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Starting from the rigorous quantum-field-theory formalism, we derive a formula for the screened conductivity
designed to study the coupling of light with elementary electron excitations and the ensuing electromagnetic
modes in two-dimensional (2D) semiconductors. The latter physical quantity consists of three fully separable
parts, namely, intraband, interband, and ladder conductivities, and is calculated beyond the random phase
approximation as well as from first principles. By using this methodology, we study the optical absorption
spectra in 2D black phosphorous, so-called phosphorene, as a function of the concentration of electrons injected
into the conduction band. The mechanisms of phosphorene exciton quenching versus doping are studied in
detail. It is demonstrated that already small doping levels (n ∼ 1012 cm−2) lead to a radical drop in the exciton
binding energy, i.e., from 600 meV to 128 meV. The screened conductivity is applied to study the collective
electromagnetic modes in doped phosphorene. It is shown that the phosphorene transversal exciton hybridizes
with free photons to form an exciton-polariton. This phenomenon is experimentally observed only for the case of
confined electromagnetic microcavity modes. Finally, we demonstrate that the energy and intensity of anisotropic
2D plasmon-polaritons can be tuned by varying the concentration of injected electrons.

DOI: 10.1103/PhysRevB.104.115421

I. INTRODUCTION

Semiconducting two-dimensional (2D) crystals became
very attractive in terms of their very interesting optical and
electromagnetic properties. Transition metal dichalcogenides
(TMDs) support tunable [1,2] and strong excitons or exciton-
polaritons [3] in the visible frequncy range [4,5], which can
potentially be applied in various optoelectronic devices [6].
Increasing attention has also been given to excitons and tri-
ons affected by the dielectric environment [7]. Important as
well for our understanding of light-matter interaction are the
studies of strong hybridization between TMD excitons and
dielectric microcavity photons that results in the formation of
exciton-polariton modes [8–12]. In addition, doped 2D semi-
conductors can support collective electron excitation modes
known as plasmons [13–15], with promising applications
as reported in TMDs/graphene and in gold heterostructures
[16,17]. Recently, a class of 2D materials has emerged that
supports anisotropic electromagnetic modes [18]. The most
famous anisotropic 2D crystal is a single layer of black phos-
phorus, also known as phosphorene, which supports tunable
2D hyperbolic plasmon [19].

The optical properties and dielectric response of phospho-
rene have been systematically investigated [13,19–38]. For
instance, the intensities and tuning of hyperbolic plasmons
in supported or self-standing phosphorene were explored by
using different models for the optical conductivity, either via

tight binding approximation (TBA) fitted to density functional
theory (DFT) calculations or via electron self-energy approx-
imation GW [13,19,21]. Also, optical properties, including
optical reflection, transmission, absorption, and plasmon-
polaritons in phosphorene, were studied in great detail by
means of the TBA optical conductivity tensor [22,23]. Op-
tical properties of multilayer phosphorene as a function of
the number of layers (thickness) [38], doping, and light po-
larization [25] were explored. Further, the electron energy
loss spectra and anisotropic plasmons in phosphorene were
studied by means of ab initio techniques [26,27]. Besides
the hyperbolic plasmon, phosphorene shows very interesting
excitonic effects. Sophisticated GW-BSE (GW approximation
which includes solving the Bethe-Salpeter equation) calcu-
lations of the quasiparticle band gap and exciton binding
energies as a function of strain, polarization, and dielectric
environment were studied in phosphorene [28–33]. More-
over, the excitonic fine structure in monolayer and few-layer
black phosphorus were studied through reflection and photo-
luminescence excitation measurements [35]. In Refs. [36,37],
anisotropic photoluminescence, the quasiparticle band gap,
and the exciton binding energy in phosphorene were studied
and compared with theoretical calculations.

These extensive studies have shown that electromagnetic
excitations (i.e., plasmon-plaritons and exciton-polaritons)
in pristine and doped phosphorene crystals display re-
markable optical properties. In this paper, we derive a
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compact formula for the investigation of electromagnetic
modes in 2D crystals, where the optical conductivity tensor
σμν (ω) = σ intra

μν (ω) + σ inter
μν (ω) + σ ladd

μν (ω) is the only input
expression and is fully calculated from first principles. The
first two terms σ RPA = σ intra + σ inter represent the random
phase approximation (RPA), while the third term σ ladd rep-
resents theladder contribution to the optical conductivity.
In tandem, this becomes the RPA + ladder approximation.
This approach is completely analogous to the widely used
GW-BSE method [39–46], which is commonly utilized to
calculate the quasiparticle and optical properties of vari-
ous 2D semiconductors [4,5,47–51], including phosphorene
[28,29,36,38]. The RPA + ladder approximation allows for
RPA and ladder terms to be calculated independently, so the
RPA contribution can be calculated at the required higher level
of accuracy (using many bands and dense K-point meshes),
while the computationally demanding ladder contribution can
be calculated by using fewer bands and a coarser K-point grid.
This could significantly reduce the computational coast while
including excitonic effects to a moderate level of accuracy.
This is usually not the case in the standard BSE calculations
where the Hartree (RPA) and Fock (ladder) BSE kernels
form a two-particle Hamiltonian (single matrix in energy-
momentum space) [47] and must be calculated at the same
level of accuracy. Also, here the RPA conductivity is further
separated into σ intra (Drude intraband) and to σ inter (interband)
terms, which facilitates analysis of doped semiconductors. In
this paper, the RPA + ladder approximation will be applied to
study two kinds of electromagnetic modes in doped phospho-
rene, namely, plasmon- and exciton-polaritons.

The paper is organized as follows. In Sec. II, we present
the derivation of the optical conductivity σμ(ω) in the RPA +
ladder approximation along with the solution of the Dyson
equation for the electric field Eμ(Q, ω) in the vicinity of a
2D crystal. In Sec. III, we demonstrate how the injection of
electrons into the phosphorene conduction band (extra elec-
tronic screening �W = W dop

0 − W 0
0 ) influences the principal

exciton intensity and binding energy, present results show-
ing the hybridization between the exciton and free photons
(i.e., formation of exciton-polaritons), and, finally, show the
RPA optical conductivities σ RPA = σ intra + σ inter, the effective
number of in-plane charge carriers ne,h

μ , and the intensities of
plasmon-polaritons in doped phosphorene. The conclusions
are presented in Sec. IV.

II. THEORETICAL FORMULATION

The system we explore consists of electrons which move
within the effective crystal potential and which interact with
free photons so the total Hamiltonian of the system can be
written as

H = Hel + Hph + Hel−ph. (1)

Here

Hel =
∑
nK

EnKc+
nKcnK (2)

represents the electrons which move in the effective
Kohn-Sham (KS) potential. The c+

nK/cnK are the
creation/annihilation operators of an electron in Bloch

state |n, K〉 represented by the wave function φnK and energy
EnK, where n is the band index and K = (Kx, Ky) parallel
wave vector. Analogously,

Hph =
∑
μq

h̄|q|c
{

a+
μqaμq + 1

2

}
(3)

represents the free photons, where a+
μq/aμq are the

creation/annihilation operators of a photon with polarization
μ, q is a three-dimensional (3D) wave vector, and c is the
speed of light. In the � = 0 gauge, the part of the Hamilto-
nian which represents the interaction between electrons and
photons can be written as [52,53]

Hel−ph = −1

c

∫
d3r j · A + e2

2mc2

∫
d3r ρ A2. (4)

Here, A is the electromagnetic field or vector potential opera-
tor, the fermionic current operator is

j = eh̄

2im
{	+∇	 − [∇	+]	}, (5)

the fermionic density operator is defined as

ρ = 	+	,

and the fermionic field operator is

ψ (r) =
∑
n,K

φnK(r)cnK. (6)

We emphasize here that the spin quantum number s = ±1/2
will be merged with the band’s quantum number, i.e., n ≡
(n, s). The time-ordered photon propagator is defined as

Dμν (r, r′; t − t ′) = i

h̄c
〈�0|T {Aμ(r, t )Aν (r′, t ′)}|�0〉, (7)

where T represents the time ordering operator, Aμ(t ) =
eiHt/h̄Aμ(t = 0)e−iHt/h̄ is the Heisenberg operator, and |�0〉
is a ground state of the total Hamiltoninan in Eq. (1). After
employing the standard perturbation theory method for the
boson Green’s functions [52–54], it can be shown that the
photon propagator in Eq. (7) satisfies the Dyson equation

Dμν (r, r′, ω)

= D0
μν (r, r′, ω) +

3∑
α,β=1

∫
d2ρ1

∫ L/2

−L/2
dz1

∫
d2ρ2

∫ L/2

−L/2
dz2

× D0
μα (r, r1, ω)αβ (r1, r2, ω)Dβν (r2, r′, ω), (8)

which is also illustrated with Feynman diagrams in Fig. 1(a).
Here the free-photon propagator is

D0
μν (r, r′; t − t ′) = i

h̄c

〈
�

ph
0

∣∣T {Aμ(r, t )Aν (r′, t ′)}∣∣�ph
0

〉
, (9)

where Aμ(t ) = eiHpht/h̄Aμ(t = 0)e−iHpht/h̄ is the interaction
picture operator and |�ph

0 〉 is the photonic vacuum or ground
state of a free-photon Hamiltoninan [see Eq. (3)]. In this pa-
per, we restrict ourselves to the RPA + ladder approximation
such that the photon self-energy  consists of two terms, i.e.,

αβ (r, r′, ω) = RPA
αβ (r, r′, ω) + ladd

αβ (r, r′, ω), (10)
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FIG. 1. (a) Feynman diagrams representing the Dyson equation
in Eq. (8). (b) Photon self-energy in the RPA + ladder approxima-
tion. (c) Perturbative expansion of the ladder photon self-energy
ladd. Blue dots represent the current vertices jμ, black lines are
single-particle time-ordered Green’s functions G, and thin and thick
magenta wavy lines represent the bare D0

μν and the screened Dμν

photon propagators, respectively.

where the first RPA, and the second ladder contributions are
illustrated by Feynman diagrams in Figs. 1(b) and 1(c). It
should be noted that in Eq. (8), the integration is restricted
within the volume of the supercell z ∈ [−L/2, L/2] (as shown
in Fig. 2) which cancels the spurious intersupercell electron-
electron interactions.

In what follows, the methodology used to solve the Dyson
equation in Eq. (8) is shown with an emphasis on the cal-
culation of the ladder photon self-energy, while the detailed
derivation of the RPA photon self-energy is in Ref. [53].
Considering that the crystal super-lattice is periodic in 3D, all

FIG. 2. Geometry of the system. The 2D crystal (in this case,
phosphorene) represents one supercell which periodically repeats in
the perpendicular z direction, where L represents the supercell con-
stant in that direction. The volume integration in Eq. (8) is restricted
within a volume of one supercell z ∈ [−L/2, L/2], which means
that the photons can interact solely with the Bloch electrons in the
corresponding supercell

tensors can be Fourier expanded as

Tαβ (r, r′, ω) = 1

L

∑
GG′

∫
dQ

(2π )2
ei(Q+G)r e−i(Q+G′ )r′

× TαβGG′ (Q, ω), (11)

where Q = (Qx, Qy) is the momentum transfer wave-vector
parallel to the x − y plane, G = (G‖, Gz ) are 3D reciprocal
lattice vectors, and r = (ρ, z) is a 3D position vector. After
using Eq. (11), the Dyson equation transforms into the matrix
equation:

Dμν,GG′ (Q, ω) = D0
μν,GG′ (Q, ω) +

∑
αβ,G1G2

D0
μα,GG1

(Q, ω)

×αβ,G1G2 (Q, ω)Dβν,G2G′ (Q, ω). (12)

The 3D Fourier transform of the free-photon propagator be-
comes

D0
G,G′ (Q, ω) = 1

L
δG‖G′

‖

∫ L/2

−L/2
e−iGzz

× D0(Q + G‖, ω, z, z′) eiG′
zz′

dzdz′, (13)

where the partial Fourier transform of the free-photon propa-
gator in the x − y plane is explicitly [52]

D0(Q, ω, z, z′) = −4πc

ω2
δ(z − z′)z · z

+ 2π i

cβ
{es · es + ep · ep}eiβ|z−z′ |. (14)

Here the unit vectors are adapted to the geometry of the sys-
tem such that es = Q0 × z and ep = c

ω
[−β sgn(z − z′)Q0 +

Qz] (where Q0 is the unit vector in the Q direction) represent
directions of s(TE) and p(TM) polarized fields, respectively.
The complex wave vector in the perpendicular (z) direction is

defined as β =
√

ω2

c2 − Q2.
The Fourier transform of the photon self-energy is

μν,GG′ (Q, ω) = RPA
μν,GG′ (Q, ω) + ladder

μν,GG′ (Q, ω), (15)

where the RPA photon self-energy is explicitly [53]

RPA
μν,GG′ (Q, ω) = 1

�c

∑
nmK

h̄ω

EnK − EmK+Q

× fnK − fmK+Q

h̄ω + iη + EnK − EmK+Q

× jμnK,mK+Q(G)
[

jνnK,mK+Q(G′)
]∗

, (16)

where � = S × L is the normalization volume, S is the
normalization surface, and fnK = [e(EnK−EF )/kT + 1]−1 is the
Fermi-Dirac distribution function at the temperature T . The
current vertices are defined as

jαnK,mK+Q(G) =
∫

�

dre−i(Q+G)r jαnK,mK+Q(r), (17)

and the current jαnK,mK+Q(r) produced by transition between
Bloch states |nK〉 → |mK + Q〉 is equal to

eh̄

2im
{φ∗

nK(r)∂αφmK+Q(r) − [∂αφ∗
nK(r)]φmK+Q(r)}.
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Note that we use the current-current formalism with the
current matrix elements to construct the optical conductivity
formulas, which is slightly different from the common formal-
ism based on the velocity operators and matrix elements. The
advantage of using the current matrix elements is that there
are no nonlocal contributions to the matrix elements coming
from the nonlocal part of the pseudopotentials [55].

The ladder photon self-energy is

ladd
μν,GG′ (Q, ω) = − 1

�c

∑
nmK

∑
n′m′K′

jμnK,mK+Q(G)

× KmK+Q←m′K′+Q
nK→n′K′ (ω)

[
jνn′K′,m′K′+Q(G′)

]∗
,

(18)

where the ladder four-point polarizability K can be obtained
by solving the matrix equation in {K, n} space,

Kladd(ω) = L(ω) ⊗ �F ⊗ L(ω) + L(ω) ⊗ �F ⊗ Kladd(ω),

(19)

where matrix multiplication represents summation over the
bands and wave vectors as ⊗ ≡ ∑

nm

∑
K. Here the time-

ordered electron-hole propagator is defined as

LmK+Q←m′K′+Q
nK→n′K′ =

∫ ∞

−∞

dω′

2π i
GnK(ω′)GmK+Q(ω + ω′). (20)

In the quasiparticle approximation (long lifetime approxima-
tion), the time-ordered single-particle propagator is defined as

GnK(ω) = 1 − fnK

ω − EnK + iη
+ fnK

ω − EnK − iη
, (21)

where the single-particle energies EnK are calculated by com-
bining DFT and quasiparticle GW corrections [43]. After
substituting Eq. (21) into Eq. (20), the time-ordered electron-
hole propagator becomes explicitly

LmK+Q←m′K′+Q
nK→n′K′ = δnn′δmm′δKK′

{
fnK(1 − fmK+Q)

ω + EnK − EmK+Q + iδ

− fmK+Q(1 − fnK )

ω + EnK − EmK+Q − iδ

}
. (22)

The photonic Bethe-Salpeter-Fock kernel is

�
F,mK+Q←m′K′+Q
nK→n′K′ = − 1

�c

∑
μν

∑
G1G2

[
jμnK,n′K′ (G1)

]∗

× [−DRPA,μν

G1G2
(K′ − K,�ω ≈ 0)

]
× jνmK+Q,m′K′+Q(G2). (23)

Here, the RPA photon propagator DRPA,μν is the solution of
the Dyson equation [see Eq. (12)] for μν = RPA

μν , which is
explicitly defined in Ref. [16]. The photonic Fock-kernel in
Eq. (23) represents scattering between excited electrons and
holes mediated by the photon propagator Dμν , as sketched
in Fig. 3(a) and in the Feynman diagram in Fig. 3(b). Con-
sidering that the average electron-hole distance or average
exciton radius satisfies rex � c/�ω, where �ω ≈ h̄2(K′2 −
K)/2me,h is electron or hole scattering frequency [as sketched
in Fig. 3(a)], the interaction between electrons and holes medi-
ated by radiative electromagnetic modes (the excitonic Lamb

FIG. 3. (a) The electron hole scattering mediated by the pho-
ton propagator Dμν . (b) The Feynman diagram for the photonic
Bethe-Salpeter-Fock kernel in Eq. (23). (c) In the nonretarded limit
(c → ∞), the photonic Fock kernel �F becomes the standard Fock
kernel �F in Eq. (24), which represents the electron-hole scattering
mediated by screened Coulomb interaction W T .

shift) is negligible, and in �F we can omit electromagnetic
retardation effects. This effectively implies that the propagator
Dμν can be reduced to the screened Colulomb interaction W T

such that the current vertices jμ become charge vertices ρ and
the photon-Fock kernel transforms as

lim
c→∞ �

F,mK+Q←m′K′+Q
nK→n′K′ = �

F,mK+Q←m′K′+Q
nK→n′K′ (ω)

= 1

�

∑
G1G2

ρ∗
nK,n′K′ (G1)

[−W T
G1G2

(K′ − K,�ω = 0)
]

× ρmK+Q,m′K′+Q(G2), (24)

as shown in Figs. 3(b) and 3(c). Therefore, the calculation
of the ladder photon self-energy ladd

μν consists of Eqs. (18),
(19), and (22), where instead of the photon BSE-Fock
kernel Eq. (23), we utilize the ordinary BSE-Fock kernel
Eq. (24). The calculation procedure of the ladder photon self-
energy is also illustrated by Feynman diagrams in Fig. 4.
This computational approach for the RPA + ladder photon
self-energy is completely equivalent to solving the Bethe-
Salpeter equation within the framework of the widely used
time-dependent screened Hartree-Fock (TDSHF) approxima-
tion [39–46]. More specifically, this method consists of the
following steps: (1) We solve BSE Eq. (19) (i.e., TDSHF-BSE
but without the Hartree term), we obtain the ladder four-point
polarizability K, and from it we derive the ladder irreducible
polarizability ladd (as shown in Fig. 4). (2) We separately
derive the RPA irreducible polarizability RPA Eq. (16). (3)
Finally, we sum two terms in total irreducible polarizability
 = RPA + ladd, which then enters in Dyson Eq. (12). So,
this procedure neglects the Hartree term in BSE Eq. (19),

115421-4



AB INITIO STUDY OF ELECTROMAGNETIC … PHYSICAL REVIEW B 104, 115421 (2021)

FIG. 4. The calculation procedure for the ladder photon self-
energy ladd. (a) The matrix equation for the ladder four-point
polarizability K. (b) The ladder photon self-energy ladd is obtained
when the fermionic lines in K are contracted, multiplied by corre-
sponding current vertices jμ and jν , and summed over bands and
wave vectors, ladd = − 1

�c

∑
nmK

∑
n′m′K′ jμ Kladd [ jν]∗.

however, it is finally included in Eq. (12). The advantage
of this method is that it allows that (less demanding) RPA

and (more demanding) ladd can be calculated separately, at
different levels of accuracy. The RPA time-ordered screened
Coulomb interaction W T , which enters the Fock kernel
Eq. (24), is obtained by solving the Dyson equation

W T
GG′ (Q, ω) = vGG′ (Q)

+
∑
G1G2

vGG1 (Q)χ0
G1G2

(Q, ω)W T
G2G′ (Q), (25)

where the bare Coulomb interaction matrix is

vG1G2 (Q) = δG1‖,G2‖
2π

L|Q + G1‖|

×
∫ L/2

−L/2
dz1dz2e−iGz1z1 e−|Q+G1‖||z1−z2|eiGz2z2 .

(26)

The truncated interaction Eq. (26) excludes the spurious
Columob interaction between the phosphorene replicas in the
superlattice arrangement and it is crucial to include it in
the calculations, namely, the interactions v and W enter the
the BSE-Fock kernel Eq. (24), which represents the interac-
tion energy between excited electrons and holes (long-ranged
monopole-monopole interaction). If in Eq. (24) one would use
bulk v instead of truncated v, given by Eq. (26), this would
result in the inclusion of the spurious interaction between ex-
cited electrons and holes in different phosphorene supercells,
which is not a negligible contribution, due to its long-range
character. The RPA irreducible polarizability is defined as

χ0
GG′ (Q, ω) = 1

�

∑
nmK

ρnK,mK+Q(G)ρ∗
nK,mK+Q(G′)

× ( fnK − fmK+Q)

h̄ω + EnK − EmK+Q + iδsgn(EmK+Q − EnK )
, (27)

where the charge vertices are

ρnK,mK+Q(G) =
∫

�

dr φ∗
nK(r)e−i(Q+G)rφmK+Q(r). (28)

A. Optical limit Q ≈ 0

Here we shall explore electromagnetic modes in 2D crys-
tals in the frequency range going from the terahertz (THz) up
to ultraviolet (UV) values, i.e., h̄ω � 4 eV. The corresponding
wavelength is then much larger than the 2D crystal thickness
and the parallel unit cell size, i.e., λ = 2πc

ω
� L, a. Therefore,

the electromagnetic field variations on the scale of one unit
cell are irrelevant and the crystal-local-field effects (CLFE)
can be freely excluded from consideration. Setting G = G′ =
0 into Dyson’s equation yields

Dμν (Q, ω) = D0
μν (Q, ω)

+
3∑

α,β=1

D0
μα (Q, ω)αβ (Q, ω)Dβν (Q, ω).

(29)

Here we have introduced the term μν (Q, ω) =
μν,G=0G′=0(Q, ω), D0

μν (Q, ω) = D0
μν,G=0G′=0(Q, ω).

Dyson’s equation [see Eq. (29)] is expressed in terms of
abstract tensors D and , but we shall rewrite it in terms
of measurable quantities, i.e., the electric field Eμ and
conductivity σμν . The screened vector potential produced by
an external current jext is defined as

Aμ(Q, ω) =
3∑

ν=1

Dμν (Q, ω) jext
ν (Q, ω), (30)

while the bare vector potential is analogously defined as
Aext = D̂0jext. In the � = 0 gauge, the connection between
the vector potential and the electric field is

Eμ(Q, ω) = iω

c
Aμ(Q, ω). (31)

Moreover, combining formulas jind = ̂A, jind = σ̂E, and
Eq. (31), one obtains the connection between the photon self-
energy and the conductivity tensor:

σμν (ω) = c

iω
μν (Q, ω). (32)

After substitution of Eqs. (30)–(32) into Eq. (29), we obtain
the Dyson equation for the screened electric field,

Eμ(Q, ω) = E ext
μ (Q, ω)

+
3∑

α,β=1

�μα (Q, ω)σαβ (Q, ω)Eβ (Q, ω), (33)

where we introduce the propagator of the free electric field:

�μν (Q, ω) = iω

c
D0

μν (Q, ω). (34)

The formal solution of Eq. (33) is therefore

E(Q, ω) = ε̂−1(Q, ω)Eext(Q, ω), (35)

where the dielectric tensor is defined as

εμν (Q, ω) = δμν −
3∑

α=1

�μα (Q, ω)σαν (Q, ω). (36)

In the THz and UV regions (ω � 4 eV) and for the parallel
wave vector QL � 1, the complex perpendicular wave vector
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goes as βL → 0. Using Eq. (34) and expressions defined in
Eqs. (13) and (14), the free electric field propagator can be
approximated as

�(Q, ω) = − 2πβL

ω
Q0 · Q0 − 2πωL

βc2
es · es

−
[

4iπ

ω
+ 2πQ2L

βω

]
z · z. (37)

In the optical limit, the conductivity tensor can be approxi-
mated as a diagonal matrix,

σμν (Q ≈ 0, ω) ≈ σμ(ω)δμν, (38)

where, following Eq. (32), the optical conductivity is given by

σμ(ω) = c

iω
μμ,G=0G′=0(Q = 0, ω). (39)

According to Eq. (15), the optical conductivity can also be
separated into the RPA and ladder contributions. Moreover,
because here we study doped semiconductors, it is useful to
additionally separate the RPA term into intra- and interband
contributions such that total conductivity can be written as

σμ(ω) = σ intra
μ (ω) + σ inter

μ (ω) + σ ladd
μ (ω). (40)

After using Eqs. (39) and (16), the intraband (n = m) RPA
optical conductivity is defined as

σ intra
μ (ω) = i

e2

m

nμ

ω + iηintra
, (41)

where the effective number of charge carriers is

nμ = − m

�e2

∑
n

∑
K∈1.SBZ

∂ fnK

∂EnK

∣∣ jμnK,nK(G = 0)
∣∣2

. (42)

The interband (n �= m) RPA optical conductivity is given by

σ inter
μ (ω) = − i

h̄

�

∑
n �=m

∑
K∈1.SBZ

fnK − fmK

EnK − EmK

×
∣∣ jμnK,mK(G = 0)

∣∣2

h̄ω + EnK − EmK + iηinter
. (43)

Following the definition given in Eq. (39), the ladder optical
conductivity is explicitly given by

σ ladd
μ (ω) = c

iω
ladd

μμ,G=0G′=0(Q = 0, ω), (44)

where the calculation of the ladder self-energy is described
by Eqs. (18)–(28). We stated previously that neglecting the
CLFE in the photon self-energy  is fully justified. How-
ever, while calculating the ladder contribution ladd, one
should be careful when neglecting CLFE in the Fock kernel
[see Eq. (24)]. Short range K′ − K ∼ 2π/a, 2π/L electron-
electron (or hole-hole) scattering processes can occur, thereby
making exclusion of CLFE in the Coulomb interaction
W T (K′ − K) not completely justified. Nevertheless, as we
shall demonstrate in Sec. III, since the main contribution to the
exciton binding energy comes from the scattering processes
with K′ − K < 2π/a, 2π/L, disregarding the CLFE in the
Fock-kernel Eq. (24) still serves as a satisfactory approxima-
tion. In this approximation, Dyson’s Eq. (25) becomes a scalar

equation, where the solution is

W T (Q, ω) = vQ/ε(Q, ω), (45)

with the longitudinal dielectric function given by

ε(Q, ω) = 1 − vQχ0(Q, ω). (46)

Using Eq. (26), the bare Coulomb interaction is

vQ = vG=0G′=0(Q) = 4π

Q2

QL + e−QL − 1

QL
, (47)

and by following Eq. (27) the RPA irreducible polarizability
becomes

χ0(Q, ω) = χ0
G=0G′=0(Q, ω) = 1

�

∑
nmK

( fnK − fmK+Q)

× |ρnK,mK+Q(G = 0)|2
h̄ω + EnK − EmK+Q + iδsgn(EmK+Q − EnK )

. (48)

1. Spectra of electromagnetic modes

In anisotropic 2D crystals (such as phosphorene), the inten-
sity of the electromagnetic modes depends on the direction of
its propagation Q0, such that Q0 cannot be chosen arbitrarily
and the electric field propagator matrix in Eq. (37) remains
generally nondiagonal. However, here we shall restrict our
consideration to the electromagnetic modes which propagate
in Q0 = x and Q0 = y directions, i.e., along the phosphorene
a1 and a2 crystal axes, respectively. For example, if the elec-
tromagnetic mode propagates in the Q0 = x direction, the
free electric field propagator in Eq. (37) becomes the diagonal
matrix

�μν (Qx, ω) = �μδμν, (49)

where �x = − 2πβL
ω

, �y = − 2πωL
βc2 , and �z = − 4iπ

ω
− 2πQ2L

βω
.

After combining Eqs. (36), (38), and (49), the dielectric tensor
can be expressed explicitly as

εμμ(Qx, ω) = 1 − �μσμ(ω). (50)

The electromagnetic mode propagation in the Q0 = y direc-
tion is given by making the substitution �x ↔ �y. Finally, by
following Eq. (35), the screened electric field is

Eμ(Q, ω) = E ext
μ (Q, ω)/εμμ(Q, ω). (51)

The induced current is defined as a response function of the
screened field via

jind
μ (Q, ω) = σμ(ω)Eμ(Q, ω). (52)

Substitution of Eq. (51) into the above equation yields the
induced current as a response to the external field as

jind
μ (Q, ω) = σ scr

μ (Q, ω)E ext
μ (Q, ω), (53)

where we introduce the screened conductivity:

σ scr
μ (Q, ω) = σμ(ω)/εμμ(Q, ω). (54)

The real part of the optical conductivity Re[σμ(ω)] gives
us information about the intensity of optically active inter-
band transitions and excitons in the system. On the other
hand, the real part of the screened conductivity Re[σ scr

μ (Q, ω)]
gives information about the collective electronic modes and
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FIG. 5. The phosphorene band structure. Yellow and green
dashed lines denote the Fermi energy in doped phosphorene at T =
284 K when n = 1013 cm−2 and n = 2 × 1013 cm−2, respectively.
The pristine Fermi energy is set to zero. The Fermi energies which
correspond to doped phosphorene with n = 1013 cm−2 and n = 2 ×
1013 cm−2 are EF − EC = 52 meV and 108 meV, respectively.

hybridizations between electronic modes and photons, such
as plasmon-polaritons and exciton-polaritons. Therefore, the
present formulation enables us to explore a wide class of
electromagnetic modes, such as evanescent ω < Qc, radia-
tive ω > Qc, transverse s(TE) σ scr

x(y)[Qy(x), ω], or longitudinal
p(TM) σ scr

x(y)[Qx(y), ω] single particle and collective electro-
magnetic modes.

2. Clarification of terminology

To facilitate the understanding of the text, we shall first
clarify some of the labels and definitions that are often used
below. The screened Coulomb interaction in pristine phos-
phorene obtained from the KS wave function and energies
Eqs. (45)–(48) will be denoted as W 0

0 . The same screened
interaction but in doped phosphorene will be denoted as W dop

0 .
Similarly, Green’s functions Eq. (21) constructed from the
pristine or doped phosphorene KS wave function and ener-
gies will be denoted as G0

0 or Gdop
0 , respectively. In pristine

semiconductors, the energetic onset for the creation of non-
interacting (RPA) electron-hole pairs is the band-gap energy
Eg = EC − EV , where EV is the top of the valence band and
EC is the bottom of the conductive band, also denoted in the
phosphorene band structure shown in Fig. 5. In semiconduc-
tors doped by electrons (n > 0), and for reasonably small
temperatures (T < 300 K), the value Eg should be, due to
Pauli blocking, corrected by an amount 2(EF − EC ) such that
the onset for the RPA electron-hole pair creation becomes
Eg + 2(EF − EC ). Consequently, the exciton binding energy
is defined as

� = Eg + 2α(EF − EC ) − h̄ωex, (55)

where α = 0 and 1 for pristine (n = 0) and doped (n > 0)
semiconductors, respectively, and h̄ωex is the exciton energy.
The abbreviation RPA(Gi

0), where i = 0 or dop, will denote
the RPA method in which the Green’s functions Gi

0 is inserted.
Also, with BSE(Gi

0,W i
0 ) (i = 0, dop) we denote the RPA +

ladder method, where the Green’s functions Gi
0 are used,

and the screened Coulomb interaction Wi
0 enters the BSE-

Fock kernel Eq. (24). In all cases, it is understood that the
Green’s function Gi

0 is constructed from GW0 energies Ei
nK

(i = 0, dop). The extra screening that comes from the doping
is labeled as �W = W dop

0 − W 0
0 .

B. Computational details

In the first stage of calculations, we determine the phos-
phorene KS wave functions φnK and energies EnK using a
plane-wave self-consistent field DFT code (PWSCF) within
the QUANTUM ESPRESSO (QE) package [56]. The core-
electron interactions were approximated by norm-conserving
pseudopotentials [57] and the exchange-correlation potential
by the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation [58]. To calculate the ground-state electronic
density we, have used a 26 × 37 × 1 Monkhorst-Pack K-point
mesh [59] of the first Brillouin zone and for the plane-wave
cut-off energy, we have choosen 50 Ry. We have used the
orthorhombic Bravais lattice where the unit cell lattice con-
stants of a = 4.631 Å and b = 3.3062 Å, while the separation
between phoshporene layers is given by L = 17.11 Å. The
doped phosphorene was simulated such that extra electrons
were injected (n > 0) or extracted (n < 0) from the unit cell
and the compensating jellium background was inserted to neu-
tralize the unit cell. The electronic and atomic relaxation were
provided for each doping concentration n until a maximum
force below 0.001 Ry/a.u. was obtained. The RPA optical
conductivity Eqs. (41)–(43) and screened Coulomb interac-
tion in Eqs. (45)–(48) were calculated by using a 109 × 151 ×
1 K-point mesh, and the band summations were performed
over 50 bands. The dimension of {K, n}-space used in the
calculation of the BSE-Fock kernel Eq. (24), the four-point
polarizability matrix Eq. (19), the ladder photon self-energy
Eq. (18), and the ladder optical conductivity Eq. (44) consists
of 53 × 75 × 1 Monkhorst-Pack K-points and two (one va-
lence and one conduction) bands. The CLFE are not included
in the calculation. The DFT calculations underestimate the
semiconducting band gap which then influences the total exci-
tation spectra as well as the exciton energy h̄ωex. To overcome
this issue, the energies EnK used to calculate the RPA + ladder
conductivities (for each doping concentration n) were ob-
tained by means of the GW quasiparticle approximation as
implemented within the real space projector augmented wave
function code GPAW [60,61]. The corresponding ground state
parameters and crystal structures follow those outlined for the
QE calculations. We have used the 20 × 30 × 1 K-grid. 100
bands for the GW calculation were used, and the energy cutoff
for the local field effect vectors is 80 eV. The self-consistent
GW0 method with n = 3 steps was used, where energies in
the Green’s functions are iterated.

To check the accuracy of the here-introduced RPA +
ladder approximation, the results for exciton spectra, exciton
energies h̄ω, and binding energies � are compared with re-
sults obtained by means of GPAW, where optical properties
with excitonic effects included can be obtained by solving
the BSE effective two-particle Hamiltonian. To solve the BSE
within the GPAW code, we have used the 53 × 75 × 1 K-grid,
10 eV energy cutoff for the CLFE, and four (two valence
and two conduction) bands. The broadening parameter was
set to 0.05 eV.

115421-7



NOVKO, LYON, MOWBRAY, AND DESPOJA PHYSICAL REVIEW B 104, 115421 (2021)

III. RESULTS

Here we shall first present the results for the optical con-
ductivity Re σx(ω) in doped phosphorene for various doping
concentrations n, as y polarized light yields no excitonic re-
sponse [36]. Then we shall present the results for the screened
conductivity Re σ scr

x (Q, ω) for different wave vector direc-
tions, i.e., Qy and Qx, where transverse exciton-polaritons and
longitudinal excitons are found, respectively. Finally, we shall
present results for Re σ scr

x(y)(Qx(y), ω) in the THz frequency
region, where longitudinal plasmon-polaritons are formed.

A. Optical conductivity in doped phosphorene

Figure 6(a) shows plots for the RPA(G0
0) (black) and

BSE(G0
0,W 0

0 ) (magenta) optical conductivities in pristine
phosphorene. The GW band gap in pristine phosphorene is
Eg = 2.05 eV, and the RPA conductivity shows an onset for
electron-hole creation at the same energy. The BSE(G0

0,W 0
0 )
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FIG. 6. The RPA (black) and the RPA + ladder (magenta) op-
tical conductivities in (a) pristine and (b)–(d) doped phosphorene.
(b) G0

0 and W 0
0 are used at both the RPA and ‘RPA + ladder’ level

of calculations. (c) G0
0 is used at RPA and G0

0 and W dop
0 are used at

the RPA + ladder level. (d) Gdop
0 and W dop

0 are used, at both RPA
and RPA + ladder level of calculations. The brown dashed line in
(b) shows the RPA conductivity in pristine phosphorene for com-
parison. In (b) and (c), the occupation factors fnK appearing in the
Green’s function G0

0 are taken to be as in a doped crystal. Green
dashed lines in (a) and (d) depict the result obtained by solving
GW-BSE using the GPAW package.

conductivity shows a strong exciton at h̄ωex = 1.45 eV whose
binding energy, according to Eq. (55), is � = 600 meV. This
value underestimates the theoretical results � ∼ 0.6 − 0.8 eV
reported in Refs. [28–33] as well as experimental results � ∼
0.9 eV reported in Refs. [35,36,38]. However, the exciton
binding energy is not easy to determine experimentally be-
cause (1) the band gap Eg is difficult to measure accurately, (2)
even very small substrate-induced doping of the phosphorene
conducting/valence bands causes a screening shift �W which
can significantly change the exciton binding energy, and (3)
the substrate Coulomb screening also influences the exciton
binding energy. All these may lead to the disparate results
seen, such that, for example, in Ref. [36] the binding energy
is estimated to be � = 0.9 eV, and in Refs. [33,37], where the
phosphorene is deposited on the SiO2/Si substrate, it is esti-
mated as � = 0.3 eV. Still, to ensure that the results obtained
using the RPA + ladder approach are satisfactorily accurate,
the green dashed line in Fig. 6(a) shows the result obtained
by solving GW-BSE using the GPAW package. Besides very
good qualitative agreement between the two spectra, the GPAW

exciton energy is h̄ωex = 1.51 eV and the exciton binding en-
ergy is � = 540 meV, both of which are in satisfactorily good
agreement with the results of our calculations. Also, while it is
often assumed that the exciton energy h̄ω does not depend on
the substrate screening [7], this is not always the case. Below,
we shall decompose different mechanisms affecting the final
exciton spectra when the phosphorene is doped by electrons.

Figure 6(b) shows the RPA(G0
0) and BSE(G0

0,W 0
0 ) optical

conductivities in doped phosphorene, where n = 1013 cm−2.
Here the pristine Green’s function G0

0 and the screened inter-
action W 0

0 are used at both the RPA and RPA + ladder level
of calculation. However, since the goal is to explore what the
impact of the Pauli blocking on the exciton spectral weight
and the binding energy, the occupation factors fnK which
appear in the Green’s functions G0

0 are taken to be as in the
doped sample. The same applies for the results presented in
Fig. 6(c). Thus, the only effect of the doping here is the extra
population of the phosphorene conduction band EC , which at
T = 284 K shifts the Fermi energy by only 52 meV above
EC , as can be seen in Fig. 5. The Pauli blocking reduces
the phase space for direct interband electron-hole excitations
and consequently blueshifts and reduces the intensity of the
RPA absorption onset, which can be clearly seen when the
black line is compared with the brown-dashed line showing
the pristine RPA(G0

0) conductivity. Consequently, the com-
parison between BSE(G0

0,W 0
0 ) conductivities in Figs. 6(a)

and 6(b) demonstrates how Pauli blocking affects the exciton
energy. It can be noticed that the exciton is blueshifted to
h̄ωex = 1.61eV such that its binding energy becomes � =
544 meV. We can therefore conclude that the lack of phase
space due to Pauli blocking reduces the exciton binding en-
ergy by 56 meV without affecting its oscillatory strength.
Figure 6(c) shows the RPA(G0

0) and BSE(G0
0,W dop

0 ) optical
conductivities. Here at the BSE stage of calculation, i.e.,
in the Fock kernel Eq. (24), the doped screened intaraction
W dop

0 is used. It can be noticed that an additional screening
�W0 = W dop

0 − W 0
0 significantly reduces the exciton bind-

ing energy and the oscillatory strength. More precisely, the
exciton binding energy is reduced to � = 114 meV. Inter-
estingly, even such a small doping significantly changes the
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FIG. 7. The static dielectric function ε(Qx, ω = 0) in doped
phosphorene for different doping concentrations, i.e., n = 0
(black), n = 5 × 1012 cm−2 (red), n = 1013 cm−2 (green), n = 1.5 ×
1013 cm−2 (blue) and n = 2 × 1013 cm−2 (magenta).

exciton identity, as even a small injection of charge carriers
into the conduction band results in strong metallic screen-
ing that radically reduces the static interaction W (Q, ω =
0) = vQ/ε(Q, ω = 0), and thus the exciton binding energy
and intensity. Figure 7 shows the comparison between the
static dielectric function ε(Qx, ω = 0) in pristine phosphorene
(black) and in the various cases of doped phosphorene (red,
green, blue, and magenta). While in the pristine phospho-
rene the dielectric function shows standard linear behavior
ε(Qx, ω = 0) = 1 + αxQx, where αx = 68, in the doped phos-
phorene it strongly overestimates the pristine value, especially
in the long wave-length limit Q ≈ 0. The same is valid for
the Qy direction, where αy = 58. Considering that W (Q ≈ 0)
is exactly responsible for the formation of the electron-hole
bound state, it is not surprising that the exciton is signifi-
cantly degraded. Finally, Fig. 6(d) shows the RPA(Gdop

0 ) and
the BSE(Gdop

0 ,W dop
0 ) optical conductivities where the total

screened interaction W dop
0 , is used at both the RPA and RPA +

ladder levels of calculations. Strong metallic screening �W 0

reduces the band gap to Eg = 1.58 eV, which also influences
the exciton energy h̄ωex = 1.6eV, as well as the exciton bind-
ing energy � = 84 meV. We emphasize here that the final
drop in the exciton binding energy � of 516 meV and the
drop of the effective band gap Eg + 2α(EF − EC ) of 366 meV
do not cancel, which results in a 150 meV blueshift of the
exciton energy h̄ωex. Green dashed line in Fig. 6(d) shows the
optical conductivity obtained by using the GPAW package. The
qualitative agreement with the RPA + ladder spectrum is still
satisfactory good, however, the GPAW exciton at h̄ω = 1.47 eV
is 130 meV redshifted in comparison with the RPA + ladder
exciton providing its larger binding energy of � = 214 meV.
This disagreement is probably because the screened Coulomb
interaction, which is very sensitive on small doping (see
Fig. 7), is calculated more accurately within the RPA + ladder
method than using the GPAW method. In fact, in our method
we use a denser k-point mesh at the RPA stage of calculations
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FIG. 8. Evolution of phosphorene exciton as a function of excess
electron concentrations (a) n = 0, (b) n = 5 × 1012 cm−2, (c) n =
1013 cm−2, (d) n = 1.5 × 1013 cm−2, and (e) n = 2 × 1013 cm−2.
The RPA(Gi

0) (i = 0, dop) optical conductivities are shown with
black and BSE(Gi

0,W i
0 ) (i = 0, dop) optical conductivities by blue

lines. For comparison, cyan dashed lines in (b)–(e) show the pristine
RPA(G0

0) optical conductivity.

(i.e., 109 × 151 × 1), which is allowed by the separability of
the method. On the other hand, in the GPAW, both screening
and the BSE are done on the same k grid (i.e., 53 × 75 × 1).
Also, the Drude and interband contributions to RPA are in
the RPA + ladder method calculated at different degrees of
accuracy compared to the GPAW method. For instance, the
GPAW does not include the Drude term. However, the GPAW

result still shows a small exciton blueshift of 20 meV in
comparison with the undoped case. The similar qualitative
behavior, exciton quenching, and blueshift are experimentally
and theoretically obtained for the case of doped single-layer
TMDs [1,62], which suggests that our method can be used
as an accurate tool for simulating the exciton properties as a
function of doping.

Figures 8(a)–8(e) show the evolution of the phosphorene
exciton as a function of excess electron concentration (n > 0).
The RPA(Gi

0) (i = 0, dop) optical conductivities are shown
with the black lines and the BSE(Gi

0,W i
0 ) (i = 0, dop) con-

ductivities with the blue lines. For comparison, in Fig. 8(a)
we show the optical conductivities in pristine phosphorene
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TABLE I. Phosphorene band gap (Eg), exciton energy (h̄ωex),
Fermi energy relative to conduction band (EF − EC), and exciton
binding energy (�), according to Eq. (55), for different doping con-
centrations n.

n [cm−2] Eg [eV] h̄ωex [eV] EF − EC [meV] � [meV]

0 2.05 1.45 / 600
0.5 × 1013 1.62 1.53 19 128
1.0 × 1013 1.58 1.6 52 84
1.5 × 1013 1.62 1.71 81 72
2.0 × 1013 1.64 1.79 108 66

(n = 0), calculated from G0
0 and W0

0. In Figs. 8(b)–8(e), the
optical conductivities for doped samples with n = 5 × 1012

cm−2, n = 1013 cm−2, n = 1.5 × 1013 cm−2, and n = 2 ×
1013 cm−2, respectively, calculated from corresponding Gdop

0

and Wdop
0 are presented, while the cyan dashed line shows

the RPA(G0
0) conductivity. It can be clearly seen how excess

electron concentration reduces the exciton binding energy and
its oscillatory strength in addition to blueshifting the exciton
energy h̄ωex. Quantitative values for the band gap Eg, exciton
energy h̄ω, and exciton binding energy � (corresponding to
Fig. 8) are summarized in Table I. It is clear that an already
tiny electron doping of n = 5 × 1012 cm−2 causes a drastic
drop in the exciton binding energy, i.e., from � = 600 meV
to 128 meV. Further increase in the electron doping causes
a weak additional decrease of the exciton binding energy.
What is clearly noticeable from Table I is that excess electrons
cause a considerable blueshift of the exciton energy h̄ωex

such that, for example, already moderate electron doping of
n = 2 × 1013 cm−2 causes a blueshift of about 340 meV. This
suggests that increasing doping causes a larger decrease in the
exciton binding energy than does a decrease in the effective
band gap Eg + 2(EF − EC ). In Figs. 8(b)–8(e), the increasing
intraband (or Drude) contribution to optical conductivity can

be noticed in the THz (ω ≈ 0) region. The Drude contribution
will be explained in more detail in Sec. III C.

B. Exciton-polaritons

In this section, we explore the strength of hybridization
between the phosphorene exciton and free-photons.

Figures 9(a) and 9(b) show the real part of the screened
conductivity Eq. (54) in pristine phosphorene as a function of
the transfer wave vector Q along the Q = Qyy and Q = Qxx
directions, respectively. The green dotted line represents the
light-line ω = Qc, i.e., the dispersion relation of free-photons.
Therefore, Figs. 9(a) and 9(b) actually show the intensities
of transverse s(TE) and longitudinal p(TM) electromagnetic
modes in pristine phosphorene, respectively. The intense pat-
tern in Fig. 9(a) in the evanescent region ω < Qc represents
the intensity of the evanescent transversal exciton ωT

ex that
hybridizes weakly with the free photons as it approaches the
light line Qc. It can be noticed that the exciton intensity is en-
hanced and slightly curved toward the light line Qc, indicating
a certain hybridization with light and therefore the forma-
tion of the exciton-polariton mode ωex−pol. The intense signal
which continues in the radiative region ω > Qc represents the
radiative transverse exciton ωT

ex, the standard exciton seen in
absorption spectra or in photoluminescence spectroscopy. It
is of note that the radiative transverse exciton is of some-
what lower intensity than the evanescent transverse exciton.
Figure 9(b) shows that the longitudinal exciton ωL

ex, as ex-
pected, does not interact with the transverse photons. In
Fig. 9(b), it is also obvious that the exciton dispersivity is
negligible. This is because in the Q → 0 limit the dielectric
tensor Eq. (50) becomes

εxx(Qx, ω) = 1 + 2πL

c
σx(ω),

which is very close to one (in nonretarded limit c → ∞ it
is exactly one, as demonstrated in Fig. 7) and the electrical
field Eq. (51) and conductivity Eq. (54) are unscreened. Also,

FIG. 9. Real part of the screened conductivity (Re σ scr
xx ) in pristine phosphorene as a function of the transfer wave vector Q along (a)

Q = Qyy and (b) Q = Qxx directions. Weak hybridization between the transverse exciton ωT
ex and the photon Qc forming exciton-polariton

ωex−pol can be seen in (a).
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FIG. 10. RPA(G0,dop
0 ) optical conductivities (a) σxx (ω) and (b) σyy(ω) in doped phosphorene for various electron concentrations: n = 0

(black), n = 5 × 1012 cm−2 (magenta), n = 1013 cm−2 (blue), n = 5 × 1013 cm−2 (green), n = 1014 cm−2 (red). Note the panels showing the
separate intraband σ intra

μ and interband σ inter
μ contributions.

by consulting Eq. (54), this means that for Q = 0 the only
contribution to formation of the exciton-polariton state comes
from the processes within the unscreened σ (i.e., the ladder
term in σ ), which means that this state is pure exciton state.
For larger Q, the propagator Eq. (49) becomes dispersive (i.e.,
Q dependent), causing the dielectric tensor Eq. (50) to also
become dispersive, the screening is gradually increasing, and
the longitudinal exciton-polariton formation occurs, which
is expected to be dispersive. However, from Fig. 9(b) it is
obvious that dispersivity of exciton-polariton at the scale of
Q ∼ 0.01 nm−1 (0.0005 a.u.) is still not visible. This above-
mentioned dispersivity is attributed to the geometrical effect
appearing in the propagator Eq. (49). The exciton disper-
sion would probably occur at larger wave vectors Q ∼ 1/a
when quantum-mechanical dispersivity of conductivity tensor
Eqs. (40)–(44) occurs (σμ becomes Q dependent, the exciton
gets kinetic energy, etc.). However, this leads to additional
complications that go beyond the scope of this paper. Here
we can conclude that the hybridization between 2D trans-
verse excitons and free photons is quite weak and a stronger
coupling may be achieved if the phosphorene is in the pres-
ence of a more confined electromagnetic field such as those
produced by microcavity devices. A theoretical attempt to
explain the exciton-polaritons in TMDs is given in Ref. [10].
The hybridization between excitons in various TMDs and in
microcavity electromagnetic modes has already been experi-
mentally observed [3,8,9,11].

C. Plasmon-polaritons

Here we present the intraband and interband RPA(G0,dop
0 )

conductivities, the effective number of charge carriers
Eq. (42), and the appearance of anisotropic plasmon-
polaritons in pristine and doped phosphorene.

Figures 10(a) and 10(b) show the RPA(G0,dop
0 ) opti-

cal conductivities σxx(ω) and σyy(ω) in doped phosphorene
for various electron concentrations: n = 0 (black), n = 5 ×
1012 cm−2 (magenta), n = 1013 cm−2 (blue), n = 5 × 1013

cm−2 (green), n = 1014 cm−2 (red). The interband con-
tribution σ inter

x in pristine phosphorene (n = 0) shows a
characteristic onset which consists of a well-defined asym-
metric peak at ω ≈ Eg. This onset corresponds to px →
p∗

x interband electron-hole excitations. At higher energies,
namely, at ω ≈ 4 eV, another peak appears which corresponds
to py → p∗

y interband electron-hole excitations, as seen in
Fig. 5. When the electron concentration n increases, the first
peak px → p∗

x decreases and moves toward higher energies.
As already discussed in Sec. III A, this is a consequence
of Pauli blocking, i.e., injected electrons occupy the bottom
of the conductive band in the interval EF − EC (as can be
seen in Fig. 5), which reduces the contribution of the direct
interband electron-hole excitations in the energy interval Eg <

ω < Eg + 2(EF − EC ), resulting in a blueshift of the peak of
approximately 2(EF − EC ). The second peak py → p∗

y also
decreases with doping, however, it is redshifted. The interband
contribution to conductivity σy shows the lack of a strong peak
at ω ≈ Eg. This is expected, considering that the y polarized
light is not able to excite direct px → p∗

x excitations. The
first steplike onset at ω ≈ 3.7 eV corresponds to py → p∗

x ,
and the second steplike onset at ω ≈ 4 eV corresponds to the
already mentioned py → p∗

y transitions. These onsets weakly
depend on doping; the first onset slightly increases and red-
shifts, while the second one decreases and blueshifts. The
intraband/Drude conductivity σ intra

μ depends on the effective
number of charge carriers ne,h

μ [see Eq. (42)], which depends
on the concentration of injected holes n < 0 or electrons
n > 0 in the semiconductor. The effective number of charge
carriers ne,h

μ , as shown later, finally defines the intensity of the
plasmon-polariton. The left panels in Figs. 10(a) and 10(b)
show how the increase of the excess electrons n > 0 results in
the increase of the Drude conductivities σx,y. Also, the Drude
conductivity σy is, for the same concentration n, smaller than
the Drude conductivity σx.

To analyze intraband conductivities σ intra
x,y quantitatively, in

Table II we list the effective concentrations of electrons and
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TABLE II. Effective concentrations of holes nh
μ and electrons

ne
μ as well as Fermi energies EF relative to the valence EV or the

conduction EC bands in doped phosphorene. The results are shown
as a function of the doping concentration n, where n < 0 corresponds
to hole doping and n > 0 corresponds to electron doping. The tem-
perature is chosen to be T = 284 K.

Holes
n [cm−2] nh

x [10−3a−2
0 ] nh

y [10−3a−2
0 ] EF − EV [meV]

−1 × 1014 14 1.9 −339.6
−5 × 1013 8.8 0.83 −165.8
−1 × 1013 2.2 0.125 −18.5
−5 × 1012 1.1 0.059 7.1

Electrons
n [cm−2] ne

x [10−3a−2
0 ] ne

y [10−3a−2
0 ] EF − EC [meV]

5 × 1012 1.1 0.12 18.7
1 × 1013 2.1 0.25 52.2
5 × 1013 8 1.1 254
1 × 1014 12 2.5 445

hole ne,h
x (second column) and ne,h

y (third column) for various
doping concentrations n (first column). The convention used
here is n < 0 if the sample is doped by holes, and n > 0
if the sample is doped by electrons. The ne,h

μ (μ = x, y) are
calculated using Eq. (42), and the temperature is chosen to be
T = 284 K. The fourth column shows the Fermi energy (EF )
in the doped sample relative to EV (if n < 0) or EC (if n > 0).

The decrease of excess holes (n < 0) causes a decrease
of the effective concentration of holes nh

x , and an increase
of injected electrons (n > 0) causes an increase of the ef-
fective concentration of electrons ne

x, noting a symmetrical
increase of concentrations nh

x and ne
x with respective increases

in the concentrations n < 0 and n > 0, especially for small
concentrations |n|. A somewhat different behavior applies to
concentrations nh

y and ne
y. These concentrations are (as also

anticipated from Drude conductivities in Fig. 10) more than
ten times smaller than concentrations nh,e

x . Also, the property
of symmetrical increase is here violated, so the concentration
ne

y increases about twice as fast relative to the concentration
nh

y (for smaller |n|). The effective concentrations ne,h
μ define

the intensity and frequency of collective modes arising due to
hybridization between longitudinal 2D plasmons and photons,
called plasmon-polaritons.

Figures 11(a)–11(d) show the real part of the screened
conductivities Re σ scr

xx and Re σ scr
yy for momentum transfers

Qx and Qy, respectively, in doped phosphorene as a func-
tion of excess electron concentrations, namely, (a) n = 5 ×
1012 cm−2, (b) n = 1 × 1013 cm−2, (c) n = 5 × 1013 cm−2,
and (d) n = 1 × 1014 cm−2. Momentum transfer Qy is here
presented as a negative wave vector (Q < 0). The polariza-
tion of induced currents is collinear with the direction of
propagation and therefore Figs. 11(a)–11(d) represent the in-
tensities of longitudinal p(TM) electromagnetic modes, i.e.,
2D plasmon-polaritons 2D-PPx and 2D-PPy. We emphasize
that the frequency scale here is in THz. Only the intraband
conductivity σ intra

μ , or more precisely the effective numbers of
charge carriers, determine the energy and the intensity of the

2D-PPμ. Therefore, following Eq. (50), the intense patterns
seen in Figs. 11(a)–11(d) follow the zeros of the dielectric
functions

εμμ(Qμ̂, ω) = 1 + 2πβL

ω
σ intra

μ (ω); μ = x, y. (56)

Consequently, the σ inter and σ ladd do not affect plasmon-
polaritons. As expected, by increasing the doping concentra-
tion n > 0 and the concurrent increase in ne

μ, 2D-PPμ become
more intense and rise in energy. Also, the anisotropy in the
effective concentrations ne

x > ne
y is reflected in the anisotropy

of 2D-PPμ propagation, such that the 2D-PPx has larger en-
ergy and is more intense than 2D-PPy for a given momentum
value. It can be noticed that 2D-PPμ only retains a polari-
tonlike character (follows the light line Qc) at very small
frequencies, soon after following the standard square-root-like
2D plasmon. However, the polaritonlike character increases
gradually with doping n, so, for example, for dopings n =
1.013 cm−2, n = 5.013 cm−2, and n = 1014 cm−2 the 2D-PPx

behaves as a polariton up to ω < 0.5 THz, ω < 1.0 THz, and
ω < 2.0 THz, respectively. Besides following the light line
Qc for very small ω, 2D-PPx merges with the continuum of
radiative electromagnetic modes, the blue pattern at ω > Qc
that is most noticeable in Fig. 11(d). The merging with the
continuum of radiative modes is considerably weaker for the y
polarized plasmon-polariton. Here we can conclude that even
a small fraction of the excess electrons in the phosphorene
conduction band, ranging from n ∼ 5 × 1012−2 × 1013 cm−2

(EF − EC ∼ 19−108 meV) leads to a significant manipulation
of the anisotropic plasmon-polariton intensity and energy.

IV. CONCLUSIONS

We have developed a formalism suitable for studying
electromagnetic modes in a wide class of conducting and
semiconducting 2D materials. Our method properly ac-
counts for the electron-hole interaction and the corresponding
exciton-polariton effects as well as for the screened electro-
magnetic collective modes such as plasmon polaritons. The
approach is completely equivalent to the widely used TD-
SHF approach, with additional benefits such as separability of
the screening RPA and the ladder (electron-hole interaction)
terms as well as inclusion of the polariton effects (photon-
matter interaction). The formulation can easily be adapted
to calculate the electromagnetic modes in 2D van der Waals
heterostructures or to calculate the interaction of these modes
within confined cavity modes. Here the formulation was ap-
plied to calculate the optical conductivity (the evolution of the
exciton intensity and binding energy) in doped phosphorene.
We have clearly demonstrated the mechanisms of exciton
quenching (sudden drop of the exciton binding energy and
intensity) due to injection of electrons in the phosphorene
conduction band. Further, the formulation is applied to cal-
culate the interaction of the phosphorene transverse exciton
with free photons, where we have observed a weak hybridiza-
tion and exciton-polariton formation. Finally, the method was
applied to demonstrate the tuning of anisotropic plasmon-
polaritons in phosphorene by electron doping.
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FIG. 11. Real part of the screened conductivities σ scr
xx and σ scr

yy for momentum transfer Q = Qxx and Q = Qyy, respectively, as a function
of doping concentrations: (a) n = 5 × 1012 cm−2, (b) n = 1 × 1013 cm−2, (c) n = 5 × 1013 cm−2, and (d) n = 1 × 1014 cm−2. Panels show the
intensities of longitudinal p(TM) electromagnetic modes in the THz frequency region, i.e., the 2D plasmon polaritons 2D-PPx and 2D-PPy.
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