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Theory of plasmonic edge states in chiral bilayer systems
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We analytically describe the plasmonic edge modes for an interface that involves the twisted bilayer graphene
(TBG) or other similar moiré van der Waals heterostructure. For this purpose, we employ a spatially homoge-
neous, isotropic and frequency-dependent tensor conductivity, which in principle accounts for electronic and
electrostatic interlayer couplings. We predict that the edge mode dispersion relation explicitly depends on the
chiral response even in the nonretarded limit, in contrast to the collective bulk plasmonic excitations in the TBG.
We obtain a universal function for the dispersion of the optical edge plasmon in the paramagnetic regime. This
implies a correspondence of the chiral-TBG optical plasmon to a magnetoplasmon of a single sheet, and chirality
is interpreted as an effective magnetic field. The chirality also opens up the possibility of nearly undamped
acoustic modes in the paramagnetic regime. Our results may guide future near-field nanoscopy for van der Waals
heterostructures. In our analysis, we retain the long-range electrostatic interaction, and apply the Wiener-Hopf
method to a system of integral equations for the scalar potentials of the two layers.
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I. INTRODUCTION

The twisted bilayer graphene (TBG) has attracted im-
mense attention due to its novel electronic phases that arise
in the flat-band regime for twists near the magic angle θm �
1.08◦ [1–34]. Furthermore, the plasmonic properties of the
TBG indicate several surprising features not present in the
usual two-dimensional (2D) systems such as the monolayer
graphene [35–42]. Apart from a modified gate dependence
[43], there is, e.g., the possibility of exciting collective charge
oscillations at the neutrality point that are only composed
of charge densities induced by interband transitions [44,45].
This possibility is due to the localization of the electronic
wave function for twist angles θ � 2◦ that provides the restor-
ing force needed to sustain the charged in-phase oscillations
of the electron and hole densities. In addition, for minimal
twist angles, the lattice relaxation-induced domain walls be-
tween the two equivalent Bernal-stacked configurations may
act as a periodic potential for plasmons, opening up the
prospect of photonic crystals for nanoscale light [46]. Novel
chiral plasmons consisting of topologically protected elec-
tronic domain-wall states are also predicted if the chemical
potential lies inside the energy gap [47]. Lastly, plasmons in
flat bands are extremely long lived since they are unlikely
to couple and decay into the particle-hole continuum [48,49]
with nonreciprocal dispersion [50].

The above features concern the flat-band regime or lower
energies. Nevertheless, moiré van der Waals heterostructures
also display an inherent handedness independent of the twist
angle, as one can rotate the top layer to the right or to the
left. This structural chirality is passed onto the electronic
properties. Consequently, optical dichroism is observed when

the bilayer system is coupled to circularly polarized light
[51,52]. In fact, plasmonic properties are inherently chiral
[53,54] due to the quantum mechanical interlayer coupling.
The associated electromagnetic near fields may pave the way
to promoting chiral chemistry [55]. However, the plasmonic
dispersion relation only depends on the chiral structure in the
retarded regime. Thus, the chiral effect is small [56].

In this paper, we analytically investigate how the chiral-
ity of the bilayer system affects the dispersion relation of
edge modes in the quasi-electrostatic limit. We use a minimal
model with an effective isotropic, spatially homogeneous, and
frequency dependent conductivity tensor [53], represented by
a 4 × 4 matrix, which can in principle capture electronic and
electrostatic interlayer couplings of the TBG. Our analysis
explicitly shows how chirality couples the optical and acoustic
edge modes and thus modifies their dispersion in the non-
retarded limit. We obtain a universal function that describes
the dispersion of optical edge plasmons when the suscep-
tibility to an in-plane magnetic field is paramagnetic. This
regime occurs for chemical potentials close to the neutral-
ity point [53], when the counterflow Drude weight becomes
negative. We also point out the possible existence of nearly
undamped acoustic edge plasmons with linear dispersion for
strong enough chirality. An assumption in our paper is that the
sound velocity is larger than the Fermi velocity, which enables
us to use a spatially local conductivity in Maxwell’s equations.

Regarding previous works on the TBG, only bulk plas-
monic excitations have been considered so far; see, e.g.,
[44,47,53,55–59]. On the other hand, it is well known that
at an interface collective plasmonic modes may arise with
an electromagnetic field that is localized near edges. These
modes have been discussed in the context of magnetoplas-
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mons supported by a homogeneous medium [60–63]; for
related studies, see [64–68]. Such edge modes have re-
cently been detected in graphene by infrared nano-imaging,
i.e., scattering-type scanning near-field optical microscopy
(s-SNOM) [69,70]. This type of mode usually exists for a
broad class of interfaces [71] and can further be launched in
one direction by an appropriately polarized dipole, thus open-
ing up unprecedented technological possibilities. In fact, the
area of topological plasmonics is a rapidly emergent subfield
of nanophotonics [72] based on 2D materials [73]. Notably,
in a periodically patterned system, and in the presence of
an out-of-plane magnetic field, band-structure theory yields a
nontrivial Chern number, making plasmons topologically pro-
tected wave modes that can travel around obstacles [74,75].
Hence, it would be technologically desirable to explore the
possible existence and control of plasmonic edge modes in
the chiral TBG, adding a knob for tuning their dispersion
by chirality. These modes can be observable by, e.g., scat-
tering scanning near-field microscopy, which is a powerful
technique in the context of both the monolayer graphene and
TBG [76–78].

We emphasize that bulk plasmons in twisted heterostruc-
tures are intrinsically chiral [53]. However, in the retarded
frequency regime, the plasmon dispersion relation is not al-
tered and chirality only manifests itself in the near field [55].
Contrary to this situation, here we will show that the coupling
of the longitudinal and transverse channels occurs at the edge
similarly to the case of Berry plasmons that are chiral due to a
nontrivial Berry curvature [79,80]. This coupling can also be
achieved by scattering from impurities.

In this paper, we investigate the dispersion of plasmonic
edge modes that emerge at the interface of a chiral bilayer
sample with an unbounded dielectric medium. We formulate
a system of integral equations for the scalar potentials in
two semi-infinite layers. By a linear transformation, the field
equations are coupled only at the edge through chirality. We
apply a variant of the Wiener-Hopf method [81] to solve this
system exactly. Our analytical predictions address both the
cases of the neutrality point and finite doping. In the latter
case, we show that the frequency of the optical edge plasmon
is blue-shifted by chirality. In addition, the optical mode of the
nonmagnetic chiral TBG can exhibit a dispersion similar to
that of an edge magnetoplasmon in a single sheet. In this cor-
respondence, chirality plays the role of an effective magnetic
field that can become of the order of hundreds of Tesla. Our
model for the conductivity tensor can include an out-of-plane
magnetic field, and thus break time-reversal symmetry and
yield nonreciprocal edge modes. Other extensions, e.g., the
joint effect of anisotropy and chirality, lie beyond the scope of
this paper and will be addressed elsewhere.

We stress that our main finding is that the chiral coupling,
which emerges because of the moiré pattern of the TBG,
modifies the dispersion of both the optical and acoustic edge
plasmons in the nonretarded limit. This result is in stark con-
trast with the case of chiral bulk plasmons, for which no such
modification happens.

The remainder of the paper is organized as follows. In
Sec. II, we formulate integral equations for the scalar potential
in the TBG. Section III focuses on the derivation of the edge
mode dispersion relation. In Sec. IV, we discuss the effect of

FIG. 1. Geometry of the TBG system. Two semi-infinite, flat
conducting sheets, �1 and �2, are parallel to each other at a distance
equal to d . Sheet �1 lies in the xy plane (z = 0) for x > 0. Layer
�2 lies in the plane z = d for x > 0. The layers are immersed into
a homogeneous unbounded medium of dielectric permittivity ε and
magnetic permeability μ.

chirality via approximations of the dispersion relation. Sec-
tion V concludes the paper.

II. FIELD EQUATIONS IN ISOTROPIC BILAYER SYSTEM

In this section, we formulate the field equations for the
edge states of an isotropic bilayer system in the nonretarded
limit. In other words, we assume that the wave number
q of an edge state satisfies |q| � ω/c, where ω is the angu-
lar frequency and c is the light speed in vacuum, applying
the quasi-electrostatic approximation. This theory forms an
extension of previous works for isotropic monolayer sys-
tems [62,66]. For a general derivation of the underlying
electric-field integral equations with retardation effects in the
TBG, see Appendix A. An extension of the quasi-electrostatic
theory to include anisotropy of the bilayer system will be
discussed elsewhere [82].

Before we start the formulation, let us introduce the nota-
tion used in our paper. The symbol e� is the unit Cartesian
vector in the positive � direction (� = x, y, z). Underlined
symbols, e.g., σ denote square matrices. The first (second)
partial derivative of f with respect to � is ∂� f (∂2

� f ). The
symbol f (a±) indicates the limit of f (x) as x approaches a
from above (+) or below (−). We write f = O(g) if | f /g| is
bounded in a prescribed limit. The hat on top of a symbol, e.g.,
f̂ (ξ ) denotes the Fourier transform of a function, e.g., f (x)
with respect to x; ξ is the wave number (Fourier variable).
The + or − subscript in the symbol Q±(ξ ) (not to be confused
with the frequency ω± of an optical or acoustic mode), where
ξ is a complex variable, implies that Q±(ξ ) is analytic for
±�ξ > 0, in the upper (+) or lower (−) ξ -plane. The time
harmonic fields have temporal dependence e−iωt (i2 = −1).

The geometry is depicted in Fig. 1. This consists of two flat
sheets, �1 and �2, that lie parallel to each other at distance d
and have coplanar edges. The layers occupy the half planes at
z = 0 and z = d in regions of positive x coordinate; thus, the
sheets have edges parallel to the y axis. The ambient medium
is homogeneous with (scalar) dielectric permittivity ε and
magnetic permeability μ. Losses in this medium are included
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via a complex-valued ε. Note that the geometry is translation
invariant in y.

Regarding edge states, we assume that there is no exter-
nally applied source and all fields have the eiqy dependence
on y, where ω must be determined as a function of the wave
number q (or vice versa). From now on, we suppress the
(exponential) y dependence of fields.

Let ϕ(x, z) denote the electrostatic potential generated ev-
erywhere by the electron surface charge densities excited on
the two layers. By using the Green function or propagator,
G(x, z), of the 2D Poisson equation, we have

ϕ(x, z) = ε−1
∫∫ ∞

−∞
dx′dz′ G(x − x′, z − z′) ρ(x′, z′), (1)

where ρ(x, z) is the volume charge density, viz.,

ρ(x, z) = �1(x) δ(z) + �2(x) δ(z − d ).

Here, � j is the surface charge density on sheet � j ( j = 1, 2)
and δ(z) is Dirac’s delta function; � j (x) = 0 if x < 0. The 2D
propagator is [62,66]

G(x, z) = 1

2π
K0(q̃

√
x2 + z2), q̃ = q sg(q), (2)

where K0 is the third-kind modified Bessel function of zeroth
order, and the “complex signum” function is sg(q) = ±1 if
±�q > 0. Thus, q̃ = q sgn(q) = |q| if q is real. We stress
that the propagator G(x, z) incorporates the long-range elec-
trostatic interaction, in contrast to the kernel approximation
by an exponential in [60]; thus, G(x, z) = O( ln(

√
x2 + z2))

near the origin.
As an alternative to a singular propagator, we will also dis-

cuss how the edge mode is affected by the use of a regularized
propagator. This replacement amounts to the broadening of
the material edge in the horizontal (x) or vertical (z) direction.
In principle, the regularization procedure is not uniquely de-
fined. We make a choice that preserves the character of the
kernel as the Green function of the 2D Helmholtz equation.
This choice has some advantages, e.g., the potential ϕ(x, z)
satisfies the 2D Helmholtz equation. In this vein, replace
G(x, z) by

Greg(x, z) = 1

2π
K0
(
q̃
√

x2 + z2 + b2
)
, b > 0.

The length b is of the order of or larger than d (|qb| 
 1). This
b should be chosen separately for “symmetric” and “antisym-
metric” edge states (see Sec. II B).

The potential ϕ(x, z) is continuous and the densities � j (x)
must be integrable in order to yield finite charges. These
densities satisfy the continuity equation

−iω� j (x) + ∇� · J j (x) = 0, −∞ < x < ∞,

where ∇� = (∂x, iq) and J j is the 2-component surface cur-
rent density on � j ; J j (x) = 0 if x < 0.

We invoke Ohm’s constitutive law, which relates the sur-
face current densities J j of the sheets to the electric field. We
assume that this law is local and homogeneous, and involves
only the tangential electric field; thus,(

J 1(x)
J 2(x)

)
= σ

(E1
‖(x)

E2
‖(x)

)
x > 0; σ =

(
σ 11 σ 12
σ 21 σ 22

)
. (3a)

In the above, E j
‖(x) is the electric field parallel to the xy plane

in sheet � j , at z = 0 for j = 1 and z = d for j = 2. The
parameter σ is the 4 × 4 conductivity matrix, which captures
the electrostatic and electronic couplings Z of the layers. For
a minimal model that expresses isotropy with an out-of-plane
magnetic field, which is perpendicular to the sheets, we define
the 2 × 2 matrices

σ 11 = σ 22 =
(

σ0 σB

−σB σ0

)
, (3b)

σ 12 =
(

σ1 σ2 + σ ′
B

−σ2 − σ ′
B σ1

)
, (3c)

σ 21 =
(

σ1 −σ2 + σ ′
B

σ2 − σ ′
B σ1

)
. (3d)

The matrix elements σ0, σ1, and σ2 are spatially constant
and depend on material and geometry parameters such as the
doping of graphene sheets or the twist angle and also the
interlayer spacing d as well as the frequency ω. Note that
the parameter σ2 expresses the chirality of the system. The
matrix elements σB and σ ′

B may arise from a magnetic field
perpendicular to the sheets [60,62].

Next, we discuss the relation of matrix elements of σ i j
to in-plane dipoles in some generality. The electric in-plane
dipole, p‖, is related to the sum of two-sheet currents, j1
and j2, viz., −iωp‖ = j1 + j2; whereas the magnetic in-plane
dipole, m‖, is given by the difference of the two-sheet currents,
m‖ = dez × ( j2 − j1)/2. The constituent equations read

p‖ = −2
σ0 + σ1

iω
E‖ − 2

σB + σ ′
B

iω
ez × E‖ + dσ2B‖,

m‖ = dσ2E‖ + iω
d2

2
[(σ0 − σ1) + (σB − σ ′

B)ez×]B‖,

where (E‖, B‖) is the in-plane electromagnetic field. The
model is invariant under rotation, and the Onsager relations
are fulfilled if σ

(′)
B changes sign according to the magnetic

field component B perpendicular to the sheets, i.e., σ
(′)
B =

sgn(B)σ (′)
|B|. In our notation for σ

(′)
B we use the vertical (z-)

component B = B⊥, not to be confused with the dynamic
in-plane magnetic field B‖. In the absence of an out-of-
plane magnetic field and for σ2 = 0, the system resembles
an ordinary double-layer system (without chirality). Let us
emphasize that a finite chiral coupling, if σ2 �= 0, endows
the system with chiral plasmons even without breaking time-
reversal symmetry (if B = 0) [53].

In our model, σB denotes the in-plane Hall response and
σ ′

B resembles the response function on layer 1 due to the
transverse drag of a current in layer 2. A simple model based
on the equations of motion yields that these functions are
proportional to the in-plane and drag conductivities, σ0 and σ1,
respectively. For weak enough out-of-plane magnetic field, we
have σB = −i(ωc/ω)σ0 and σ ′

B = −i(ωc/ω)σ1, where ωc =
eB/m is the cyclotron frequency. Hence, the constituent equa-
tions become

p‖ = −2
σ0 + σ1

iω

(
E‖ − i

ωc

ω
ez × E‖

)
+ dσ2B‖, (4a)

m‖ = dσ2E‖ + iωd2

2
(σ0 − σ1)

(
1 − i

ωc

ω
ez×

)
B‖. (4b)
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FIG. 2. Schematic of currents giving rise to electric dipole p‖ (a)
and magnetic dipole m‖ (b) of edge modes in the TBG.

Let us stress that we will in principle treat σB and σ ′
B as

independent parameters, unless stated otherwise. A schematic
of the currents and the two types of dipoles for the edge modes
in the TBG is shown in Fig. 2.

There are two obvious extensions of this model. First,
the symmetry of the two layers can be broken under differ-
ent conductivities and Hall response that would preserve the
rotational invariance. The second extension is to assume a
birefringent system with different in-plane conductivities in
the x and y directions, which would break rotational sym-
metry. The latter extension can be carried out and will be
discussed elsewhere [82]. The former extension will be the
subject of future work.

A. System of integral equations

Next, we derive coupled integral equations for ϕ1(x) =
ϕ(x, 0) and ϕ2(x) = ϕ(x, d ), which take into account the elec-

trostatic and electronic interlayer couplings. The starting point
is Eq. (1) for the potential ϕ(x, z) in terms of the volume
charge density ρ(x, z). We express this ρ in terms of surface
charge densities on the sheets; invoke the continuity equation
on each layer; use Ohm’s law (3) for the surface current
densities; and apply the quasi-electrostatic approximation in
the form

E j
‖(x) = −∇�ϕ j (x) = −(∂x, iq)ϕ j (x) ( j = 1, 2).

Here, ∇� = (∂x, iq) denotes the gradient in the xy plane. The
potential ϕ(x, z) arises from the surface charge induced on
both sheets, which depends on ϕ by Ohm’s law. A similar pro-
cedure can be found in [62] for deriving an integral equation
for magnetoplasmons; see also [60].

Next, we enforce the condition of vanishing surface cur-
rent densities normal to each edge, ex · J j (x) = 0 at x = 0+
( j = 1, 2). This condition is implied by the absence of any
charge accumulation at each edge, and naturally comes from
the electric field integral equations in the quasi-electrostatic
limit; see Appendices A and B. Hence, after an integration by
parts in Eq. (1), we write

ϕ(x, z) = 1

iωε
(∂x, iq) ·

{∫ ∞

0
dx′ [G(x − x′, z)J 1(x′)

+G(x − x′, z − d )J 2(x′)]}, all (x, z),

where

J j (x) = −σ j1

(
∂x

iq

)
ϕ1(x) − σ j2

(
∂x

iq

)
ϕ2(x).

The desired integral equations result from applying integra-
tion by parts once more, and setting z = 0, d for ϕ(x, z).
Thus, we obtain the following system for the two layers la-
beled by j = 1, 2 (with j̄ = 2, 1, respectively):

ϕ j (x) = iωμ

k2
0

(
∂2

x − q2
){∫ ∞

0
dx′ [σ0K‖(x − x′) + σ1K⊥(x − x′)] ϕ j (x

′) +
∫ ∞

0
dx′ [σ1K‖(x − x′) + σ0K⊥(x − x′)]ϕj̄ (x′)

}
− iωμ

k2
0

{[(σ0∂x − iqσB)K‖(x) + (σ1∂x − iqσ ′
B)K⊥(x)]ϕ j (0

+) + [(σ0∂x − iqσB)K⊥(x) + (σ1∂x − iqσ ′
B)K‖(x)]ϕj̄ (0+)

+ (−1) j iqσ2[−K⊥(x)ϕ j (0
+) + K‖(x)ϕj̄ (0+)]}, k2

0 = ω2με, (5)

for all x. The kernels K‖ and K⊥ express the propagator G(x, z)
at z = 0, d , viz.,

K‖(x) = G(x, 0), K⊥(x) = G(x, d ), (6)

where G(x, z) is given by Eq. (2).
The problem of the edge modes can be stated as follows:

For given wave numbers q, we need to determine the fre-
quencies ω(q) so that Eq. (5) has nontrivial continuous and
integrable solutions (ϕ1(x), ϕ2(x)) for all x [83]. This integra-
bility here implies decay of ϕ(x, 0) away from the edge, and
localization of the mode. Alternatively, for given ω we should
find q(ω). The continuity of the scalar potential at each edge

is crucial in establishing the dispersion relation, by analogy
with the monolayer geometry [66]. In Sec. III, the problem at
hand is solved exactly via the Wiener-Hopf method [84,85].

B. Symmetric and antisymmetric edge states

Next, we introduce the symmetric and antisymmetric
modes, which are characterized by transformed scalar po-
tentials of the form ϕ1(x) ± ϕ2(x). This characterization is
motivated below, being related to the concepts of the bulk
optical and acoustic plasmons, respectively, on infinitely ex-
tended, translationally invariant layers [39].
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By adding and subtracting the equations of Eq. (5) (for j =
1 and j = 2), we find

ϕ±(x) = iωμ

k2
0

(
σ0 ± σ1

)(
∂2

x − q2) ∫ ∞

0
dx′ K±(x − x′) ϕ±(x′)

− iωμ

k2
0

{[(σ0 ± σ1)∂x − iq(σB ± σ ′
B)]K±(x) ϕ±(0+)

±iqσ2K
±(x) ϕ∓(0+)}. (7)

In the above, we use the definitions

ϕ±(x) = ϕ1(x) ± ϕ2(x), K±(x) = K‖(x) ± K⊥(x), (8)

where ϕ+ (ϕ−) corresponds to the symmetric (antisymmetric)
state with the corresponding kernels. Simultaneously, we will
also use the notation ϕS = ϕ+ and ϕA = ϕ− including the
corresponding kernels KS,A = K±. The two integral equations
are coupled only if σ2 �= 0.

The alert reader may notice that the right-hand side of
Eq. (7) may blow up at x = 0 for the singular kernel. Despite
this behavior, the potentials can be continuous across the
edge for suitable values of ω(q), which allow for appropriate
cancellation of the singular terms.

As an alternative to the singular kernels, we also discuss
the effect of regularized kernels. These can be constructed by
replacement of Km(x) with Km(

√
x2 + b2

m) for m=S, A; and
express edge broadening, horizontally by length bS [62] and
vertically by bA (|q|bm 
 1).

For fully translation-invariant layers, the integration range
of the integral equations for (ϕS(x), ϕA(x)) becomes the whole
real axis, without any boundary terms. The resulting decou-
pled dispersion relations amount to the familiar bulk optical
(ϕS) and acoustic (ϕA) plasmons. The former mode has a
dispersion relation of the form ω2/

√
k2

x + q2 � const. via the
lossless Drude model for σ0 + σ1, where (kx, q) is the wave
vector in the xy plane [42]. The acoustic bulk mode has a
dispersion relation of the form (ω/

√
k2

x + q2)d−1/2 � const.
[86]. However, especially for the acoustic mode, nonlocal
corrections can become important [87]. In fact, the local ap-
proximation for the conductivity used here can only be applied
if the sound velocity is larger than the Fermi velocity vF [58].

Moreover, for the bulk modes in the double-layer system,
optical plasmons are composed of in-phase current excita-
tions leading to an oscillating electric dipole. These current
excitations lead to transverse (in-plane) out-of-phase current
excitations, which give rise to an oscillating magnetic dipole.
Electric and magnetic dipoles are thus collinear, which in fact
defines chiral excitations, and the two moments are related
via σ2. However, the plasmonic dispersion relation is only
modified by retardation effects, which are proportional to both
σ2 and vF /c [56].

Due to the one-dimensional nature of edge modes, on the
other hand, transverse out-of-phase fluctuations together with
longitudinal in-phase fluctuations are not possible. Neverthe-
less, we will find a coupling between optical (electric-dipole)
modes and acoustic (magnetic-dipole) modes. The electric
and magnetic dipoles are not collinear but mutually perpen-
dicular; see Fig. 2. The coupling leads to a modified dispersion
relation depending on σ2 in the nonretarded limit. This cou-

pling should also modify the spin-momentum coupling, which
is inherent to localized nanophotonic modes [71].

III. DISPERSION RELATION OF EDGE MODES

In this section, we derive the dispersion relation of the
edge modes in the quasi-electrostatic approach under the
isotropic conductivity model of Sec. II; see Eq. (3). We use
the long-range electrostatic interaction with a logarithmically
singular kernel. The key idea is to reduce the system dis-
played in Eq. (7) to a single, self-consistent scalar equation.
Subsequently, we apply a variant of the Wiener-Hopf method
for scalar integral equations on the half line [81,84]. Some
technical details of derivations are provided in Appendix C.
Approximate formulas for the edge mode dispersion are dis-
cussed in Sec. IV.

A. Field equation and self-consistency condition

We address the solution of Eq. (7) by exploiting the prop-
erty that the associated convolution integrals are decoupled.
The coupling of symmetric and antisymmetric edge states
occurs via the boundary (edge) terms.

We proceed to outline the main steps. The first step is
to introduce an integral equation that captures the form of
Eq. (7). Consider the equation

φ(x) = iωμ

k2
0

σ
(
∂2

x − q2
) ∫ ∞

0
dx′ K(x − x′) φ(x′)

− iωμ

k2
0

[c1σ∂xK(x) + c2σ̄ iqK(x)], all x, (9)

where c1, c2, σ , and σ̄ are constants. By comparison of the
above equation to Eq. (7), we identify the function φ with
the potential ϕS = ϕ+ or ϕA = ϕ− and the kernel K with
KS = K‖ + K⊥ or KA = K‖ − K⊥. The parameters σ , σ̄ , c1,
and c2 are chosen accordingly, e.g., φ(0+) = c1. Our next step
is to derive a relation among c1, c2, ω, and q, which we view
as a self-consistency condition, so that the potential φ(x) is
integrable and continuous [83].

We apply the Fourier transform with respect to x. Let ξ =
kx be the Fourier variable, which expresses the wave number
parallel to the sheets and perpendicular to each edge. Equation
(9) yields

φ̂+(ξ ) + P (ξ )φ̂−(ξ ) = − iωμ

k2
0

(ic1σξ + ic2σ̄q)K̂(ξ ) (10a)

for real ξ , where

P (ξ ) = 1 + iωμσ

k2
0

β(ξ )2K̂(ξ ), β(ξ ) =
√

ξ 2 + q2, (10b)

and K̂ is the kernel Fourier transform. Bear in mind that

K̂(ξ ) = 1

2β(ξ )

[
1 ± e−β(ξ )d

]
, �β(ξ ) > 0,

for the symmetric (+) or antisymmetric (−) case. In the above,
φ̂∓(ξ ) is the Fourier transform of φ(x) for x > 0 (−) or x < 0
(+); thus, φ̂ = φ̂+ + φ̂−. The interested reader is referred to
Appendix C for more details.

We should comment on the meaning of P (ξ ) for given q.
The zeros, ξ = ξsp, of P (ξ ) that satisfy �(β(ξsp)) > 0 and
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�(ξsp) > 0 correspond to bulk plasmonic states that propagate
away from the edge, in the positive x direction. This interpre-
tation is a direct generalization of the bulk plasmons for the
monolayer configuration [66].

The main objective of the Wiener-Hopf method is to
yield formulas for both functions φ̂± from Eq. (10a) and the
expected analytic properties of φ̂±. This is achieved by sepa-
rating all terms in this equation into “+” and “−” functions,
which are analytic in the upper and lower ξ plane, respec-
tively. This task requires the factorization of P (ξ ), which
means finding functions Q±(ξ ) such that

Q(ξ ) = lnP (ξ ) = Q+(ξ ) + Q−(ξ ) ⇒ P (ξ ) = eQ+(ξ )eQ−(ξ ).

In the isotropic setting, this factorization is guaranteed if P (ξ )
is free of zeros in the real axis. The split functions Q±(ξ ) for
Q(ξ ) are [66,81]

Q±(ξ ) = ± 1

2π i

∫ ∞

−∞
dξ ′ Q(ξ ′)

ξ ′ − ξ
, ±�ξ > 0. (11)

Consequently, Eq. (10a) is recast to

e−Q+(ξ )φ̂+(ξ ) + eQ−(ξ )φ̂−(ξ )

= − iωμ

k2
0

(ic1σξ + ic2σ̄q)K̂(ξ )e−Q+(ξ ) (12)

for real ξ . Since the left-hand side is in the desired form,
we need to focus on the right-hand side. The latter can be
expressed as −i[�+(ξ ) + �−(ξ )] for appropriate split func-
tions �±(ξ ), where the factor i is used for later algebraic
convenience; see Appendix C for specifics.

Hence, given �±, the equation satisfied by φ̂± reads

e−Q+(ξ )φ̂+(ξ ) + i�+(ξ ) = −eQ−(ξ )φ̂−(ξ ) − i�−(ξ )

for real ξ . Each side of this equation is analytic when con-
tinued to the respective half plane (�ξ > 0 for “+” terms
and �ξ < 0 for “−” terms). By analytic continuation, each
of these functions is equal to the same entire (everywhere-
analytic) function, which is a polynomial of ξ . The only
polynomial compatible with the properties of K and φ is
identically zero (see Appendix C).

By �± = c1�
1
± + c2�

2
±, we thus express φ(x) as

φ(x) = c1I1(x) + c2I2(x), (13a)

where

I1(x) = 1

2π i

∫ ∞

−∞
dξ e±Q±(ξ )�1

±(ξ ) eiξx, (13b)

I2(x) = 1

2π i

∫ ∞

−∞
dξ e±Q±(ξ )�2

±(ξ ) eiξx, (13c)

for ±x < 0, using the inverse Fourier transform of φ. The
functions �1,2

± (ξ ) are given in Eq. (C8) of Appendix C.
We can now derive a relation among c1, c2, ω, and q so that

φ(x) is continuous. By the above formulas, we readily check
that I1(0+) = 1 and I2(0+) = 0. Thus, we have ϕ(0+) = c1,
which is consistent with Eq. (9). We only need to study the
limit values I1(0−) and I2(0−), in order to enforce continuity
condition of ϕ(x) at x = 0. By a technical argument involving
a Fourier integral, we find that c1I1(0−) + c2I2(0−) diverges

unless we impose

c1σ
[
eQ−(−iq̃) + e−Q+(iq̃)

] + ic2σ̄ sg(q)

× [
eQ−(−iq̃) − e−Q+(iq̃)

] = 0; (14)

see Eq. (C14) of Appendix C. Note that q̃ = ±q if ±�q >

0; thus, q̃ = |q| for real q. Equation (14) is the desired
self-consistency condition. We can then verify that φ(x) is
continuous across the edge (Appendix C).

B. Dispersion relation unveiled

Next, we invoke self-consistency condition (14) in or-
der to derive the dispersion relation of edge modes from
integral equations (7). The recipe suggested by our analy-
sis is simple: Apply Eq. (14) to the integral equations for
the symmetric state, φ = ϕS, and the antisymmetric state,
φ = ϕA. This procedure entails a system of linear equations
for (ϕS(0+), ϕA(0+)). The requirement of nonzero solutions
yields the dispersion relation.

Symmetric state. By comparison of Eq. (9) to Eq. (7) for
φ = ϕ+ = ϕS, we set

c1 = ϕS(0+), σ = σ0 + σ1, K = KS = K‖ + K⊥,

c2σ̄ = −(σB + σ ′
B)ϕS(0+) + σ2ϕA(0+).

Thus, relation (14) entails(
σ−

S eQS
−(−iq̃) + σ+

S e−QS
+(iq̃)

)
ϕS(0+)

+ iσ2 sg(q)
(
eQS

−(−iq̃) − e−QS
+(iq̃)

)
ϕA(0+) = 0, (15a)

where

σ±
S = σ0 + σ1 ± isg(q)(σB + σ ′

B), (15b)

and QS
±(ξ ) are defined by Eq. (11) by use of Q = lnP and

Eq. (10b) with K = KS. Note the Fourier transform

K̂S(ξ ) = Ĝ(ξ, 0) + Ĝ(ξ, d ) = 1 + e−
√

ξ 2+q2 d

2
√

ξ 2 + q2
.

Antisymmetric state. We now set φ = ϕ− = ϕA, and

c1 = ϕA(0+), σ = σ0 − σ1, K = KA = K‖ − K⊥,

c2σ̄ = −(σB − σ ′
B)ϕA(0+) − σ2ϕS(0+).

Thus, the self-consistency condition becomes(
σ−

A eQA
−(−iq̃) + σ+

A e−QA
+(iq̃)

)
ϕA(0+)

− iσ2 sg(q)
(
eQA

−(−iq̃) − e−QA
+(iq̃)

)
ϕS(0+) = 0, (16a)

where

σ±
A = σ0 − σ1 ± isg(q)(σB − σ ′

B). (16b)

The functions QA
±(ξ ) are defined by Eq. (11) with Q = lnP .

Recall Eq. (10b) again, setting K = KA with

K̂A(ξ ) = Ĝ(ξ, 0) − Ĝ(ξ, d ) = 1 − e−
√

ξ 2+q2 d

2
√

ξ 2 + q2
.

Dispersion relation. The last step of our derivation is to
require that the linear system of Eqs. (15a) and (16a) admits
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solutions (ϕS(0+), ϕA(0+)) �= (0, 0). Hence, the determinant
of this system should vanish, which leads to(

σ−
S eQS(q) + σ+

S

)(
σ−

A eQA(q) + σ+
A

)
− σ 2

2

(
eQS(q) − 1

)(
eQA(q) − 1

) = 0, (17a)

where (for m = S, A)

Qm(q) = Qm
+(iqsg(q)) + Qm

−( − iqsg(q))

= 2qsg(q)

π

∫ ∞

0
dξ

ln (Pm(ξ ))
ξ 2 + q2

, (17b)

Pm(ξ ) = 1 + iωμσm

k2
0

(ξ 2 + q2)K̂m(ξ ),

and σS = σ0 + σ1, σA = σ0 − σ1. Equation (17a) is the disper-
sion relation for edge modes under the conductivity model of
Eq. (3). The two types of states are coupled through the chiral-
ity parameter σ2. We investigate this coupling in Sec. IV. The
same form of dispersion relation is recovered with regularized
kernels; see Appendix D.

IV. APPROXIMATIONS AND PREDICTIONS

In this section, we discuss implications of dispersion rela-
tion (17a). We assume the long-wavelength limit according to
|qd| 
 1, and apply approximations to analytically capture
features of the optical and acoustic edge plasmons for the
isotropic conductivity model. A goal is to estimate whether
the chiral coupling between these two modes via the parame-
ter σ2 can be strong enough to be observed in experiments.
The interested reader may directly read a summary of our
results in Sec. IV B, skipping Sec. IV A. We also discuss
the case of the neutrality point for which collective charge
oscillations in the TBG are in principle not possible because
of the absence of charge. In our formalism, the neutrality point
is given by σ0 + σ1 = 0, i.e., the total Drude weight vanishes.

By our main assumption |qd| 
 1, the Fourier transforms
of the singular kernels can be replaced by

K̂S(ξ ) = 1 + e−β(ξ )d

2β(ξ )
� 1

β(ξ )
, (18a)

K̂A(ξ ) = 1 − e−β(ξ )d

2β(ξ )
� d

2
, β(ξ ) =

√
ξ 2 + q2, (18b)

in the integrals QS,A, provided |d| 
 |ωμ(σ0 ± σ1)/k2
0 |. The

ensuing QA(q) is calculated in simple closed form, in contrast
to QS(q). We also obtain geometric corrections for small |qd|;
see Appendix E. The neutrality point is a special case, to be
treated via a regularized kernel.

Edge broadening implies the kernel transformations

K̂b
S,A(ξ ) = e−β(ξ )bS,A

1 ± e−β(ξ )(
√

b2
S,A+d2−bS,A )

2β(ξ )
, (18c)

where |q|bS 
 1 and |q|bA 
 1 while bS and bA are of the
same order as or larger than d . Approximations for K̂b

S,A can
be applied accordingly; for example, see Sec. IV A.

A. Decoupled optical and acoustic edge modes

We first study a simple yet nontrivial scenario, namely, the
case with σ2 = 0. Equation (17a) reduces to

eQS(q) = −σ+
S

σ−
S

or eQA(q) = −σ+
A

σ−
A

.

The parameters σ±
S,A are defined by Eqs. (15b) and (16b).

Regarding the optical plasmon (state ϕS), the relation for ω(q)
resembles the edge mode dispersion relation of a monolayer
isotropic system with suitable effective 2 × 2 conductivity
matrix. This matrix has diagonal elements equal to 2(σ0 +
σ1) = σT and opposite off-diagonal elements, σxy = −σyx =
2(σB + σ ′

B); cf. Eq. (40) in [62].
We outline approximations for the above dispersion rela-

tions. These schemes provide some insight into the case with
a nonzero σ2, which is discussed in Sec. IV B.

Acoustic edge plasmon. We solve eQA(q) = −σ+
A /σ−

A , by
employing Eq. (17b) for m = A and approximation (18b). The
simplified integral for QA(q) equals (see Appendix E)

QA(q) � arccosh(2ηac + 1), ηac = iωμ(σ0 − σ1)

2k2
0

q2d.

Thus, by QA(q) = ln(−σ+
A /σ−

A ) we obtain

ηac � − (σ+
A + σ−

A )2

4σ+
A σ−

A

= − (σ0 − σ1)2

(σ0 − σ1)2 + (σB − σ ′
B)2

.

By using the Drude model for the counterflow conductivity,
σ0 − σ1, and σB − σ ′

B = 0, we find (for ω = ω−)

ω2
− � D0 − D1

2ε
q2d,

where Dj is the Drude weight for σ j ( j = 0, 1, 2). This mode
is not observable if D0 − D1 < 0 (since ω2

− < 0). Recall that
the formalism leading to this result breaks down if the sound
velocity is lower than the Fermi velocity. This dispersion
relation is modified by chirality and a geometric correction
due to qd for QA(q) (Sec. IV B). If σB − σ ′

B �= 0, the acoustic
edge mode becomes nonreciprocal (as expected).

Optical edge plasmon. Let us focus on eQS(q) = −σ+
S /σ−

S
via Eq. (17b) for m = S and formula (18a). Define

ηop = iωμ(σ0 + σ1)

k0

q̃

k0
, q̃ = qsg(q),

which enters QS(q). By Eq. (17b), ηop is O(1) if −σ+
S /σ−

S is
neither small nor large in magnitude, nor is it close to unity;
then one has to resolve the dispersion relation numerically. In
particular, for σB + σ ′

B = 0 one finds ηop = ηop,0 � −1.217,
which yields (for ω = ω+) [61,62]

2ω2
+ε

DT |q| = − 1

ηop,0
� 0.822,

by use of the Drude model for σ0 + σ1; DT = 2(D0 + D1) >

0 is the total Drude weight. For nonzero σB + σ ′
B with σ

(′)
B =

−i(ωc/ω)σ0(1), the dispersion relation reads [62]

2

π

∫ ∞

0
dξ

ln(η±β̃(ξ ) − 1)

β̃(ξ )2
� ln

(
1 ± s

√
η±

1 ∓ s
√

η±

)
, (19)
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FIG. 3. Universal function |ηop| = η−(s) solving Eq. (19) for
dispersion of edge magnetoplasmon in a single sheet with sg(q)ωc �
0 [62] as well as for (reciprocal) optical edge plasmon in chiral
TBG with σB = σ ′

B = 0. The range of values 0 � s < s∗ � 0.525
ensures solvability of Eq. (19) and implies localization of the
mode. The point (s, η−) = (0, 1.217), where η− = |ηop,0|, amounts
to the known optical edge plasmon of the nonmagnetic isotropic
sheet [61,62].

where β̃(ξ ) =
√

1 + ξ 2, s = s(q) = √
2ω2

cε/(DT |q|),
±sg(q) ωc � 0, and η± = |ηop|. Here, we simply write
|ηop| instead of |ηop|±; ω2

+ in |ηop| is viewed as a distinct
function of q for the corresponding (upper or lower) sign.

Equation (19) defines the functions η±(s) describing non-
reciprocal edge plasmons, where η±(0) = |ηop,0|. Suppose
ωc > 0. One mode is localized and is dispersed according
to η+(s) for all q > 0 (s > 0) [62]. For q < 0, the other
mode becomes unstable and decays into the bulk if −|q∗| �
q < 0 (s � s∗) [62], but is localized and dispersed via η−(s)
for q < −|q∗| (0 < s < s∗); |q∗| � 2ω2

cε/(DT s2
∗), η−(s∗) = 1,

and s∗ � 0.525. The universal function η−(s) is of particular
interest and plotted in Fig. 3. We will demonstrate that for
zero out-of-plane magnetic field the chiral TBG, for σ2 �= 0,
supports optical edge plasmons that are governed by η−(s),
and not by η+(s), which would lead to a more localized mode;
see Sec. IV B. In fact, for an intermediate range of q we
can show that the chiral coupling can be interpreted as an
effective magnetic field that always tends to delocalize the
edge mode of a single sheet. Notably, by this correspondence
we do not break reciprocity, which is usually the case with a
magnetic field.

If −σ+
S /σ−

S is either large in magnitude or close to unity,
the integral for QS(q) can be computed in simple form via
asymptotics (see Appendix E). In these situations, we have
|ηop| � 1 or |ηop| 
 1, respectively. A small |σ+

S /σ−
S | would

imply a large negative �(QS(q)), which is incompatible with
the requisite integral.

Next, we address the case of the neutrality point (σ0 +
σ1 = 0), at which −σ+

S /σ−
S becomes unity. One approach is

to take the limit σ0 + σ1 → 0 of the dispersion relation for the
optical edge plasmon with a singular kernel via Eq. (18a). By
ηop → 0 with σB + σ ′

B �= 0, we obtain

1

π

σB + σ ′
B

ω+ε
q

[
ln

(
2

ηop

)
+ 1

]
� −1. (20)

This equation indicates that only one edge mode may survive
in this limit, since the (sign) factor sg(q) has been can-
celed out. This is expected, by analogy with the case of the
edge magnetoplasmon [62]; however, σB is now replaced by
2(σB + σ ′

B).
An alternate approach relies on edge broadening. We can

set σ0 + σ1 = 0 by using the length scale bS in the kernel reg-
ularization; see Eq. (18c). We now proceed by two different
routes. For example, we may invoke the regularized version of
the relation eQS(q) = −σ+

S /σ−
S . Hence, for real q and bS � d

we find (see Appendix E)

1

π

σB + σ ′
B

ω+ε
qK0(|q|bS) � −1; K0(|qbS|) � ln

(
2

|q|bS

)
− γ

if |q|bS 
 1, where γ is Euler’s constant. Alternatively, we
obtain the same relation for q by resorting to integral equation
(7) for ϕS = ϕ+ with a regularized interaction. Indeed, by
setting σ0 + σ1 = 0 and x = 0, we have(

1 + ωμ(σB + σ ′
B)

k0

q

k0
Kb

S(0)

)
ϕS(0) = 0

where 2πKb
S(0)=K0(|q|bS)+K0(|q|

√
b2

S + d2) � 2K0(|q|bS),
if bS is large compared to d . The value of the length bS is
dictated by the matching of the above behavior to that of the
singular kernel, as discussed in [62].

B. Chirality effect: Summary of results

Next, we study the effect of nonzero σ2. We remark that
the plasmonic bulk modes of a chiral bilayer system in the
retarded regime without an out-of-plane magnetic field do not
depend on the chirality, and are defined by

ω2
+ε

(D0 + D1)q̃
= 1,

2ω2
−ε

(D0 − D1)q2d
= 1.

These relations are easily expressed by the parameters ηop =
iωμ(σ0 + σ1)q̃/k2

0 and ηac = iωμ(σ0 − σ1)q2d/(2k2
0 ), intro-

duced in Sec. IV A. In the above, ω± denotes the frequency
of the optical (+) or the acoustic (−) bulk plasmon, and Dj

is the Drude weight for the conductivity σ j ( j = 0, 1, 2). The
total Drude weight, DT = 2(D0 + D1), can never be negative,
DT � 0. In contrast, the sign of the magnetic Drude weight or
counterflow, D0 − D1, is not fixed. For the TBG system, one
finds a paramagnetic response, characterized by D0 − D1 < 0,
around the neutrality point with Fermi energy EF < Et

F ; and a
diamagnetic response, with D0 − D1 > 0, for EF > Et

F . Here,
Et

F denotes a transition energy. Thus, there is no acoustic bulk
mode in the paramagnetic regime (ω2

− < 0).
In the presence of edges, the frequency squared, ω2

+, of the
optical mode of a nonchiral bilayer system acquires the extra
factor 1/|ηop,0| where ηop,0 � −1.217, just as in the case of a
single layer [62]. The acoustic mode remains unchanged, with
a dispersion relation given by ηac = −1, which for a negative
counterflow Drude weight, D0 − D1 < 0, implies that this
mode is unstable and decays into the bulk (Sec. IV A).

Let us focus on the chiral bilayer system with DT > 0. In
the end, we discuss the case with DT = 0. We consider σB =
σ ′

B = 0, and real q.
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FIG. 4. Schematic for effect of chirality via parameter χ̄ = |ζ |χ2

on frequency ω+ as a function of wave number q for optical edge
mode in TBG by Eq. (21b); σB = σ ′

B = 0, DT > 0, and D0 − D1 < 0.
Solid curve: χ̄ = 0. Dashed and dot-dashed curves: χ̄ = χ̄l �= 0; q
has a cutoff q∗,l ∼ χ̄−2

l at frequency ω+,∗l ∼ |χ̄l |−1 (l = 1, 2). The
cutoff points (q∗, ω+,∗) obey ηop = −1 of the bulk mode. Near q = 0
all dispersion curves approach the curve of zero χ̄ .

Optical edge mode. In this case, |ηop| is not large while |ηac|
is typically small. If |qd| 
 1, Eq. (17a) gives

eQS(q) � −±√|D0 − D1|DT + 2D2
2

√
∓q2d/(2ω2ε)

±√|D0 − D1|DT − 2D2
2

√
∓q2d/(2ω2ε)

,

for D0 − D1 > 0 (upper sign) or D0 − D1 < 0; see
Appendix E for integral QA(q) � 2

√
ηac.

In the paramagnetic regime (D0 − D1 < 0), we obtain

2

π

∫ ∞

0
dξ

ln(|ηop|β̃(ξ ) − 1)

β̃(ξ )2
� ln

(
1 − s

√|ηop|
1 + s

√|ηop|

)
, (21a)

where β̃(ξ ) =
√

1 + ξ 2, s = s(q) =
√

2|ζ |χ2|qd|, ζ =
D2

2/(D2
0 − D2

1) is the effective parameter for the coupling
between the optical and acoustic modes, and χ = D2/DT

defines the chirality. Regardless of the sign of D2 (if D2 �= 0),
Eq. (21a) is of the same form as the dispersion relation of
a magnetoplasmon on a single sheet with sg(q)ωc < 0; cf.
Eq. (19). Here, the optical edge mode dispersion is described
by the universal function |ηop| = η−(s) where s = s(q)
combines the effects of geometry and chirality. Therefore,
we find

2ω2
+ε

DT |q| � {
η−(√2|ζ |χ2|qd|)}−1

. (21b)

Thus, ω+(q) can be computed via Fig. 3. In the limit of zero
chirality, we recover 2ω2

+ε/(DT |q|) = |ηop,0|−1.
If D2 �= 0 and D0 − D1 < 0, the optical mode is localized

if 0 � s(q) < s∗ � 0.525, which implies 0 � |q| < |q∗| with
cutoff wave number |q∗| � 0.138(|ζ |χ2)−1d−1. The cutoff
frequency is ω+,∗ = √

DT |q∗|/(2ε) ∼ |χ |−1, which follows
from ηop = −1 according to the bulk mode dispersion. For
larger values of |q|, Eq. (21b) has no admissible solution
ω+(q) and the mode decays into the bulk. Hence, in the
paramagnetic regime, the smaller the parameter |ζ |χ2 is, the
wider the range of wave numbers q for mode localization
can be. The effect of |ζ |χ2 on ω+(q) is schematically shown
in Fig. 4.

Our results for the optical plasmon in the chiral TBG with-
out magnetic field suggest a correspondence of this mode to a
magnetoplasmon in a single sheet with sg(q)ωc < 0 [62]; cf.
Eq. (19). In the long-wavelength limit, this correspondence
may not be surprising. This connection is plausible if the two
systems have a common intermediate range of wave numbers
q supporting a localized optical mode, which can be deter-
mined through the parameter s (0 � s < s∗ � 0.525).

In order to estimate the magnetic field of the single sheet
by this correspondence, we pick a value of s for the TBG
system according to s =

√
2|ζ |χ2|q|d . Then, we set s =√

2ω2
cε/(DT |q|), which in turn yields the formula

h̄ωc

te
= s

√
3πD̃T αg

√
qa,

where D̃T tee2/h̄2 = DT with te = 3 eV, αg = e2

4πεh̄vF
� 2.2 is

the fine-structure constant of graphene with h̄vF = 3ate/2,
and a = 0.142 nm. Hence, for s = s∗ and the typical values
qa = 0.01 and D̃T � 0.01 for the TBG [55], we find an effec-
tive magnetic field B � 150 T. We observe that this effective
value of B is comparable to strain-induced magnetic fields in
graphene [88].

For s(q) � 0.2 < s∗ the chiral effect is perturbative (with
ηop � ηop,0); see Fig. 3. The dispersion relation is (see
Appendix F)

|ηop,0|
2ω2

+ε

DT |q| � 1 + C̃0 s(q), (22)

where C̃0 = π
√

η2
op,0 − 1/[

√|ηop,0| arccos(η−1
op,0)] for D0 −

D1 < 0. This formula explicitly shows that in the paramag-
netic regime there is an undamped optical edge mode that is
blue-shifted. If 0.2 � s(q) < s∗ � 0.525 the above formula is
questionable, but the mode is still below the bulk mode and
is well protected from scattering into the continuum. When
s(q) tends to exceed the threshold value s∗, however, the
mode becomes delocalized. This occurs at Fermi energies well
below the transition energy.

On the other hand, for the canonical, diamagnetic regime
with D0 − D1 > 0, perturbation theory furnishes an ex-
pansion of the same form as Eq. (22) albeit with C̃0 =
−iπ

√
η2

op,0 − 1/[
√|ηop,0| arccos(η−1

op,0)]. This suggests that

the chirality leads to finite damping of the optical edge mode.
We understand this behavior by noting that the Poynting
vector of the bulk plasmon forms the angle tan ϑ = 2χqd
with respect to the mode propagation direction q = qey. This
direction is now fixed by the edge, which is along the y axis;
and the tendency of the Poynting vector to be deflected leads
to dissipation of the optical edge mode. In fact, the argument
involving the Poynting vector can also serve as an explanation
for the tendency for further delocalization of the edge mode
in the diamagnetic as well as the paramagnetic regime.

Acoustic edge mode. In this case, for D0 ± D1 �= 0, |ηac|
is typically of the order of unity while |ηop| is large. By
neglecting the geometric correction to QA(q), we derive the
dispersion relation (see Appendix F)

2ω2
−ε

(D0 − D1)q2d
� 1 − ζ 2

1 + 2 sgn(ζ )s(q)2
. (23)
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We applied the simplifying condition |ω2
−ε/(DT q)| 
 1,

which implies that the right-hand side of Eq. (23) must be kept
bounded; thus, s(q) must be kept small enough when ζ < 0
under this approximation. Interestingly, if s(q) 
 1 in the
paramagnetic regime (D0 − D1 < 0, thus ζ < 0), for ζ 2 > 1
the frequency ω− of the acoustic mode becomes real with
ω− ∼ |q|. This property opens up the possibility of acoustic
edge modes with dispersion ω = vS|q| where the sound veloc-
ity vS strongly depends on the chirality. Recall that vS needs
to be larger than the Fermi velocity vF . If we apply Eq. (23)
for s(q) � 1 and ζ 2 � 1, we see that the frequency ω−(q) is
pure imaginary; thus, the mode does not seem to exist near the
transition energy Et

F .
Let us refine the acoustic mode dispersion for s(q)2 
 1,

by taking into account the geometric correction of the order
of qd for QA(q). We thus obtain the expression

2ω2
−ε

(D0 − D1)q2d
� (1 − ζ 2)

{
1 − 2 sgn(ζ )s(q)2

− 1

π

D0 + D1

D0 − D1
ζ

[
ln

(
4

|q|d
)

+ 1 + iπ

]
|q|d

+ 1

π

D0 + D1

|D0 − D1|
√

ζ 2 − 1 arcsinh
(√

ζ 2 − 1
) |q|d

}
,

(24)

which is a perturbative result from our analysis (see
Appendix F). We should also mention that in Eq. (24) the
correction term of the order of qd tends to increase the real
part of ω2

−, while it also causes slight damping.
A study of the case with D0 − D1 = 0, when EF reaches

the transition energy Et
F , can be carried out via the regularized

kernel Kb
A. This study lies beyond our scope.

The neutrality point. We turn our attention to the neutrality
point (D0 + D1 = 0 for the TBG) for a few comments. The
parameter D2 is related to the density of states, and at the
neutrality point D2 vanishes due to the nature of the Dirac
point, e.g., in the TBG system. Hence, we can apply the
results of Sec. IV A, since the optical and acoustic modes are
decoupled, including the effect of an out-of-plane magnetic
field (if σB + σ ′

B �= 0); see Eq. (20). We mention, however,
that for systems (other than the TBG) with a finite density of
states at the neutrality point, D2 can become nonzero in this
limit while DT �= 0 as well. For such systems, our results with
DT > 0 presented in this subsection should apply.

V. CONCLUSION

In this paper, we analytically studied the dispersion relation
of edge modes in a system of two parallel conducting lay-
ers in the nonretarded limit. Our model invokes an isotropic
and spatially homogeneous conductivity tensor described by
a frequency-dependent 4 × 4 matrix, σ (ω). This matrix σ

incorporates electronic and electrostatic couplings between
the two layers. Our analytical results, primarily based on the
locality and isotropy of σ , capture generic features of the edge
mode dispersion in the TBG.

We showed that chirality, which is expressed by a single
parameter of the model, can cause appreciable coupling be-
tween the optical and acoustic edge modes. Regarding the

optical mode, this coupling is described via a universal func-
tion in the paramagnetic regime. We demonstrated that this
mode is localized if the wave number q does not exceed a
certain cutoff, which decreases with increasing chirality. For
an intermediate range of q, the chiral coupling can further be
interpreted via an effective magnetic field in a corresponding
single sheet. This field may become of the order of hundreds
of Tesla and always tends to delocalize the edge mode.

In addition, chirality opens up the possibility of observing
acoustic edge modes with linear dispersion, ω−(q) = vS|q|
where vS is the sound velocity. We believe that these results
can possibly be tested in experiments.

A tool of our analysis is the Wiener-Hopf method for
the integral equations obeyed by scalar potentials. This ap-
proach allows us to retain the full long-range electrostatic
interaction, and can be extended to an anisotropic conductivity
model [82]. We can also apply this approach to the case
with screened electrostatic interactions. In this setting, we still
expect an emerging correspondence of the chiral-TBG optical
plasmon to a magnetoplasmon of the respective single sheet.
The details of this mapping, e.g., the cutoff wave number
q∗ and effective magnetic field (for given q), would depend
on specific features of the screened interaction, particularly
the screening length. Intuitively, we anticipate that a screened
interaction may give rise to an even larger effective magnetic
field. Our results in this paper motivate further studies in
the TBG and van der Waals heterostructures, especially the
effect of the twist angle on the edge modes. This considera-
tion would require the detailed calculation of elements of the
conductivity matrix near the magic angle. A related extension
is to solve the integral equations for a nonlocal conductivity
tensor.
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APPENDIX A: ELECTRIC-FIELD INTEGRAL EQUATIONS

In this Appendix, we formulate a system of integral
equations for the electric field tangential to the sheets, by use
of the time-harmonic Maxwell equations [89]. The formula-
tion incorporates retardation effects; see also [67]. We assume
that the system is described by a spatially constant, frequency-
dependent conductivity tensor σ . This tensor is represented by
a 4 × 4 matrix. An advantage of the formalism is the natural
emergence of the condition for zero electron flux normal to
each edge.

Consider the geometry of Fig. 1, which consists of the
flat sheets �1 (at z = 0) and �2 (at z = d) surrounded by an
isotropic and homogeneous medium of dielectric permittivity
ε and magnetic permeability μ. The 4-component surface
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current density Js = (J1 J2)T is

Js(x, y) = σ ·
(

E1
‖(x, y)

E2
‖(x, y)

)
, x > 0,

while Js ≡ 0 if x < 0. Here, by the assumed constitutive law
involving σ , the vector J j is the 2-component surface current
density on layer � j , and E j

‖ is the 2-component electric field

on and tangential to sheet � j . This E j
‖ is defined by E j

‖ = E −
(E · ez )ez at z = 0 (for j = 1) or at z = d (if j = 2), where e�

is the unit Cartesian vector in the � direction (� = x, y, z). We
suppress the resulting zero transverse (z-) component of this
vector, for algebraic convenience. The conductivity tensor is
represented by a 4 × 4 matrix of the form σ = [σ i j], where
σ i j are ω dependent 2 × 2 matrices (i, j = 1, 2).

The volume electron current density is written as

J(x, y, z) = J1(x, y) δ(z) + J2(x, y)δ(z − d ),

where δ(z) is the Dirac delta function. This J is viewed as a
3-component vector. We seek a system of integral equations
obeyed by E j

‖ ( j = 1, 2) for edge states under the following
assumptions. (i) There is no current-carrying source other
than J. (ii) By translation invariance in y, the y dependence
of all fields is assumed to be eiqy. We remove this exponen-
tial by writing J(x, y, z) = eiqyJ (x, z), J j (x, y) = eiqyJ j (x),
E(x, y, z) = eiqyE (x, z), and E j

‖(x, y) = eiqyE j
‖(x). The task at

hand is to obtain integral equations for E j
‖(x).

The flux J (x, z) produces the 3-component vector poten-
tial A(x, z) and scalar potential ϕ(x, z). In the Lorenz gauge,
we have ∇ · A = ik0ϕ with ∇ = (∂x, iq, ∂z ) and

A(r) = μ

∫∫
dr′ G(r − r′)J (r′), r = (x, z).

Note that A has zero z component. The kernel G(r) is the
appropriate Green function or propagator for the Helmholtz
equation in the ambient 2D medium, viz.,

G(r) = i

4
H (1)

0

(√
k2

0 − q2
√

x2 + z2

)
. (A1)

In the above, k2
0 = ω2με, H (1)

0 is the zeroth-order modified

Hankel function of the first kind, and �
√

k2
0 − q2 > 0 if q is

real with |q| > k0 > 0. By taking into account the structure of
J in the bilayer system, we write

A(x, z) = μ

∫ ∞

0
dx′ G(x − x′, z)J 1(x′)

+ μ

∫ ∞

0
dx′ G(x − x′, z − d )J 2(x′). (A2)

Note that if J j are integrable, A(x, z) is continuous.
Outside the sheets �1 and �2, the electric field E (x, z)

is computed by E = [i/(ωεμ)]∇ × B where B = ∇ × A.
Thus, defining Ex = E · ex and Ey = E · ey we obtain

Ex(x, z) = i

ωεμ
(iq∂xAy + q2Ax − ∂zzAx ),

Ey(x, z) = − i

ωεμ
(�xzAy − iq∂xAx ),

where �xz = ∂xx + ∂zz and A� = e� · A (� = x, y). A salient
feature of this formalism is that A(x, z) satisfies the homo-
geneous (source-free) Helmholtz equation, viz., (�xz − q2 +
k2

0 )A = 0, outside the sheets. Hence, by elimination of the
derivatives ∂zzAx and ∂zzAy, we express the tangential electric
field E‖ = (Ex, Ey) as

E‖(x, z) = i

ωεμ

(
∂xx + k2

0 iq∂x

iq∂x k2
0 − q2

)(
Ax

Ay

)
; z �= 0, d.

By Eq. (A2), E‖(x, z) is written explicitly in terms of
the fluxes J j ( j = 1, 2). Recall that J j = σ j1E1

‖ + σ j2E2
‖.

Notice that E‖(x, z) is continuous since (Ax,Ay) is.
At this stage, we can express E‖(x, z) in terms of the

electric fields E j
‖ on the conducting layers. If there is no charge

accumulation at the edges, we may directly allow z → 0 or
z → d in the ensuing integral expression for E‖. We expect to
uncover a continuous surface current density on each sheet,
including the edges. By letting z → 0, we obtain a matrix
equation for E1

‖(x) = E‖(x, 0); and by letting z → d we find
a matrix equation for E2

‖(x) = E‖(x, d ). The resulting expres-
sion is(
E1

‖(x)

E2
‖(x)

)
= iωμ

k2
0

(
L 0

0 L

)∫ ∞

0
dx′

×
(

diag(K‖, K‖) diag(K⊥, K⊥)

diag(K⊥, K⊥) diag(K‖, K‖)

)
σ

(
E1

‖(x′)

E2
‖(x′)

)
,

(A3)

where −∞ < x < ∞, K‖ = K‖(x − x′) and K⊥ = K⊥
(x − x′). Here, we define K‖(x) = G(x, 0) and K⊥(x) =
G(x, d ), and the matrix differential operator

L =
(

∂xx + k2
0 iq∂x

iq∂x k2
0 − q2

)
. (A4)

Equation (A3) is the desired system of integral equations.
Hence, the problem for the dispersion relation of edge

states can be stated as follows. For given frequency ω (or wave
number q), determine q (or ω) so that Eq. (A3) has nontrivial
integrable solutions (E1

‖,E2
‖). The requirement of integrability

of E j
‖(x) is consistent with the vanishing of the flux ex · J j (x),

which is normal to the edge, as x approaches the edge on each
sheet [66].

We should comment on the case when the two sheets are
widely separated, as d → ∞. In this limit, we should formally
have K⊥ → 0 while σ should approach a block diagonal ma-
trix, viz., σ i j → 0 for i �= j and σ j j → σ j . Hence, Eq. (A3)
reduces to the following decoupled matrix equations, one for
each layer ( j = 1, 2):

E j
‖(x) = iωμ

k2
0

(L σ j )
∫ ∞

0
dx′ K‖(x − x′)E j

‖(x′),

in agreement with the formulation for a single sheet of con-
ductivity σ j [67].

APPENDIX B: QUASI-ELECTROSTATIC APPROACH

In this Appendix, we reduce the governing equations
for the electric field, which are derived in Appendix A, to
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integral equations for the scalar potential in the two layers.
The length scale over which the fields vary is small compared
to the wavelength 2π/k0 of radiation in the ambient un-
bounded medium [66]. This assumption implies that |q| � k0.

Now consider the setting (and notation) of Appendix A.
Application of the above scale separation implies E (x, z) =
−∇ϕ(x, z) + iωA(x, z) � −∇ϕ(x, z) where ∇ = (∂x, iq, ∂z ).
We define

ϕ1(x) = ϕ(x, 0), ϕ2(x) = ϕ(x, d ),

which denote the values of the scalar potential on layers �1

(at z = 0) and �2 (z = d). Thus, Eq. (A3) reduces to

iq

(
ϕ1(x)

ϕ2(x)

)
� iωμ

k2
0

(
0 1 0 0

0 0 0 1

)(
L 0

0 L

)∫ ∞

0
dx′

×
(

diag(K‖, K‖) diag(K⊥, K⊥)

diag(K⊥, K⊥) diag(K‖, K‖)

)
σ

⎛⎜⎜⎜⎝
∂x′ϕ1

iqϕ1(x′)

∂x′ϕ2

iqϕ2(x′)

⎞⎟⎟⎟⎠
(B1)

for all real x. By the quasi-electrostatic approach, the follow-
ing approximations are also applied:

q2 − k2
0 � q2,

∂2

∂x2
+ k2

0 � ∂2

∂x2
.

In addition, Eq. (A3) yields an analogous matrix equation in
which the left-hand side involves (∂xϕ1, ∂xϕ2). This additional
equation is redundant, since it can be obtained by differentia-
tion of Eq. (B1) with respect to x.

Equation (B1) can be recast into a simplified system of
integral equations for ϕ1 and ϕ2 through integration by parts.
By this procedure, the values of ϕ j (x) at the edge on each
sheet (at x = 0+ for j = 1, 2) are singled out. Notably, the
ensuing equations are compatible with the vanishing of the
surface current normal to each edge, without the additional
imposition of this condition.

Hence, after some algebra, we obtain the system

ϕ j (x) � iωμ

k2
0

(∂x iq)
∑

i,l=1,2

σ il

{(
∂x

iq

)

×
∫ ∞

0
dx′ Ki j (x − x′)ϕl (x

′)

−
(

1
0

)
Ki j (x)ϕl (0

+)

}
; j = 1, 2, (B2)

for all x. Here, we define Kii = K‖ and Ki j = K⊥ if i �= j.
The kernels K‖(x) and K⊥(x) come from K‖(x) = G(x, 0) and

K⊥(x) = G(x, d ), respectively, by replacement of
√

k2
0 − q2

with iq sg(q) = iq̃ (as k0 → 0), where the “complex signum”
function is sg(q) = ±1 if ±�q > 0 [66]. By Eq. (A1) of
Appendix A, we find [66]

K‖(x) = i

4
H (1)

0 (iq̃|x|) = 1

2π
K0(q̃|x|),

K⊥(x) = 1

2π
K0(q̃

√
x2 + d2), q̃ = qsg(q), (B3)

where K0 is the third-kind modified Bessel function of the
zeroth order. Note that

√
zK0(z) decays exponentially for large

positive values of z.
The problem for the dispersion relation can thus be stated

as follows. For given frequency ω (or wave number q), deter-
mine q (or ω) so that system (B2) has nontrivial integrable
and continuous solutions (ϕ1(x), ϕ2(x)) for all x. In addi-
tion, (∂xϕ1, ∂xϕ2) must be integrable. The governing integral
equations can be derived, alternatively, from the Poisson equa-
tion when the sole source is the surface charge induced on the
sheets (Sec. II). The values ϕ j (0+) are not a priori known, and
form part of the (nontrivial) solution for ϕ j (x) ( j = 1, 2).

APPENDIX C: APPLICATION OF WIENER-HOPF
METHOD

In this Appendix, we elaborate on the solution of the sys-
tem of integral equations for the potentials ϕS = ϕ1 + ϕ2 and
ϕA = ϕ1 − ϕ2 under an isotropic conductivity model and sin-
gular kernels (Sec. II). We apply a variant of the Wiener-Hopf
method [81,84]. Regarding the application of this method to a
single conducting layer, the reader may consult [62,66].

Our goal is to solve the system expressed by Eq. (7), for
the isotropic model of Eqs. (3b)–(3d). In our analysis, a self-
consistent scheme based on a single integral equation plays
a central role. This equation provides a key condition, which
is applied to each state (ϕS and ϕA) to yield the dispersion
relation.

Resorting to Eq. (9), we examine the equation

φ(x) = iωμ

k2
0

σ
(
∂2

x − q2
) ∫ ∞

0
dx′ K(x − x′) φ(x′)

− iωμ

k2
0

[c1σ∂xK(x) + c2σ̄ iqK(x)], all x, (C1)

where c2 is a constant and c1 = φ(0+). The kernel K equals
KS or KA while φ is ϕS or ϕA, respectively.

Our immediate task is to obtain a relation among c1, c2, ω,
and q so that Eq. (C1) has an integrable and continuous solu-
tion φ(x). We repeat that ∂xφ is also integrable. We view the
desired relation as a self-consistency condition. In particular,
we need to make sure that φ(x) is continuous across the edge,
at x = 0. Once we derive the desired condition, we apply it to
the integral equation system with vector variable (ϕS, ϕA).

Let us introduce the Fourier transform of φ(x) with inde-
pendent variable ξ = kx by the formula

φ̂(ξ ) =
∫ ∞

−∞
dx φ(x) e−iξx = φ̂+(ξ ) + φ̂−(ξ ), (C2)

where

φ̂+(ξ ) =
∫ 0

−∞
dx φ(x)e−iξx, φ̂−(ξ ) =

∫ ∞

0
dx φ(x)e−iξx.

Because of the integrability of φ(x), the transforms φ̂±(ξ ) are
analytic in the upper (+) or lower (−) ξ plane and φ̂±(ξ ) →
0 as ξ → ∞. Equation (C1) is transformed to the Riemann-
Hilbert problem expressed by [84]

φ̂+(ξ ) + P (ξ )φ̂−(ξ ) = − iωμ

k2
0

(ic1σξ + ic2σ̄q)K̂(ξ )
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for all real ξ , where

P (ξ ) = 1 + iωμσ

k2
0

β(ξ )2K̂(ξ ), K̂(ξ ) = 1 ± e−β(ξ )d

2β(ξ )
(C3)

and β(ξ ) =
√

ξ 2 + q2; �β(ξ ) > 0. In the above functional
equation, φ̂+(ξ ) and φ̂−(ξ ) are unknown. Because of their pre-
scribed analyticity, we can determine each of these functions
explicitly. The expression for K̂(ξ ) in Eq. (C3) amounts to K̂S

(+, upper sign) or K̂A (−).

1. Wiener-Hopf factorization

Next, we apply the Wiener-Hopf method to the functional
equation for φ̂±(ξ ) [84]. We first seek functions Q±(ξ ) ana-
lytic in the upper (+) or lower (−) ξ -plane such that P (ξ ) =
eQ+(ξ )eQ−(ξ ), which amounts to

Q(ξ ) = ln
(
P (ξ )

) = Q+(ξ ) + Q−(ξ ), (C4)

assuming that P (ξ ) is nonzero for all real ξ . There is a
technical subtlety here. To determine Q±(ξ ) directly, we need
to make sure that the logarithm of P (ξ ) behaves as a single-
valued function when ξ takes values from −∞ to +∞ on
the real axis. Fortunately, this property holds because P (ξ )
is even. More precisely, we can assert that

ν = 1

2π
arg

{
1 + iωμσ

k2
0

β(ξ )2 K̂(ξ )

}∣∣∣∣+∞

ξ=−∞
= 0,

if P (ξ ) �= 0 for real ξ in the isotropic case. This ν is a winding
number, which may in principle take zero or nonzero integer
values for an anisotropic model [66,82].

Given that ν = 0 for our problem, it is legitimate to apply
Cauchy’s integral formula to Q(ξ ) directly here, and write
Q±(ξ ) as [81]

Q±(ξ ) = ± 1

2π i

∫ ∞

−∞
dξ ′ Q(ξ ′)

ξ ′ − ξ
, ±�ξ > 0. (C5)

We have not been able to compute these integrals exactly in
simple closed form by use of known special functions.

Thus, φ̂+ and φ̂− satisfy

e−Q+(ξ )φ̂+(ξ ) + eQ−(ξ )φ̂−(ξ )

= − iωμ

k2
0

(ic1σξ + ic2σ̄q)K̂(ξ )e−Q+(ξ ), all real ξ . (C6)

In this equation, we must now completely separate the “+”
and “−” parts, i.e., the functions analytic in the upper (+)
and lower (−) ξ plane. The objective is to find split functions
�±(ξ ) such that

iωμ

k2
0

(c1σξ + c2σ̄q)K̂(ξ )e−Q+(ξ ) = �+(ξ ) + �−(ξ ). (C7)

We proceed to calculate �±(ξ ). Consider the identity

iωμσ

k2
0

β(ξ )2K̂(ξ ) e−Q+(ξ ) = eQ−(ξ ) − e−Q+(ξ ).

Consequently, Eq. (C7) reads

c1σξ + c2σ̄q

σβ(ξ )2

(
eQ−(ξ ) − e−Q+(ξ )

) = �+(ξ ) + �−(ξ ).

Now we apply the partial-fraction decomposition

Cj (ξ )

ξ 2 + q2
= C+

j

ξ − iq̃
+ C−

j

ξ + iq̃
, q̃ = qsg(q); j = 1, 2.

Here, C1(ξ ) = σξ , C2(ξ ) = σ̄q, C±
1 = σ/2, and C+

2 =
−iσ̄ sg(q)/2 = −C−

2 . Notice that the poles, ±iq̃, of the above
decomposition lie in the upper (+) or lower (−) half plane of
complex ξ . Thus, Eq. (C7) reads

c1σξ + c2σ̄q

σβ(ξ )2

(
eQ−(ξ ) − e−Q+(ξ )

) = 1

2

{
c1

(
1

ξ − iq̃
+ 1

ξ + iq̃

)
−ic2

σ̄

σ
sg(q)

(
1

ξ − iq̃
− 1

ξ + iq̃

)}
× (

eQ−(ξ ) − e−Q+(ξ )
) = �+(ξ ) + �−(ξ ).

For later algebraic convenience, we write �± = c1�
1
± +

c2�
2
±. The functions �1

± can be computed explicitly by re-
arrangements of terms in the product(

1

ξ − iq̃
± 1

ξ + iq̃

)(
eQ−(ξ ) − e−Q+(ξ )

)
.

We omit some details here. After some algebra, we find

�1
±(ξ ) = ±1

2

(
eQ−(−iq̃) − e∓Q±(ξ )

ξ + iq̃
+ e−Q+(iq̃) − e∓Q±(ξ )

ξ − iq̃

)
,

�2
±(ξ ) = ∓ σ̄

σ

sg(q)

2i

(
eQ−(−iq̃) − e∓Q±(ξ )

ξ + iq̃

−e−Q+(iq̃) − e∓Q±(ξ )

ξ − iq̃

)
. (C8)

Consequently, the equation for φ̂± is recast into

e−Q+(ξ )φ̂+(ξ ) + i[c1�
1
+(ξ ) + c2�

2
+(ξ )]

= −eQ−(ξ )φ̂−(ξ ) − i[c1�
1
−(ξ ) + c2�

2
−(ξ )]

for all real ξ . The transforms φ̂±(ξ ) can be determined via
the following rationale. Each side of the above equation cor-
responds to a function analytic in the upper (+) or lower (−)
ξ plane, for �ξ > 0 or �ξ < 0 respectively. These functions
are equal to each other in the real axis. Thus, taken together
these functions define an entire function, E(ξ ), i.e., a function
that is analytic in the whole complex ξ plane. Therefore,
we have

e∓Q±(ξ )φ̂±(ξ ) + i[c1�
1
±(ξ ) + c2�

2
±(ξ )] = ±E(ξ ),

for all real ξ . To determine φ̂±(ξ ) we need to find E(ξ ).
The entire function E(ξ ) can be figured out by inspection of

the large-|ξ | behavior of the respective expressions involving
φ̂±(ξ ) in the upper or lower ξ plane. At this stage, it is
imperative to invoke the structure of the kernel K(x). Since
K(x) is logarithmically singular at x = 0, which stems from
the behavior of G(x, 0), we have

K̂(ξ ) = O(1/ξ ) as ξ → ∞.

Accordingly, we can show that

eQ±(ξ ) = O(
√

ξ ) as ξ → ∞; (C9)
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see, e.g., Eqs. (B.1) and (B.2) of Appendix B in [66]. We
infer that �1,2

± (ξ ) → 0 as ξ → ∞. Furthermore, recall that
φ̂±(ξ ) → 0 as ξ → ∞. Hence, we deduce that E(ξ ) → 0 in
the upper ξ plane while, by a quick inspection of eQ−(ξ )φ̂−(ξ ),
we see that E(ξ ) cannot grow as fast as

√
ξ in the lower

ξ plane. In fact, the integrability of ∂xφ(x) implies that
eQ−(ξ )φ̂−(ξ ) → 0 as ξ → ∞; thus, E(ξ ) → 0 as |ξ | → ∞.
By resorting to Liouville’s theorem of complex analysis, we
can prove that the only entire function that accommodates
all these requirements is E(ξ ) = 0, for all complex ξ . This
assertion entails

φ̂±(ξ ) = −ie±Q±(ξ )[c1�
1
±(ξ ) + c2�

2
±(ξ )].

By the inverse Fourier transform for φ(x), we compute

φ(x) = c1I1(x) + c2I2(x), (C10)

where

I1(x) = 1

2π i

∫ ∞

−∞
dξ e±Q±(ξ )�1

±(ξ ) eiξx, (C11)

I2(x) = 1

2π i

∫ ∞

−∞
dξ e±Q±(ξ )�2

±(ξ ) eiξx, (C12)

if ±x < 0. Recall that �1,2
± (ξ ) are given by Eq. (C8).

2. Self-consistency condition

We proceed to relate c1 and c2 to the values φ(0+) and
φ(0−). By contour integration in the ξ plane, we find

I1(0+) = 1, I2(0+) = 0,

which imply that

φ(0+) = c1. (C13)

This equality trivially confirms that the c1 term comes from
integration by parts in Eq. (C1). The values I1,2(0+) are impli-
cations of the asymptotic behavior of eQ−(ξ ) as ξ → ∞, which
is intimately connected to the logarithmic singularity of the
kernel, K(x), at x = 0.

In regard to φ(0−), taking the limit x ↑ 0 is a more delicate
procedure because it leads to possibly divergent integrals [66].
By manipulation of the Fourier integral I1(x) for x < 0, we
obtain the expression

I1(x) = iωμσ

2k2
0

{[
eQ−(−iq̃) + e−Q+(iq̃)

]
× 1

2π i

∫ ∞

−∞
dξ eiξx ξe−Q−(ξ )K̂(ξ )

+ iq
[
e−Q+(iq̃) − eQ−(−iq̃)

]
× 1

2π i

∫ ∞

−∞
dξ eiξxe−Q−(ξ )K̂(ξ )

}
, x < 0.

In the limit as x ↑ 0, the integral of the second line behaves
as 1/

√|x| whereas the remaining integral approaches a finite
value. The situation is different for a regularized kernel, since
all corresponding integrals are absolutely convergent at x = 0
(see Appendix D).

In a similar vein, regarding I2(x) we have the formula

I2(x) = isg(q)
iωμσ̄

2k2
0

{[
eQ−(−iq̃) − e−Q+(iq̃)

]
× 1

2π i

∫ ∞

−∞
dξ eiξx ξe−Q−(ξ )K̂(ξ )

− iq
[
e−Q+(iq̃) + eQ−(−iq̃)

]
× 1

2π i

∫ ∞

−∞
dξ eiξxe−Q−(ξ )K̂(ξ )

}
, x < 0.

The integral of the second line is the same as the respective
integral for I1(x) above, and diverges as x ↑ 0.

To eliminate the overall divergence at x = 0− and ensure
the continuity of φ(x) = c1I1(x) + c2I2(x), we impose

c1σ
[
eQ−(−iq̃) + e−Q+(iq̃)

] + ic2σ̄ sg(q)

×[
eQ−(−iq̃) − e−Q+(iq̃)

] = 0. (C14)

This relation is the desired self-consistency condition.
By virtue of Eq. (C14) we can directly show the continuity

of φ at the edge (x = 0). To this end, we use the remaining
(convergent) integrals to obtain

φ(0−) = 1

4

{
c1(e−Q+ − eQ− ) − ic2sg(q)

σ̄

σ
(eQ− + e−Q+ )

}
× (eQ+ − e−Q− ),

where Q± = Q±(ξ ) are evaluated at ξ = ±iq̃. By Eqs. (C14)
and (C13) we see that φ(0−) = c1 = φ(0+).

APPENDIX D: ON THE KERNEL REGULARIZATION

In this Appendix, we entertain the scenario that the elec-
trostatic interaction is regularized. This means that the kernel
KS(x) or KA(x) is replaced by

Kb
m(x) = Km

(√
x2 + b2

m

)
(D1)

for m=S or A. The length bm should satisfy |qbm| 
 1, but
the ratio bm/d is O(1) or large. The regularization for m = S
is invoked in Sec. IV A at the neutrality point.

We focus on Eq. (9) for φ = ϕm (m = S or A) under
replacement (D1). Hence, we solve

φ(x) = iωμ

k2
0

σ
(
∂2

x − q2
) ∫ ∞

0
dx′ Kb(x − x′) φ(x′)

− iωμ

k2
0

[c1σ∂xKb(x) + c2σ̄ iqKb(x)], (D2)

where now Kb is Kb
S or Kb

A. Note that c1 = φ(0+), consistent
with the derivation of the integral equations. The Fourier
transform of Kb

m(x) is given by Eq. (18c). Thus, by defining
Q±(ξ ) via Eqs. (C5) and (C4), with K̂ replaced by K̂b, we can
assert that

Q±(ξ ) → 0 as ξ → ∞, (D3)

in contrast to formula (C9) in Appendix C.
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1. Wiener-Hopf factorization process revisited

We start by taking the Fourier transform of Eq. (D2) with
respect to x. The factorization process with a regularized
kernel leading to formulas for φ̂±(ξ ) is similar to that for a
logarithmically singular kernel (Appendix C). By inspection
of the relevant formulas and use of Eq. (D3), we can still assert
that the entire function is E(ξ ) = 0, for all complex ξ . Thus,
again we find

φ̂±(ξ ) = −ie±Q±(ξ )
[
c1�

1
±(ξ ) + c2�

2
±(ξ )

]
,

where Q± and �1,2
± are defined by Eqs. (C5) and (C8) with

Eq. (C4) (Appendix C) under the replacement of K̂ by K̂b.
Thus, the potential φ(x) is written as the linear combination
c1I1(x) + c2I2(x), Eq. (C10), with the functions I1(x) and I2(x)
defined by Eqs. (C11) and (C12).

Interestingly, for b = bm � 0 we compute

I1(0+) = 1 − 1

2

{
e−Q+(iq̃) + eQ−(−iq̃)

}
e−Q−(∞),

I2(0+) = − sg(q)

2i

σ̄

σ

{
e−Q+(iq̃) − eQ−(−iq̃)

}
e−Q−(∞).

In particular, for b = bm > 0 we have Q−(∞) = 0 by
Eq. (D3). On the other hand, in the case with b = 0 (singular
kernel) we see that Q−(∞) = ∞, thus recovering the values
I1(0+) = 1 and I2(0+) = 0 of Appendix C.

2. Self-consistency condition via regularization

Next, we show that the relation among c1, c2, ω, and q for
b = bm > 0 is given by Eq. (C14), with K̂ replaced by K̂b.
The details leading to this relation are different.

First, by φ(0+) = c1I1(0+) + c2I2(0+) we require that

φ(0+) = c1

{
1 − 1

2

[
e−Q+(iq̃) + eQ−(−iq̃)]}

− c2
sg(q)

2i

σ̄

σ

[
e−Q+(iq̃) − eQ−(−iq̃)

]
. (D4)

Recall that φ(0+) = c1, which implies relation (C14).
It is of interest to check whether φ(x) is continuous at the

edge, viz., φ(0+) = φ(0−). We claim that this continuity is
satisfied without any extra condition if b > 0. By computation
of I1,2(0−) for b � 0, we can write

I1(0−) = 1 − 1

2

[
eQ−(−iq̃) + e−Q+(iq̃)]eQ+(∞),

I2(0−) = sg(q)

2i

σ̄

σ

[
eQ−(−iq̃) − e−Q+(iq̃)]eQ+(∞).

In the special case with b = 0 (singular kernel), we have
Q+(∞) = ∞; thus, the respective Fourier integrals appear
divergent, as expected (see Appendix C). For b > 0, we use
Eqs. (D3) and (D4) to directly verify that

φ(0−) = c1I1(0−) + c2I2(0−) = φ(0+).

APPENDIX E: EVALUATION OF INTEGRALS

In this Appendix, we compute in simple closed forms key
integrals that pertain to the dispersion relation of edge modes
in the isotropic TBG system (Sec. III), when |qd| 
 1. The
analysis is needed for the theory of Sec. IV.

We focus on integrals QA(q) and QS(q) of Eq. (17b) via
the approximations of Eqs. (18a) and (18b) for the singular
kernel; or, Eq. (18c) for a regularized kernel (m = S). We also
derive geometric corrections for small |qd|.

Integral QA(q). This case pertains to the state ϕA. After a
change of variable, the integral QA(q) with a singular kernel
under Eq. (18b) is written as

QA(q) � QA,0(q) = 1

π

∫ +∞e−i arg(q̃)

−∞e−i arg(q̃)
dξ

ln[1 + η(1 + ξ 2)]

1 + ξ 2

= ln η + 1

π

∫ +∞e−i arg(q̃)

−∞e−i arg(q̃)
dξ

ln
[
ξ + i

√
1 + 1/η

]
1 + ξ 2

+ 1

π

∫ +∞e−i arg(q̃)

−∞e−i arg(q̃)
dξ

ln
[
ξ − i

√
1 + 1/η

]
1 + ξ 2

,

where

η = ηac = iωμ(σ0 − σ1)

2k2
0

q2d (η �= 0).

For approximation (18b) to make sense we must have |ηac| >

O((qd )2). We compute the last two integrals by contour inte-
gration, closing the path in the upper or lower ξ -plane via the
residue theorem. Thus, we find

QA,0(q) = ln[2η + 1 + 2
√

η(η + 1)] = arccosh(2η + 1).
(E1)

We repeat that this leading-order result follows from kernel
approximation (18b), for |qd| 
 1. We use the inverse hy-
perbolic cosine w = arccosh(ζ ) with 0 � �w � π . Note that
QA(q) � QA,0(q) � 2

√
ηac if |qd|2 
 |ηac| 
 1.

Let us now derive a correction for QA(q) that accounts for
the next-order term, of the order of (qd )2 (|qd| 
 1), in the
expansion for K̂A(ξ ). We approximate (q̃ = qsg(q))

1 − e−q̃d
√

1+ξ 2 � q̃d
√

1 + ξ 2

[
1 − 1

2
q̃d

√
1 + ξ 2

]
.

Hence, QA(q) becomes QA � QA,0 + QA,1 where

QA,1(q) = 2

π

∫ ∞e−i arg(q̃)

0
dξ (1 + ξ 2)−1

× ln

{
1 − 1

2
η (q̃d )

(1 + ξ 2)3/2

1 + η (1 + ξ 2)

}
,

and QA,0(q) is the zeroth-order term computed above. We
assume that η = ηac = O(1). For small |qd|, the major con-
tribution to integration in the integral for QA,1 comes from
large |ξ |. After some manipulations, we write

QA,1(q) � 2

π

∫ ∞e−i arg(q̃)

0
dξ

ln
(
1 − 1

2 q̃dξ
)

1 + ξ 2
+ 1

π
q̃d

×
∫ ∞e−i arg(q̃)

0
dξ

{
ξ

1 + ξ 2
− η

√
1 + ξ 2

1 + η (1 + ξ 2)

}
.

The first integral can be computed, via appropriate analytic
continuation, from the related integral

I (ε) = 2

π

∫ ∞

0
dξ

ln(1 + εξ )

1 + ξ 2
, 0 < ε 
 1.

We evaluate dI (ε)/dε and then integrate in ε using
I (0) = 0. Thus, we compute I (ε) � (2/π )(ε ln ε−1 + ε) for
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0 < ε 
 1, and replace ε by −ε = −q̃d/2. The integral in the
second line of the formula for QA,1(q) is computed by contour
integration via changing variable to ξ = sinh t . We find

QA,1(q) � − q̃d

π

{
ln

(
4

q̃d

)
+ 1

− (1 + ηac)−1/2 arcsinh
(
η−1/2

ac

) + iπ

}
, (E2)

where −π/2 � �w � π/2 with w = arcsinh(ζ ).
Integral QS(q). In this case, we invoke the parameter

η = ηop = iωμ(σ0 + σ1)

k2
0

q̃.

The integral of interest with a singular kernel is

QS(q) � QS,0(q) = 2

π

∫ +∞e−i arg(q̃)

0
dξ

ln
(
1 + η

√
1 + ξ 2

)
1 + ξ 2

,

which comes from approximation (18a) provided |ηop| >

O(qd ). We have been unable to express this integral exactly
in terms of simple transcendental functions; see also [62,66].
Hence, we resort to asymptotics.

Consider the regime with |η| � 1. By writing

ln(1 + η
√

1 + ξ 2) = ln η + ln(η−1 +
√

1 + ξ 2)

and neglecting η−1 in the logarithm, we approximate

QS,0(q) � 2

π

∫ +∞e−i arg(q̃)

0
dξ

ln η + ln
(√

1 + ξ 2
)

1 + ξ 2

= ln(2η) if |η| � 1. (E3)

We now examine the regime with |η| 
 1. The respective
computation is not essentially different from that of the in-
tegral I (ε) regarding the correction QA,1(q) above; see also
[66]. We thus obtain the asymptotic formula

QS,0(q) � 2

π
η[ln(2/η) + 1] if |η| 
 1. (E4)

Next, we derive a correction term for QS(q) that takes into
account the next-order term in the expansion for K̂S(ξ ) in
powers of qd (|qd| 
 1). We approximate

1 + e−q̃d
√

1+ξ 2 � 2 − q̃d
√

1 + ξ 2

and write QS � QS,0 + QS,1, where QS,0 is the zeroth-order
term (discussed above) and

QS,1(q) = 2

π

∫ ∞e−i arg(q̃)

0
dξ (1 + ξ 2)−1

× ln

{
1 − ηq̃d

2

1 + ξ 2

1 + η
√

1 + ξ 2

}
.

We assume that η = ηop = O(1). For |qd| 
 1, the major
contribution to integration arises from large |ξ |. After some
manipulations, we obtain the expansion

QS,1(q) � − q̃d

π

{
ln

(
4

q̃d

)
+ 1 − 1

η

arccos(η−1)√
1 − η−2

+ iπ

}
where 0 � �w � π with w = arccos(ζ ).

Next, we turn our attention to the effect of regularization
regarding the symmetric state. The integral reads

QS(q) � 2

π

∫ +∞e−i arg(q̃)

0
dξ

ln
(
1 + ηe−q̃b

√
1+ξ 2

√
1 + ξ 2

)
1 + ξ 2

for b = bS � d , by Eq. (18c) for K̂S. We evaluate this integral
for |η| 
 1. By Taylor expanding in powers of η the numera-
tor of the integrand, we obtain

QS(q) � 2η

π

∫ +∞e−i arg(q̃)

0
dξ

e−q̃b
√

1+ξ 2√
1 + ξ 2

= 2η

π
K0(q̃b), (E5)

via the change of variable ξ = sinh t . This result can be sim-
plified for |qb| 
 1 by use of K0(q̃b) � ln(2/(q̃b)) − γ where
γ = 0.577215 . . . is Euler’s constant. Equation (E5) can be
easily modified if b = O(d ) by use of the additional term
K0(q̃

√
b2 + d2). The result applies to the optical plasmon at

the neutrality point (Sec. IV A).
Let us now perturb the regularized integral QS(q) via η =

η0(1 + ε), or q̃ = q̃0(1 + ε), with |ε| 
 1. By expanding

ln
[
1 + ηe−q̃bβ̃(ξ )β̃(ξ )

] = ln
[
1 + η0e−q̃0bβ̃(ξ )β̃(ξ )

]
+ εη0

e−q̃0bβ̃(ξ )β̃(ξ )

1 + η0e−q̃0bβ̃(ξ )β̃(ξ )
+ O(εq̃0b) + O(ε2)

where β̃(ξ ) =
√

1 + ξ 2, we obtain QS(q) = Q0
S +

η0εI1(q̃0b) + o(ε); Q0
S equals QS at q = q0 and the term

o(ε) approaches 0 faster than ε. Hence, let us compute

I1(q̃0b) = 2

π

∫ +∞

0
dξ

1

β̃(ξ )

e−q̃0bβ̃(ξ )

1 + η0e−q̃0bβ̃(ξ )β̃(ξ )
,

for real η0 < −1 and positive q̃0b with q̃0b 
 1. The result
will be applied for other complex values of η0 and q̃0b with
|q̃0b| 
 1 by analytic continuation. We observe that I1(x)
is a continuous function of x and converges absolutely for
all real x, while I1(x) − I1(0) vanishes as O(x) in the limit
x → 0. Thus, the kernel regularization is unnecessary for this
calculation. Therefore, setting b = 0 we focus on the integral

I1(q̃b) � I1(0) = 1

π

∫ +∞

−∞
dξ

1√
1 + ξ 2

1

1 + η0

√
1 + ξ 2

,

which is computed via the change of variable ξ = sinh t . This
integral is conveniently written as

I1(0) = 1

πη0
lim
δ1↓0

∫ +∞

−∞
dt

e−δ1t

cosh t + (η0)−1
.

The δ1-dependent integral is evaluated for 0 < δ1 < 1 by con-
tour integration. By applying the residue theorem to a contour
of a large rectangle, we finally obtain

I1(0) = 2

πη0

arccos(1/η0)√
1 − (1/η0)2

= − 2

π

arccosh(1/η0)√
1 − η2

0

. (E6)

The last expression serves the analytic continuation of I1(0)
to complex η0 with |η0| < 1. We used the identity arccos(ξ ) =
−i arccosh(ξ ) where the branch of w = arccosh(ξ ) is de-
fined so that 0 � �w � π . Recall that arccosh(ξ ) = ln (ξ +√

ξ 2 − 1). Thus, Eq. (E6) yields a finite value of I1(0) at
η0 = 1 but diverges as O(1/

√
1 + η0) if η0 → −1.
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APPENDIX F: APPROXIMATIONS OF CHIRAL
DISPERSION

In this Appendix, we outline perturbative calculations cap-
turing the effect of chirality on the dispersion of the optical
and acoustic edge plasmons away from the neutrality point
(see Sec. IV B). We use the singular kernel with |qd| 
 1. In
our calculations, we set σB = σ ′

B = 0.
Optical edge mode. Dispersion relation (17a) gives

QS(q) = ln

[
−
(
σ 2

0 − σ 2
1 + σ 2

2

)
eQA(q) + σ 2

0 − σ 2
1 − σ 2

2(
σ 2

0 − σ 2
1 − σ 2

2

)
eQA(q) + σ 2

0 − σ 2
1 + σ 2

2

]
.

(F1)

For σ2 = 0, this relation reduces to QS(q) = ln(−1) = −iπ ,
which is approximately satisfied for

ηop = iωμ(σ0 + σ1)

k2
0

q̃ � −(0.822)−1 � −1.217 = ηop,0,

to the leading order in qd . This solution also results from
Eq. (F1) by setting QA(q) = 0 with arbitrary σ2. We will
carry out perturbations in qd , not in σ2, by treating QA(q)
as small in Eq. (F1). We consider ηop as an O(1) quantity,
with unperturbed value ηop,0. Note that we could expand
QS(q) � QS,0(q) + QS,1(q) by taking into account the geo-
metric correction due to the expansion of K̂S(ξ ) in powers of
qd (Appendix E). However, this additional complication is not
needed here.

We point out the following types of contributions in
Eq. (F1): (i) The chirality effect (terms proportional to σ 2

2 );
(ii) the qd-dependent geometric correction term from QS;
and (iii) the effect of QA, the interaction with the acoustic
plasmon. The O[qd ln((qd )−1)] contribution of item (ii) is
subdominant to terms from item (iii).

Let us explain the approximation for eQA . Recall that the
integral for QA is controlled only by the parameter

ηac = iωμ(σ0 − σ1)

2k2
0

q2d.

Since we take ηop = O(1), we see that

|ηac| = 1

2
|ηop|

∣∣∣σ0 − σ1

σ0 + σ1

∣∣∣|qd| 
 1,

if |(σ0 − σ1)/(σ0 + σ1)| is small compared to |qd|−1. This
condition is plausible away from the neutrality point. Hence,
we use approximation (E1) of Appendix E, which implies
that eQA � 1 + QA � 1 + 2

√
ηac where �√

ηac � 0. Thus,
the correction term due to the influence of the acoustic plas-
mon is O(

√
qd ). This effect dominates over the geometric

correction for QS.
There is one more step that we should take. In Eq. (F1),

the left-hand side needs to be perturbed around ηop,0 in order
to balance the interaction with the acoustic plasmon from QA.

For this purpose, we expand ηop = ηop,0 + η1 (|η1| 
 |ηop,0|),
and use perturbative formula (E6) of Appendix E in order to
determine η1. By combining the above steps and using the
Drude weights Dj ( j = 0, 1, 2), after some algebra we obtain
Eq. (22) for D0 − D1 < 0, and its counterpart for D0 − D1 >

0. The perturbative formula holds if |C̃0s(q)| 
 1.
Acoustic edge mode. In this case, we write dispersion rela-

tion (17a) as

QA(q) = ln

(
−σ 2

0 − σ 2
1 + σ 2

2 + (
σ 2

0 − σ 2
1 − σ 2

2

)
e−QS(q)

σ 2
0 − σ 2

1 − σ 2
2 + (

σ 2
0 − σ 2

1 + σ 2
2

)
e−QS(q)

)
.

(F2)

If σ2 = 0, this equation reduces to QA(q) = ln(−1), which
for QA � QA,0 = arccosh(2ηac + 1) entails ηac = iωμ(σ0 −
σ1)q2d/(2k2

0 ) � −1.
More generally, our scheme for resolving Eq. (F2) for

arbitrary σ2 can be outlined as follows. We expand QA(q) �
QA,0(q) + QA,1(q) for ηac = O(1) and |ηop| � 1, as dis-
cussed in Appendix E. The term QA,1, where |QA,1| 

|QA,0|, is the geometric correction accounting for the expan-
sion of K̂A(ξ ) in powers of qd . We also expand the right-hand
side of Eq. (F2) for |e−QS | 
 1.

Let us briefly explain the approximation associated with
e−QS . Recall that the integral for QS is controlled by the pa-
rameter ηop = iωμ(σ0 + σ1)q̃/k2

0 . For the acoustic plasmon,
we consider ηac = O(1); thus, we have

|ηop| = 2|ηac|
∣∣∣σ0 + σ1

σ0 − σ1

∣∣∣ 1

|qd| � 1,

if |(σ0 − σ1)/(σ0 + σ1)| is small compared to |qd|−1. Thus,
1/ηop can be of the order of qd , and we can use QS(q) �
ln(2ηop) by Eq. (E3) of Appendix E.

By manipulating dispersion relation (F2) accordingly, after
some algebra we find

1

ηac
� −1 + σ 4

2(
σ 2

0 − σ 2
1

)2 − 2σ 4
2(

σ 2
0 − σ 2

1

)2

1

ηop

−
[

1 − σ 4
2(

σ 2
0 − σ 2

1

)2

]
σ 2

2

σ 2
0 − σ 2

1

QA,1(q), (F3)

where the correction term QA,1(q) is given by Eq. (E2). Note
that |σ 2

2 /(σ 2
0 − σ 2

1 )| has not been treated as small compared
to unity. The small parameter in our scheme is actually |qd|.
However, for our scheme to work, in the last equation each
of the last two terms (proportional to 1/ηop and QA,1) must
be much smaller in magnitude than the sum of the first two
terms on the right-hand side. This means that |σ 2

2 /(σ 2
0 − σ 2

1 )|
must be much smaller than (1/|qd|){ln(4/|qd|)}−1. The ma-
nipulation of Eq. (F3) with retainment of QA,1(q) furnishes
Eq. (24) for s(q)2 
 1. On the other hand, the neglect of QA,1

in Eq. (F3) yields Eq. (23).
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