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Contacts, equilibration, and interactions in fractional quantum Hall edge transport
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We study electron transport through a multichannel fractional quantum Hall edge in the presence of both
interchannel interaction and random tunneling between channels, with emphasis on the role of contacts. The
prime example in our discussion is the edge at filling factor 2/3 with two counterpropagating channels. Having
established a general framework to describe contacts to a multichannel edge as thermal reservoirs, we particularly
focus on the line-junction model for the contacts and investigate incoherent charge transport for an arbitrary
strength of interchannel interaction beneath the contacts and, possibly different, outside them. We show that
the conductance does not explicitly depend on the interaction strength either in or outside the contact regions
(implicitly, it only depends through renormalization of the tunneling rates). Rather, a long line-junction contact is
characterized by a single parameter which defines the modes that are at thermal equilibrium with the contact and
is determined by the interplay of various types of scattering beneath the contact. This parameter—playing the
role of an effective interaction strength within an idealized model of thermal reservoirs—is generically nonzero
and affects the conductance. We formulate a framework of fractionalization-renormalized tunneling to describe
the effect of disorder on transport in the presence of interchannel interaction. Within this framework, we give a
detailed discussion of charge equilibration for arbitrarily strong interaction in the bulk of the edge and arbitrary
effective interaction characterizing the line-junction contacts.
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I. INTRODUCTION

The interpretation of electrical conductance measurements
in mesoscopic conductors was intensively debated from the
very onset of mesoscopic physics up until the late 90s [1,2].
The discussions mostly revolved around the role of electrical
contacts [3–7], with the focus initially on noninteracting elec-
trons. One conceptually essential point recognized back then
concerns the difference between the two- and four-terminal
measurements. Specifically, it was understood that, when
electrons are not reflected at the contacts (“perfect junctions”),
the two-terminal ballistic dc conductance G is measured in
units of e2/h per conducting channel, with the resistance 1/G
emerging entirely from relaxation processes in the attached
contacts (“reservoirs”).

As the discussions expanded to cover interacting electrons,
the notion of ballistic transport yielded a remarkable result
for one-dimensional correlated electrons in a ballistic (con-
serving both the total electron momentum and the numbers
of right- and left-moving electrons) Luttinger liquid (LL) [8].
Namely, it was established, from various theoretical perspec-
tives [9–16], that when a ballistic LL quantum wire terminates
in two Fermi liquid contacts, all signatures of interaction
inside the wire vanish from G. Under the assumption of inter-
actions inside the contacts being negligible, G was understood
to be universally quantized at e2/h (per spin), largely in accor-
dance with the experimental observations [17,18].

Our purpose here is to investigate transport of interacting
electrons through a fractional quantum Hall (FQH, fractional
QH) edge, with emphasis on the role of contacts and the
universality of G for the case when the edge hosts several
nonequivalent chiral conducting channels. An FQH edge is a
strongly correlated “chiral LL” [19–21] that inherits its com-
positional properties from the topological order of the bulk.
For a given bulk filling factor ν, the topological constraint on
the edge structure (the number of edge channels and the chan-
nel filling factor discontinuities, hence the channel chiralities)
allows for multiple specific choices. Which of the choices is
realized is determined by the confinement-controlled “electro-
statics” of the edge.

An archetypical example of a multichannel edge, on which
we focus in this paper, is the “hole-conjugate” edge for ν =
2/3. The concrete model we discuss corresponds to two coun-
terpropagating channels with filling factor discontinuties 1
and −1/3 [22], which is thought to be appropriate for the case
of a sufficiently sharp confinement (below, we refer to these
channels as channel 1 and channel 1/3, respectively modes
1 and 1/3). The key ingredient in our story is interaction be-
tween charge densities in these two channels. More complex
edge structures with more channels emerge with softening
confinement as a result of “edge reconstruction” [23–27],
with the emergence of fractional modes being characteristic
of both integer [25,27] and fractional bulk phases, eventually
approaching the “coarse-grained” quasiclassical limit [28,29].
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FIG. 1. Schematic illustration of a contact (orange) side-attached
to a chiral (not terminating in the contact) two-channel edge (blue).
The contact is connected to an external circuit and coupled to the
edge modes through tunneling bridges.

Additional channels were argued to play an essential role
in certain experiments on the ν = 2/3 edge [30]. The ideas
that are central to the description of edge transport within
the model we focus on here are equally applicable to these,
more involved structures. Experimentally, there has been an
immense effort, in the last decade or so, to probe the structure
of complex FQH edges, especially at ν = 2/3, with evidence
pointing towards the existence of counterpropagating edge
modes [31–51].

An FQH edge with counterpropagating channels represents
an intermediate case between a nonchiral quantum wire (in
particular, a conventional LL quantum wire or a symmetric
QH line junction [52,53]) and a single-channel Laughlin edge
(corresponding to ν = 1/m, with m an odd integer), and is
different from both in an essential way. Specifically, on the
one hand, its chiral nature is manifest in the presence of a
ballistic charge mode irrespective of the presence of backscat-
tering disorder inside the edge—in contrast to the LL quantum
wire. On the other hand, disorder-induced charge equilibration
between the channels generically affects the conductance—in
contrast to the single-channel edge. A more subtle difference
from the LL quantum wire concerns the nature of contacts.
The nonchiral wire can terminate in the contacts, whereas the
chiral edge cannot. Therefore contacts to the QH edge are
necessarily “side attached” (Fig. 1) [54].

A. Contacts

For the single-channel case, both the two-terminal con-
ductance G and the Hall conductance GH show “fractional
quantization,” G = GH = 1/m (hereafter, we set e = h̄ = 1,
except for the conductances, which are measured, as in the
formula above, in units of e2/h), under the assumption that the
side-attached contacts are “ideal”; otherwise, the quantization
of G at 1/m is lost [54,55]. An ideal contact is defined as
fully absorbing the incident charge current (“black body”) and
emitting current that is independent of the incident one, with
the contact playing the role of a source at equilibrium. For
example, a single tunneling link between the edge and the
reservoir does not meet these conditions [54,55], nor does a
contact that emits several edge modes that are not at equilib-
rium with each other [56]. The ideal contact is supposed to
be characterized by a certain electrochemical potential μ and
temperature T of electrons. A voltage probe (in its invasive
version that “thermalizes” electrons) is then understood as an
ideal contact with no net current flowing through it.

1. Nonideal contact

Calculating the edge conductance with ideal contacts in
the clean case (where “clean” means no charge scattering be-
tween channels if the number of channels exceeds one) is thus
tantamount to the identification of the edge electron density
excitations that are conjugate to μ [13,57]. For the single-
channel edge, the electron charge density mode is defined
uniquely, which yields the abovementioned G = GH = 1/m.
From this perspective, the quantization of G = 1 for a clean
interacting LL wire [9–16] (two chiral channels) stems from
μ being conjugate to the “bare” (noninteracting) right- or
left moving electron modes, and not the chiral, interaction-
renormalized electron eigenmodes. That is, the contacts that
provide for G = 1 in interacting LL quantum wires are not
ideal: the currents incident on the contacts from the bulk of the
wire, which are the eigenmode currents, are not fully absorbed
by the contacts, and the currents emitted by the contacts into
the bulk are delicate linear combinations of the eigenmodes.

The apparent dichotomy between the requirement of ideal
contacts for the quantization of G in the Laughlin edge and
the requirement of nonideal contacts for the quantization in
nonchiral quantum wires reflects the tacitely assumed absence
of interaction between electrons on different segments of the
QH edge separated by contacts. Bringing these segments in
proximity to each other, in a narrow Hall bar [58,59] or on the
sides of a narrow barrier in the QH line-junction setup [52,53],
would also make the “nonideality” of the contacts—in the
same sense as in the LL case—a necessary condition for the
quantization of G at 1/m for the single-channel edge. Con-
versely, assuming the current-supplying contacts to be ideal,
the interaction between the parts of the Laughlin edge on the
opposite sides of the Hall bar yields a nonuniversal value of
G [58], with GH still quantized at 1/m.

Focusing on the multichannel FQH edge in a Hall-bar
geometry, we work with the assumption that the interaction
between electrons on the edge is sufficiently short-range so
as not to act between any points on the edge separated by a
contact. However, even with this assumption, the presence of
local interchannel interactions both outside the side-attached
contact and beneath it—which are not necessarily of the same
strength—brings up a question about the influence of these
interactions on the conductance, which we will discuss in
detail in the main part of the paper.

It was shown in Ref. [60] that generically neither G nor
GH in the clean case is quantized for the ν = 2/3 edge with
counterpropagating channels, if the contacts are considered as
ideal. That is, both G and GH depend then on the strength of
interchannel interaction. This is in similarity to a LL quantum
wire with ideal contacts. However, it is a widely held idea
that the contacts to a wire that terminates in reservoirs are,
as already noted above, generically not ideal—because of the
mismatch in the interaction strength inside the wire and in the
contacts that are thought to be noninteracting. The mismatch
is understood here as a “sharp” one, with the interaction
strength changing nonadibatically fast with respect to the
scale of the characteristic wavelength of density excitations.
The embodiment of this idea is the model of the LL quantum
wire with an inhomogeneous (“vanishing at infinity”) strength
of interaction [9–11].
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A direct generalization of this model to the case of a
QH edge is the model in which the interacting edges, or the
interacting edge channels for that matter, split up from each
other and are contacted beyond the region inside which they
run parallel (“elongated quantum point contact”) [61–63].
Within this construction, the currents in the noninteracting
“spacer” are incident on and emitted by an ideal noninteract-
ing contact. The nonideality of the “extended contact,” which
is the contact as such plus the spacer, is then associated with
Fresnel-like scattering of density excitations at the boundary
between the spacer and the interacting part of the edge. For
the model of ideal contacts attached to the noninteracting
spacers, the two-terminal conductance of the clean ν = 2/3
edge has a universal value independent of interchannel inter-
action [63]: G = 4/3, which should be contrasted with the
result of Ref. [60].

This model, however, ignores the possibility of interac-
tion between the edge channels as they run past the contact:
indeed, the contact to a QH edge is, as already mentioned
above, unavoidably side-attached (Fig. 1) [54], hence screen-
ing of the interchannel interaction by it is not necessarily
perfect. This might be particularly clear if one thinks about
the contact being attached “laterally,” as opposed to “on top.”
If one imagines the limit of no screening, the interaction
strength is then homogeneous everywhere along the closed
path of the edge. This alone makes a difference between the
side-attached contact and the contact terminating a quantum
wire, the consequences of which we will explore in the main
text. In particular, one of the questions that arise in this
connection is whether the two-terminal conductance for the
clean ν = 2/3 edge depends, instead of being quantized at
4/3, on the strength of interchannel interaction beneath the
contacts.

2. Line-junction contact

A very natural model for the side-attached contact that in-
corporates interchannel interactions is that of a “line-junction
contact” [54], which represents a linear sequence of tunnel
links connecting the edge and the reservoir. On the phe-
nomenological level, dynamics of electrons in the reservoir
is supposed to be fully incoherent and characterized by an
infinitely fast equilibration to a given thermal state (“ideal
reservoir”). One can supplement the picture by modeling the
reservoir as a collection of “incoherent” chiral noninteracting
channels each of which supplies electrons at a given common
electrochemical potential [55].

In the limit of an infinite density of infinitesimally weak
links with the tunneling rate held fixed, the model is describ-
able by a set of scattering rates between different channels
and the reservoir, and between the channels themselves. In
this limit, it was argued [54] that the distinguishing property
of a long line-junction contact to the edge with counter-
propagating channels—as opposed to that with copropagating
channels—is that the current to the reservoir is determined by
the relative amplitudes of the nonuniversal partial scattering
rates. Moreover, assuming that the interaction strength be-
neath the contact and outside it is the same, the argument was
made [54] that the conductance should depend only on the
scattering rates, but not on, separately, the interaction strength

itself, as would be the case for the model with ideal contacts
analyzed in Ref. [60].

By taking this point further, we explicitly calculate G and
GH for the model of line-junction contacts, for arbitrary in-
teraction strengths beneath the contacts and in the rest of the
edge. One of the observation we make is that—for arbitrary
parameters of the line-junction contact—there exists a set of
edge modes that is at equilibrium with a given contact at its
end points (the interface between the part of the edge beneath
the contact and the “bulk” of the edge). This means that the
contact can be viewed as an ideal one with respect to these
modes and characterized by a single parameter describing
charge equilibration in the contact region. Remarkably, this
parameter plays the same role as the strength of interchannel
interaction in the ideal-contact model adopted in Ref. [60].
That is, the line-junction contact is characterized by the
strength of an effective interchannel interaction beneath it.

B. Disorder

Apart from categorizing the contacts, another essential
ingredient for the framework to describe charge transport
through multichannel QH edges is disorder-induced charge
scattering between the channels. The role of this scatter-
ing is twofold. First, it “equilibrates” the charge densities
in different channels on average. This establishes a ballistic
propagation of the total charge density, irrespective of the dif-
ference in the values and signs of the channel velocities [64].
Second, it leads to mesoscopic fluctuations of these densities.
For edges with only copropagating channels, disorder-induced
charge equilibration plays, in the dc limit, the same role as
equilibration by a voltage probe and so does not affect the
total edge current, with mesoscopic fluctuations showing up
only in the elements of the conductance matrix (in channel
indices) [65]. By contrast, for edges with counterpropagating
channels, mesoscopic fluctuations affect the conductance, and
so does, generically, charge equilibration, as we outline below.

1. Interchannel equilibration

Charge equilibration establishes, in the limit of full equili-
bration, the universal quantization of disorder-averaged G =
ν [64], independently of the value of G in the clean limit.
The quantization of G at the value of ν, irrespective of the
interchannel interaction, in the charge-equilibrated limit was
also demonstrated [60] (and argued on more phenomenolog-
ical grounds [54]) specifically for ν = 2/3. Importantly, the
charge equilibration-induced quantization of G for ν = 2/3
does not rely on the decoupling of the charge and neutral
modes at a specific value of the interaction strength, with
disorder affecting then only the neutral mode, along the lines
of the renormalization-group treatment [66,67]. The quanti-
zation results solely from a combination of the total charge
conservation and the local equilibration, in the spirit of hydro-
dynamics [64].

By providing for the conductance quantization at ν, the
edge segment consisting of the contact proper and the charge-
equilibrated parts of the disordered edge on both sides of it
is, as a whole, at equilibrium with the bare (noninteracting)
density modes. It was argued [54] that such a “compound”
contact may be viewed as a realization of Büttiker’s ideal
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contact [56] for the edge with counterpropagating channels.
It is worth noting, however, that this is only true if there is
no interaction between the channels (as was the case in the
Büttiker construction with copropagating channels). Indeed,
as was already mentioned above, the ideal contacts to a clean
edge do not yield a quantized conductance for interacting
counterpropagating channels [60].

A crossover to the universally quantized G = ν [64] as the
length of the disordered edge increases was considered for
two counterpropagating channels both in the absence [68,69]
and in the presence [63,70,71] of interchannel interaction.
A model of local thermal equilibration [69], in which every
pair of adjacent tunneling links is separated by voltage and
temperature probes in each of the channels, was employed to
explore, in the absence of interchannel interaction, also ther-
mal transport and shot noise [72–74]. Below, we will study
charge equilibration particularly for the line-junction contacts,
for arbitrary interactions beneath and outside the contacts.

2. Mesoscopic fluctuations

Turning to mesoscopic fluctuations for the case of coun-
terpropagating channels, it is important to distinguish two
essentially different types of the fluctuations. One is not re-
lated to the presence or absence of interchannel interaction.
Because of the chiral nature of the edge, mesoscopic con-
ductance fluctuations of this type self-average with increasing
edge length. For incoherent transport (see Sec. I B 3), they
vanish altogether in the Gaussian limit of the Poisson distri-
bution of interchannel tunneling links in space between the
contacts. The other relies on spatial inhomogeneity of the
interaction strength; in particular, at the contacts. If the in-
teraction strength changes at the contacts and is homogeneous
otherwise, then Fresnel-like scattering of the density modes
at the contacts creates a Fabry-Pérot resonator between the
contacts, with charge transfer through its facets depending on
the particular realization of disorder.

One peculiar situation emerges when the interchannel
interaction is strong and the charge and neutral modes de-
couple [66,67], with disorder in interchannel tunneling not
affecting the charge mode. For ideal contacts, mesoscopic
fluctuations of the two-terminal conductance G are then
strictly absent. Otherwise, they are describable in terms of
a disordered chiral sine-Gordon (χsG) model [62,63,75]. For
the ν = 2/3 edge, composed of channels 1 and 1/3, with
noninteracting spacers at the contacts (see above), fluctuations
with varying edge length are strong within this model. Specif-
ically, G fluctuates between 4/3 and 1/3 [63], or, equivalently,
the diagonal element, for channel 1, of the conductance matrix
fluctuates between 1 and 1/2 [62]. To the best of our knowl-
edge, this (“coherent”) transport regime has not so far been
observed experimentally; on the contrary, the dependence of
G on the edge length for ν = 2/3 was reported to show charge
equilibration as the length is increased, with G approaching
2/3 in an (arguably) smooth manner [46].

3. Incoherent transport

In this paper, we restrict attention to the incoherent model
and focus mostly on the case of white-noise (weak and with
a vanishing correlation length) disorder in the amplitude of

tunneling links. Within the incoherent model with white-noise
disorder, G is a smooth function of the edge length with no
mesoscopic fluctuations by construction (which seems to be in
agreement with the experimental observations [46] mentioned
above). As part of a brief rationale for the model, let us first
comment on the meaning of “incoherent” in the context of the
ν = 2/3 edge. A conceptually effective formalism to solve the
disordered χsG model is to map it onto the (pseudo)spin-1/2
dynamics of a chiral fermion in a spatially random Zeeman
field [66]. The coherent χsG and incoherent models differ then
in that the former deals with random rotations of spin over the
Bloch sphere, whereas the latter with spin flips between the
up and down positions. As such, the incoherent model is fully
described by the local occupation numbers for spin up and
spin down [76].

Returning to the original problem, the spin flips correspond
to flipping the orientation of a charge dipole between channels
1 and 1/3. As a result, the incoherent model is formalizable in
terms of a linear equation of motion for the “partial” charge
densities. This picture is pertinent to the decoupled charge and
neutral modes. In the main text, we will discuss the dynamics
of charge within the incoherent model, for arbitrary interac-
tion between the channels, in more detail.

From this perspective, a question arises as to the effect
of nonzero T on the neutral-mode dynamics within the dis-
ordered χsG model, in particular, whether it may lead to a
suppression of the mesoscopic fluctuations. It was argued
for the ν = 2/3 model [63]—and demonstrated for a related
model [75], with a proper adjustment for the ν = 2/3 case—
that the property of transport being coherent is insensitive
to temperature as long as the neutral and charge modes are
decoupled (otherwise, an incoherent transport regime [76]
emerges if the edge length is sufficiently long). On the other
hand, a different scenario was proposed, in which a crossover
to the incoherent regime, as T is increased, is governed by the
ratio of T and the characteristic energy spacing for the density
excitations on the scale of the edge length [62]. Yet another
condition for such a crossover was associated with the ratio of
T and the energy spacing on the scale of the “typical distance
between scatterers” [71].

While it is beyond the scope of this paper to go deeper into
the story about the coherent regime, let us briefly mention
various mechanisms that may indeed suppress mesoscopic
fluctuations and justify the incoherent model, irrespective of
whether the charge and neutral modes are decoupled or not.
In particular, at nonzero T , one can think of the mechanisms
that are based on weakening the assumptions behind the con-
ventional formulation of the χsG problem, i.e., introducing
perturbations to the coherent model.

For example, this may be nonzero curvature of the density-
mode spectrum (related to a finite range of interaction), which
leads to a “self-averaging” of the conductance given by a sum
of contributions with different velocities of propagation (to
an extent, this is similar to the curvature-induced suppres-
sion of interference in a Mach-Zender interferometer [77]).
Nonzero curvature of the electron spectrum (related to the
shape of self-consistent confinement) generically adds decay
channels for the edge excitations. Note that the nonlinearity of
the spectrum may be enhanced close to the edge reconstruc-
tion transition. Or it may be dephasing by the environment.
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One particular source of it may be temporal fluctuations
of the strength of tunneling because of interactions with
additional—due to edge reconstruction—channels possibly
running close to those taken into account without exchanging
charge with them.

Another mechanism of the suppression of mesoscopic
flustuations, effective also at T = 0, may be due to the coher-
ent random interchannel dynamics of charge being extended
from the “bulk” of the edge into the regions beneath the
line-junction contacts. Then, fluctuations tend to self-average
because the conductance is given by a sum over paths of
different length for the density excitations that are emitted and
absorbed at different points along the contacts.

Mesoscopic fluctuations may also be suppressed merely
because of interchannel interaction being so weak (or so
strong, see below) that the edge finds itself, even upon
disorder-induced renormalization [60,66], far away from the
point at which the charge and neutral modes decouple. It
was argued in Ref. [63] that mesoscopic fluctuations are sup-
pressed for weak interaction and prominent, for not a too long
edge, close to the decoupling point. However, as discussed
in Sec. II A, there is a certain duality between the properties
of the edge for weak and strong interchannel interaction.
A direct consequence of it is that, for strong interchannel
interaction—stronger than required for the decoupling of the
charge and neutral modes—disorder should be irrelevant in
the renormalization-group sense in the same manner as for
weak interaction. Moreover, dephasing of mesoscopic fluc-
tuations at T �= 0 should be characteristic not only of the
weak-interaction case, but the opposite case as well.

C. Outline of the results

In Secs. I A and I B, we discussed the multifaceted issues
of contacts and disorder in QH edge transport, by placing
them in proper perspective with regard to an FQH edge with
counterpropagating channels. With this background in mind,
we investigate charge transport through such an edge in the
presence of both interchannel interaction and backscattering
disorder. We focus on the prime example for these purposes,
namely the two-channel edge at ν = 2/3 with channels 1 and
1/3. Here, we do so within the incoherent model, defined and
rationalized in Sec. I B.

One of our aims is to gain understanding of how edge
transport is affected by interchannel interaction when the in-
teraction strength is different beneath and outside the contacts.
The particular model of the contact that we keep in mind in the
first place is a line-junction contact. Before proceeding to this
model, however, we first set up a general phenomenological
framework in which the contact is supposed to be at equi-
librium with a particular set of edge modes that are not the
eigenmodes outside it. As such, this contact is nonideal—in
the precise sense discussed in Sec. I A.

Our main results, some of which were already mentioned
above, can be broadly described as follows.

(1) For the contacts represented—first at the model level—
as thermal reservoirs for the edge eigenmodes in the contact
regions, the conductance of the clean edge does not depend
on the strength of interchannel interaction outside these re-
gions. Rather, the conductance depends on the strength of

interaction characterizing the modes that are at equilibrium
with the contacts. The dependence of transport on the latter
is formalized by introducing “generalized” boundary condi-
tions on the facets of the contacts. The independence of the
conductance on interchannel interaction outside the contacts
holds irrespective of whether different contacts correspond to
the same or different equilibrium modes associated with them.
The obtained expressions for the conductance—for various
arrangements of the measuring terminals—extend the conven-
tional picture of ideal contacts.

(2) The long line-junction contact is fully characterizable
by a single parameter, which brings in the notion of “uni-
versality” in the classification of different contacts attached
to the edge. Remarkably, this parameter plays the role of an
effective strength of interaction inside the contact within the
above model of a thermal reservoir. In the microscopic picture,
this effective interaction strength is generically nonzero for
the line-junction contact. The parameter “labelling” a given
contact is determined by the interplay of backscattering be-
tween the edge channels and scattering between the reservoir
and the edge, but not the interaction strength either beneath
or outside the contact—apart from the interaction-induced
renormalization of the scattering rates.

(3) Disorder-induced tunneling between edge channels is
described in terms of charge fractionalization. The framework
of fractionalization-renormalized tunneling, which emerges
from this approach, yields the dependence of the scatter-
ing rates on the interaction strength, formalized in terms
of electrostatic screening of charges created by tunneling.
This dependence is distinctly different from the conven-
tional renormalization of the tunneling strength by the
interaction-induced orthogonality catastrophe. The picture of
fractionalization-renormalized tunneling reveals the physics
behind the effect of backscattering disorder on the edge eigen-
modes, including the charge and neutral modes when these
decouple from each other. It also describes the emergence of
negative partial scattering rates for sufficiently strong inter-
action. The thermodynamic constraint on tunneling is framed
into the fractionalization picture for an arbitrary strength of
interaction.

(4) Charge equilibration and the resulting dependence of
the conductance on the edge length are analyzed for arbitrary
strength of interchannel interaction both beneath the contacts
and outside them. The strength of true interaction is shown
to cancel out from the conductance of a disordered edge apart
from the renormalization of the scattering rates. Instead, trans-
port is affected by the effective interaction that characterizes
equilibration in the long line-junction contacts, making the
conductance of a short edge dependent on the strength of this
effective interaction. The existence and the properties of the
disorder-modified ballistic charge mode, responsible for the
universal quantization of the conductance in the limit of a long
edge, are discussed for arbitrary strength of interaction. The
conventional notions of the contact and bulk contributions to
the two-terminal resistance are demonstrated to be inapplica-
ble to the QH edge with counterpropagating channels.

The remainder of the paper is organized in the following
way. Section II is devoted to transport through the clean edge,
with emphasis on the formulation of the boundary conditions
for the contacts [items (1) and (2) in the above outline of the
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results]. In Sec. II A, we specify the model for the ν = 2/3
edge. In Sec. II B, we discuss the generalized boundary con-
dition [item (1)]. In Sec. II C, we calculate the conductance for
this type of the boundary condition with various arrangements
of the measuring terminals. In Sec. II D, we consider the
model of the line-junction contact [item (2)]. In Sec. II E,
we map the model of the line-junction contact onto the
model of the generalized boundary condition, and obtain the
conductance for the line-junction contacts. Section III deals
with fractionalization-renormalized tunneling [item (3)]. In
Sec. III A, we discuss fractionalization upon tunneling into the
edge. In Sec. III B, we turn to fractionalization upon tunneling
between edge channels and formulate a general framework
to describe fractionalization-renormalized tunneling for the
case of a single tunneling link. In Sec. III C, we analyze the
strong-tunneling limit and the thermodynamic constraint on
tunneling for an arbitrary strength of interchannel interaction.
Section IV covers transport through a disordered edge [item
(4)]. In Sec. IV A, we consider the emergence of negative scat-
tering rates for the case of strong interchannel correlations. In
Sec. IV B, we discuss the disorder-modified eigenmodes of
the edge. In Sec. IV C, we calculate the conductance of the
disordered edge for arbitrary parameters of the line-junction
contacts and address the question of whether the contact and
bulk resistances in the two-terminal setup are generically
meaningful notions for a multichannel QH edge. Section V
concludes with a succinct summary. In Appendix, we discuss
some aspects of the nonchiral LL model from the perspective
of the framework formulated for the chiral edge; in particular,
the line-junction contact and fractionalization-renormalized
tunneling.

II. CLEAN EDGE

We begin by considering a clean edge, with no interchannel
tunneling, and specifically focus on the ν = 2/3 edge within
its model discussed at the beginning of Sec. I, namely, the one
composed of counterpropagating channels 1 and 1/3.

A. Model for the ν = 2/3 edge

The model is defined by the Hamiltonian density

H0 = π
(
v1n2

1 + 3v2n2
2 + 2v12n1n2

)
(1)

and the commutation relation at points x and x′ along the edge

[ni(x), nj(x
′)] = i

2π
δij δνi ∂xδ(x − x′) (2)

for the charge densities (in units of −e) n1 and n2 in channels
1 and 1/3, respectively. This is equivalent to the Lagrangian
formulation in Ref. [66]. The constants v1,2 are the speeds
of propagation of the densities n1,2 in the noninteracting
limit (here and below, “noninteracting” means no interchan-
nel interaction, whereas short-range interactions within the
channels are incorporated in the velocities v1,2). In Eq. (1), the
densities n1 and n2 interact with each other via a short-range
potential with the zero-momentum Fourier component 2πv12.
The filling factor discontinuities δν1 = 1 and δν2 = −1/3 in
Eq. (2) are of opposite sign, which encodes the property of
the modes n1 and n2 propagating in opposite directions for
v12 = 0.

In accordance with Eq. (1), we assume everywhere below
that the interchannel interaction is pointlike. For our purposes
in this paper, this is an accurate description of the edge on
length scales larger than the screening radius of Coulomb
interaction, where screening is provided by a nearby metallic
gate. It is worth noting, however, that a nonzero radius of
interaction leads to a nonlinear dispersion relation for the
density excitations, which may be important on arbitrarily
large length scales. For instance, one of the consequences of
the nonlinear dispersion, commented upon in Sec. I B 3, is the
suppression of mesoscopic conductance fluctuations, which
adds to the justification of the incoherent description of the
edge dynamics.

A diagonalization of the quadratic form in Eq. (1) repre-
sents H0 in terms of the eigenmode (“chiral”) charge densities
n±:

H0 = πv+
g+

n2
+ + πv−

g−
n2

−, (3)

with n± obeying

[n±(x), n±(x′)] = ± i

2π
g±∂xδ(x − x′). (4)

Both n1,2 and n± are defined as charge densities, so that

n+ + n− = n1 + n2. (5)

The eigenmodes propagate with the velocities v± (both de-
fined positively, as speeds) to the right (+) and to the left (−),
and are characterized by the dimensionless “conductances”
g± � 0 [60]. Parametrized in terms of the dimensionless in-
teraction strength

α = 2√
3

v12

v1 + v2
, (6)

v± are given by

v± = 1
2 [±(v1 − v2) + (v1 + v2)

√
1 − α2]. (7)

To represent g± in a compact form, it is convenient to intro-
duce the parameter [60,66]

� = 2 − √
3α√

1 − α2
, (8)

in terms of which g± are written as

g± = � ± 1

3
. (9)

From Eqs. (3) and (7), the stability conditions are Im v± =
0, which is |α| � 1, and v± � 0, which is [66]

v2
12 � 3v1v2. (10)

The latter is stronger than or identical to the former for
arbitrary v1 and v2 (identical for v1 = v2), so that the only con-
dition is Eq. (10). Note that � � 1 [cf. Eq. (9)] for all |α| � 1.
The point � = 1, at which the charge and neutral modes
decouple [66,78], corresponds to α = √

3/2. It is worthwhile
to mention that if the velocities v1,2 differ strongly enough
from each other, namely if v1 is beyond the interval

v2/3 < v1 < 3v2, (11)
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an instability occurs with increasing α before the point � = 1
is reached.

It is also worth noticing that the function α(�) [which
solves Eq. (8)] is double valued for |α| � 1, with two branches
merging at � = 1. That is, for the case of repulsive inter-
action (α > 0), the range of � is not limited to the interval
1 � � � 2, with the noninteracting point at � = 2:

0 � α �
√

3/2 �→ 1 � � � 2. (12)

On the other branch of α(�), with
√

3/2 < α � 2
√

v1v2/(v1 + v2)

�→ 1 < � � 2(v1 + v2 −
√

3v1v2)/|v1 − v2|,
(13)

the value of � grows with increasing α. This means, in
particular, a nonmonotonic dependence of g± on α. The
largest—within the model (1)—α in Eq. (13) corresponds to
the upper boundary (10), at which one of the speeds v± slows
down to zero (or both, if v1 = v2).

Note that it is the parameter � that is of prime importance
by determining the scaling dimensions of the correlation func-
tions of the model [60,66]. In view of Eqs. (12) and (13), the
model (1) possesses a duality between the cases of small and
large v12 corresponding to the same value of �, with the only
difference being the different velocities v± that are determined
by v12 itself. Perhaps only numerics can say if this captures
physics of a more realistic model [79]. Having made this
cautionary remark, we assume below, for definiteness, that
1 � � � 2 with α varying within the interval (12).

The Heisenberg equations of motion resulting from
Eqs. (1) and (2), which have the form of continuity equations
∂t n1,2 + ∂x j1,2 = 0, yield the partial charge currents

j1 = v1n1 + v12n2, j2 = −(v2n2 + v12n1/3). (14)

Similarly, from Eqs. (3) and (4), the chiral charge currents j±
obey ∂t n± + ∂x j± = 0 with

j± = ±v±n±. (15)

The total edge current j = j+ + j− = j1 + j2.

B. Generalized boundary condition

The equations of motion introduced in Sec. II A need to be
supplied with boundary conditions at the contacts. As outlined
in Sec. I C, we first consider—before turning in Sec. II D to
the line-junction contact—an instructive example in which the
contact is at equilibrium with a set of density modes that are,
in general, not the eigenmodes outside the contact. Specif-
ically, let the contact be a thermal reservoir for the modes
n±c [Eqs. (3) and (4), with c for “contact”] corresponding
to a given interaction parameter �c [Eq. (8)] not necessarily
equal to the parameter � for the edge outside the contact.
If �c = �, the contact is, by definition in Sec. I A, an ideal
contact, for which the two-terminal conductance was obtained
as [54,60,66]

G = g+ + g− = 2
3� (16)

[this is a “cousin” of the equality G = K , where K is the
Luttinger constant, for a LL wire with ideal contacts (see

����x0���x0

�

�c

��x)

x

FIG. 2. Schematic profile (solid line) of the parameter �(x)
[Eq. (8)] characterizing the strength of interchannel interaction be-
neath (�c, for |x| < δ) and outside (�, for |x| > δ) the side-attached
contact. Because of screening of the interaction by the contact, �c

and � are generically not the same. The difference between them
depends on the mutual position of the contact and the edge; in par-
ticular, the ratio of two characteristic distances: the one between the
contact and the edge and the other between the channels. The dashed
line for �(x) illustrates the “point-splitting” procedure discussed
below Eqs. (24) and (25).

Appendix)]. As we will demonstrate in Sec. II E, this model of
a thermal reservoir with a certain �c is directly related to the
line-junction model discussed in Sec. I A 2. Let us, therefore,
proceed to the case of �c �= �.

Imagine that the contact “covers” the part of the edge
between x = δ and x = −δ (Fig. 2), so that the boundary con-
ditions for the densities outside the contact are set at |x| = δ.
The chemical-potential shift δH of the Hamiltonian density of
the edge, provided by the contact, is

δH = −μn, (17)

where n is the total charge density. According to the above,
assume that μ is conjugate to the densities n±c. Specifically,
writing

n = n+c + n−c (18)

in δH and minimizing H0 + δH by varying it with respect to
n+c and n−c, the two boundary conditions on the facets of the
contact are obtained as

μ = (λ̂T 
̂−1)++n+(δ) + (λ̂T 
̂−1)+−n−(δ), (19)

μ = (λ̂T 
̂−1)−+n+(−δ) + (λ̂T 
̂−1)−−n−(−δ). (20)

Here,


̂−1 = 2π

(
v+/g+ 0

0 v−/g−

)
(21)

is the inverse thermodynamic compressibility matrix in the
bulk of the edge (for |x| > δ) in the n± basis [cf. Eq. (3)],
and the matrix λ̂ relates nc = (n+c, n−c)T and n = (n+, n−)T :

n = λ̂ nc (22)
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(λ̂T denotes transpose of λ̂). The matrix λ̂ is given by

λ̂ = 1

2

(
1 + � 1 + �

1 − � 1 − �

)

+ 1

2

√
�2 − 1

�2
c − 1

(
1 − �c −1 − �c

−1 + �c 1 + �c

)
. (23)

By definition, λ̂−1 equals λ̂ with the exchange � ↔ �c.
In terms of the currents (15), the boundary conditions (19)

and (20) become

μ

2π
= j+(δ)

g+
λ++ − j−(δ)

g−
λ−+, (24)

μ

2π
= j+(−δ)

g+
λ+− − j−(−δ)

g−
λ−−. (25)

Equations (24) and (25) impose two links on the four cur-
rents j±(δ) and j±(−δ). Placing boundary conditions of this
type on each of the contacts fixes all currents between the
contacts on the closed loop along the edge. The boundary
conditions (24) and (25) [or (19) and (20) for that matter]
generalize those for the ideal contact, for which λ̂ = 1 is the
identity matrix.

Although the generalized boundary conditions are signif-
icant by themselves, the concern that one might have at this
point is over the fact that they are imposed on the facets
of the contact where the interaction strength experiences, by
construction, a jump, corresponding to the change between
� and �c. It is therefore instructive to “point split” the
boundary conditions by placing them at |x| = x0 + 0, where
x0 > δ (Fig. 2), and assuming that the interaction parameter is
given by �c in the “spacer” between |x| = δ and |x| = x0. The
purpose is to demonstrate that Eqs. (24) and (25) correspond
to precisely this procedure with x0 → δ.

The contact itself (covering, as before the point splitting,
|x| < δ) is then ideal, with a simple boundary condition at
|x| = δ:

μ

2π
= ± j±c(±δ)

g±c
, (26)

where j±c(±δ) and g±c are the outgoing eigenmode cur-
rents (those emitted by the contact) and the eigenmode
conductances, respectively, corresponding to the interaction
parameter �c. The boundary condition at |x| = x0 + 0 is thus
a combination of the ideal-contact condition (26) at |x| = δ

and the matching condition at |x| = x0. The latter relates the
densities and currents on the sides of the interface at which the
interaction parameter changes from �c to � with increasing
|x|.

It is convenient to write the matching condition in the
basis that does not change across the interface. Let it be, as a
transparent example, the n1,2 basis [Eqs. (1) and (2)]. Around
the interface, the continuity equations then read [cf. Eq. (14)]

∂t n1 + 1

2π
∂x

[( ˆ̄
−1
)

11n1 + ( ˆ̄
−1
)

12n2
] = 0, (27)

∂t n2 − 1

2π

1

3
∂x

[( ˆ̄
−1
)

21n1 + ( ˆ̄
−1
)

22n2
] = 0, (28)

where ˆ̄
 is the x dependent thermodynamic compressibility
matrix in the n1,2 basis [the bar is put to distinguish ˆ̄
 from 
̂

in Eq. (21)], with

ˆ̄
−1 = 2π

(
v1 v12

v12 3v2

)
. (29)

The matching condition is, therefore, the condition of continu-
ity, upon crossing the interface, of the partial “local chemical
potentials”

μi =
∑

j

( ˆ̄
−1)ijnj : (30)

μi||x|=x0−0 = μi||x|=x0+0. (31)

Equivalently, Eq. (31) is the condition of continuity of the cur-
rents j1 = μ1 and j2 = −μ2/3 that are separately—beyond
the total current conservation—continuous across the inter-
face. The continuity of j1,2 is achieved by the corresponding
jumps in n1,2.

By the same token, the continuity of the partial currents
is maintained in any basis that is not changed across the
interface; in particular, in the basis of n±c. By representing:
(i) j±c(x = ±x0 ∓ 0) in terms of μ from Eq. (26) and (ii)
j±c(x = ±x0 ± 0) in terms of j± at the same x by changing
the basis according to Eq. (22), the continuity condition for
j±c becomes exactly Eqs. (24) and (25) after x0 → δ, which
was to be demonstrated.

C. Conductance for the generalized boundary condition

We now turn to the calculation of the two- and four-
terminal conductances of a clean ν = 2/3 edge for the
boundary conditions (24) and (25), by placing them on each
of the contacts, in the dc limit. Nonequilibrium is then cre-
ated by “biasing” the current contacts with different chemical
potentials (this is a sufficient minimal model to calculate
the measured conductance in a QH system with a gapped
bulk [54,80]). Assume that all of the contacts are character-
ized by the same �c (the case of different contacts will be
considered in Sec. IV C 2).

For the two-terminal setup [Fig. 3(a)], the currents ju± in
the upper part of the edge [running to the right (+) and to the
left (−)] are given, from Eqs. (24) and (25), by(

ju+/g+
− ju−/g−

)
= 1

2π

(
λ̂−1)T

(
μL

μR

)
, (32)

where μL and μR are the chemical potentials of the left and
right contacts, respectively. For the total current at the upper
edge ju = ju+ + ju−, the combination of g± and λ̂−1 reduces
to g±c:

ju = 1

2π
(g+cμL − g−cμR). (33)

The total current at the lower edge jl is obtained from Eq. (33)
by exchanging μL ↔ μR, with the total current j between the
contacts being j = ju − jl . The conductance G = 2π j/(μL −
μR) is then found as

G = g+c + g−c = 2
3�c. (34)

The strength of interchannel interaction for the edge outside
the contacts is thus seen to drop out from the two-terminal
conductance (and from each of the currents ju,l separately).
That is, as a general rule, the conductance of a clean edge
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�R�L

ju

jl

�R

�T

�L

�B

(a)

(b)

FIG. 3. Measurement with two (a) and four (b) terminals, char-
acterized by the chemical potentials μL (left), μR (right), μT (top),
and μB (bottom), for the edge with two counterpropagating channels.
The total edge current in the two-terminal geometry is a sum of the
currents in the upper ( ju) and lower ( jl ) parts of the edge. This is so
for the four-terminal setup as well, if the top and bottom terminals
are the voltage probes.

depends only on the characteristics of the modes that are
at equilibrium with the contacts [cf. Eq. (16) for the ideal
contact].

Extending the argument that led to Eq. (33) to compute
the four-terminal conductances for the setup in Fig. 3(b), the
current flowing from the left contact into the edge, jL, is
written as

jL = 1

2π
[g+c(μL − μB) − g−c(μT − μL )], (35)

where μL is the chemical potential of contact L, etc. The
currents jT,R,B into contacts T, R, and B are obtainable from
Eq. (35) by cyclic permutation L → T → R → B → L. For
the Hall measurement, the top and bottom contacts are taken
as voltage probes with jT,B = 0, so that the source-drain
current j = jL = − jR. The Hall conductance GH and the
source-drain conductance G4 are then obtained as

GH = 2π j

μT − μB
= g2

+c + g2
−c

g+c − g−c
= 1

3

(
�2

c + 1
)
, (36)

G4 = 2π j

μL − μR
= g2

+c + g2
−c

g+c + g−c
= 1

3
(�c + 1/�c), (37)

with GH = �cG4. Similarly to G in Eq. (34), � vanishes from
GH and G4, which depend only on �c.

D. Line-junction contact

Having introduced the phenomenological model for the
contacts in Secs. II B and II C, we now turn to the line-junction
contact model [54]. As will be seen shortly, the two are
directly mappable onto each other. As already discussed in
Sec. I A 2, the line-junction contact model is formalized in

1

1/3

�	 �


�c

��� x

�

FIG. 4. Schematic portrait of a line-junction contact. Channels
1 and 1/3 exchange electrons, for |x| < δ, through tunneling links
(depicted as dashed lines) with the contact viewed as a thermal
reservoir of electrons at the chemical potential μ. The model is char-
acterized by three inverse scattering lengths: γ1 and γ2 for tunneling
between the contact and channels 1 and 1/3, respectively, and γc/2
for tunneling between the channels [Eqs. (38) and (39)].

terms of scattering rates at which the edge channels exchange
electrons with the reservoir and, in general, also the rates at
which the channels exchange electrons among themselves.
Specifically, for the ν = 2/3 edge, the equations of motion
for the currents j1,2 beneath the contact (i.e., for |x| < δ) read

∂x j1 + 1

2
γc( j1 + 3 j2) − γ1

( μ

2π
− j1

)
= 0, (38)

∂x j2 − 1

2
γc( j1 + 3 j2) − γ2

( μ

2π
+ 3 j2

)
= 0, (39)

where γ −1
1 and γ −1

2 are the scattering lengths for the ex-
change of electrons between the reservoir and channels 1
and 1/3, respectively, and 2γ −1

c is the backscattering length
for these channels in the contact region (Fig. 4). The com-
bination j1 + 3 j2 = μ1 − μ2 is given by the difference of
the local partial chemical potentials (30), a nonzero value of
which produces the “transverse” (between the channels) local
current. The combination of μ and j1,2 in the last terms in
Eqs. (38) and (39) means that the currents j1 and j2 tend to
equilibrate, respectively, at μ/2π and −(1/3) × μ/2π , where
μ is the chemical potential of electrons in the piece of metal
that constitutes the side-attached contact, viewed as a thermal
reservoir for electrons.

The origin of backscattering between the channels beneath
the contact is, generically, twofold. Firstly, it may be related
to direct disorder-induced tunneling between the channels.
Importantly, the disorder strength may be different from that
outside the contact region. For example, manufacturing the
contact may introduce more disorder to the edge, as a result of
which the line-junction contact with disorder-induced γc �= 0
may be considered as connected to an otherwise clean edge.
Secondly, virtual tunneling into and from the contact results
in backscattering if the initial channel differs from the final
one. However, in the limit of infinitesimally weak individual
tunneling links to the contact (Sec. I A 2), these processes do
not contribute to γc. Specifically, for the Hamiltonian of a
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single tunneling link

Hc
t = t1ψ

†
c ψ1 + t2ψ

†
c ψ2 + H.c., (40)

where ψc and ψ1,2 are the electron operators at the point
of tunneling in the contact and in channels 1 and 1/3, re-
spectively, for the tunneling amplitudes t1,2 → 0 and the link
concentration nc → ∞ with nc|t1,2|2 held fixed, the rates of
tunneling to and from the contact, related to γ1,2, are finite,
whereas the contribution to γc vanishes as nc|t1t∗

2 |2 → 0.
Note that Eq. (40) assumes that the tunneling link connects

the reservoir to both channels 1 and 1/3. In a more general
modeling of the experimental setup, the links to channels
1 and 1/3 need not be at the same points along the edge
and, moreover, their densities may differ. Nevertheless, in
the Gaussian limit of infinitesimally weak links, the virtual
processes of tunneling into the contact do not contribute to
γc in any case. That said, it may be important to keep in
mind that, beyond this limit, γc �= 0 even if disorder-induced
backscattering in the contact region is viewed as negligibly
weak.

Equations (38) and (39) demonstrate a remarkable degree
of universality with regard to the strength of interaction. A
sufficient, for the purpose of determining the edge conduc-
tances, way to think of the source of nonequilibrium is to view
it as the difference between the chemical potentials at different
contacts represented as thermal reservoirs, as was already
mentioned in Sec. II C. The static effect of possible interaction
between electrons inside the contact is then encoded in the dif-
ference between the chemical and electrochemical potentials
outside the edge and, as such, does not show up explicitly in
Eqs. (38) and (39). Interaction between the channels beneath
the contact manifests itself in the definition of the currents
j1,2 in Eq. (14), but not explicitly in Eqs. (38) and (39).
An immediate consequence of this is that, if �c = �, the
strength of interchannel interaction—beyond the effects of
interaction-induced renormalization of the constants γ1,2 and
γc—drops out from the boundary condition at the contacts and
the conductance itself [54]. Note also that interaction between
electrons in the edge and electrons in the contact does not
affect the structure of Eqs. (38) and (39), including the source
terms. Below, we treat γ1,2 and γc, which are dependent on
particular microscopic details of the contact arrangement, as
phenomenological parameters of the model [81].

By introducing j̄1 = j1 − μ/2π and j̄2 = j2 + (1/3) ×
μ/2π , Eqs. (38) and (39) can be rewritten as homogeneous
ones:

(∂x1 + γ̂c)

(
j̄1
j̄2

)
= 0, (41)

where the matrix of inverse scattering lengths beneath the
contact γ̂c reads

γ̂c = 1

2

[
γc + 2γ1 3γc

−γc −3(γc + 2γ2)

]
. (42)

The eigenvalues k1,2 of γ̂c are

k1,2 = γ1 − 3γ2 − γc

2
± Q

2
, (43)

FIG. 5. Contact as a scatterer. Scattering is parametrized by the
leaky scattering matrix Ŵ. The matrix relates the outgoing [ j1(δ) and
j2(−δ)] and incoming [ j1(−δ) and j2(δ)] currents [Eq. (45)], and
also expresses the “leaking” current through the contact jc in terms
of the incoming currents [Eq. (47)].

where

Q = (γ1 + 3γ2 − γc)

[
1 + 6γc(γ1 + 3γ2)

(γ1 + 3γ2 − γc)2

]1/2

, (44)

with k1k2 � 0.
One of the useful ways to represent the solution of Eq. (41)

is to view it as a scattering problem (Fig. 5), by expressing the
outgoing currents j1(δ) and − j2(−δ) in terms of the incoming
currents j1(−δ) and − j2(δ):[

j̄1(δ)
− j̄2(−δ)

]
= Ŵ

[
j̄1(−δ)
− j̄2(δ)

]
, (45)

where the leaky current-scattering matrix Ŵ is given by

Ŵ = 1

Q cosh(Qδ) + (γ1 + 3γ2 + 2γc) sinh(Qδ)

×
[

Qe−(γ1−3γ2−γc )δ 3γc sinh(Qδ)
γc sinh(Qδ) Qe(γ1−3γ2−γc )δ

]
(46)

(note that Q may be of either sign depending on the sign of
γ1 + 3γ2 − γc, with Ŵ being an even function of Q). The term
“leaky” in the definition of Ŵ means that there is a current
through the contact jc = jc1 + jc2 (Fig. 5), with(

jc1

jc2

)
= (

1 − Ŵ
)[ j̄1(−δ)

− j̄2(δ)

]
. (47)

In the limit of Ŵ → 0,

jc = j̄1(−δ) − j̄2(δ) = j1(−δ) − j2(δ) − 4

3

μ

2π
, (48)

which means complete absorption of the currents j1(−δ) and
− j2(δ) that enter the contact.

E. Conductance for the line-junction contacts

In the limit of Ŵ → 0 [Eq. (48)], combining two contacts
at the chemical potentials μL and μR, respectively, as shown
in Fig. 3(a), the two-terminal conductance of a clean edge is
obtained as

G = 4/3, (49)

independently of the interchannel interaction strength beneath
the line-junction contacts. Equation (49) relies on the currents
j1,2 being continuous at the interface between the parts of the
edge beneath the contacts, where the currents are described
by Eqs. (38) and (39), and the bulk of the edge. Importantly,
this condition is fulfilled irrespective of the relation between
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�c and �, as demonstrated at the end of Sec. II B. That is,
Eq. (49) is valid for the clean edge with the line-junction
contacts in the limit of Ŵ → 0 for arbitrary �c and �, be-
ing independent of both of them, also for �c �= �. This is
in contrast to G in Eq. (34) for the generalized boundary
condition, where G is independent of �, but depends on �c.
The independence of G in Eq. (49) on � is thus in line with
Eq. (34), but the line-junction contact with Ŵ → 0 corre-
sponds to the contact described in Sec. II B if one puts an
effective parameter

�eff
c = 2, (50)

regardless of the actual one, in the generalized boundary con-
ditions (19) and (20), or (24) and (25). Recall that, as was
already mentioned in Sec. I A 1, Eq. (49) holds also for the
model of noninteracting reservoirs [Eq. (34) with �c = 2]
attached to noninteracting spacers [63].

The independence of G for the line-junction contacts on
the interaction strength beneath them is a direct consequence
of the fact that electron tunneling between the contact and
the edge in Eqs. (38) and (39) occurs between the contact
and channels 1 and 1/3 separately [82]. If tunneling occurred
between the contact and channels ±, i.e., the charges that
constitute the eigenmode were tunneling to the contact from
modes 1 and 1/3 simultaneously (and similarly for tunneling
from the contact), the boundary conditions on the contact
facets in the limit Ŵ → 0 would be those from Sec. II B.
The conductance G would then be given by Eq. (34), instead
of Eq. (49). By contrast, local tunneling from either mode
1 or 1/3 to the contact creates two density pulses running
along the edge beneath the contact in opposite directions, i.e.,
excites both eigenmodes (the fractionalization dynamics will
be considered in more detail in Sec. III).

The mixing of modes ± by tunneling between modes 1
or 1/3 and the contact is the reason for the nonideality, as is
manifest from Eq. (49), of the line-junction contact. Indeed,
the condition Ŵ = 0 means that the contact is at equilib-
rium with modes 1 and 1/3, with j̄1(δ) = j̄2(−δ) = 0. The
outgoing eigenmode currents j+(δ) and j−(−δ) obey, then,
Eqs. (24) and (25) with the matrix λ̂ corresponding to �c = 2
[Eq. (50)], i.e., with λ̂ �= 1 unless � = 2 as well. Nonzero
off-diagonal elements λ+−,−+ �= 0 produce partial reflection
of the eigenmodes incident on the contact by admixing them
to the outgoing eigenmodes, while the difference of the diag-
onal elements from unity, λ++,−− �= 1, means that the emitted
eigenmodes are not at equilibrium with the contact. Both the
former and the latter signify nonideality of the contact.

The limit of Ŵ → 0 can be achieved by first putting γc →
0, which gives a diagonal matrix Ŵ:

Ŵ →
(

e−2γ1δ 0
0 e−6γ2δ

)
, (51)

and then taking the limit of δ → ∞. Equation (51) simply
describes an edge not equilibrated with the contact because of
the finite size of the latter. More interesting—and essential to
our discussion—is the limit of a long contact, δ → ∞, taken
without making any assumption about γc or γ1,2. In this limit,

Ŵ is purely nondiagonal:

Ŵ → c

(
0 3
1 0

)
, (52)

characterized by a single parameter [83]

c = 1

2 + ζ +
√

(2 + ζ )2 − 3
, (53)

where

ζ = γ1 + 3γ2

γc
. (54)

The constant c is constrained by 0 � c � 1/3, with the lim-
iting values of c = 0 and c = 1/3 obtained for ζ → ∞ and
ζ → 0, respectively.

With Ŵ from Eq. (52), the currents j1,2(±δ) on the facets
of the left [Fig. 3(a)] contact are obtained, for the clean edge
outside the contact regions, as

j1(δ) = 1

2π

(1 − c)μL + c(1 − 3c)μR

1 − 3c2
, (55)

j2(δ) = − 1

2π

c(1 − c)μL + 1
3 (1 − 3c)μR

1 − 3c2
, (56)

and

j1,2(−δ) = j1,2(δ)|μL↔μR . (57)

The resulting conductance G = 2π jc/(μL − μR), with the
current through the contact jc = j1(δ) + j2(δ) − (δ → −δ)
[or, equivalently, Eq. (47)], is then given by

G = 2
3 �eff

c , (58)

where

�eff
c = 1 + (1 − 3c)2

1 − 3c2
. (59)

For c = 0, Eq. (58) reduces to Eq. (49). As ζ [Eq. (54)]
decreases with increasing strength of backscattering beneath
the contact, G changes from 4/3 for c = 0 to 2/3 for c = 1/3.

As follows from Eqs. (58) and (59), there exists a surface
in space of γ1, γ2, and γc on which

�eff
c = �. (60)

On this surface, the contact is ideal, with the emitted cur-
rents being at equilibrium with the contact, namely j±(±δ) =
±g±μ/2π [cf. Eq. (26)]. At the same time, the incident
eigenmode currents j±(∓δ) are completely absorbed. This
construction is thus the embodiment of the notion of an ideal
contact—for an arbitrary strength of interchannel interaction
both beneath the contact and outside it.

Away from the surface on which Eq. (60) holds, the con-
tact is at equilibrium with the eigenmodes corresponding to
the effective interaction parameter �eff

c from Eq. (59). As a
consequence, the calculation in Secs. II B and II C for the
generalized boundary condition applies directly to the line-
junction model, with nc understood as the eigenmodes for �c

substituted by �eff
c . The purpose of making a “digression”

to discuss the generalized boundary condition in Secs. II B
and II C has now become clear. As a starting point, it demon-
strated in a concise and precise manner that the strength of
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interaction outside the contacts drops out from the conduc-
tance of a clean edge [Eqs. (34), (36), and (37)]. Perhaps
more importantly, when combined with the calculation for the
line-junction, it serves as a basis for the physical picture in
which the conductance does not depend on either � or �c, but
is determined by the effective strength of interaction beneath
the side-attached contact, parametrized by �eff

c [Eq. (58)].
From this perspective, the conductance G varies between

2/3 and 4/3—with the value of �eff
c varying between 1 and

2—being controlled by the single parameter (53) that reflects
the interplay of tunneling between the edge channels beneath
the contact and tunneling between the contact and the edge.
This establishes a significant degree of universality of the
model of long line-junction contacts. Instead of contrasting, as
in Ref. [54], the model of ideal contacts on the one hand and
the model of line-junction contacts on the other, this viewpoint
emphasizes that the two models are not at all different from
each other in terms of universality. If a contact of either
type is viewed as a “black box” (with arbitrary microscopic
“content”), there is one single parameter that characterizes the
contact as far as the current flowing through it is concerned.

III. FRACTIONALIZATION-RENORMALIZED
TUNNELING

As an interlude between the discussions of the clean
(Sec. II) and disordered (Sec. IV) edges, it is instructive
to formulate the “electrostatic” approach to disorder-induced
tunneling for the ν = 2/3 edge. In essential terms, we mean
electrostatics of tunneling that combines two effects: (i) the
creation of screening charges in channels 1 and 1/3 by the
tunneling electron and the hole that it leaves behind and (ii)
the ensuing fractionalization of the created charges, resolved
with respect to both the edge channels and chirality. This is
quite apart from the renormalization of the tunneling strength
that is due to the interaction-induced orthogonality catastro-
phe upon tunneling (“zero-bias anomaly” in the tunneling
density of states in the presence of a scatterer) [60,84,85].
The latter is formalizable in terms of the infrared-singular
correlator of quantum fluctuations of the electron density
around the tunneling link. By contrast, the fractionalization-
induced renormalization of the tunneling strength describes
ultraviolet—short-range in real space—correlations between
the charges created by the tunneling event. These correlations
are crucial for determining the � dependent relation between
the tunneling rates for different channels. In particular, they
are behind the emergence of the neutral mode at � = 1 [66],
irrespective of the strength of disorder, from the point of view
of electrostatics, as will be seen below.

A. Fractionalization upon tunneling into the edge

Let us first consider fractionalization in the ν = 2/3 edge
upon addition, locally, of a unit charge to channel 1 or 1/3,
without tunneling between them. The matrix �̂ that expresses

the eigenmodes n = (n+, n−)T in terms of n̄ = (n1, n2)T for
the interaction parameter �,

n = �̂ n̄, (61)
is given by �̂ = λ̂|�c=2, with λ̂ from Eq. (23). Note that �̂

preserves the total charge [Eq. (5)]. The ratio η+ of n2 and n1

in mode + and the ratio η− of n1 and n2 in mode − are, then,
written as

η+ = (n2/n1)+ = (�̂−1)21/(�̂−1)11, (62)

η− = (n1/n2)− = (�̂−1)12/(�̂−1)22, (63)

where

�̂−1 = 1

2

(
3 3

−1 −1

)
+ 1

2

√
3

�2 − 1

(
1 − � −1 − �

−1 + � 1 + �

)
.

(64)

The constants η± have the meaning of screening charges;
specifically, η+ is the charge in channel 1/3 induced by a unit
charge in channel 1, when both run to the right (mode +),
and η− is the charge in channel 1 induced by a unit charge
in channel 1/3, when both run to the left (mode −). They are
related to each other as

η+
η−

= 1

3
, (65)

with

η+ = −
√

(� + 1)/3 − √
� − 1√

3(� + 1) − √
� − 1

. (66)

While keeping in mind the relation (65), the fractionalization
picture is most clearly formulated in terms of both η+ and η−.

For � = 2, the screening charges vanish: η± = 0. For � =
1, they are given by

η− = 3η+ = −1. (67)

Note that screening is perfect, with the screening charge
η− = −1 being exactly the mirror charge, for � = 1 in mode
−, which becomes then the “neutral mode” identified in
Ref. [66]. The charge carried by mode − vanishes at � = 1
as

n− →
√

� − 1

6
(n1 + 3n2), (68)

where n1 + 3n2 → 2n2 according to Eq. (67). In mode +,
which becomes for � = 1 the “charge mode” with n+ =
n1 + n2, the “screening coefficient” η+ = −1/3, so that the
unit charge propagating to the right at � = 1 is split into the
charge 3/2 in mode 1 and the charge −1/2 in mode 1/3 [78].

The fractionalization process in a clean edge is illustrated
in Fig. 6. It is convenient to introduce the “fractionalization
matrix” q̂, whose elements are q±,i with i = 1, 2, where q+,1

is the charge running in channel 1 in mode +, etc., upon
insertion of a unit charge in channel 1. From Eqs. (62)–(64),
q̂ is obtained as

q̂ = 1

1 − η+η−

(
1 η+

−η+η− −η+

)
= 1

4

( [√
3(� + 1) − √

� − 1
]2 −[√

3(� + 1) − √
� − 1

][√
(� + 1)/3 − √

� − 1
]

−[√
� + 1 − √

3(� − 1)
]2 [√

3(� + 1) − √
� − 1

][√
(� + 1)/3 − √

� − 1
]
)

.

(69)
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1

1/3

(a)

1/3

1

(b)

FIG. 6. Charge fractionalization upon addition of a compact charge to channel 1 (a) or channel 1/3 (b). The relative amplitudes of the
fractionalized charge pulses are shown for � = 26/23 � 1.13 (which corresponds to the screening coefficients η+ = −2/9 and η− = −2/3).
The charge distribution is described by the fractionalization matrix given by Eqs. (69) and (70) for cases (a) and (b), respectively.

The unit local charge added to channel 1 thus splits, for � �=
2, into two parts running in opposite directions and creates a
growing dipole in channel 1/3. The fractional charges obey
charge conservation with q+,1 + q−,1 = 1 and q+,2 + q−,2 =

0. Similarly, when a unit local charge is inserted into channel
1/3, the fractionalization matrix ˆ̄q (where the bar is put to
distinguish it from the fractionalization matrix for insertion
into channel 1) reads

ˆ̄q = 1

1 − η+η−

(−η− −η+η−
η− 1

)
= 3

4

( [√
�+ 1− √

3(�− 1)
][√

�+ 1− √
(�− 1)/3

] −[√
(�+ 1)/3− √

�− 1
]2

−[√
�+ 1− √

3(�− 1)
][√

�+ 1− √
(�− 1)/3

] [√
�+ 1− √

(�− 1)/3
]2

)
,

(70)

with q̄+,1 + q̄−,1 = 0 and q̄+,2 + q̄−,2 = 1. Note also the rela-
tion q±,1 = q̄∓,2.

For � = 1, the matrix q̂ takes a simple form, as discussed
around Eqs. (67) and (68):

q̂ = 1

2

(
3 −1

−1 1

)
, (71)

whereas ˆ̄q for � = 1 is given by

ˆ̄q = 1

2

(
3 −1

−3 3

)
. (72)

In Eqs. (71) and (72), perfect screening in the neutral mode is
apparent in that the sum of the matrix elements in the lower
row is zero in both cases. Note that the amplitude of the charge
mode excited by adding a unit charge at � = 1 to channel 1
is the same as by adding it to channel 1/3. By contrast, the
amplitude of the neutral mode is a factor of 3 larger in the
latter case.

The phenomenon of charge fractionalization has two
facets, inherently related to each other. Specifically, at the
single-particle level, it refers to the factorization of a single-
particle propagator in the space-time representation into a
product of parts moving with different velocities (with proper
care taken in dealing with the ultraviolet cutoff [86]), as is the
case, e.g., for electrons in a LL. At the level of two-particle
correlations, this results in splitting of a compact density pulse
into parts characterized by different velocities of propagation.
The above picture of fractionalization in the ν = 2/3 edge is a
generalization—formalized in purely electrostatic terms—of
the fractionalization picture in a LL [87–90] to the case of two
nonequivalent counterpropagating channels. Here, “nonequiv-
alent counterpropagating” signifies that two channels together
constitute a chiral system—the one characterized by g+ �= g−.

It is worth mentioning that, in the original sense, the no-
tion of charge fractionalization in a two-channel (spinless)
LL refers to splitting of the density pulse into two chiral
parts [87–89] (in a spinful LL, the “chiral” separation is com-
plemented with spin-charge separation). In Eqs. (69)–(72), the
charge splits into four parts (spatially separated both in the
longitudinal and transverse directions), with fractionalization
“resolved” with respect to not only chirality but also channels.
This is similar to the charge-fractionalization picture in the
single-channel edge for ν = 1, when counterpropagating parts
of the edge are brought in proximity to each other and form
together a nonchiral system akin to the LL [61,90–92], or in
two copropagating channels in the edge for ν = 2 [48,61,93–
97]. In the latter case, the fractionalized parts of the density
pulse run in the same direction, with the decoupling of the
charge and neutral modes being equivalent to spin-charge
separation. For ν = 2/3, charge fractionalization was probed
experimentally [48] through time-resolved scattering of cur-
rent pulses off the interface between regions with zero and
nonzero strength of interchannel interaction (cf. the time-
resolved measurements of this type of scattering in an artificial
LL [91,92] and in the two-channel edge for ν = 2 [48]).

B. Fractionalization upon intermode tunneling

Imagine now that a compact unit charge in channel 1 is
incident on a tunneling link in mode + (Fig. 7). As follows
from Sec. III A, this charge is accompanied by the screen-
ing charge η+ in channel 1/3. Either of the two can tunnel
upon hitting the tunneling link. Scattering of the right-moving
composite object consisting of the charges 1 and η+ is thus a
combination of four processes: (i) tunneling of the charge 1 to
channel 1/3 and its ensuing fractionalization are accompanied
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1

1/3

(a)

1

1/3

(b)

FIG. 7. Fractionalization-renormalized tunneling. Scattering of a charge pulse incident on a tunneling link (marked in red) from the left
(a) and from the right (b). Electron tunneling occurs between the right-moving channel 1 and left-moving channel 1/3. The relative amplitudes
of the components of the incoming and outgoing pulses in channels 1 and 1/3 are shown for � = 3/2 (which corresponds to the screening
coefficients η+ � −0.1 and η− � −0.3). The outgoing pulses are shown for R0 = 3/2 [Eq. (91)] (which corresponds for � = 3/2 to the
reflection coefficients R+ = 1/4 and R− = 5/4), with their scattering amplitudes given by Eqs. (89) and (90).

by (ii) fractionalization of the charge −1 left in channel 1 and,
similarly, (iii) tunneling of the charge η+ to channel 1 and its
fractionalization are accompanied by (iv) fractionalization of
the charge −η+ left in channel 1/3.

Specifically, to describe fractionalization in the process of
tunneling, it is instructive to first consider the matrix Q̂ with
elements Q±,i, where Q+,1 is the charge running in channel
1 in mode +, etc. [cf. Eqs. (69) and (70)]. Scattering of the
charge pulse in mode + is then formalized by

Q̂out − Q̂in = (W +
1 − η+W +

2 )( ˆ̄q − q̂), (73)

where

Q̂in =
(

1 η+
0 0

)
(74)

is the matrix of incoming right-moving charges, Q̂out is the
matrix of outgoing charges, and W +

1 and W +
2 are the scattering

coefficients in mode + for tunneling from channels 1 and 1/3,
respectively. The matrix of scattered charges, proportional to
the combination ˆ̄q − q̂, contains four terms, each of which
describes one of the four processes mentioned above. Namely,
the part proportional to ˆ̄q stands for creation (the term with
W +

1 ) of the charge 1 and annihilation (W +
2 ) of the charge η+

in channel 1/3, while the part proportional to q̂ denotes anni-
hilation (W +

1 ) of the charge 1 and creation (W +
2 ) of the charge

η+ in channel 1. For scattering of a charge pulse in mode −,
with scattering coefficients W −

1 and W −
2 for tunneling from

channels 1 and 1/3 in mode −, respectively, the analog of
Eq. (73) is given by

Q̂out − Q̂in = (W −
2 − η−W −

1 )(q̂ − ˆ̄q), (75)

where Q̂in is chosen as the matrix of incoming left-moving
charges:

Q̂in =
(

0 0
η− 1

)
. (76)

The explicit form of the scattering coefficients W ±
1,2 will be

discussed below [Eqs. (84) and (85)].
Having described the mechanism of fractionalization

in the process of tunneling in a detailed and pictorial
way by means of Eqs. (73) and (75), we now com-
bine them in the form of scattering theory for an arbi-
trary two-vector of the eigenmode charges Q = (Q+, Q−)T ,
where Q+ = Q+,1 + Q+,2 = Q+,1(1 + η+) and Q− = Q−,1 +
Q−,2 = Q−,2(1 + η−). Specifically, the relation between the
vectors of incoming (Qin) and outgoing (Qout) charges is writ-
ten as

Qout = (1 + T̂ )Qin, (77)

where the T matrix for scattering at a single tunneling link
reads

T̂ =
(−R+ R−

R+ −R−

)
, (78)

with R± being the reflection coefficients for the charge pulses
in modes ±. The matrix structure of Eq. (78) signifies charge
conservation in the tunneling process for arbitrary screening
charges. From Eqs. (73) and (75),

R+ = (q+,1 − q̄+,1)(W +
1 − η+W +

2 ), (79)

R− = (q̄−,2 − q−,2)(W −
2 − η−W −

1 ), (80)
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where [Eqs. (69) and (70)]

q+,1 − q̄+,1 =
√

� − 1

2
[
√

3(� + 1) − √
� − 1], (81)

q̄−,2 − q−,2 =
√

� + 1

2
√

3
[
√

3(� + 1) − √
� − 1]. (82)

Note that the matrix (78), which relates the compact
charges, i.e., the time integrals of the current pulses, is also
understood, by extension, as the current-splitting matrix that
relates the incoming and outgoing eigenmode currents j± on
the sides of the tunneling link in a stationary state by(

j+
− j−

)
out

= (1 + T̂ )

(
j+

− j−

)
in

. (83)

In the stationary case, the currents j± are spatially homoge-
neous on the sides of the link and experience a jump at it, as
given by Eq. (83), with the sum j+ + j− being continuous
across the link. This is how the fractionalization physics,
encoded in the interaction-renormalized matrix T̂ through
Eqs. (79) and (80), affects the time-averaged current.

Now turn to the scattering coefficients W ±
1,2. Let, for con-

creteness, the Hamiltonian for a single tunneling link be of
the form Ht = t0ψ

†
1 ψ2 + H.c. In the Born approximation with

respect to tunneling, W ±
1,2 read

W ±
1 = 2π |t̃0|2 1

v±
(
̄22 + 
̄21), (84)

W ±
2 = 2π |t̃0|2 1

v±
(
̄11 + 
̄12), (85)

where ˆ̄
 is the compressibility matrix already introduced by
defining the local chemical potentials in Eqs. (29) and (30),
and the tilde in t̃0 denotes the renormalization of t0 by the
interaction-mediated orthogonality catastrophe [60,84,85]. In
the limit of no interchannel interaction, W +

1 = W −
2 /3 =

|t̃0|2/3v1v2 [these two coefficients are then the only ones that
enter Eqs. (79) and (80), with R+ = W +

1 and R− = W −
2 ].

The factor 1/v± in Eqs. (84) and (85) comes from the am-
plitude of the incident current, while the factors in the brackets
are the total thermodynamic compressibilities for placing a
charge in channel 1/3 (W ±

1 ) and 1 (W ±
2 ). Substituting Eq. (29)

in Eqs. (84) and (85), and the resulting expressions for W ±
1,2 in

Eqs. (79) and (80), taking account of Eqs. (81) and (82), the
reflection coefficients R± reduce to

R± = |t̃0|2 1

3v+v−
(� ∓ 1). (86)

Equation (86) is also representable in the form

R± = |t̃0|2 g∓
v+v−

= 2π |t̃0|2 1

v±

∓∓, (87)

where 
++ = g+/2πv+ and 
−− = g−/2πv− are the ele-
ments of the eigenmode compressibility matrix (21). Note that
R+ and R− are universally related to each other: R+/R− =
(� − 1)/(� + 1), with this universality being entirely due to
fractionalization upon tunneling.

It is worth emphasizing that two types of interaction-
induced renormalization of R±, one by fractionalization and
the other by the orthogonality catastrophe, are sharply dis-
tinguished in Eq. (87). Specifically, the former is inherently

linked to the behavior of the thermodynamic compressibility

∓∓ with varying �, whereas the latter is encoded in the
modification of |t̃0|2 by a factor that represents the difference
between the thermodynamic compressibility and the single-
particle tunneling density of states. While the simple form of
Eq. (87) is suggestive, it is the “unfolding” of Eq. (87) in terms
of two factors in Eqs. (79) and (80) that reveals the mechanism
of fractionalization-renormalized tunneling that is behind the
emergence of the factor � ∓ 1 in Eq. (86).

The tunneling conductance for a weak tunneling link con-
necting channels 1 and 1/3 for arbitrary �, which conforms
with Eq. (86), was also obtained by a direct perturbation
theory for the tunneling current in Ref. [71]. It is worth noting
that, for weak tunneling, the factor |t̃0|2/3 in Eq. (86) reduces
exactly to |t0|2 renormalized by the orthogonality catastro-
phe upon tunneling in a nonchiral LL (assuming the same
ultraviolet cutoff) with a substitution of � for the Luttinger
constant (supplemented with a straightforward substitution
of v+ and v− for the plasmon velocity in the right- and
left-moving parts of the tunneling operator, respectively). In
particular, for a given infrared cutoff of the renormalization,
say, the temperature T , the factor |t̃0|2 for a weak tunneling
link scales with T as T 2(�−1). What is, however, especially
revealing in the structuring of R± into the product of |t̃0|2 and
the fractionalization-induced factor is that the former does
not show any peculiar behavior near � = 1 (apart from the
vanishing of the scaling exponent in the power-law renormal-
ization, in exact correspondence with the noninteracting case
in a LL), in contrast to the latter, as we discuss next.

One significant feature of the dependence of R± on � is the
vanishing of R+ at � = 1. The insensitivity of the + mode
to disorder for � = 1 is a manifestation of the charge and
neutral mode decoupling [66]. Equations (79), (81), and (84)
show precisely how the decoupling occurs from the point of
view of the underlying physics. Specifically, the factor � − 1
in Eq. (86) is a product of two factors

√
� − 1 of distinctly

different origin. The factor
√

� − 1 in Eq. (81) reflects partial
cancellation, to the right of the tunneling link, of the screening
charge (q̄+,1) for a fractionalized electron that has tunneled
to channel 1/3 and the charge of the fractionalized hole in
channel 1 (−q+,1) that the electron left behind. At � = 1, the
cancellation is exact and, as a result, no mode − is created
upon mode + hitting the tunneling link, so that mode + passes
through the link without distortion. The other factor

√
� − 1

stems from partial cancellation of the tunneling current of the
charge transferred from channel 1 to channel 1/3 (W +

1 ) by
the backflow tunneling current of the screening charge from
channel 1/3 to channel 1 (−η+W +

2 ). Again, at � = 1, the
cancellation is exact.

From Eqs. (75), (80), and (82), the − mode for � = 1 is
scattered off a tunneling link according to

Q̂out = (1 − R−)

(
0 0

−1 1

)
, (88)

where the matrix on the right hand side stands for the incident
− mode [Eq. (76)] and the term proportional to R− corre-
sponds to flipping the neutral-mode dipole, as was already
discussed in Sec. I B 3. Scattering in Eq. (88) is purely in the
forward direction. For � �= 1, the forward scattering of the
pulse in mode −, which is no longer neutral, is accompanied
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by “firing” off a charge pulse in the opposite direction, the
amplitude of which scales for � → 1 as 1 + η− ∝ √

� − 1:

Q̂out = (1 − R−)

(
0 0
η− 1

)
+ R−

1 + η−
1 + η+

(
1 η+
0 0

)
. (89)

Conversely, for � �= 1, the charge pulse in mode + emits,
upon hitting the tunneling link, a charge pulse in the opposite
direction:

Q̂out = (1 − R+)

(
1 η+
0 0

)
+ R+

1 + η+
1 + η−

(
0 0
η− 1

)
. (90)

The amplitude of the backscattered charge pulse in Eq. (90)
scales for � → 1 as R+ ∝ � − 1.

A rather nontrivial point about tunneling between interact-
ing channels is that the scattering coefficients W ±

1,2 in Eqs. (84)
and (85) are not necessarily positive. In the absence of inter-
channel interaction, they are positively defined. However, as
an indication of the highly collective nature of tunneling in
the presence of interaction, one of them—but not both—may
become negative if interaction is strong enough, reflecting the
emergence of a negative value for one of the partial ther-
modynamic compressibilities [the factors in the brackets in
Eqs. (84) and (85)]. As we will see shortly, in Sec. IV A, this
has ramifications for the scattering rates (per unit time) which
describe tunneling from channel 1 to channel 1/3 and vice
versa, with one of them becoming negative for sufficiently
large v12.

C. Strong-tunneling limit

The difference of the reflection coefficients for the charge
incident from the left and from the right (R+ �= R−) is a di-
rect consequence of the inequality g+ �= g− [Eq. (87)], which
precisely encodes the property of the two-channel edge being
a chiral system. The difference shows up also in the maxi-
mum value the reflection coefficient can reach with increasing
strength of tunneling. Going beyond the Born approximation
for tunneling [Eqs. (84) and (85)] results in a substitution of
|t̃0|2/v+v− in Eqs. (86) and (87) by a certain number R0,

R± = R0
� ∓ 1

3
, (91)

where R0 is bounded from above by conservation of energy
upon tunneling.

In terms of the matrix (78), the thermodynamic constraint
on the current scattering matrix with no interchannel interac-
tion in the incoming and outgoing currents (� = 2 outside the
scattering region) [63,65,68,98] corresponds to

R+ � 1/2, R− � 3/2, (92)

with R+/R− = 1/3. The condition (92), when applied to a
tunneling link between noninteracting channels 1 and 1/3
(R0 � 3/2), says that mode 1/3 can be fully reflected (R− = 1
is allowed), whereas mode 1 cannot (R+ � 1/2). The explicit
expression for the tunneling conductance Gt between chan-
nels 1 and 1/3 for � = 2 from Ref. [55], when taken in the
strong-tunneling limit, gives Gt = 1/2, which complies with
the maximum value of R0 equal to 3/2 for � = 2. This upper
bound on R0 follows directly from the duality between weak
and strong tunneling [55,99].

The latter inequality in Eq. (92) allows for R− to be larger
than 1. In the interval 1 < R− � 3/2 (or, equivalently, when
represented in terms of the conductance matrix [63], for the
negative value of the diagonal, for channel 1/3, element
of it), the system behaves in a nontrivial way. Namely, in
the two-terminal setting, it can perform as a step-up trans-
former [65,98] (in particular, in the form of an “adiabatic
junction” [98]) if the source for channel 1 has a higher electro-
chemical potential. Or, if the source for channel 1/3 is biased
in this way, the charge current in channel 1/3 can be “sucked
in” from—not absorbed by—the nominally drain reservoir for
channel 1/3 (“nominally” means that the drain reservoir is at a
lower electrochemical potential than the source reservoir), so
that both reservoirs simultaneously supply current to channel
1/3. The suck-in effect in tunneling (R− > 1) is phenomeno-
logically similar to Andreev reflection [99].

The negative values of W ±
1,2, mentioned at the end of

Sec. III B, and the values of R− in Eq. (92) larger than 1 are
two startling manifestations of the strongly correlated nature
of tunneling, both of which carry nontrivial connotations from
the point of view of thermodynamics. It is worth emphasizing,
however, that they are distinctly different in nature and, as
such, not directly related to each other. The former occurs if
interchannel interaction is strong enough, irrespective of the
strength of tunneling. By contrast, the latter occurs if tunnel-
ing is strong enough, also (as is the case discussed above) in
the limit of no interchannel interaction.

In the scattering problem described by Eq. (77), in con-
trast to the assumption made in Refs. [55,63,65,68,98,99], the
incoming and outgoing currents in modes 1 and 1/3 are gener-
ically interacting with each other. The interchannel interaction
strength is supposed to be homogeneous in the vicinity of the
tunneling link. To generalize the thermodynamic constraint of
the type (92) to � �= 2, assume that the incoming currents are
at thermal equilibrium with T = 0. Denote the incoming and
outgoing energy currents associated with charges in modes ±
by jε±,in and jε±,out, respectively. These obey

jε+,in + jε−,in � jε+,out + jε−,out, (93)

where the inequality accounts for the possibility of tunneling-
induced inelastic scattering which produces chargeless exci-
tations inside channel + or −, which carry energy away from
the tunneling link. The charge-related energy currents jε± and
the charge currents j±, both incoming and outgoing, are re-
lated to each other by jε± = j±μ±/2, where μ± = ±2π j±/g±
are the local chemical potentials of modes ± [cf. Eq. (30) for
the local chemical potentials in channels 1 and 1/3], i.e.,

jε± = ± π

g±
j2
±. (94)

The incoming and outgoing energy currents jε±,in and jε±,out
are related to each other by the same current-scattering matrix
as the charge currents in Eq. (83):(

jε+
− jε−

)
out

= (1 + T̂ )

(
jε+

− jε−

)
in

. (95)

Substituting Eqs. (94) and (95) in Eq. (93), together with
using Eqs. (83) and (91), produces the constraint on R± for
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arbitrary �:

0 � R± � � ∓ 1

�
, (96)

with R0 � 0 generically attaining any value up to 3/�:

0 � R0 � 3/�. (97)

For R0 = 3/�, at which R+ and R− simultaneously reach
their maximum allowed values, tunneling is “dissipationless”
in the sense that the sign between the two parts of Eq. (93)
becomes “equals,” i.e., no chargeless excitations are created
upon tunneling. Note that the maximum values of R+ and
R− behave differently as � varies from � = 2 to � = 1: the
former decreases (down to zero), while the latter grows. Note
also that R+ is always smaller than 1, in contrast to R−.

For � = 1, the maximum value for R−, according to
Eq. (96), is 2. From Eq. (88), it follows that the neutral mode
incident on the tunneling link with R− = 2 deterministically
changes sign upon passing through it:

Q̂out =
(

0 0
1 −1

)
= −Q̂in. (98)

The strong-tunneling limit for � = 1 thus corresponds to
flipping the neutral-mode dipole with probability 1. The con-
ductance G in this limit only depends on Nu and Nl , where
Nu,l is the number of the tunneling links in the upper (u) and
lower (l) parts of the edge [Fig. 3(a)]. Specifically, G can only
take one of three values. If both Nu and Nl are even, tunneling
does not affect either the charge mode or the neutral mode, so
that G is the same as for a clean edge [Eq. (58)]. If Nu is odd,
the current ju in the upper part of the edge is obtained from
Eqs. (24) and (25) by imposing the condition that the ratio of
j− at the right terminal and j− at the left terminal is −1 (odd
number of the dipole flips), which yields [100]

ju = 1

2π�eff
c

(g+cμL + g−cμR), (99)

instead of Eq. (33). If Nl is also odd, the current jl in the
lower part of the edge follows from Eq. (99) by exchanging
μL ↔ μR; otherwise, this exchange should be performed on
Eq. (33). The three values of the conductance, Ge−e, Go−o, and
Ge−o, corresponding to the even-even, odd-odd, and even-odd
configurations, respectively, are then given by

Ge−e = 2�eff
c

3
, Go−o = 2

3�eff
c

, Ge−o = 1

3

(
�eff

c + 1

�eff
c

)
.

(100)

Note that, for �eff
c = 2, the maximum and minimum values

of G from Eq. (100) are 4/3 and 1/3—the same as men-
tioned above in connection with the χsG model with weak
disorder [62,63,75] (Secs. I B 2 and I B 3). It is also worth
mentioning that scattering for R− = 1 corresponds to flipping
half of the dipole current, which, on average, annihilates the
neutral mode.

IV. DISORDERED EDGE

Having considered the contacts and the clean edge in
Sec. II, and scattering at a single tunneling link in Sec. III,

we are now prepared to discuss transport through a disor-
dered edge. As was already mentioned in the introductory
overview, we restrict our attention here to incoherent transport
(Sec. I B 3). Between the contacts, the equation of motion for
the disorder-averaged densities n± in the presence of random
tunneling between channels 1 and 1/3 then reads

(∂t ± v±∂x )n± ± It = 0, (101)

with the “collision” term

It = �+n+ − �−n− (102)

and the scattering rates

�± = ntv±R±, (103)

where nt is the concentration of the tunneling links. The
reflection coefficients R± are given by Eq. (86) for weak
tunneling through a single tunneling link, or by Eq. (91)
otherwise. Below, we focus on the Gaussian limit of nt → ∞
and t0 → 0 with nt |t0|2 held constant, where n± in Eq. (101)
are the exact density distributions with vanishing mesoscopic
fluctuations. Note that, in the disordered edge, not only the
reflection coefficients R± but also the strength of interaction,
parametrized by the constant �, and the velocities of the
eigenmodes v± are understood as subjected to renormaliza-
tion [66].

A. Negative scattering rates

Before proceeding to the solution of Eq. (101), let us return
to the conceptually significant point, mentioned at the very
end of Sec. III B, about the signs of the scattering rates for
tunneling between channels 1 and 1/3. Recall also that this
peculiarity is substantially different from another nontrivial,
from the point of view of thermodynamics, point, namely the
one about R− > 1, as commented in Sec. III C. The equation
of motion for the densities n1,2 is obtained from Eq. (101) by
using the transformation (61):

∂t n1 + ∂x(v1n1 + v12n2) + Īt = 0, (104)

∂t n2 − ∂x

(
v2n2 + 1

3
v12n1

)
− Īt = 0, (105)

where the collision term

Īt = �1n1 − �2n2 (106)

is proportional to that in Eq. (101). Specifically,

Īt =
√

3

�2 − 1
It , (107)

and �1,2 are written as

�1 = 1
3γ0(v1 − v12), �2 = 1

3γ0(3v2 − v12), (108)

where

γ0 = nt |t̃0|2
v+v−

(109)

(with v+v− = v1v2 − v2
12/3). Note that Īt does not describe

the total-current relaxation (which distinguishes the chiral
edge from a LL):

Īt = 1
3γ0( j1 + 3 j2) (110)

[cf. Eqs. (38) and (39)].
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Remarkably, the scattering rates �1,2 need not be both
positive within the stability range of v12 from Eq. (10), in
contrast to �±. In particular, for � = 1, i.e., for

v12 = 3
4 (v1 + v2), (111)

the ratio �1/�2 is universal (independent of v1,2) and given by

�1

�2
= −1

3
. (112)

Since �1/�2 is positive at � = 2 and negative at � = 1, it
changes sign in between, with, as follows from Eq. (108),
either �1 = 0 (for v1 < 3v2) or �2 = 0 (for v1 > 3v2) at that
point. If the point � = 1 is reachable with increasing v12

[the condition for this to happen is Eq. (11)], it is �1 that
changes sign at v12 = v1. At the stability threshold [Eq. (10)],
�1/�2 = −√

v1/3v2 < 0.
The negative value of one of the scattering rates �1,2 does

not spell instability, or contradict causality for that matter,
because causality only requires that

� = �1 + �2 = �+ + �− � 0. (113)

This follows from the characteristic equation for the dynamics
of n1,2, or n±,

(ω − v+q)(ω + v−q) + iω� − iq(�−v+ − �+v−) = 0,

(114)
where the linear-in-ω term contains �1,2 in the combination
� = �1 + �2 > 0 [the stability condition (10) is stricter than
v12 < (v1 + 3v2)/2, which guarantees the positive sign of �

within the range of v12 from Eq. (10)].
It is worth noting that the ratio of �1/�2 (or �+/�− for that

matter) is obtainable on rather general grounds. In Sec. III,
we presented a microscopic picture of fractionalization-
renormalized tunneling that produced both the explicit
dependence of R+/R− on � [Eq. (86)] and the expres-
sion of R± in terms of the thermodynamic compressibility
matrix [Eq. (87)]. Alternatively, one might have relied on
gauge invariance in “constructing” the collision terms in phe-
nomenological equations of motion for the densities [64].
Specifically, the collision terms should remain intact upon
shifting the densities

n̄ =
(

n1

n2

)
→ n̄ + ˆ̄


(
1
1

)
δμ (115)

for arbitrary δμ [64], or similarly for the densities in any
other basis. Stating that ˆ̄
(1, 1)T is the zero mode of the
collision operator (whose structure in terms of �1,2 follows
from conservation of the total charge),(

�1 −�2

−�1 �2

)
ˆ̄


(
1
1

)
= 0, (116)

Eq. (116) fixes the ratio �1/�2 in terms of the elements of the
compressibility matrix [cf. Eqs. (29) and (108)].

Importantly, ˆ̄
 in Eq. (116) is the thermodynamic com-
pressibility, not the single-particle tunneling density of states
affected by the orthogonality catastrophe. It is this distinc-
tion, as was already mentioned in Sec. III B, that makes the
concept of fractionalization-renormalized tunneling precise,
by cleanly separating it from that of the renormalization of
tunneling by the orthogonality catastrophe.

B. Tunneling-modified eigenmodes

As an essential part of the physical picture, let us discuss
how tunneling affects dynamics of the edge eigenmodes. It
is the last (linear in q) term in Eq. (114) that encodes the
property of the edge being chiral. Specifically, from Eq. (103),
the combination of �+ and �− within the brackets can be
represented as

�−v+ − �+v− = ntv+v−(R− − R+), (117)

which is nonzero only if the reflection coefficients for the
currents incident on the tunneling link from the left and from
the right are not the same [for the ν = 2/3 edge, it is also
representable as (2/3)nt |t̃0|2].

In the limit of small q (specifically, for |q| 
�/ max{v1, v2} for any � between � = 2 and � = 1),
the solution of Eq. (114) gives two low-energy eigenmodes
of the edge in the presence of random tunneling. One is a
weakly damped (if � �= 1) ballistic mode with

ω = ωρ → vρq − iDbq2, (118)

where the velocity of charge propagation (hence the subscript
ρ) vρ is given by

vρ = �−v+ − �+v−
�

= 2

3

3v1v2 − v2
12

v1 + 3v2 − 2v12
. (119)

This mode is propagating ballistically only because of R+ �=
R− [Eq. (117)]. The direction of propagation coincides with
that for the + mode. Note that, unless � = 1, the velocity of
the right-moving eigenmode in the small-q limit is modified
(ballistic propagation is slowed down) by tunneling:

vρ � v+. (120)

The designation “weakly damped” above Eq. (118) means
a slow diffusive broadening in real space on top of the ballistic
propagation, with the diffusion coefficient

Db = 1

�
(v+ − vρ )(v− + vρ ). (121)

Again, even when one of the scattering rates �1 or �2 becomes
negative with increasing v12, they enter Db � 0 in the combi-
nation � = �1 + �2 � 0. The other eigenmode in the small-q
limit is gapped, with the gap determined, similarly to Db, by
the total scattering rate:

ω = ωn → −i� − vnq, (122)

where vn = (�−v− − �+v+)/� = vρ − v1 + v2 and the sub-
script n stands for “neutral” (the meaning of which will
become clear in the next paragraph). At the stability threshold
[Eq. (10)], both vρ and Db vanish to zero, with � → ∞ [the
numerator of Db in Eq. (121) also vanishes].

The property of the tunneling-modified eigenmodes ωρ and
ωn being propagating and localized, respectively, shows up
in splitting of a compact charge pulse into two parts: mobile
(charged) and immobile (neutral). Consider the evolution in
time of n̄ = (n1, n2)T with the initial condition at t = 0 fixing
a certain density profile n̄q(t = 0) in q space. Assume that
compact charges Q1,2 are created at the point x = 0 at t = 0,
i.e., n̄q(t = 0) = (Q1, Q2)T . Solution to the equation of mo-
tion in the limit of small |q|  �/ max{v1, v2} gives, for n̄ in
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(ω, q) space:

n̄ωq → i

ω − vρq + iDbq2

Q1 + Q2

�

(
�2

�1

)

+ i

ω + i�

�1Q1 − �2Q2

�

(
1

−1

)
. (123)

The physical picture that emerges from Eq. (123) is that the
total charge Q1 + Q2 is all taken away by the ballistic mode.
What is left behind is a localized dipole (with opposite charges
in channels 1 and 1/3) that is stuck to the starting point x = 0
and decays “on the spot.” More precisely, the extinction of the
dipole on distances exceeding the backscattering length from
the starting point is accompanied by a ballistic run at speed
vn [Eq. (122)]. Importantly, this “charge-neutral” separation
occurs for arbitrary �. The existence of the nondecaying
ballistic—in the limit of small q—charge mode (118) is funda-
mental to the conductance quantization in the limit of charge
equilibration (Sec. I B 1), a crossover to which from ballistic
transport is discussed in detail below, in Sec. IV C.

Tunneling modifies the screening properties of the ballistic
mode: n1/n2 at the same spatial point in the running away
diffusion-broadened charge pulse in Eq. (123) is given by

n1/n2 = �2/�1, (124)

which nullifies Īt , instead of Eq. (62) for the clean edge.
This is because the tunneling-renormalized ballistic mode is
a combination of n+ and n−. Note that n1/n2 in Eq. (124) can
be of either sign (Sec. IV A).

C. Conductance

Now let us turn to the conductance of a disordered edge. In
the dc limit, the nonzero root ∂x → γ �= 0 of the characteristic
equation to Eq. (101) (the other is trivially zero, because of
conservation of j+ + j−) is

γ = �−
v−

− �+
v+

= nt (R− − R+), (125)

or, in terms of γ0:

γ = 2

3
γ0. (126)

The nonvanishing of γ is only due to chirality of the edge
(R+ �= R−). Remarkably, the fractionalization-induced �-
dependent factors in R± (86) cancel out in the combination
R− − R+ in Eq. (125), so that the scattering length 2γ −1

depends on � only through the renormalization of t0 (which,
in particular, does not show any singular behavior for � → 1,
as was already discussed in Sec. III B). This can also be
clearly seen from Eqs. (104) and (105), which—in view of
Eq. (110)—can be rewritten as [cf. Eq. (41)]

(∂x1 + γ̂)

(
j1
j2

)
= 0, (127)

where the matrix γ̂ does not explicitly depend on �:

γ̂ = 1

2
γ

(
1 3

−1 −3

)
. (128)

1. Identical contacts

For the line-junction contacts (Secs. II D and II E), solution
of Eq. (101) in the dc limit, with the boundary conditions (45)
and the current-scattering matrix (52), gives for the currents
ju± in the upper part of the edge in Fig. 3(a)(

ju+
− ju−

)
= 1

6π

1

eγ L − χ

[(
μLeγ L − μR χ

)(� + 1
� − 1

)

− (μL − μR)eγ x
√

(�2 − 1) χ

(
1
1

)]
, (129)

where

χ = �eff
c − 1

�eff
c + 1

(130)

and L is the distance between the left and right contacts,
which are, respectively, at the chemical potentials μL and
μR. In Eq. (129), both contacts are assumed to be identical
and characterized by the same effective-interaction parameter
�eff

c (59). For � = 2 (noninteracting edge) and �eff
c = 2 (ideal

contact for � = 2), Eq. (129) agrees with the expressions for
the currents from Refs. [68,69,73].

The first term in the square brackets in Eq. (129) does not
depend on x, whereas the second one is proportional to eγ x.
Note that the currents in Eq. (129) are x independent not only
if � = 1, but also if �eff

c = 1. For γ L � 1, the first term is
dominant for almost the whole length of the edge for arbitrary
� and �eff

c , and describes the counterpropagating charge cur-
rents equilibrated with each other at the chemical potential μL.
Equilibration, described by the second term, occurs then in a
narrow region within the distance of the order of γ −1 near the
right contact (emitting mode 1/3 at �eff

c = 2). Specifically, for
γ L � 1,(

ju+
− ju−

)

� 1

2π

[
μL

(
g+
g−

)
− e−γ (L−x)√g+g−χ (μL − μR)

(
1
1

)]
.

(131)

Either of the currents ju+ and ju−, and either of two terms
in Eq. (129), depends on both � and �eff

c . Remarkably, the
total current ju = ju+ + ju− depends only on �eff

c (apart from
the dependence of γ on �):

ju = 1

2π

2

3

μL − e−γ L χ μR

1 − e−γ L χ
. (132)

The total current jl in the lower part of the edge follows
from Eq. (132) by exchanging μL ↔ μR (assuming that the
upper and lower parts of the edge have the same length L
and are characterized by the same strength of disorder). The
two-terminal conductance of the edge G = 2π j/(μL − μR),
with j = ju − jl , is then given by

G = 2

3

1 + e−γ L χ

1 − e−γ L χ
, (133)

as illustrated in Fig. 8. The dependence on � (besides that
which is encoded in γ ) cancels out from G—as it does
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FIG. 8. Two-terminal conductance G of the ν = 2/3 edge as a
function of γ L, where L is the edge length and 2/γ is the backscat-
tering length, for different parameters �eff

c [Eq. (59)] characterizing
the effective interaction strength beneath the contacts. Top to bottom:
�eff

c = 2, 1.75, 1.5, 1.25, and 1. The conductance does not depend
on either the interaction strength outside the contacts (�) or the
true interaction strength beneath the contacts (�c), apart from the
interaction-induced renormalization of γ and the scattering lengths
defining �eff

c . In the charge-equilibrated limit of γ L → ∞, the con-
ductance G → 2/3 irrespective of the value of �eff

c .

separately for ju and jl . Recall that also the dependence on
�c cancels out for the line-junction model of the contacts, as-
sumed in Eq. (133), with �eff

c in Eq. (130) being the effective
interaction strength beneath the contacts (Secs. II D and II E).
For �eff

c = 2, Eq. (133) agrees with that from Ref. [71]. In
the clean limit, Eq. (133) reduces to G = 2�eff

c /3 [Eq. (58)].
In the limit of large γ L, the two-terminal conductance is
quantized at G = 2/3, in accordance with the universal result
G = ν for the limit of full charge equilibration [64], as was
already discussed in Sec. I B 1. In particular, no decoupling
between the charge and neutral modes is needed for the quan-
tization. Equation (133) shows that the quantization holds
irrespective of not only the value of �, but also the value of
�eff

c . The quantization is inherently related to the existence
of the ballistic mode (118), which carries over charge, as
discussed below Eq. (123).

It may be worth mentioning—particularly with regard to
the experimental results [46], which have demonstrated the
quantization of G � 2/3 for large L and a crossover to larger
values of G for smaller L—that varying the control parameter
of the experiment for given L (primarily the magnetic field in
Ref. [46]) may change not only γ and �, but also �eff

c . Within
the picture described by Eq. (133), the variation of � may
only show up indirectly, through the dependence of γ on �,
whereas the variation of �eff

c manifests itself in the limiting
value of G for small L. Recall also that the value of �eff

c is
determined by the interplay of tunneling processes beneath the
contact and may possibly be controlled in a similar way as the
tunneling length 1/γ outside the contact. In Ref. [46], G �
4/3 was observed for small L, which corresponds to �eff

c �
2, for relatively large equilibration lengths (stronger mag-
netic fields), while the data for smaller equilibration lengths
(weaker magnetic fields) may be compatible with the limiting
value of G = 2�eff

c /3, as L is decreased, substantially smaller
than 4/3.

Following the same route of cyclic permutation as for the
derivation of Eqs. (36) and (37), the four-terminal conduc-
tances GH (Hall) and G4 (source-drain) [Fig. 3(b)] for the
line-junction contacts (all four assumed to be identical) in the

presence of disorder are obtained as

GH = 2

3

1 + e−γ Lχ2

(1 − e−γ L/2χ )2 , (134)

G4 = 2

3

1 + e−γ Lχ2

1 − e−γ Lχ2
. (135)

In Eqs. (134) and (135), for ease of presentation, each pair
of adjacent contacts is assumed to be separated by the same
distance L/2. Similarly to G in Eq. (133), both GH and G4

are equal to 2/3 in the limit of large γ L, for arbitrary � and
�eff

c , which generalizes the result G = ν [64] to the case of
four-terminal measurements [101].

Apart from the spatial distribution of the eigenmode cur-
rents for a long edge with γ L � 1 [Eq. (131)], it is worthwhile
to also comment on that of the densities in channels 1 and
1/3. For arbitrary strength of interchannel interaction, n̄ in the
upper part of the edge is represented in terms of v12 (more
compactly than in terms of �) as

n̄ = 1

6πv+v−(eγ L − χ )

[
(μLeγ L − μRχ )

(
3v2 − v12

v1 − v12

)

−(μL − μR)eγ x√χ

(
v2 − v12

v1 − v12/3

)]
. (136)

For γ L � 1, Eq. (134) reduces to

n̄ � ˆ̄


(
1
1

)
μL − e−γ (L−x)√χ

× 1

6πv+v−

(
v2 − v12

v1 − v12/3

)
(μL − μR), (137)

where the first term represents the densities n1 and n2 equili-
brated with each other at the chemical potential μL, and the
second term describes their equilibration in the vicinity of the
right contact [cf. Eq. (131)]. Note that for v1,2 from the inter-
val (11), the relative sign of the contributions to n1 and n2 of
the first term in Eq. (136) changes—becomes negative—with
increasing v12 at v12 = v1. Similarly, the relative sign of the
contributions of the second term changes at v12 = v2. The lat-
ter means that, for the case of strong interchannel interaction
(v12 > v2), one of the densities n1,2 goes sharply (for γ L � 1)
up when approaching the right contact, whereas the other goes
sharply down. The evolution of the spatial distribution of n1,2

as the strength of interaction increases is illustrated in Fig. 9.
As is seen from Eqs. (136) and (137), not only the partial

densities n1,2 but also the total density n1 + n2 is inhomoge-
neous for a generic value of v12 [Figs. 9(a) and 9(b)]. The
point to notice is that, for � = 1 [with v12 from Eq. (111)],
the total charge is exactly homogeneous [Fig. 9(c)], in accor-
dance with the decoupling of the charge and neutral modes,
with the equilibration of the neutral mode showing up in a
variation of the partial densities on the scale of γ −1 near
the right contact. Specifically, for � = 1, the ratio of the
contribution to n1 to the contribution to n2 is −3 in the first
term of Eq. (136) and −1 in the second [cf. Eq. (67)].

2. Asymmetric setups

In Sec. IV C 1, the contacts were assumed to be identi-
cal. Let us now discuss the case of different contacts, i.e.,
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FIG. 9. Evolution of the distribution of the charge densities n1

(dark blue) and n2 (dark red) for channels 1 and 1/3, respectively,
and the distribution of the total density n = n1 + n2 (dashed violet,
shown is n/2) [Eq. (136)], as the strength of interchannel interaction
increases. Top to bottom: � = 2 (a), 1.5 (b), and 1 (c). The charge
densities are shown in units of μL/2πv1 for the upper part of the edge
in Fig. 3(a) for μR = 0, v2 = 0.8v1, �eff

c = 1.75, and γ L = 6.

characterized by different values of �eff
c (recall that, within the

line-junction model, this is the only parameter to characterize
a contact). This is, arguably, useful to make contact with ex-
periment: in practice, the contacts may be much different from
each other, in particular, because of a different strength of
disorder beneath them, which may also be different from the
strength of disorder outside them (as was already mentioned
in Sec. II D). We will also discuss a more conceptual issue of
the contact and bulk resistances for the QH edge.

Assume, as a starting point, that the edge is clean and the
left and right contacts in the two-terminal setup [Fig. 3(a)] are
characterized by �eff

cL and �eff
cR, respectively. For �eff

cR �= �eff
cL ,

Eqs. (55)–(57) generalize to

j1(δ) = 1

2π

(1 − cL )μL + cL(1 − 3cR)μR

1 − 3cLcR
, (138)

j2(δ) = − 1

2π

cR(1 − cL )μL + 1
3 (1 − 3cR)μR

1 − 3cLcR
, (139)

and

j1,2(−δ) = j1,2(δ)
∣∣μL ↔ μR

cL ↔ cR

, (140)

with �eff
cL,R expressed in terms of cL,R by Eq. (59) with a

substitution of cL,R for c. The conductance G then reads

G = 2

3

1 + √
χLχR

1 − √
χLχR

, (141)

where χL,R is given by Eq. (130) with �eff
c substituted by

�eff
cL,R, or, explicitly in terms of �eff

cL,R:

G = 2

3

�eff
cL + �eff

cR

1 + �eff
cL�eff

cR −
√[(

�eff
cL

)2 − 1
][(

�eff
cR

)2 − 1
] . (142)

For �eff
cR = �eff

cL , Eq. (142) reduces to Eq. (58). Note that G =
2/3 if one of the parameters �eff

cR and �eff
cL is equal to 1 (strong

backscattering beneath the contact), irrespective of the value
of the other.

It is worth briefly discussing, in connection with the setup
asymmetry, a question of whether the notion of a “contact
resistance” is generically applicable to QH edges. Namely,
the question is if the two-terminal resistance in the clean
case Rc—which is only nonzero because of dissipation in
the contacts—is representable as a sum of two terms, one of
which, RcL, depends only on the properties of the left contact
and the other, RcR, only on the properties of the right contact.
For a single-channel QH edge, or a clean LL quantum wire for
that matter, Rc = RcL + RcR is trivially the case, with each of
the terms being the contact resistance for one of the contacts.
As follows from Eq. (141), this is not so for the ν = 2/3 edge.

To exemplify the Landauer-type picture for a QH edge with
counterpropagating channels, G from Eq. (141) can be repre-
sented for arbitrary χL,R as a sum of two “nonchiral” terms:
G = G1 + G2, where G1 is the contribution of the upper and
lower parts of channel 1, and G2 of the upper and lower
parts of channel 1/3 (recall that the strength of interchannel
interaction drops out from G). Specifically, G1,2 = [ j1,2(δ) −
j1,2(−δ)]/(VL − VR), with j1,2(±δ) from Eqs. (138)–(140).
From this representation, neither the total resistance 1/G nor
the “per channel” resistance 1/G1,2 splits up into a sum of two
distinct contact resistances—because of scattering between
the nonequivalent channels at the contacts.

The idea of a contact resistance in the above sense (“per
contact”) is thus not applicable to a QH edge with coun-
terpropagating channels. In fact, this is also generically true
for an edge with copropagating channels, which contribute
in parallel to the total resistance regardless of their mutual
chirality. However, an important difference between the edges
with counterpropagating and copropagating channels is that
a long line-junction contact in the latter case equilibrates
channels with each other [54]. As such, it is characterizable
by a universal contact resistance, irrespective of possibly dif-
ferent microscopic details of electron scattering beneath the
right and left contacts. Note also that, fundamentally, it is
chirality of the edge that makes it impossible to represent Rc as
RcL + RcR for G from Eq. (141). If the two counterpropagat-
ing channels were equivalent [g+ = g− in Eqs. (3) and (4)],
thus forming a “nonchiral edge” (a LL ring), the long line-
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junction contacts would be characterizable by (generically
nonuniversal) contact resistances RcL,R with Rc = RcL + RcR

(see Appendix).
Turning to the case of a disordered edge, Eq. (141) gener-

alizes to

G = 2

3

1 − e−γuLu−γl Ll χLχR

(1 − e−γuLu
√

χLχR)(1 − e−γl Ll
√

χLχR)
, (143)

where, apart from possibly different �eff
cL and �eff

cR, we also
assumed, for the sake of generality, different scattering rates
γu and γl in the upper and lower parts of the edge, respectively.
These enter Eq. (142) in the combinations γuLu and γlLl ,
where Lu,l are the distances between the contacts along the
upper and lower segments of the edge. Importantly, the cancel-
lation of the strength of interchannel interaction (parameter �)
outside the contacts occurs separately for the total current in
each segment of the edge between them. That is, the strength
of interaction may also be different in the upper and lower
parts of the edge, with no effect on G from Eq. (142), apart
from affecting γu,l [Eq. (125)]. Note that vanishing of one of
the parameters χL or χR yields G = 2/3, similarly to the clean
case, irrespective of the strength of disorder.

It is instructive to represent Eq. (143) as

G = Gc
+ + Gc

− − (
Gb

u + Gb
l

)
, (144)

where

Gc
+ = 2

3

1

1 − √
χLχR

, Gc
− = 2

3

√
χLχR

1 − √
χLχR

, (145)

and

Gb
u,l = 2

3

√
χLχR

1 − √
χLχR

1 − e−γu,l Lu,l

1 − e−γu,l Lu,l
√

χLχR
. (146)

The four terms in Eq. (144) relate ju,l to μL,R by(
ju

− jl

)
= (Ĝc − Ĝb)

(
μL

−μR

)
(147)

(with the total current between the contacts j = ju − jl ),
where the conductance matrices Gc,b read

Ĝc =
(

Gc
+ Gc

−
Gc

− Gc
+

)
, Ĝb =

(
Gb

u Gb
u

Gb
l Gb

l

)
. (148)

The matrix Ĝc characterizes the contacts, with the sum Gc
+ +

Gc
− giving the two-terminal conductance G of a clean edge

from Eq. (141). The other matrix, Ĝb, describes disorder-
induced interchannel scattering in the bulk of the edge. Note
that the entries of Ĝb are the same for a given row, i.e., the
backscattering-induced current in either segment of the edge
(upper or lower) is separately gauge invariant (proportional to
μL − μR).

Related to the above discussion of the contact resistance
for a multichannel edge, another subtle question concerns the
notion of a disorder-induced “bulk” resistance Rb, defined—in
the conventional sense—by representing the total resistance
R as a sum R = Rc + Rb, where Rc characterizes dissipa-
tion in the contacts. For R equal to 1/G from Eq. (144)
and Rc to 1/G = 1/(Gc

+ + Gc
−) from Eq. (141), Rb is

FIG. 10. Effective two-terminal electrical circuit for a disordered
ν = 2/3 edge. The triangles denote the conductances Gc

± that give
the chiral currents emitted by the contacts, the rectangles stand for
the resistances 1/Gb

u,l that shunt the chiral currents in the upper and
lower parts of the edge [Eq. (147)].

given by

Rb = Rc
Gb

u + Gb
l

R−1
c − (

Gb
u + Gb

l

) . (149)

When using the term “bulk resistance” for Rb = R − Rc, the
notion in the back of our minds is that Rb depends only on the
scattering processes in the bulk, but not at or inside the con-
tacts. By definition, Rb indeed vanishes to zero for γu,l → 0.
However, as straightforwardly follows from Eq. (149), Rb for
the ν = 2/3 edge is a function of χL,R, i.e., explicitly depends
on the properties of the contacts.

Equation (147) corresponds, effectively, to the electrical
circuit in Fig. 10. The conductances Gb

u and Gb
l backscatter the

current in the upper and lower parts of the edge, respectively,
with the conductances Gc

± determining the chiral currents in
the absence of backscattering. Similarly to the “nonsplitting”
of Rc into a sum of two contact resistances, as discussed
above, the dependence of the bulk resistance Rb = R − Rc on
the properties of contacts is a direct consequence of chirality
of the edge (see Appendix). Note also that Rb is finite in the
limit of large γuLu and γlLl [namely, for the ν = 2/3 edge,
Rb → 3

√
χLχR/(1 + √

χLχR) and G = 1/(Rb + Rc) → 2/3],
in contrast to the nonchiral case, where Rb diverges in this
limit.

V. CONCLUSION

In closing, let us recapitulate briefly on the main points
of our analysis. We have given a detailed discussion of how
charge transport in an edge with counterpropagating channels,
exemplified by the ν = 2/3 edge, is affected by interchan-
nel interaction, both beneath the contacts and outside them.
One conceptually important aspect of multichannel transport
that we have highlighted is that the conductance does not
explicitly depend on the interaction strength either beneath
the side-attached contacts or in the bulk of the edge. This
is true for both a clean and a disordered edge, apart from
the interaction-induced renormalization of the scattering rates
beneath and, in the disordered case, outside the contacts. The
screening properties of the side-attached contact to the chiral
edge, which can vary depending on the mutual position of the
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contact and the edge, thus do not show up in the conductance
directly.

If this were the whole story, it might be viewed as a gener-
alization of the conventional train of thought about transport
in the LL model to the chiral case. However, we have also
specifically studied long line-junction contacts to the edge and
shown that these are characterized by an effective interaction
strength, which depends on the specifics of scattering beneath
them. This effective interaction does affect the conductance.
Another way to formulate it is that such a contact is at ther-
mal equilibrium with a certain set of edge modes, which are
generically not the eigenmodes either beneath or outside it and
with respect to which it is ideal. Encoding the peculiarities of
a given contact into a single parameter—the effective strength
of interaction—allows for a universal characterization (also
at the phenomenological level) for a set of contacts to the
edge. This discussion may have many points of contact with
experiments on multichannel edges, particularly because, ap-
parently, often not much is known with sufficient certainty
about the microscopic structure of the contacts to the edge.

We have presented a theory of fractionalization-
renormalized tunneling between edge channels. The
fractionalization framework is, in fact, crucial for the
understanding of the effect of disorder on the edge
eigenmodes—for an arbitrary strength of interchannel
interaction. We have demonstrated how fractionalization
determines the outcome of charge scattering off a single
tunneling link and used the solution of the scattering
problem to describe transport through the disordered edge.
Particular attention has been paid to charge equilibration
between the channels, which establishes the universal
conductance quantization, for the line-junction contacts
characterized by the effective—possibly different for different
contacts—interaction strength. On a separate but related
note, we have discussed the inapplicability—for the chiral
edge with counterpropagating channels—of the concept,
conventionally used to describe the two-terminal resistance,
that represents the resistance as a sum of two contact
resistances and the bulk resistance.
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APPENDIX: COMPARISON TO THE
NONCHIRAL MODEL

The purpose of Appendix is to concisely discuss the dif-
ferences and similarities between the QH edge with two
counterpropagating channels, drawing on the example of the
considered model of the ν = 2/3 edge [Eqs. (1) and (2)],
and the nonchiral LL, primarily in two respects: (i) the

line-junction model of the contacts and (ii) fractionalization-
renormalized tunneling. The framework for this discussion is
provided in the main text, so that we mostly only need to
highlight the points at which the changes are made.

The nonchiral LL model is defined in terms of the charge
densities by Eqs. (1) and (2) with δν1 = −δν2 = 1 and 3v2 →
v2 (for v1,2 being the channel velocities in the absence of in-
terchannel interaction, generically different), or, equivalently,
by Eqs. (3) and (4) with

g+ = g− = K, (A1)

where K = √
(1 − α)/(1 + α), with

α = 2v12/(v1 + v2), (A2)

is the Luttinger constant. The equality g+ = g− signifies
“nonchirality.” The eigenmode velocities are given by Eq. (7)
with α from Eq. (A2). The stability condition reads v2

12 �
v1v2. For repulsive interaction, K varies in the interval

|√v1 − √
v2|/(

√
v1 + √

v2) � K � 1 (A3)

within the stability domain. In contrast to the ν = 2/3 model
from Sec. II A, g± from Eq. (A1) are single-valued functions
of α.

For the nonchiral case, the matrix λ̂ [Eq. (22)], which
fixes the generalized boundary conditions (24) and (25), has a
simple form:

λ̂ = 1

2Kc

(
Kc + K Kc − K
Kc − K Kc + K

)
, (A4)

where Kc is the Luttinger constant that characterizes the
modes with which the thermal reservoir is at equilibrium. For
this boundary condition, the two-terminal conductance G in
the clean case is given by

G = Kc (A5)

(assuming identical contacts). The value of G in Eq. (A5) is
fully determined by the strength of interaction between the
modes that are at equilibrium with the contacts, similarly to
Eq. (34) for the ν = 2/3 edge.

1. Line-junction contact

For the LL case, the line-junction model of a contact is
described by the equation of motion for the currents j1 =
v1n1 + v12n2 and j2 = −(v2n2 + v12n1) beneath the contact
(|x| < δ):

∂x j1 + 1

2
γc j − γ1

( μ

2π
− j1

)
= 0, (A6)

∂x j2 − 1

2
γc j − γ2

( μ

2π
+ j2

)
= 0, (A7)

where j = j1 + j2. The meaning of the inverse scattering
lengths 2γ −1

c and γ −1
1,2 is similar to that for Eqs. (38) and (39).

An essential difference compared to the ν = 2/3 case is
that the backscattering term, proportional to γc, relaxes in
Eqs. (A6) and (A7) the total current.

The analog of Eqs. (42)–(44) simplifies to

γ̂c = 1

2

(
γc + 2γ1 γc

−γc −γc − 2γ2

)
, (A8)
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with the eigenvalues k1,2 of γ̂c written as

k1,2 = γ1 − γ2

2
± Q

2
, (A9)

where

Q = (γ1 + γ2)

(
1 + 2γc

γ1 + γ2

)1/2

. (A10)

The leaky current-scattering matrix Ŵ, which obeys Eq. (45)
and defines the current through the contact by Eq. (47), now
reads

Ŵ = 1

Q cosh(Qδ) + (γ1 + γ2 + γc) sinh(Qδ)

×
[

Qe−(γ1−γ2 )δ γc sinh(Qδ)
γc sinh(Qδ) Qe(γ1−γ2 )δ

]
. (A11)

Similarly to Eqs. (51) and (52), Ŵ is diagonal in the limit of
γc → 0:

Ŵ →
(

e−2γ1δ 0
0 e−2γ2δ

)
, (A12)

and purely nondiagonal in the limit of δ → ∞:

Ŵ → c

(
0 1
1 0

)
, (A13)

where the single parameter c characterizing the long contact
is given by

c = 1

1 + ζ +
√

ζ 2 + 2ζ
(A14)

with

ζ = γ1 + γ2

γc
. (A15)

For the nonchiral case, c varies within the interval 0 � c � 1,
differently from 0 � c � 1/3 in Eq. (53).

For two long line-junction contacts [Eq. (A13)] at the
chemical potentials μL and μR, the currents j1,2 at the left
contact are then obtained, for the clean case, as

j1(δ) = − j2(−δ) = 1

2π

μL + cμR

1 + c
, (A16)

j2(δ) = − j1(−δ) = − 1

2π

cμL + μR

1 + c
(A17)

(assuming that both contacts are characterized by the same
parameter c). In contrast to Eqs. (55) and (56) for the ν = 2/3
edge, the currents in Eqs. (A16) and (A17) obey j1,2(±δ) =
− j2,1(∓δ) [which is a symmetry relation additional to that
in Eq. (57)]. As a consequence, if we were to consider two-
terminal transport through a closed loop made up of the
nonchiral edge [as in Fig. 3(a)], the conductance G would
simply be doubled compared to transport through a single
segment of the edge between the contacts. Below, G will be
understood as the conductance of the single segment of the
edge between the long (δ → ∞) line-junction contacts. Short
contacts side-attached to the LL quantum wire (or the nonchi-
ral edge for that matter) should be described by Eq. (A11).

In similarity to Eq. (58), the conductance G = 2π [ j1(δ) +
j2(δ)]/(μL − μR) is given by [cf. Eq. (A5)]

G = Keff
c , (A18)

where the effective Luttinger constant characterizing the
(identical) contacts

Keff
c = 1 − c

1 + c
. (A19)

Again, similarly to the ν = 2/3 edge, the line-junction contact
with Keff

c = K is the incarnation of the notion of an ideal
contact, now—for the nonchiral system. Importantly, this is so
irrespective of the strength of interaction beneath the contact.

If the left and right contacts are characterized by different
constants Keff

cL and Keff
cR , respectively, G is obtained as

G = 2 Keff
cL Keff

cR

Keff
cL + Keff

cR

. (A20)

Note that the structure of Eq. (A20) signifies the applicability
of the notion of a contact resistance, in contrast to Eq. (141)
for the ν = 2/3 edge. Indeed, the resistance 1/G, with G from
Eq. (A20), is a sum of two contact resistances 1/2Keff

cL and
1/2Keff

cR , each of which depends only on the properties of the
corresponding contact.

2. Fractionalization-renormalized tunneling

We now turn to electrostatics of tunneling in the nonchiral
case. From Eq. (A4), the inverse of the matrix �̂, defined
analogously to that in Eq. (61) for the ν = 2/3 edge, is now
symmetric and reads:

�̂−1 = 1

2K

(
1 + K −1 + K

−1 + K 1 + K

)
. (A21)

The screening coefficients η± [Eqs. (62) and (63)] are, in
contrast to the chiral case, the same in both eigenmodes:

η± = −1 − K

1 + K
. (A22)

If v1 = v2, the limit of K → 0, where screening is perfect
(η± → −1), is reachable with increasing strength of interac-
tion [Eq. (A3)]. Either of the eigenmodes is then “neutral,”
analogously to the − mode for the ν = 2/3 edge at � → 1.

The matrices q̂ and ˆ̄q, which describe charge fractional-
ization, resolved with respect to both chirality and channels,
upon insertion of a unit charge into the channels n1 and n2,
respectively, are written as

q̂ = 1

4K

[
(1 + K )2 −1 + K2

−(1 − K )2 1 − K2

]
(A23)

and

ˆ̄q = 1

4K

[
1 − K2 −(1 − K )2

−1 + K2 (1 + K )2

]
. (A24)

Note that both q±,1 = q̄∓,2 and q±,2 = q̄∓,1 in Eqs. (A23)
and (A24), in contrast to Eqs. (69) and (70) for the chiral case,
where only the former is true.

Similarly to the partial (for � �= 1) cancellation, in the
ν = 2/3 edge, of the screening charge q̄+,1 for the fraction-
alized electron tunneled to channel 2 and the charge −q+,1
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of the fractionalized hole left behind in channel 1, the factor
q+,1 − q̄+,1 [Eq. (79)] with q̂ and ˆ̄q from Eqs. (A23) and (A24)
decreases with increasing strength of repulsive interaction.
Specifically,

q+,1 − q̄+,1 = q̄−,2 − q−,2 = 1 + K

2
, (A25)

where we also took into account that, in the nonchiral case, the
first factors in Eqs. (79) and (80) are the same. In contrast to
the case of � = 1 for the ν = 2/3 edge, however, the mutual
compensation of the two terms in the factor q+,1 − q̄+,1 is
never exact. The second factors in Eqs. (79) and (80), with
W ±

1,2 from Eqs. (84) and (85), are also the same in the system
obeying chiral symmetry, as are, altogether, the reflection
coefficients from the left and from the right:

R+ = R− = |t̃0|2 K

v+v−
. (A26)

The equality R+ = R− is a direct consequence of g+ = g− [cf.
Eq. (87)]. Within the picture of fractionalization-renormalized
tunneling, fractionalization is represented by the factor of K in
Eq. (A26). As already noted below Eq. (87), the factors |t̃0|2
in the chiral and nonchiral cases, i.e., in Eqs. (86) and (A26),
respectively, are inherently related to each other.

The equation of motion for the densities n± in the nonchiral
case is Eq. (101) with �± from Eq. (103), where R± are given
by Eq. (A26). Similarly to Eq. (107), the collision terms Īt

and It in the equations of motion for n1,2 and n±, respectively,
are proportional to each other. The relation between them now
reads

Īt = 1

K
It . (A27)

The collision integral describes relaxation of the total current
[cf. Eq. (110)]:

Īt = γ0 j, (A28)

with γ0 from Eq. (109). The partial scattering rates �1,2, which
define Īt in terms of the density relaxation [Eq. (106)], are

written as

�1,2 = γ0(v1,2 − v12), (A29)

Note that Eq. (A29) satisfies the general constraint on the
relation between �1 and �2 from Eq. (116).

One of the relaxation rates �1,2 may become negative,

�1/�2 < 0, (A30)

for sufficiently strong interaction, similarly to the ν = 2/3
edge (Sec. IV A), but, in contrast to the chiral case, only if
v1 �= v2. Specifically, the condition for the inequality (A30) to
hold is

min{v1, v2} < v12 � √
v1v2, (A31)

where the upper limit is, as mentioned above, the instability
threshold for the LL model. Similarly to the case of the ν =
2/3 edge, this does not violate causality, which only requires
that � = �1 + �2 � 0 [Eq. (113)] be satisfied.

For the nonchiral case, both roots of the characteristic
equation to Eq. (101) in the dc limit are zero, in contrast to
Eq. (125), as a result of which the two-terminal resistance 1/G
is a linear function of L [cf. Eq. (143)]:

1

G
= 1

2Keff
cL

+ 1

2Keff
cR

+ γ0L. (A32)

The disorder-induced contribution to 1/G in Eq. (A32) triv-
ially does not depend on the properties of the contacts,
in stark contrast to the ν = 2/3 edge, as discussed at the
end of Sec. IV C 2. In similarity to the chiral case, G from
Eq. (A32) does not explicitly depend on the strength of in-
teraction outside the contacts, apart from the renormalization
of γ0. The resistivity γ0 in Eq. (A32) corresponds to charge
diffusion with the diffusion coefficient v+v−/� [Eq. (121)
with vρ = 0].
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