a different
velocity v± = v0 ± �v0 in each term, indicating, thus, that

the Kekulé order not only preserves the Dirac quasiparticle
picture but also leads to two species of carriers with different
Fermi velocities. On the other hand, the last term accounts
for transitions between the upper bands (which in pristine
graphene correspond to bands in different valleys, and, there-
fore, such transitions are forbidden) and is responsible for
the interference signature at ωM in the optical conductivity
[Fig. 2(a)], whereas the terms �

g
v± produce the features at ω±,

which are the activation frequencies for the quasiparticles with
Fermi velocities v± (see Appendix C).

For the Kek-M phase, although the physical origin of the
modulation and the energy spectrum are different, a com-
pletely analogous result is obtained. We find that the total
polarizability can be written as

�Q(ω, q) = �g
m+ (ω, q) + �g

m− (ω, q) + �M
mM

(ω, q), (10)

where the first two terms on the right side of the last equation
correspond to the single-valley polarizabilities for massive
(rather than massless) Dirac fermions with an effective mass
m0, �

g
m0 (ω, q), only with the original effective mass m0 re-

placed by a different mass m± = m0 ± �m0 in each term (one
has to consider �

g
m0 (ω, q) instead of �

g
v0 (ω, q) when a gap is

induced in the dispersion of graphene by a broken sublattice
symmetry [59]). In this case too, the last term accounts for
transitions between the upper bands and is responsible for
the resonance at ωM in the optical conductivity [Fig. 2(b)],
whereas the terms �

g
m± produce the features at ω±, which can

be interpreted as the activation frequencies for the quasiparti-
cles with effective masses m± (see Appendix C).

Therefore, even though the Kekulé order couples and folds
the valleys through different types of spatial modulations in
the Kek-Y and Kek-M phases, in both cases the full polar-
izability can be separated into the response of two species
of Dirac quasiparticles plus an additional term that describes
the electronic transitions between their energy dispersions and
produces an interference signature.

Although the interference signature at ωM = 1
2 (ω+ − ω−)

is determined by the activation frequencies ω± for the two
species of quasiparticles, it should be noted that this signa-
ture does not arise from the interference of the simultaneous
responses of each specie of the quasiparticle. Consider, for ex-
ample, probing the material with an incident field of frequency
ω = ωM . Because ωM < ω±, this would produce the reso-
nance even when the response of each quasiparticle (which
occurs at the higher frequencies ω±) is absent.

To summarize, the valley coupling introduced by the
Kekulé order preserves the Dirac quasiparticle picture,
whereas also introducing a splitting of a dynamical property
μ0 (here, it can be the Fermi velocity v0 or the effective mass
m0) which splits as μ0 → μ± = μ0 ± �μ0 when the valley
coupling � is introduced. This leads to the total polarizability
being given by the sum of the polarizabilities for two species
of carriers �

g
μ± plus an additional term �M

μM
as

2 × �g
μ0

�>0−−→ �g
μ+ + �g

μ− + �M
μM

,

where the last term introduces an interference signature at a
frequency ωM , which is determined by the activation frequen-
cies of the new species of quasiparticles.
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IV. MULTIFOLD FERMIONS

Some of the signatures discussed so far, namely, different
coexisting quasiparticles characterized by different activation
frequencies, low-frequency sharp absorption peaks, and (in
the case of the Kek-Y phase) a multistep conductivity with
a dependence σ ∼ ωd−2 (where d is the spatial dimension),
are quite similar to those found in the optical conductivity
of multifold fermions [60,61]. Multifold fermions are the
generalization of Weyl fermions to a higher effective spin rep-
resentation that exhibit a remarkable optoelectronic response,
including exotic circular photogalvanic effects [61–65]. A
number of crystals has recently been shown to exhibit mul-
tiple species of these quasiparticles coexisting at low energies
and, particularly, the study of their optical conductivity has
been the focus of multiple theoretical and experimental works
[61,64,66–72]. It has been noted in previous works [39,41,54]
that due to the folding of the K and K ′ valleys into the
� point the resulting low-energy band structure in some
Kekulé-modulated superlattices can be described by higher
pseudospin representations of the Dirac equation [73]. As can
be seen in Fig. 1, the dispersion of the Kek-Y is very similar to
that of a pseudospin-3/2 system [39], whereas the dispersion
of Kek-M phase resembles that of a pseudospin-1 system
[41,54] [note the threefold crossing shown in Fig. 1(d)].
Therefore, it could be expected that the optical signatures
of the superlattices studied here would share some similari-
ties with those found in systems hosting multifold fermions.
Indeed, in systems hosting multifold fermions the optical
conductivity exhibits multiple linear steps (characteristic of
linearly dispersive bands σ ∼ ωd−2) with different activation
frequencies for each type of multifold fermion [68,69,71].
Here, similarly, we find for both the Kek-Y and Kek-M
phases different species of carriers exhibiting distinct acti-
vation frequencies [features at ω± in Figs. 2(a) and 2(b)].
Furthermore, the optical conductivity of materials hosting
multifold fermions, such as CoSi [69], RhSi [71], and other
Weyl semimetals, such as NbP [74] exhibit low-frequency
narrow peaks originating from transitions between spin-orbit
coupling (SOC)-split bands and the position of such peaks
is a measure of the SOC strength [68,69]. Also, the SOC is
responsible for introducing multiple species of quasiparticles
(e.g. by splitting a threefold node into a spin-3/2 fermion and
a twofold Weyl fermion [69]). Similarly, we find that very
similar sharp peaks appear (around ωM ∼ �) in the conduc-
tivity of the Kek-Y and Kek-M phases at low frequencies
due to transitions between bands that are split by the valley
coupling � introduced by the Kekulé modulation, which also
introduces the different species of quasiparticles. In both cases
the frequency of the sharp peak is given by the coupling
amplitude. This suggests that the Kekulé modulation in these
systems might play a role in the optical response similar to
that played by the SOC in systems hosting multifold fermions.
These remarks might lead to interesting connections to multi-
fold fermions and deserve further study.

V. KEKULÉ SUPERLATTICE WITH MERGING
DIRAC CONES

The discoveries on TBG have greatly motivated the study
of the rich physics related to weakly dispersive or “flat” bands

[8,75–77] and, more recently, there has been an ongoing
search for alternative routes to induce a phenomenology anal-
ogous to that of TBG in spatially modulated single graphene
sheets [50,78,79] and other types of honeycomb structures
[80,81]. In order to induce flat bands, some proposals have
focused on engineering the graphene superlattices by buck-
ling [79,82] or by introducing a tailored periodic potential
[50,78,83] which leads to a momentum-space description in
a reduced Brillouin zone, also called Brillouin-zone folding.

In this section we discuss a Kekulé superlattice in which
the Brillouin-zone folding leads to the electronic dispersion
exhibiting two close Dirac cones that hybridize or “merge”
as the on-site potential is tuned to induce localization in a
triangular sublattice. We show that the Hamiltonian for this
model resembles a version of the chiral model for TBG where
the long-range moiré modulation has been substituted by a
two-parameter Kekulé coupling and highlight some qualita-
tive similarities to the band evolution in TBG that occurs as
interlayer tunneling is turned on at a magic angle. In the fol-
lowing, we introduce the model and then discuss its relevance
in the context of recent related works, mainly Refs. [48,50,78].

We focus on a more general form of the Hamiltonian previ-
ously introduced in Eq. (3). As discussed before, it describes
a graphene superlattice where a periodic potential triples the
size of the unit cell (a0 → √

3a0) by altering the on-site
atomic energies, leading to a unit cell of six (rather than two)
carbon atoms (for more details see Appendix A). The general
Hamiltonian has the following form:

HQ =

⎛
⎜⎜⎜⎝

m0v
2
0 v0k− 0 t0�A

v0k+ −m0v
2
0 −t0�∗

B 0

0 −t0�B −m0v
2
0 v0k−

t0�∗
A 0 v0k+ m0v

2
0

⎞
⎟⎟⎟⎠, (11)

acting in the same basis as in Eq. (3), which is a particular
case of this Hamiltonian. We take m0 → 0 and rewrite t0�∗

A =
αU− and t0�B = −αU+. Therefore, α = t0 defines the energy
scale and U± is a two-parameter field (given in terms of the
on-site energies of the lattice) that couples the Dirac cones.
After reshuffling the third and fourth elements of the basis,
one gets

H =
(

0 D∗
−

D+ 0

)
, Dr =

(−2i∂ αUr

αU−r −2i∂

)
, (12)

where r = ± and we have used k j → −i∂r j so k+ → −i(∂x +
i∂y) ≡ −2i∂ . This Hamiltonian resembles a version of the chi-
ral model for TBG [8] where the field U (±r) (which couples
the top and bottom layers) has been replaced by two coupling
amplitudes U±, which are determined by the on-site energies
of the lattice. In Fig. 3(a) we show the graphene superlattice
with the atomic sites labeled in correspondence to the special
points AA and AB/BA in TBG to highlight this analogy.

Recently, there has been a number of proposals for describ-
ing TBG by emergent honeycomb lattices [84–87] lacking the
long-range modulations but retaining the appropriate symme-
tries. However, the Hamiltonian in Eq. (12) describes a system
that is quite different from (and much simpler than) TBG.
The main differences rely not only on the removal of the
long-range spatial dependence of the field U (r) that couples
the layers, but also in the absence of crucial symmetries [88]
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FIG. 3. Merging of the Dirac cones in a graphene superlattice,
reminiscent of the qualitative description for intervalley hybridiza-
tion in magic angle TBG. (a) Graphene superlattice exhibiting
merging Dirac cones. The atoms have been labeled in analogy to
the special points in TBG with respective on-site energies VAA and
VAB/BA (see the text). (b) Low-energy spectrum of H exhibits two
Dirac cones at K1, K2. (c) As U+ is increased over U− the cones start
to hybridize. (d) As U+ is further increased (leading to localization
in the “AA” sites), cone hybridization further flattens the bands,
decreasing the Fermi velocity.

(e.g., in TBG the coupling occurs between Dirac cones with
the same chirality, whereas in the present model they possess
opposite chirality). Therefore, we do not consider this system
as a model for TBG. Despite this, within the context of en-
gineered graphene monolayers exhibiting a phenomenology
analogous to that of TBG [50,78,79], it is interesting to con-
sider the evolution of the band dispersion of H as U+ and
U− are varied. We take a look at the evolution of the band
structure when tuning the values of the on-site energies VAA

and VAB/BA in such a way that the localization in the lattice
mimics the wave function of TBG at the first magic angle. In
such condition, the wave function heavily localizes in the AA
sites and presents nodes on the AB/BA sites as AA stacking
disfavors tunneling between layers [8]. We, therefore, take
VAA → −∞ and VAB/BA → +∞. Since the parameters U± are
defined in terms of the on-site energies, this choice leads
to the condition U+ → ∞. Note that such a limit is not as
trivial as simply favoring the localization in the AA sites.
Such a limit is not possible because the condition m0 → 0
imposed in Eq. (12) requires the localization in the AB/BA
sites to be proportionally disfavored (see Appendix A). As U+

increases over U− (we assume U− to be constant), the local-
ization in the AA sites leads to the hybridization of the Dirac
cones. The dispersion is shown in Figs. 3(b)–3(d). When
U+ 
 U− the Fermi velocity approaches zero as vF ≈
2
√

U−/U+. Importantly, in addition to the flattened bands
concentrating its spectral weight around the Fermi level, they
are also separated from the other bands in the spectrum. This
band evolution is reminiscent of the qualitative description
that has been used to describe the process of band flattening
and localization in TBG at a magic angle [89]. Beginning with
two uncoupled rotated layers, the low-energy band structure
consists of the Dirac cones from each layer rotated about the
center of the Brillouin zone and forming pairs. As the layers
get closer and become coupled, the pairs of cones start to
hybridize. The first experimentally verified consequences of
this process were the opening of energy gaps at the intersec-
tion of the Dirac cones and a renormalization of the Fermi
velocity [89–92], which lead to the flattening of the bands and
to localization in a triangular superlattice formed by the moiré
pattern.

The ongoing search for systems with electronic properties
similar to those of TBG has recently led to novel proposals
based on single graphene sheets with engineered spatial mod-
ulations [50,78]. We highlight Ref. [78] where flatbands with
nontrivial topology where shown to arise in the dispersion
of single graphene sheets with a periodic potential induced
by adatoms. The system studied therein is highly related to
the model discussed in this section and, in fact, a similar
technique involving the periodic arrangement of adatoms was
recently employed to induce Kekulé ordering in graphene
[48,93]. Crucially, the periodic potential proposed in Ref. [78]
folds the K and K ′ points of graphene to the � point, just as a
Kekulé modulation. Such folding allows for the hybridization
of the graphene with the adatom bands, leading to the flat-
bands. The periodic potential leading to such a configuration
is given by the lattice vector v1 = nu1 + (3m + n)u2 and its
60◦ rotation, where n, m ∈ Z and u1,2 are the lattice vectors
of graphene. The superlattice studied in Ref. [78] corresponds
to the case with (n, m) = (−1, 2), which leads to a supercell
with 42 atoms. We point out that a Kekulé superlattice corre-
sponds to the case with (n, m) = (1,−1), which leads to the
smallest supercell configuration for such a potential. We also
point out that experimental evidence was recently reported
[50] for the formation of flatbands in a related system con-
sisting of a graphene sheet with a 2 × 2 superlattice potential
(analogous to the potential in Kekulé-modulated graphene)
induced by layers of cesium atoms.

Because Kekulé-modulated graphene belongs to the class
of superlattices predicted to exhibit topologically nontrivial
flatbands in Ref. [78] and because its synthesis via a periodic
arrangement of adatoms was recently demonstrated [48,93],
it might provide a potential platform to explore electronic
behavior analogous to that of TBG in periodically modulated
graphene monolayers. Although the cone hybridization and
band flattening in the model discussed in this section are
induced solely via the tuning of the on-site energies of the
lattice, a more sophisticated version of the model consider-
ing the hybridization of the graphene with the adatom bands
might potentially lead to topologically nontrivial flat bands,
such as those found in Ref. [78] (see also Ref. [93]). We
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hope that the discussion in this section further motivates its
exploration.

VI. CONCLUSION

We studied graphene superlattices with a tripled unit cell
and folded Dirac cones, some of which were visualized in
recent experiments. We used linear-response theory to find
signatures that could aid in the experimental confirmation
of recent theoretical predictions as, for example, the valley-
momentum locking. We analyzed the robustness of such
signatures and their origins. The optical response suggests two
species of carriers with signatures similar to those of multi-
fold fermions. Finally, we introduced a model for a Kekulé
superlattice that exhibits a dispersion with hybridizing Dirac
cones and discussed some of its features in the context of
recent proposals for periodically modulated graphene mono-
layers exhibiting a phenomenology similar to that of twisted
graphene bilayers. Since two of the graphene superlattices
we studied have been recently visualized in experiments (the
Kek-Y and Kek-O phases) [47,48], we hope that some of
the signatures discussed here can serve to further validate the
predicted electronic properties of these systems.
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APPENDIX A: LOW-ENERGY MODELS

In this Appendix we describe with more detail how the
Hamiltonians discussed in the main text have been obtained.
Two different Hamiltonians were used in this paper. Both are
based on low-energy approximations of tight-binding models
describing a graphene superlattice with a modulation that
triples the size of the unit cell (a0 → √

3a0), also generically
called a Kekulé distortion [43], leading to a cell of six carbon
atoms.

The Hamiltonian HK in Eq. (1) describing the Kek-O
and Kek-Y phases (for ν = 0 and |ν| = 1, respectively) was
derived in Ref. [37]. It is based on the otherwise usual tight-
binding model for a graphene lattice,

H = −
∑

r

3∑
l=1

tr,l â
†
r b̂r+sl + H.c., (A1)

with the exception that the nearest-neighbor (NN) hopping
amplitude tr,l describes the bond-density wave that forms the
Kek-Y or Kek-O textures. The vectors sl are the usual vectors
connecting the NNs with bond-lengths a0, and the fermionic
operator âr (b̂r) annihilates an electron at position r in the
A (B) sublattice of graphene. The hopping amplitude is given
by

tr,l/t0 = 1 + Re[�ei(pK++qK− )·sl +iG·r], (A2)

where t0 is the hopping amplitude of pristine graphene and
the Kekulé wave vector G = K+ − K− couples the Dirac
points at K±. The velocity v0 = 3|t0|a0/2 in the main text
is defined as usual (with h̄ ≡ 1) and the coupling parameter

� has been chosen to be real (� → 0 leads to the model
for pristine graphene). The parameter ν = 1 + q − p mod 3
distinguishes between the Kek-Y and the Kek-O phases. The
low-energy Hamiltonian is obtained after linearizing near
k = 0 and projecting out two high-energy bands leading to
a 4 × 4 Hamiltonian. The basis used in Ref. [37] is � =
(−ψK ′,B, ψK ′,A, ψK,A, ψK,B)T , known as the valley-isotropic
representation. Here, we have interchanged the order of the
valleys to keep consistency with the other models, leading to
� = (ψK,A, ψK,B,−ψK ′,B, ψK ′,A)T .

The Hamiltonian HQ, used to describe the Kek-M phase
in Eq. (3) and the superlattice with merging Dirac cones in
Eq. (11), was derived in Ref. [54]. It consists of a tight-binding
model for a graphene superlattice where a substrate-induced
potential triples the size of the unit cell by altering the on-
site atomic energies, leading to a unit cell of six carbon atoms
labeled by Aα, Bα with α = 1–3. The tight-binding model is

H = −
∑

〈αi,β j〉
t0â†

αib̂β j + H.c.

+
3∑

α=1

∑
i

(
VAα

n̂A
αi + VBα

n̂B
αi

)
, (A3)

where in the first term t0 is the NN-hopping amplitude,
the fermionic operator âαi (b̂αi ) annihilates an electron
at the cell i in the sublattice Aα (Bα ) and 〈αi, β j〉 denotes
the sum over all the NNs. In the second term the VAα

’s
are the on-site energies and n̂A

αi = â†
αiâαi with the same

for Bα . The on-site energies are modeled by a superlattice
potential with triangular symmetry V (r) = ∑

G VGeiG·r.
A first set of vectors introduce a triangular lattice
G/G = {±1, 0}, {± cos π

3 ,± sin π
3 } (G = 4π/3

√
3a0) of

three times the size of the unit cell, whereas a second set
G̃/

√
3G = {0,±1}, {± cos π

6 ,± sin π
6 } breaks the sublattice

symmetry. In the main text we have used the same basis as
for the HK Hamiltonian � = (ψK,A, ψK,B,−ψK ′,B, ψK ′,A)T ,
following Ref. [94]. In this basis, the parameters of Eq. (11)
as a function of the on-site energies are given as 6m0v

2
0 =∑

n(VAn − VBn), 6t0�A = 2VA1 − VA2 − VA3 + i
√

3(VA2 −
VA3 ), 6t0�B = 2VB1 − VB2 − VB3 + i

√
3(VB2 − VB3 ) [94].

There is an additional shift in the diagonal terms given by
V0 = ∑

n(VAn + VBn)/6, but the zero of energy can always be
shifted such that V0 = 0. Equation (3) is the particular case
with �B = 0 and �A ≡ 2�0. In Fig. 3(a) and the discussion
after Eq. (12) the on-site energies VB1 , VB2 , and VB3 have
been referred to as VAA, VAB, and VBA in analogy to the
special points in TBG, and the U± have been assumed real
(by taking VA2 = VA3 , VB2 = VB3 ) for simplicity. After this,
one has U+ = [−2VAA + VAB + VBA − i

√
3(VAB − VBA)]/6α.

Note that the condition m0 → 0 restricts the values of the
on-site energies and, therefore, VAA, VAB/BA cannot be chosen
arbitrarily. Although we have considered the simplest case
of coupling amplitudes U± without a spatial dependence, in
general, one might define coupling amplitudes U±(r) that
vary slowly in space. Such a field could be chosen to have
the same spatial dependence as the interlayer coupling field
U (r) in TBG. An alternative approach to introduce a spatial
dependence is to consider a piecewise coupling U± [94]. We
leave such exploration for further work.
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APPENDIX B: SEPARATION OF THE POLARIZABILITY

In this Appendix we show how to arrive at Eq. (7) and
the expression for �Y (ω, q) in Eq. (9). The expression for
�Q(ω, q) is obtained in a completely analogous way.

We begin with the single-valley polarizability of pristine
graphene, �

g
v0 (ω, q). Since the valleys in pristine graphene

are decoupled, its total polarizability is given by two times
(accounting for valley degeneracy) the single-valley polariz-
ability [Eq. (8)], which is then given by

�g
v0

(ω, q) = −gs

∑
αα′

∫
d2k

4π2

fkα − fk′α′

Ekα − Ek′α′ + ω+ Fαα′ (k, k′),

(B1)

with k′ = k + q. Note that in contrast with Eq. (5), when
considering a single valley the energy dispersions Ekα =
αv0k only have one index α, and the scattering prob-
ability Fαα′ (k, k′) = |〈�k′α′ |�k,α〉|2 is calculated from the
single-valley eigenvectors |�kα〉 = 1√

2
(1, αe−iθk )T with θk =

tan−1(ky/kx ). One obtains, Fαα′ (k, k′) = 1
2 [1 + αα′ cos(θk −

θk′ )] and in order to leave the expression in terms of q we
use cos(θk − θk′ ) = (k + q cos ϕ)/|k + q| with ϕ = θq − θk ,
leading to

Fαα′ (k, q) = 1

2

(
1 + αα′ k + q cos ϕ

|k + q|
)

. (B2)

This is the single-valley scattering probability.
The single-valley polarizability �

g
v0 (ω, q) in Eq. (B1) has

a well-known analytical solution, but the expression is quite
complicated [56–58]. The calculation of the single-valley po-
larizability for massive (rather than massless) Dirac fermions
�

g
m0 (ω, q) is completely analogous and has a well-known

solution [59].
The eigenvectors of HK for the Kek-Y phase are

|�β

kα
〉 = 1

2 (β, αβeiθk , αe−iθk , 1)T [39]. The scattering prob-

ability Fββ ′
αα′ (k, q) = |〈�β ′

k′α′ |�β

kα
〉|2 with k′ = k + q is, thus,

given by

Fββ ′
αα′ (k, q) = 1

4 [1 + αα′ cos(θk − θk′ )]

× [1 + αα′ββ ′ cos(θk − θk′ )]. (B3)

Using again cos(θk − θk′ ) = (k + q cos ϕ)/|k + q| leads to

F+
αα′ (k, q) = 1

2

(
1 + αα′ k + q cos ϕ

|k + q|
)

−
(

q sin ϕ

2|k + q|
)2

,

(B4)

F−
αα′ (k, q) =

(
q sin ϕ

2|k + q|
)2

. (B5)

We identify the first term on the right side of Eq. (B4) as
the single-valley scattering probability of Eq. (B2). We can,
therefore, resume Eqs. (B4) and (B5) as in Eq. (7).

Substituting Eq. (7) into Eq. (5) and summing over the
β, β ′ indices allows to separate the polarizability of the Kek-Y
phase as

�Y (ω, q) = −gs

∑
α,α′

∫
d2k

4π2

f β

kα
− f β ′

k′α′

E+
kα

− E+
k′α′ + ω+ Fα,α′ (k, q)

−gs

∑
α,α

∫
d2k

4π2

f β

kα
− f β ′

k′α′

E−
kα

− E−
k′α′ + ω+ Fα,α′ (k, q)

+gs

∑
α,α′ββ ′

∫
d2k

4π2

f β

kα
− f β ′

k′α′

Eβ

kα
− Eβ ′

k′α′ + ω+

(
q sin ϕ

|k + q|
)

,

(B6)

with Eβ

kα
= αvβk [given by Eq. (2)]. The first two terms are

identified with the single-valley polarizability of Eq. (B1)
for velocities v± = v0 ± �v0 and expressed as �

g
v± (ω, q) in

Eq. (9) whereas the last term, which produces the signature at
ωM , is expressed as �M

vM
(ω, q).

APPENDIX C: OPTICAL CONDUCTIVITY AND
ACTIVATION FREQUENCIES

The optical conductivity σ̃ (ω) in a single valley can be
obtained from the polarizability as [56]

σ̃ (ω) = lim
q→0

i
−πω

2q2
�g

v0
(ω, q). (C1)

For the Kek-Y phase, the signatures at ω± in the optical con-
ductivity [shown in Fig. 2(a)] can be traced to the �

g
v± (ω, q)

terms in the polarizability and, thus, identified as the activa-
tion frequencies of each specie of quasiparticle. A simple way
to see this is by considering first that, in pristine graphene,
the activation frequency for the Dirac fermions with Fermi
velocity v0 is ω = 2μ, and this leads the optical conductivity
to be given by a step function σ̃ (ω) ∼ �(ω − 2μ) [56]. On
the other hand, in the Kek-Y phase [see Eq. (9)] the first two
terms �

g
v± are given by the same single-valley polarizability

of Eq. (B1) only with a shift in the Fermi velocity v0 →
v± = v0(1 ± �). Note that μ = v0kF and, therefore, scaling
v0 → v0(1 ± �) also scales μ as μ → μ(1 ± �). This then
shifts the activation frequency as ω → 2μ(1 ± �), which in-
deed coincides with the activation frequencies ω± in Fig. 2(a).
An analogous analysis can be performed for the signatures in
Fig. 2(b) corresponding to the Kek-M phase.
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