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Analytical theory for three-wave mixing processes in a slightly deformed nanowire
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The second-order optical response of centrosymmetric materials manifests itself mostly at their surface, being
strongly suppressed in their bulk. However, the overall surface response is also suppressed in nanoparticles with
a centrosymmetric geometry subjected to homogeneous fields. Nevertheless, nanoparticles with a noncentrosym-
metric geometry do exhibit second-order optical properties. We develop an analytical theory to investigate the
second-order optical response of a noncentrosymmetric thin nanowire with a slightly deformed cross section
made up of a centrosymmetric material subjected to two monochromatic fields. We calculate the linear and
nonlinear near fields perturbatively, using the extent of the deformation away from a circular cross section as
the perturbation parameter. We obtain expressions for the quadratic hyperpolarizabilities in terms of the linear
response evaluated at the three frequencies involved. We analyze the spectral features of the nonlinear response
functions and explore their resonant structure for a model dielectric nanowire. Furthermore, we evaluate the
second-order radiated fields, the radiation patterns, and efficiency of the different quadratic processes. We obtain
a strong competition between electric dipolar, magnetic dipolar, and electric quadrupolar contributions even for
very small deformations.
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I. INTRODUCTION

Nonlinear optics plays a key role in the development of
many modern photonic technologies such as super continuum
generation [1], holography [2], optical parametric amplifi-
cation [3], generation of ultrashort pulses [4,5], etc. Since
optical nonlinear processes are inherently weak, devices made
from conventional nonlinear crystals require strong excitation
fields and phase-matching conditions for them to be efficient.
Advances in nanotechnology have led to the development of
a plethora of nanomaterials which exhibit remarkable opti-
cal nonlinearities with unparalleled applications such as in
miniaturization of photonic devices [6,7]. The nonlinear de-
pendence on the electric field yields an amplification of the
response in these novel nanomaterials. The presence of pro-
cesses that enhance the local field, for example, plasmonic
resonances in metallic nanoparticles, have been shown to
boost the nonlinear efficiency [8,9]. Recently, all-dielectric
nanostructures have also been reported with exceptional non-
linear conversion efficiencies [10–12]. Understanding the
underlying mechanisms of nonlinear processes and their en-
hancement in these structures has been a topic of growing
interest. Various nonlinear processes such as second harmonic
generation (SHG) [13,14], two photon absorption (TPA) [15],
third harmonic generation (THG) [11,16], and four wave
mixing (FWM) [17,18] have been observed in different nanos-
tructures and their applications have been discussed.

Second-order nonlinear processes involve photon-photon
interactions assisted by materials that lead to various three-
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wave mixing effects such as sum frequency generation (SFG)
(ω+ = ω1 + ω2) or difference frequency generation (DFG)
(ω− = ω1 − ω2) where ω1 and ω2 are the frequencies of
the two driving fields, conversion of these input signals to
their second harmonics (SHG) 2ω1 or 2ω2, or the gener-
ation of a static quadratic polarization, optical rectification
(OR). The quadratic susceptibility tensor, originating due to
electric-dipolar transitions, is zero within the bulk of a cen-
trosymmetric medium and hence the second-order response
manifests itself mainly at its surface where the inversion
symmetry is locally lost. For this reason, the different second-
order processes have been extensively used as surface probes
for this class of materials [19–22]. Besides providing re-
markable noninvasive surface-imaging techniques, they have
demonstrated tremendous potential for numerous other ap-
plications, as in the development of coherent light sources
at different frequencies. For example, SFG has been used in
the production of light sources in the UV-Vis spectral range
[23,24] and DFG for sources at mid- or far-infrared fre-
quencies [25–27]. Generation of the previously inaccessible
terahertz (THz) frequency band have also been facilitated by
DFG [28,29].

The selection rules for the second-order optical proper-
ties of centrosymmetric bulk materials are also applicable
to nanoparticles made up of them, with the second-order
response being generated largely at their surfaces. However,
for particles with a centrosymmetric shape, an exact cancel-
lation of the induced quadratic polarization from opposite
points of the surface leads to a null overall response. A
second-order response may still be observed in such cases,
but it is due to multipolar excitations. On the other hand,
a dipole-driven second-order response from particles with
noncentrosymmetric geometry may be observed, as local
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contributions from opposite points on the surface would not
cancel. SHG [9,30,31] and DFG [32,33] from noncentrosym-
metric nanoparticles or nanostructures have been studied
extensively, using both experimental and numerical means.

In a previous work, we developed an analytical theory
for the optical SHG of a noncentrosymmetric nanowire [14].
Here we present a calculation of the response using an ap-
proximate analytical perturbative theory and generalize it to
explore all the second-order optical processes, namely, SFG,
DFG, OR, and the previously discussed SHG, though includ-
ing in the latter the possibility of excitation by noncollinear
fundamental fields. To this end, we choose an isolated long
cylindrical nanowire with a noncentrosymmetric cross sec-
tion, as in Ref. [14]. We consider two monochromatic fields
with polarizations normal to the axis of the nanowire, and
compute the linear and the nonlinear fields induced within and
outside the nanowire, generalizing the perturbative approach
of Ref. [14]. We employ the dipolium model [34] to obtain
the nonlinear response within the bulk and on the surface of
the nanowire. That model was originally developed to explore
the SH response, and was later extended toward the SF re-
sponse of conductors [35]. Within the dipolium theory, the
material is modeled as a homogeneous array of polarizable
entities that respond harmonically to the electromagnetic field.
The origin of the nonlinearity in the model is the nonhomo-
geneity of the fields, including their abrupt variation across
interfaces. For the sake of completeness, we present a brief
description of the model and a derivation of the difference
frequency (DF) nonlinear surface and bulk susceptibilities
which we write in terms of some dimensionless parameters
[36] that depend on the linear dielectric response evaluated
at the frequencies involved. Then we extend our results to
also get the sum frequency (SF), second harmonic (SH), and
optical rectification (OR) responses. Furthermore, we calcu-
late the nonlinear fields in the radiation zone and analyze the
efficiency of the different second-order processes.

The structure of the paper is the following. In Sec. II A,
we describe our theory to calculate the generation of a DF
signal from a planar surface. In Sec. II B, we calculate the DF
response of the nanowire, assuming it is locally flat. We find
the DF efficiency in Sec. II C and generalize it to the SF, SH,
and OR cases. Section III illustrates our results for a model
dielectric nanowire. Finally, we present our conclusions in
Sec. IV.

II. THEORY

A. Response of a semi-infinite system

We consider a semi-infinite dipolium [34], a homogeneous
array of harmonic polarizable entities. Each polarizable entity
is represented by an electron of charge −e and mass m at a
separation x from its equilibrium position r0 to which it is
bound by a harmonic force with resonant frequency ω0. Its
classical equation of motion under the influence of a spatially
varying external electromagnetic field is

mẍ = −mω2
0x − m

τ
ẋ − eE(r, t ) − e

c
ẋ × B(r, t ), (1)

where we have included a dissipative term characterized by a
lifetime τ . We remark that the fields should be evaluated at

the actual position r = r0 + x of the electron, not at its equi-
librium position r0. Assuming the displacement x from the
equilibrium position to be smaller than the scale of variation
in the driving fields, we perform a Taylor expansion:

E(r0 + x, t ) ≈ E(r0, t ) + x · ∇E(r0, t ) + · · · . (2)

Substituting Eq. (2) in the equation of motion Eq. (1), we get

mẍ = −mω2
0x − m

τ
ẋ − eE(r0, t ) − e x · ∇E(r0, t )

+ e ẋ ×
∫ t

−∞
dt ′ ∇ × E(r0, t ′) + · · · , (3)

where we have written the magnetic field B(r, t ) =
−c

∫ t
−∞ dt ′ ∇ × E(r, t ′) in terms of the electric field, and we

assume the electromagnetic field is switched on adiabatically.
Notice that the coefficients of x and ẋ in the last two terms
depend on time through the spatial derivatives of the field.
Thus, Eq. (3) is the equation of a forced, damped harmonic
oscillator whose effective stiffness varies in time, making it
similar to a parametric oscillator. Hence, even though the
harmonic oscillator is considered the paradigmatic linear sys-
tem, it becomes nonlinear through the spatial variations of the
driving fields.

We now drive the system with two electromagnetic waves
oscillating at frequencies ω1 and ω2,

E(r, t ) = E1(r)e−iω1t + E2(r)e−iω2t + c.c., (4)

where E1(r) and E2(r) are complex amplitudes and c.c. stands
for the complex conjugate. Since the incident optical fields are
usually much smaller than the microscopic atomic fields, we
employ a perturbative approach to solve Eq. (3) by expanding
the solution in powers of E:

x(t ) = x(1)(t ) + x(2)(t ) + · · · . (5)

The linear solution x(1)(t ) = ∑
g x(1)

g e−iωgt + c.c. with g =
1, 2 is a superposition of two oscillations with amplitudes
x(1)

g corresponding to the incident frequencies ωg, respectively,
each obeying the equation of a forced linear harmonic oscilla-
tor

−mω2
gx(1)

g = −mω2
0x(1)

g + im
ωg

τ
x(1)

g − eEg(r0, t ), (6)

whose solution yields the induced linear dipole moment
p(1)

g = −ex(1)
g = αgEg where each αg = α(ωg) is the linear

polarizability

α(ω) = e2/m

D (ω)
, (7)

evaluated at frequency ωg, and

D (ω) = ω2
0 − ω2 − iω/τ. (8)

We employ the abbreviated notation fg ≡ f (ωg) for any
function f dependent on frequency. Now we write the second-
order contribution to Eq. (3):

mẍ(2)(t ) = −mω2
0x(2)(t ) − m

τ
ẋ(2)(t ) − ex(1)(t )

· ∇E(r0, t ) + eẋ(1)(t ) ×
∫ t

dt ′∇ × E(r0, t ′).

(9)
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Notice that upon substitution of x(1), the driving terms in
Eq. (9) become quadratic in E with several frequency compo-
nents: DC, the second harmonic of both incident frequencies
2ωg, the sum frequency (ω+ ≡ ω1 + ω2), and the difference
frequency (ω− ≡ ω1 − ω2). The equation corresponding to
DF is

ω2
− x(2)

− = ω2
0x(2)

− − i
ω−
τ

x(2)
− + e

m

(
x(1)

1 · ∇E∗
2 + x(1)∗

2 · ∇E1
)

+ e

m

[(
ω1

ω2

)
x(1)

1 × ∇ × E∗
2

+
(

ω2

ω1

)
x(1)∗

2 × ∇ × E1

]
, (10)

where the superscript (∗) on any quantity denotes its complex
conjugate and the subscript − means the corresponding terms
are evaluated at ω−. We solve Eq. (10) to obtain the quadratic
DF dipole moment p(2)

− = −ex(2)
− :

p(2)
− = −1

e
α−

[
α1

(
E1 · ∇E∗

2 + ω1

ω2
E1 × (∇ × E∗

2 )
)

+ α∗
2

(
E∗

2 · ∇E1 + ω2

ω1
E∗

2 × (∇ × E1)
)]

. (11)

There are two other second-order moments [35] which con-
tribute to the nonlinear DF response: the electric quadrupole
moment and the magnetic dipole moment. For convenience,
we define the quadratic electric quadrupole moment as Q(2)

− =
−ex(1)

1 x(1)∗
2 − ex(1)∗

2 x(1)
1 . This differs from the usual defini-

tion, which is traceless and includes a numerical prefactor
of 3. Similarly, the DF magnetic moment is given by μ

(2)
− =

(−e/2mc){x(1)
1 × mẋ(1)∗

2 + x(1)∗
2 × mẋ(1)

1 }, From the linear so-
lution, we obtain

Q(2)
− = −1

e
α1α

∗
2 (E1E∗

2 + E∗
2E1) (12)

and

μ
(2)
− = − i

2ce
α1α

∗
2 (ω1 + ω2) (E1 × E∗

2 ). (13)

We must remark here that although these nonlinear moments
have been calculated through a classical model, expressions
equivalent to the above are obtained for a quantum harmonic
oscillator which interacts with the perturbing electromagnetic
field through electric-dipolar, magnetic-dipolar, and electric-
quadrupolar transitions [37].

We now consider a semi-infinite system made from n of
these polarizable entities per unit volume. We assume the
system is translationally invariant along the x − y plane and
that its surface lies at z = 0, across which n(z) changes rapidly
albeit continuously from its bulk value n(z → ∞) = nB to its
vacuum value n(z → −∞) = 0. The macroscopic nonlinear
polarization induced in the system is

P−,src(z) = n(z)p(2)
− − 1

2
∇ · (n(z)Q(2)

− ) + ic

ω−
∇ × (n(z)μ(2)

− ).

(14)

Note that the above expression has the usual electric dipole
moment density and an additional term related to the nonho-
mogeneity of the electric quadrupolar moment density [38].

Furthermore, it contains a term related to the curl of the
quadratic magnetic moment density. This term is not conven-
tional but it yields the same induced current j− = ∂P−/∂t
and is more convenient than keeping only the first two terms
in Eq. (14) and adding a nonlinear magnetization [39] and
the corresponding magnetization current. The nonlinear po-
larization Eq. (14) is a nonlinear source oscillating at the
difference frequency, and it generates an oscillating DF field
E−. The linear response of the system to this DF field yields
an additional DF polarization, so substituting Eqs. (11) to (13)
into Eq. (14) we get the screened self-consistent nonlinear
polarization:

P−(z) = n(z)α−E− − n(z)

e
α−

[
α1

(
E1 · ∇E∗

2

+ ω1

ω2
E1 × (∇ × E∗

2 )

)
+ α∗

2

(
E∗

2 · ∇E1

+ ω2

ω1
E∗

2 × (∇ × E1)

)]
+ 1

2e
α1α

∗
2∇ · n(z)(E1E∗

2

+ E∗
2E1) + 1

2e
α1α

∗
2

(
ω1+ω2

ω−

)
∇ × (n(z)(E1×E∗

2 )).

(15)

To find the surface response of the medium, we will only
be interested in the thin selvedge region whose thickness we
can assume is much smaller than the wavelength, allowing us
to safely ignore within it the effects of retardation. Thus, we
identify E− with the depolarization field

E−,i = −4πP−,zδiz; (16)

we drop the ∇ × Eg terms and ignore the relatively slow
spatial variations of the field along the surface. The surface
polarization can be obtained after solving Eq. (15) for P− and
integrating it across the selvedge,

Ps
− =

∫
se

dz P−(z), (17)

where se denotes the selvedge. We define the components of
the DF quadratic surface susceptibility tensor through

Ps
−,i =

∑
jk

[
χ s

i jk (ω1, ω2) + χ s
ik j (ω2, ω1)

]
F1, jF

∗
2,k, (18)

where i, j, k denote Cartesian components and ω2 denotes
−ω2. Here, Fg = (Eg,x, Eg,y, Dg,z ) is a field whose compo-
nents are the corresponding components of either Dg or Eg

that are continuous across the surface. We use Fg to avoid the
ambiguity about the position in the selvedge where the fields
are to be calculated. Note that j and k are dummy indices and
thus can be interchanged. Thus, we may impose the intrinsic
permutation symmetry χ s

i jk (ω1, ω2) = χ s
ik j (ω2, ω1).

From Eqs. (15) and 16, we obtain the normal component
of the macroscopic polarization in the selvedge region,

P−,z(z) = 1

eε−(z)

[
− n(z)α−

(
α1

1

ε1(z)

∂

∂z

1

ε∗
2 (z)

+ α∗
2

1

ε∗
2 (z)

∂

∂z

1

ε1(z)

)
+ α1α

∗
2

∂

∂z
n(z)

1

ε1(z)

1

ε∗
2 (z)

]

× D1,zD
∗
2,z + 1 ↔ 2, (19)
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FIG. 1. Real (left panel) and imaginary (right panel) part of a(ω1, ω2) for a harmonic solid [Eq. (24)] with ωL = √
2 ωT and τ = 20/ωT,

as function of ω1 and ω2.

where we introduced the permittivity

εg(z) = 1 + 4πn(z)αg, (20)

used Eg,z(z) = Dg,z/εg(z), and assumed Dg,z is constant across
the selvedge for g = 1, 2,−.

The resulting normal component of the DF polarization
depends on z through the density profile n(z) and its spa-
tial derivatives and is large only within the thin selvedge
region where the linear response has a large gradient, and in
our long wavelength approximation it vanishes in the bulk
and in vacuum. We now integrate Eq. (19) by substituting
it in Eq. (17). The integral to be evaluated is of the form∫

dz f (n(z))dg(n(z))/dz, where f and g are rational functions
of n(z). The integration can be divided into different intervals
where n varies monotonically, which allows us to change
integration variable z → n. As the integrands are rational
functions of n, they may be integrated analytically for any
density profile n(z) to obtain the normal component of the
nonlinear surface polarization

Ps
−,z = χ s

zzz(ω1, ω2)D1,zD
∗
2,z + 1 ↔ 2, (21)

where

χ s
zzz(ω1, ω2) = −a(ω1, ω2)

64π2nBe

(
ε1 − 1

ε1

)(
ε∗

2 − 1

ε∗
2

)
, (22)

and

a(ω1, ω2) = −2

[
1 + (1 − ε−) ε1ε

∗
2 (ε∗

2 log(ε−/ε1) + c.p.)

(ε1 − ε∗
2 ) (ε∗

2 − ε−) (ε− − ε1)

]

(23)

is a dimensionless quantity that parameterizes the normal
component of the nonlinear surface polarization [36]. Here,
c.p. denotes the terms obtained from the previous one through
cyclic permutations of the three indices 1, 2,−.

In Fig. 1, we illustrate the behavior of the real and imag-
inary parts of a(ω1, ω2) for a model harmonic solid whose
dielectric function [40],

εd(ω) = ω2
L − ω2 − iω/τ

ω2
T − ω2 − iω/τ

, (24)

has a single Lorentzian resonance, where ωL and ωT are the
frequencies of the longitudinal and transverse optical modes,

respectively, and we included a small dissipation character-
ized by τ . We choose ω2

L = 2ω2
T and τ = 20/ωT. Between its

pole at ωT and its zero at ωL, the dielectric function is negative
and the logarithm in Eq. (23) becomes large. Hence, we expect
the real and imaginary parts of a to exhibit spectral features
in this region. Figure 1 shows peaks and valleys for both the
real and imaginary parts of a whenever ω1 or ω2 falls in this
region. Moreover, a broad valley along the diagonal ω1 ≈ ω2

is observed in the region where both input frequencies lie
in this region, with their difference frequency close to zero.
The parameter a has a constant value for low frequencies and
reaches its asymptotic value [41] of −2 for high frequencies.

We follow a similar procedure to that shown above for
the parallel component of the nonlinear polarization. Using
Eq. (15), we find

P−,‖(z) = 1

2e
α1α

∗
2

[
E1,‖

∂

∂z

n(z)

ε∗
2 (z)

D∗
2,z + E∗

2,‖
∂

∂z

n(z)

ε1(z)
D1,z

+
(

ω1 + ω2

ω−

)(
∂

∂z

n(z)

ε∗
2 (z)

D∗
2,zE1,‖

− ∂

∂z

n(z)

ε1(z)
D1,zE∗

2,‖

)]
, (25)

which we integrate across the selvedge to obtain the nonlinear
tangential surface polarization

Ps
−,‖ =

∫ ∞

−∞
dzP−,‖(z)

= 1

2e
α1α

∗
2

[
nB

ε∗
2

(
1 + ω1 + ω2

ω−

)
E1,‖D∗

2,z

+ nB

ε1

(
1 − ω1 + ω2

ω−

)
D1,zE∗

2,‖

]

= χ s
‖‖z(ω1, ω2)E1,‖D∗

2,z+χ s
‖z‖(ω1, ω2)D1,zE∗

2,‖+1 ↔ 2,

(26)

where the surface susceptibility is parameterized as

χ s
‖‖z(ω1, ω2)

= χ s
‖z‖(ω2, ω1)

= − 1

32π2nBe

(ε1 − 1)(ε∗
2 − 1)

ε∗
2

ω1

ω−
b(ω1, ω2), (27)
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χ s
‖‖z(ω2, ω1)

= χ s
‖z‖(ω1, ω2)

= 1

32π2nBe

(ε1 − 1)(ε∗
2 − 1)

ε1

ω2

ω−
b(ω2, ω1), (28)

with

b(ω1, ω2) = b(ω2, ω1) = −1. (29)

There is another component χ s
z‖‖ of the surface susceptibility

tensor allowed by the in-plane isotropy of the surface [36], but
it is null within our model.

We now focus on the bulk quadratic polarization of the
system, which we find by substituting Eqs. (11) to (13) in
Eq. (14),

PB
−,src = D1E∗

2 · (∇E1) + D̃1(E∗
2 · ∇)E1 + 1 ↔ 2, (30)

where

Dg = 1

16π2nBe
(ε∗

2 − 1)(ε1 − 1)δgdg, (31)

D̃g = 1

16π2nBe
(ε∗

2 − 1)(ε1 − 1)δ̃gd̃g, (32)

with

δ1 = −
(

ε− − 1

ε1 − 1

)
ω2

ω1
, (33)

δ̃1 = ω1

ω−
−

(
ε− − 1

ε1 − 1

)
ω−
ω1

, (34)

δ2 = −
(

ε− − 1

ε∗
2 − 1

)
ω1

ω2
, (35)

δ̃2 = − ω2

ω−
+

(
ε− − 1

ε∗
2 − 1

)
ω−
ω2

, (36)

and d1 = d2 = d̃1 = d̃2 = 1. Note that PB
−,src plays the role of

an external source for the DF field in the bulk. The total bulk
polarization also contains the polarization linearly induced in
response to the self-consistent DF field, as shown in Eq. (15).
To obtain the self-consistent DF field, Maxwell’s equations
with sources should be solved with appropriate boundary con-
ditions.

In the dipolium model, we assumed all entities to be iden-
tical to each other, so it doesn’t account for effects such as
those arising from the surface electronic structure. We must
remark that in a real system these additional effects may not be
negligible and must be accounted for in more realistic models.
Here, we only focused on the effect of the spatial variation of
the field on the second order response.

By construction, the dipolium model above corresponds to
a dielectric material. However, it may be shown that its results
are equivalent to those of the local jellium model [35], so
they may be applied to metals simply by substituting their
corresponding dielectric functions. We recall that the results
of the dipolium model are valid even for a quantum harmonic
oscillator interacting with a perturbing electromagnetic field
through electric dipole, electric quadrupole, and magnetic
dipole transitions [37].

B. Response of an isolated nanowire

We will now consider an isolated, long nanowire with
a noncentrosymmetric geometry but made up of a cen-
trosymmetric material with a nanometric radius. We assume
translational symmetry along the axis of the nanowire (ẑ di-
rection), disregarding edge effects as if it were infinitely long,
allowing us to perform all calculations in 2D. We consider a
cross-section slightly deformed away from a symmetric circle,
described in polar coordinates by

rs(θ ) = r0(1 + ξ cos 3θ ), (37)

where r0 is the radius of the nominal nanowire and ξ char-
acterizes the extent of deformation. This is the most simple
noncentrosymmetric deformation of a circle, consisting of
three lobes an angle of 2π/3 apart. The SH for this shape was
studied in Ref. [14].

We first excite the system with two monochromatic fields
oscillating at frequencies ω1 and ω2 with polarization on the
plane of the cross section and perpendicular to each other,

Eext (t ) = E1e−iω1t x̂ + E2e−iω2t ŷ + c.c., (38)

where E1 and E2 are complex amplitudes and we take the
corresponding polarization along x̂ and ŷ, respectively. We
disregard the spatial dependence of the fields to concentrate
on the effects of the noncentrosymmetric geometry, which
is consistent with a long wavelength approximation r0 � λg,
where λg (g = 1, 2) are the wavelengths of the incoming
waves. We follow the perturbative approach introduced in
Ref. [14] to evaluate the self-consistent induced near fields.
We start with the general nonretarded solution φg(r, θ ) =
φin

g (r, θ )�(rs(θ ) − r) + φout
g (r, θ )�(r − rs(θ )) in polar coor-

dinates (r, θ ) of Laplace’s equation for the scalar potential
within the particle and in its neighborhood,

φin
g (r, θ ) =

∞∑
l=0

rl (sgl cos lθ + tgl sin lθ ), (39a)

φout
g (r, θ ) = φex

g +
∞∑

l=0

r−l (ugl cos lθ + vgl sin lθ ), (39b)

where φex
1 (r, θ ) = −E1r cos θ , φex

2 (r, θ ) = −E2r sin θ and �

is the unit step function. We expand the multipolar coeffi-
cients ζgl (any of sgl , tgl , ugl , or vgl ) as power series on the
deformation parameter ξ , ζgl = ∑∞

n=0 ζ
(n)
gl ξ n. As mentioned

previously, we restrict ourselves to small deformations, and
we consider terms up to linear order in ξ only. Using Eqs. (39)
and imposing boundary conditions [38] at the interface r =
rs(θ ), we obtain the self-consistent linear potential:

φout
1

E1
= −r cos θ − 1 − ε1

1 + ε1

r2
0

r
cos θ + ξ

[(
1 − ε1

1 + ε1

)2 r3
0

r2
cos 2θ

− 1 − ε1

1 + ε1

r5
0

r4
cos 4θ

]
, (40a)

φin
1

E1
= − 2

1 + ε1
r cos θ + 2ξ

1 − ε1

(1 + ε1)2

r2

r0
cos 2θ, (40b)
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φout
2

E2
= −r sin θ − 1 − ε2

1 + ε2

r2
0

r
sin θ − ξ

[(
1 − ε2

1 + ε2

)2 r3
0

r2
sin 2θ

+ 1 − ε2

1 + ε2

r5
0

r4
sin 4θ

]
, (40c)

φin
2

E2
= − 2

1 + ε2
r sin θ − 2ξ

1 − ε2

(1 + ε2)2

r2

r0
sin 2θ. (40d)

The spatial variations of the self-consistent linear fields
Eg = −∇φg, induce a macroscopic nonlinear polarization
within the bulk of the nanowire given by Eq. (14) but with
a position independent density n = nB:

P−,src = E1E∗
2 ξ

2π2ner0

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)2(1 + ε∗
2 )2

×
[

− (1 − ε−)(2 + ε1 + ε∗
2 ) + (1 − ε1ε

∗
2 )

+
(

ω1 + ω2

ω−

)
(ε∗

2 − ε1)

]
{sin θ r̂ + cos θ θ̂}. (41)

The nonlinear bulk polarization induces a null charge den-
sity within the nanowire,

ρ−,src = −∇ · P−,src = 0, (42)

up to linear order in the deformation parameter ξ . The termi-
nation of the bulk polarization at the surface of the nanowire
induces a bulk originated surface nonlinear charge, σ b

−,src =
P−,src · n̂ where n̂ = r̂ + 3ξ sin 3θ θ̂ is the outward-pointing
unit vector normal to the surface. Substituting Eq. (41), we
obtain

σ b
−,src = E1E∗

2 ξ

2π2ner0

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)2(1 + ε∗
2 )2

×
[

− (1 − ε−)(2 + ε1 + ε∗
2 ) + (1 − ε1ε

∗
2 )

+
(

ω1 + ω2

ω−

)
(ε∗

2 − ε1)

]
sin θ. (43)

We now turn our attention toward the surface of the
nanowire and calculate its nonlinear polarization. The ex-
pressions for the normal and tangential component of the
nonlinear surface DF polarization are given by Eqs. (21) and
(26). Both of these expressions were, however, written down
for a semi-infinite surface lying at z = 0 with the z direction
toward the bulk. To apply it to the curved cylindrical surface,
we assume the thickness of the selvedge to be much smaller
than the nominal radius r0 of the nanowire. This permits us
to assume that the surface is locally flat so the results of the
dipolium model described in Sec. II A become applicable. We
also assume a local Cartesian system on the surface with ⊥
denoting the outward-pointing normal direction and ‖ denot-
ing directions tangential to the surface. The components of the
nonlinear surface polarization induced at each point on the
surface can then be written as Ps

−,i = χ s
i jk (ω1, ω2)F1, jF2,k +

1 ↔ 2, identical to Eq. (18), where χ s
i jk (ω1, ω2) are the com-

ponents of the local nonlinear surface susceptibility and

Fg(rs(θ ), θ ) = Eg(r+
s (θ ), θ )

= εgE⊥
g (r−

s (θ ), θ ) + E‖
g(r−

s (θ ), θ ), (44)

where r±
s = rs ± η, η → 0+ are positions just outside (+) or

within (−) the surface. We recall that the fields Fg (g = 1, 2)
are constant across the thin selvedge.

Interpreting Eq. (21) in the locally oriented frame, we
obtain the normal component of the surface nonlinear polar-
ization,

Ps
−,⊥ = E1E∗

2

32π2ne

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )

[
2a sin 2θ + 6ξa(sin θ

+ sin 5θ ) + 8ξa sin 3θ

{
ε1 − ε∗

2

(1 + ε1)(1 + ε∗
2 )

}

+ 8ξa sin θ

{
1 − ε1ε

∗
2

(1 + ε1)(1 + ε∗
2 )

}]
, (45)

where the dimensionless parameters a and b are given by
Eqs. (23) and (29), respectively. Similarly, using Eq. (26), we
obtain the tangential component of the surface polarization. Its
spatial variation along the surface yields a surface originated
nonlinear surface charge σ s

− = −∇‖ · Ps
−,‖ given by

σ s
− = E1E∗

2

16π2ner0
b

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )

×
[

4 sin 2θ − 4ξ sin θ + 28ξ sin 5θ

+ 8ξ
ε∗

2 − ε1

(1 + ε1)(1 + ε∗
2 )

{
ω1 + ω2

ω−
sin θ − 3 sin 3θ

}]
.

(46)

Now that we have calculated its sources, we turn our at-
tention to the calculation of the DF near field. The screened
DF scalar potential φ− has ρ−,src = 0 as an external bulk
source and the total nonlinear charges induced at the surface
σ b

−,src and σ s
− as surface sources, together with the normal

component of the surface polarization Ps
−,⊥, which may be

accounted for through the boundary conditions. The sources
have to be screened by the linear response ε− of the particle at
the DF frequency. Thus, to obtain the quadratic self-consistent
scalar potential, we have to solve

∇2φ− =
{

0, (outside)
−4πρ−,src/ε− = 0, (inside), (47)

subject to the boundary conditions

φ−(r+
s ) − φ−(r−

s ) = 4πPs
−,⊥ (48)

and

n̂ · ∇φ−(r+
s ) − ε−n̂ · ∇φ−(r−

s ) = −4π (σ b
−,src + σ s

−). (49)

Equation (48) expresses the discontinuity of the scalar poten-
tial due to the presence of the dipole layer Ps

−,⊥ across the
selvedge. Equation (49) is the discontinuity of the normal
component of the displacement field due to the presence of
the nonlinear surface charge. We solve Eq. (47) perturbatively
using Eq. (39) (with the subscript g = −) to obtain the self-
consistent scalar potential at the DF frequency with terms up
to linear order in ξ . The resulting DF self-consistent scalar
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potential φout
− outside the nanowire is given by

φout
−

E1E∗
2

= ξ

πne

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )(1 + ε−)

[
2

(1 + ε1)(1 + ε∗
2 )

×
{

− (1 − ε−)(2 + ε1 + ε∗
2 )

+ (1 − ε1ε
∗
2 ) + (ε∗

2 − ε1)

(
ω1 + ω2

ω−

)}

− b
1 + 3ε−
1 + ε−

+ 2b
ε∗

2 − ε1

(1 + ε1)(1 + ε∗
2 )

(
ω1 + ω2

ω−

)

+ ε−
4

(3−ε−)a

1 + ε−
+ε−

4

{
3a + 4a(1−ε1ε

∗
2 )

(1+ε1)(1+ε∗
2 )

}]
r0

r
sin θ

+ 1

4πne

(1−ε1)(1−ε∗
2 )

(1+ε1)(1+ε∗
2 )(1+ε−)

[ε−a+2b]
r2

0

r2
sin 2θ+· · ·.

(50)

We must remark that terms corresponding to higher order
multipoles are present in this second-order potential; however,
they are of linear order in the deformation and smaller than the
dipole by at least r0/λ. Comparing Eq. (50) with the general
expression of the 2D scalar potential,

φout
− = 2p−,y

sin θ

r
+ Q−,xy

sin 2θ

r2
+ · · · , (51)

we identify the DF 2D dipolar and quadrupolar mo-
ments per unit length p−,i and Q−,i j . The quadratic dipole
contributes only for a nonzero deformation ξ while the
quadrupolar response Qxy is independent of ξ and would
exist even for a nondeformed circular nanowire. We de-
fine dipolar and quadrupolar hyperpolarizability tensors
through p−,i = γ d

i jk (ω1, ω2)E ex
1, j (E

ex
2,k )∗ + 1 ↔ 2 and Q−,i j =

γ
Q
i jkl (ω1, ω2)E ex

1,k (E ex
2,l )

∗ + 1 ↔ 2. Together with Eq. (51),
they allow us to write the DF moments as

p−,y = [
γ d

yxy(ω1, ω2) + γ d
yyx(ω2, ω1)

]
E1,xE∗

2,y

= γ d (ω1, ω2)E1,xE∗
2,y, (52)

Q−,xy = [
γ Q

xyxy(ω1, ω2) + γ Q
xyyx(ω2, ω1)

]
E1,xE∗

2,y

= γ Q(ω1, ω2)E1,xE∗
2,y, (53)

where we define

γ d (ω1, ω2) = γ d
yxy(ω1, ω2) + γ d

yyx(ω2, ω1)

= 2γ d
yxy(ω1, ω2)

= 2γ d
yyx(ω2, ω1) (54)

and

γ Q(ω1, ω2) = γ Q
xyxy(ω1, ω2) + γ Q

xyyx(ω2, ω1)

= 2γ Q
xyxy(ω1, ω2)

= 2γ Q
xyyx(ω2, ω1), (55)

using the intrinsic permutation symmetry γ d
yxy(ω1, ω2) =

γ d
yyx(ω2, ω1) and γ Q

xyxy(ω1, ω2) = γ Q
xyyx(ω2, ω1). Comparing

Eqs. (52) and (53) with Eqs. (51) and (50), we identify the
DF hyperpolarizabilities:

γ d (ω1, ω2) = ξr0

2πne

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )(1 + ε−)

×
[

2

(1+ε1)(1+ε∗
2 )

{
−(1 − ε−)(2 + ε1 + ε∗

2 )

+ (1 − ε1ε
∗
2 ) + (ε∗

2 − ε1)

(
ω1 + ω2

ω−

)}

− b
1 + 3ε−
1 + ε−

+2b
(ε∗

2 − ε1)

(1 + ε1)(1 + ε∗
2 )

(
ω1 + ω2

ω−

)

+ ε−
4

(3−ε−)a

1+ε−
+ε−

4

{
3a+ 4a(1−ε1ε

∗
2 )

(1 + ε1)(1+ε∗
2 )

}]
,

(56)

γ Q(ω1, ω2) = r2
0

4πne

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )(1 + ε−)

(aε− + 2b).

(57)

We now turn our attention toward the calculation of the
nonlinear magnetic dipole moment induced in the nanowire,
the density of which is given by Eq. (13). The total magnetic
moment per unit length induced within the nanowire can be
obtained by integrating Eq. (13) across the cross section:

m(2)
− =

∫ 2π

0

∫ rs (θ )

0
nμ

(2)
− rdrdθ. (58)

Substituting the linear fields obtained from Eq. (40) in
Eq. (13), we obtain

m(2)
− = − i

ce

E1E∗
2 r2

0

8πn
(ω1 + ω2)

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )

ẑ. (59)

Defining m−,z = γ m
zxy(ω1, ω2)E1,xE∗

2,y + 1 ↔ 2, and follow-
ing a procedure similar to Eq. (52), we identify the quadratic
magnetic dipolar hyperpolarizability γ m(ω1, ω2). We obtain

γ m(ω1, ω2) = 2γ m
zxy(ω1, ω2)

= − i

ce

r2
0

8πn
(ω1 + ω2)

(1 − ε1)(1 − ε∗
2 )

(1 + ε1)(1 + ε∗
2 )

. (60)

The limit ω2 → ω1, ω− → 0 of Eqs. (56), (57), and (60)
yields the OR hyperpolarizabilities, i.e. the second order re-
sponse of the nanowire for the nonlinear rectification process.
The SF hyperpolarizabilities, corresponding to the frequency
ω+ = ω1 + ω2, can be easily read from Eqs. (56), (57), and
(60) after substituting ω2 by ω2, ε− by ε+, and taking the
complex conjugate of the permittivity, i.e., changing ε∗

2 to ε2,
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yielding

γ d (ω1, ω2)

= ξr0

2πne

(1 − ε1)(1 − ε2)

(1+ε1)(1+ε2)(1 + ε+)

[
2

(1+ε1)(1+ε2)

×
{
−(1−ε+)(2+ε1+ε2) + (1 − ε1ε2)

+ (ε2 − ε1)

(
ω1 − ω2

ω+

)}

− b
1 + 3ε+
1 + ε+

+ 2b
ε2 − ε1

(1 + ε1)(1 + ε2)

(
ω1 − ω2

ω+

)

+ ε+
4

(3 − ε+)a

1 + ε+
+ ε+

4

{
3a + 4a(1 − ε1ε2)

(1 + ε1)(1 + ε2)

}]
,

(61)

γ Q(ω1, ω2) = r2
0

4πne

(1 − ε1)(1 − ε2)

(1 + ε1)(1 + ε2)(1 + ε+)
[ε+a + 2b],

(62)

and

γ m(ω1, ω2) = − i

ce

r2
0

8πn
(ω1 − ω2)

(1 − ε1)(1 − ε2)

(1 + ε1)(1 + ε2)
. (63)

The degenerate SH case can be obtained from Eqs. (61)
and (62) when the input frequencies are equal, i.e., ω2 = ω1.
Note, that the magnetic hyperpolarizability given by Eq. (63)
would be zero for the SH case.

To calculate the other nonzero components of the hyper-
polarizabilities, we repeat the calculations above but with
different polarization of the incident fields to find all the
nonzero components of the hyperpolarizabilities,

γ d
bab(ωc, ωd ) = γ d

bba(ωc, ωd ) = −γ d
aaa(ωc, ωd ) = γ d

abb(ωc, ωd )

= γ d (ωc, ωd )/2 = γ d (ωd , ωc)/2, (64)

γ
Q
abab(ωc, ωd ) = γ

Q
abba(ωc, ωd ) = −γ

Q
aabb(ωc, ωd ) = γ Q

aaaa(ωc, ωd )

= γ Q(ωc, ωd )/2 = γ Q(ωd , ωc)/2, (65)

γ m
zab(ωc, ωd ) = γ m

zba(ωd , ωc) = γ m(ωc, ωd )/2

= −γ m(ωd , ωc)/2, (66)

where the pair of indices (a, b) can take the values (x, y) or
(y, x), and the pair of frequencies (ωc, ωd ) can take indepen-
dently the values (ω1, ω2) or (ω2, ω1). All other components
are zero for our system.

C. SF/DF efficiency

We now focus on the calculation of the electromagnetic
fields in the radiation zone and the efficiency of DFG/SFG
from the nanowire. Following a procedure similar to the 3D
case, one can write down the expressions for the radiated
electromagnetic fields in 2D due to a localized distribution of
charges and currents [14]. The magnetic and electric far fields

radiated at the SF/DF frequency are

B± = (1 + i)k3/2
±

(
(r̂ × p±) − r̂ × (r̂ × m±)

− i

4
k±(r̂ × (Q± · r̂))

)
eik±r

√
π

r
, (67)

E± = B± × r̂, (68)

considering the dominant electric-dipolar, magnetic-dipolar,
and electric-quadrupolar contributions, where k± is the free
wave number corresponding to the frequency ω±, r̂ is the
outward pointing unit vector in the direction of observation,
and p±, Q± and m± are given by Eqs. (52), (53), and (59),
respectively. In the Appendix of Ref. [14], the electric dipolar
and quadrupolar contributions to the radiated fields were pre-
sented; the magnetic dipolar contribution is discussed in our
Appendix. The time-averaged power radiated per unit angle in
the direction θ is

dP±
dθ

= rc

2π
Re[E± × B∗

±] · r̂, (69)

which after substituting Eqs. (67) and (68) becomes

dP±
dθ

= ck3
±|E1E2|2

[
|γ d

±|2 cos2 θ + |γ m
± |2 + k2

±
16

|γ Q
± |2 cos2 2θ

+ 2 Re(γ d
±γ m∗

± ) cos θ − k±
2

Im(γ m
± γ

Q∗
± ) cos 2θ

− k±
2

Im(γ d
±γ

Q∗
± ) cos θ cos 2θ

]
. (70)

Here, we introduce the compact notation γ α
+ ≡ γ α (ω1, ω2)

and γ α
− ≡ γ α (ω1, ω2) with α = d, m, Q. Integrating, we ob-

tain the total SF/DF power radiated per unit length,

P± = πck3
±|E1E2|2

[
|γ d

±|2 + 2|γ m
± |2 + k2

±
16

|γ Q
± |2

]
. (71)

The efficiency of the SFG/DFG process, defined as

R± = P±
I1I2

, (72)

where Ig = (c/2π )|Eg|2 (g = 1, 2) are the intensities of the
incident waves, is

R± = π3

1024

k3
±
c

[
|γ d

±|2 + 2|γ m
± |2 + k2

±
16

|γ Q
± |2

]
. (73)

III. RESULTS AND DISCUSSIONS

Figure 2 illustrates the absolute value of the electric-
dipolar, electric-quadrupolar, and the magnetic-dipolar hyper-
polarizabilities γ α , α = d, Q, m given by Eqs. (56), (57) and
(60) to (63) respectively, for a deformed nanowire made up
of an insulator with dielectric permittivity given by Eq. (24)
with ωL = √

2 ωT and τ = 20/ωT, as in Fig. 1. We allow both
the input frequencies to take negative and positive values to
cover all three-wave mixing processes, namely, SFG, DFG,
SHG, and OR, by identifying γ α (ω1, ω2) = γ α

+ when both
frequencies are positive, γ α (ω1, ω2) = γ α

− when ω1 > 0 and
ω2 < 0, and γ α (ω1, ω2) = (γ α (−ω1,−ω2))∗ when ω1 < 0.
We show both 3D surface plots and 2D color maps to better
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FIG. 2. Normalized absolute value of the electric dipolar γ d (top panels), the electric quadrupolar γ Q (middle panels), and the magnetic
dipolar γ m (bottom panels) hyperpolarizabilities for an infinitely long and thin deformed dielectric nanowire as a function of the fundamental
frequencies ω1 and ω2. The permittivity is given by Eq. (24) with ωL = √

2 ωT and τ = 20/ωT. The deformation is ξ = 0.03. 3D surface plots
are displayed in the left panels and the respective 2D color maps in the right panels. The regions where both frequencies have the same signs
correspond to SFG and those with opposite signs to DFG.

convey the qualitative and quantitative nature of the results.
All three hyperpolarizabilities show strong resonant ridges
when either input frequency is equal to the surface plas-
mon polariton (SPP) frequency or its additive inverse, ωg =
±ωspp = ±√

3/2 ωT. Intense diagonal ridges occur for γ d and
γ Q, but not in γ m, when the sum of the two incident frequen-
cies resonates with the SPP. There are further peaks when
any of the two ridges meet, for which two of the resonant
conditions are fulfilled jointly. The first quadrant corresponds
to SFG, the fourth with DFG, and the third and second repli-
cate these processes inverting the signs of all participating
frequencies. The large peak observed in the fourth quadrant
corresponds to DFG close to OR, where both the incident
frequencies are simultaneously SPP resonant. The response
along the diagonal ω1 = ω2 corresponds to SHG. Notice that
in this case we cross a diagonal ridge when the fundamental
frequency is the subharmonic of the SPP resonance and meet a

peak when the fundamental reaches the resonance condition.
The quadratic magnetic dipole is absent along the SH line.
The horizontal, vertical, and diagonal ridges are much weaker
than the doubly resonant peaks for both the quadrupolar and
the dipolar response. We also explored the absolute values of
γ d , γ Q, and γ m for larger lifetimes (not shown). As expected,
we obtained a similar structure with much narrower and
sharper peaks and ridges. In Fig. 3, we show a closeup of γ d

around ω1 = −ω2 = ωspp, corresponding to DFG processes
with a small difference in frequency. Notice that when the
two input frequencies are exactly equal and opposite, ω− = 0,
the second-order response is about an order of magnitude
lower than for neighboring points, for which ω− is small
but finite. Thus, the electric-dipolar response of the system
for OR is smaller than its DF response. No such behavior
is observed for the quadrupolar nor the magnetic dipolar
hyperpolarizability.
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FIG. 3. High resolution 2D color map of the normalized dipolar
hyperpolarizability |γ d |, shown in Fig. 2, close to the resonance
around the region ω1 ≈ ω2 ≈ ωspp, with ω2 negative.

In Fig. 4, we present the SFG/DFG dimensionless efficien-
cies

R′
± = cr0(ne)2R±, (74)

corresponding to the same nanowire as in Fig. 2. We obtain
a structure similar to that for the hyperpolarizabilities, with
vertical, horizontal, and diagonal ridges and peaks where two
ridges meet. Note that the main peak corresponds to a SHG
process where both input frequencies are resonant with the
SPP of the nanowire, followed in intensity by SFG/DFG
peaks where one input frequency is close to zero. The SHG
at the SPP subharmonic is relatively small and there is no
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FIG. 4. Dimensionless efficiency for three-wave mixing pro-
cesses for the same dielectric nanowire as in Fig. 2 as function of
the normalized input frequencies ωg/ωT (g = 1, 2) for a deformation
ξ = 0.03 and r0/λT = 0.01.
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FIG. 5. Different regions of frequency space colored according
to the nature of the largest contribution to the nonlinear efficiency
shown in Fig. 4, electric-dipolar (ED), magnetic-dipolar (MD), and
electric-quadrupolar (EQ).

peak corresponding to OR where both frequencies are SPP
resonant. Nevertheless, there is a substantial DFG radiation
when one frequency is SPP resonant and the other is close
to the resonance, indicating a possible application toward the
generation of THz radiation.

In Fig. 5, we show the regions of frequency space (ω1, ω2),
where the nonlinear efficiency is dominated by electric-
dipolar, magnetic-dipole, or electric quadrupolar processes.
Notice that the electric dipole is dominant when ω1, ω2, or
ω+ resonate with the SPP and that the electric quadrupole
dominates along the SHG line, except at the subharmonic of
the SPP. The rest of the frequency space is dominated by the
magnetic dipole.

In Fig. 6, we plot the normalized 2D angular radiation
pattern of the same nanowire as in Figs. 2 and 4 in the vicinity
of resonances corresponding to the regions marked with the
letters a–h in Fig. 4. Even though the calculation corresponds
to a small deformation, ξ = 0.03, we observe a strong com-
petition between the electric-dipolar, magnetic-dipolar, and

FIG. 6. 2D angular radiation patterns for the same dielectric
nanowire as in Fig. 4 for different input frequencies ω1 and ω2. Each
set of patterns corresponds to the region around the points marked in
Fig. 4: from left to right a–d (top row), and e–h (bottom row). For
the patterns a–e, we set ω1 = ωspp while varying ω2, i.e., we traverse
along the vertical line of Fig. 4 at resonance, while point f lies on the
horizontal line where ω2 = ωspp. We choose both input frequencies
to vary along the diagonal resonance for regions g and h.
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FIG. 7. Dimensionless efficiency, R′
±/(k±r0)3 [Eq. (74)] for three-wave mixing processes for a Si (left) and a Ag (right) nanowire as a

function of the input photon energies h̄ωg for g = 1, 2, for a deformation parameter ξ = 0.03. We chose r0 = 0.01λE1 for Si and r0 = 0.01/λEp

for Ag, where λE1 and λEp are the wavelengths corresponding to the energies E1 and Ep (see text). The white regions correspond to input data
absent from Ref. [44].

quadrupolar contributions. Thus, around the region a of Fig. 4,
in Fig. 6 we obtain an almost isotropic radiation pattern along
the x − y plane, corresponding to the radiation of a magnetic
dipole oriented along z, with a small lobe due to an electric
dipole oriented along x. As we move vertically toward point
b, there is a competition between electric and magnetic dipolar
radiation, which yields a partially directional radiation, and as
we approach c the radiation has mostly the two-lobed electric-
dipolar form. As we proceed to d , the radiation becomes
a mixture of magnetic-dipolar and electric-quadrupolar and
the latter dominates close to e. Moving toward f and g, the
pattern again becomes electric-dipolar and, finally, close to
h it becomes a mixture of electric dipolar and quadrupolar
contributions. We must remark here that though Fig. 4 is sym-
metric under the interchange ω1 ↔ ω2, we purposely chose
points c and g that are not equivalent to show the richness of
the radiation patterns. Similarly, we chose d nonequivalent to
f . An animation illustrating the evolution of the generated ra-
diation pattern as we continuously vary the input frequencies
is available in the Supplemental Material video file [42].

To illustrate an application of our theory, we present in
Fig. 7 the dimensionless efficiency R′

±, Eq. (74), of the three-
wave mixing processes from deformed Si and Ag nanowires,
further normalized by the factor 1/(k±r0)3 to reveal the de-
tailed structure in the resonance patterns, especially in the
low-frequency regime. We used experimentally determined
dielectric functions of Si and Ag [43,44] as inputs to our
theory. As in our previous results, there are horizontal and
vertical ridges when the photon energy of either input wave
is equal to characteristic energies of the material, the critical
points E1 and E2 (3.4 eV and 4.3 eV) for Si, and around the
surface and bulk plasmon ∼3.6 − 3.8 eV for Ag. Diagonal
ridges are also present at the energies where the energy of the
sum of the two input photons is close to these characteristic
values. Double resonances lead to stronger peaks at the inter-
section of any of these ridges.

IV. CONCLUSIONS

We developed a formalism to calculate analytically all
three-wave mixing processes, sum and difference frequency
generation, SHG [14], and OR for slightly deformed thin
nanowires with a simple noncentrosymmetric cross section.
Our theory was developed in 2D within the long-wavelength
approximation, assuming translational symmetry along the
axis of the nanowire, and is of a perturbative nature, assuming
the geometry is controlled by a small deformation parame-
ter. We first generalized the dipolium model to calculate the
DF response of a semi-infinite homogeneous media and used
the results to compute the bulk and surface contributions to
the DF polarization of the nanowire, assuming its surface is
smooth and thus locally flat. This polarization is a source
for the near DF fields from which we identified the total DF
electric dipole p− and quadrupole Q−, and we also obtained
the nonlinear magnetic dipole m−. We thus obtained all the
finite components of the corresponding hyperpolarizability
tensors up to first order in the deformation parameter. We also
calculated the radiation fields, radiation patterns, and conver-
sion efficiency. A simple extension allowed us to also obtain
the induced moments, hyperpolarizabilities, and the radiation
corresponding to SF, SH, and OR.

Our results are written in terms of the linear dielectric
response of the system evaluated at the relevant frequencies.
We illustrated them by calculating and analyzing the SF/DF
hyperpolarizabilities, radiation patterns, and efficiencies for
a model harmonic dielectric, and we interpreted their reso-
nant structure, related to the excitation of SPPs at the input
and/or output frequencies. We found a strong DFG when
ω1 ≈ ωspp ≈ ω2, corresponding to a small but finite ω−, sug-
gesting that our system might yield an efficient generation
of radiation in the THz regime. We further identified the
regions in the frequency space where different multipolar con-
tributions became dominant and we illustrated them through
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calculations of the corresponding radiation patterns. The elec-
tric quadrupole dominates in the first and third quadrants of
the frequency space, while the magnetic dipole dominates
along the second and fourth quadrant and is null for SH, but
the electric dipole is dominant when either input frequency or
its sum resonate with the SPP, even for very slightly deformed
nanowires. As an application, we obtained the efficiency of
the quadratic processes for Si and Ag nanowires.

Our formalism assumes that retardation effects can be ig-
nored. This would be the case when the radius of the nanowire
is much smaller than the wavelength, and their ratio must be
smaller than the deformation parameter, which in turn should
be much smaller than one, r0/λ � ξ � 1. This imposes a
strong limit on the applicability of the theory. Nevertheless,
the main effects of retardation would arise from spatial os-
cillations of the sources along the axis of the nanowire and
additional bulk contributions to the nonlinear polarization
along the gradients of the fundamental fields. These effects
could be minimized by adjusting parameters such as the prop-
agation direction of the fundamental fields, normal, along, or
at an angle to the axis, and by filtering the polarization of
the input and output fields. A detailed discussion would go
beyond the scope of the present paper.

In summary, we developed an analytical formalism that
allowed us to explore all three-wave mixing processes at 2D
nanowires made up of centrosymmetric materials but with a
noncentrosymmetric geometry. Although we developed the
model for a harmonic dipolium model, the results are written
in terms of the dielectric function of the material evaluated
at the relevant input and output frequencies. Thus, by substi-
tuting the appropriate response functions, our results may be
applied to arbitrary dielectrics. Furthermore, it may be shown
that the results agree with those of a local jellium model, so
they may also be applied to metals [35]. Our theory does
not take into account effects related to crystal structure, the
presence of surface states, and surface reconstructions and re-
laxation. Nevertheless, our results allow a quantification of the
expected efficiency of the different processes and, in particu-
lar, they show that electric electric dipolar contributions may
dominate the quadrupolar and magnetic dipolar ones at certain
frequency combinations even for very small deformations.
Thus, ordinary centrosymmetric materials textured with non-
centrosymmetric patterns may provide competitive sources of

optical sum and difference frequency generation for processes
such as conversion of light into the THz regime. Furthermore,
our model provides analytical expressions against which nu-
merical computational schemes may be tested.
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APPENDIX

In this Appendix, we calculate the electromagnetic fields
radiated in 2D by a magnetic dipole. A detailed description
of the derivation is not presented here as a similar calculation
was discussed in the Appendix of Ref. [14], where radiation
from an electric dipole and a quadrupole were considered.
Equation (A6) of Ref. [14] is an expression for the vector
potential in 2D radiated by a harmonically varying monochro-
matic current distribution J(r, t ), expressed as a power series
in the diameter of the system. The second term of this series
is

A(1)(r) = 1

c

√
2π

kr
eiπ/4eikr (−ik)

∫
d2r′ J(r′)(r̂ · r′). (A1)

Its integrand can be written as the sum of a symmetric
and an antisymmetric part, J(r′)(r̂ · r′) = (1/2)[J(r′)(r̂ · r′) +
r′(r̂ · J(r′))] + (1/2)[J(r′)(r̂ · r′) − r′(r̂ · J(r′))]. The former
yields the electric quadrupolar radiation while the latter corre-
sponds to the contribution of the magnetic dipole, which can
be written as

Am(r) =
√

2π

kr
eiπ/4eikr (ik)r̂ × m, (A2)

where m is the magnetic dipole moment per unit length:

m = 1

2c

∫
d2r′ r′ × J(r′). (A3)

As mentioned in Ref. [14], we may obtain the correspond-
ing electromagnetic radiation field as Bm = ikr̂ × Am and
Em = Bm × r̂.
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