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We numerically investigate the localization mechanisms of the quantum anomalous Hall effect (QAHE) with a
large Chern number C in bilayer graphene and magnetic topological insulator thin films doped with nonmagnetic
or spin-flip (magnetic) disorder. By calculating the modified Berry curvature in real space, we demonstrate that
QAHEs in both systems turn into Anderson insulators when the disorder strength is large enough in the presence
of nonmagnetic disorder. However, in the presence of spin-flip disorder, the localization mechanisms in the two
systems are completely distinct. For ferromagnetic bilayer graphene with Rashba spin-orbit coupling, the QAHE
with C = 4 first enters a metallic phase and then turns into an Anderson insulator with the increase of disorder
strength, whereas for magnetic topological insulator thin films, the QAHE with C = −N first enters a metallic
phase, then turns into another QAHE with C = −(N − 1) as disorder strength increases, and finally turns into
an Anderson insulator after N − 1 cycles between QAHE and metallic phases. The phase transitions in the two
systems originate from the exchange of Berry curvature between conduction and valence bands. In the end, we
provide a phenomenological picture related to the topological charges to help understand the underlying physical
origins of the two different phase-transition mechanisms.
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I. INTRODUCTION

Anderson localization is one of the most striking transport
phenomena in condensed matter physics [1]. It describes the
absence of diffusion of waves in a disordered medium. It is
well known that two-dimensional electrons can be suddenly
driven into the Anderson insulating phase even in the pres-
ence of extremely weak disorders. When the time-reversal
symmetry is broken by applying magnetic fields, or the spin-
rotational symmetry is broken by the presence of spin-orbit
coupling, a metal-insulator phase transition appears, indicat-
ing that a metallic phase emerges at weak disorders [2–4].

Ever since the experimental realization of graphene [5–7]
and topological insulators [8,9], much attention has been paid
to exploring the long-sought quantum anomalous Hall effect
(QAHE) [10–37], which was first experimentally observed in
magnetic topological insulator thin films [38]. In the conven-
tional quantum Hall effect (QHE) induced by strong magnetic
field [39,40], several different localization mechanisms have
been proposed, such as levitation theory, pointing out that the
phase transition can only occur in the nearest-neighbor Hall
plateaus, and a global phase diagram has been established
[41]. Meanwhile, Sheng et al. [42] propose that quantum Hall
plateaus are destroyed in a one-by-one order from high to low
energies without floating up in energy. Compared with QHE,
the QAHE demonstrates similar bulk-edge relation and edge
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state transport properties. However, the QAHE requires a non-
trivial exchange gap at the Dirac point, which is different from
the formation of discrete Landau levels in QHE [43,44]. And
the spin/pseudospin degree of freedom plays a crucial role in
the formation of QAHE. The previous works demonstrate that
QAHE with a Chern number of C = 1 turns into an Anderson
insulator in two different ways, depending on the types of
disorders, i.e., (i) QAHE→Anderson insulator in the presence
of nonmagnetic disorder, and (ii) QAHE→metal→Anderson
insulator in the presence of spin-flip disorder [45,46]. How-
ever, the localization mechanism of QAHE with a large Chern
number (multiple edge states) is still lacking, and disorders
often do not act on the spin space of the system [47–51].

In this work, we investigate the electronic transport prop-
erties of the chiral edge modes in large-Chern-number QAHE
systems, i.e., bilayer graphene and magnetic topological insu-
lator thin films, in the presence of nonmagnetic and spin-flip
disorders. In a ferromagnetic bilayer graphene system with
Rashba spin-orbit coupling, the QAHE with a Chern number
of C = 4 can be formed. In magnetic topological insulator
thin films, the QAHE with different Chern numbers can be
produced by tuning the ferromagnetism strength (film thick-
ness) at fixed film thickness (ferromagnetism strength). In the
presence of nonmagnetic disorder, both systems enter Ander-
son insulators from the QAHE phase without entering another
QAHE phase; whereas in the presence of spin-flip disorder,
we find that (i) in the bilayer graphene system, the QAHE
with a Chern number of C = 4 first enters a metallic phase,
then turns into an Anderson insulator with increasing disorder
strength; (ii) in the magnetic topological insulator thin film
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system, the QAHE with a Chern number of C = −N first
enters a metallic phase, then enters another QAHE phase with
C = −(N − 1), and finally turns into a localized Anderson
insulator phase after N − 1 cycles between the QAHE and
metallic phases. In the end, we provide a phenomenological
picture of spin-texture evolutions to understand the underlying
physical mechanisms of Anderson localization phenomena
induced by two different disorders.

II. SYSTEM MODELS AND METHODS

In our research, we select the AB-stacked bilayer graphene
and magnetic topological insulator thin films to realize the
large-Chern-number QAHE, respectively. The tight-binding
Hamiltonian of the ferromagnetic bilayer graphene in the
presence of Rashba spin-orbit coupling can be expressed as
[28,52]

HBLG = HT
SLG + HB

SLG + t⊥
∑

i∈T,j∈B,α

c†
iαc jα, (1)

HSLG = −t
∑
〈i j〉α

c†
iαc jα + itR

∑
〈i j〉αβ

(sαβ × di j ) · ẑc†
iαc jβ

+ M
∑

iα

c†
iα (sz )ααciα, (2)

where HT,B
SLG represents the Hamiltonian of the top (T) or

bottom (B) graphene layer. t⊥ is the interlayer hopping ampli-
tude. In Eq. (2), the first term describes the nearest-neighbor
hopping; the second term represents the Rashba spin-orbit
coupling with a coupling strength of tR, and di j is the unit
vector pointing from j-site to i-site; the third term refers to
the exchange field with a field strength of M. Here, α and β

denote spin indices.
The tight-binding Hamiltonian of the magnetic topological

insulator thin films can be written as [53]

H =
∑

i

ε0c†
i ci +

∑
i

∑
γ=x,y,z

c†
i Tγ ci+γ + H.c.

+
∑

i

m0c†
i ci, (3)

where ε0 = (C − 3B/2)τz ⊗ σ0, Tγ = B/4τz ⊗ σ0 −
iA/2τx ⊗ σγ , and m0 = mτ0 ⊗ σz. ci = [ai↑, ai↓, bi↑, bi↓],
with (a, b) denoting two independent orbitals and (↑↓)
representing spin indexes. A, B, and C are independent
parameters, with A referring to the Fermi velocity and C
determining the amplitude of the inverted band gap. γ refers
to the unit vector towards the direction of γ = (x, y, z). σ

and τ are, respectively, spin and orbital Pauli matrices. m
measures the effective exchange field strength. Since we
focus on the resulting topological phenomena of magnetic
topological insulator thin films, the thickness (i.e., layer
number) along the z-direction is set to be finite [32].

In both cases, we apply either nonmagnetic or spin-flip
disorder to investigate the transport properties of the large-
Chern-number QAHE. The tight-binding Hamiltonian of the
applied disorders can be expressed as

Hdis =
∑

i

w0
i c†

i ci + wx
i c†

i σxci + w
y
i c†

i σyci, (4)

where the first term describes the on-site nonmagnetic
disorder, and the last two terms correspond to spin-flip dis-
order. w0,x,y are uniformly distributed in the interval of
[−W/2,W/2], with W representing the disorder strength. In
our study, we use the Landauer-Büttiker formula to calcu-
late the two-terminal conductance of the large-Chern-number
QAHE in the presence of either nonmagnetic or spin-flip
disorder. The disorders are only considered in the central scat-
tering region that couples with two semi-infinite leads, which
are exactly extended from the central part. The conductance
from the left to right terminal can be evaluated as [54]

GLR = 2e2

h
Tr[�LGr�RGa], (5)

where Gr,a are, respectively, the retarded and advanced
Green’s functions, and �L,R are the linewidth functions cou-
pling with the left and right terminals.

III. RESULTS AND DISCUSSIONS

In bilayer graphene, the formation of QAHE requires typ-
ically the application of Rashba SOC and an exchange field,
whereas in a magnetic topological insulator, the realization
of QAHE only requires the exchange field. Figures 1(a)–1(d)
show the band structures of the bilayer graphene with different
Rashba SOC and exchange field strengths. In Fig. 1(a), one
can see the band structure of the pristine bilayer graphene
with double degeneracy and quadratic dispersion relations at
K and K ′. When Rashba SOC is exclusively applied, spin
degeneracy is lifted and a linear dispersion relation appears
[see Fig. 1(b)]. When the exchange field is exclusively turned
on, the spin-up (spin-down) bands are pushed upwards (down-
wards), as shown in Fig. 1(c). When both Rashba SOC and
the exchange field are considered, a topologically nontrivial
band gap with a Chern number of C = 4 appears around K/K ′.
Unlike bilayer graphene, the Dirac points emerge one by one
as a function of exchange field in the magnetic topological
insulator. The first Dirac point appears at m = 2.465B [see
Fig. 1(e)]. When the exchange field strength decreases to m =
2.2B, a topologically nontrivial band gap with a Chern number
of C = −1 exists [see Fig. 1(f)]. At m = 1.963B, the second
Dirac point appears [see Fig. 1(g)]. And at m = 1.75B, the
system is a QAHE insulator with a Chern number of C = −2
[see Fig. 1(h)]. The localization mechanism of QAHE (C = 1)
in the presence of spin-flip disorder has been investigated.
When spin-flip disorder strength exceeds a critical value, the
quantized conductance at the charge neutrality point abruptly
vanishes due to the interchange of Berry curvatures carried
by the conduction and valence bands. For the nonmagnetic
disorder case, the QAHE develops into an Anderson insulator
directly without the interchange of Berry curvatures [45].
Two factors are crucial in localization phenomena of high
Chern number systems, i.e., the types of bulk bands and the
mechanisms of Hall conductivity destroyed by disorders. In
the following, we will describe these phenomena in detail.

A. Localization mechanism for bilayer graphene-based QAHE

In a bilayer graphene-based QAHE system, we select
several representative Fermi energies inside the bulk band
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FIG. 1. The bulk band structures for bilayer graphene. (a) Pris-
tine bilayer graphene. (b) When only tR = 0.4t is applied. (c) When
only exchange field M = 0.4t is applied, the spin-up/spin-down
bands are upwards/downwards lifted with the bands crossing near
K and K ′ points. (d) When Rashba SOC tR = 0.4t and exchange
field M = 0.4t both exist, a bulk gap is opened and the system is
a QAHE insulator with C = 4. (e)–(h) The bulk band spectra along
the high-symmetry lines of the magnetic element doped topological
insulator films in the presence of different exchange field strength
(e) m = 2.465B, (f) m = 2.2B, C = −1, (g) m = 1.963B, and (h)
m = 1.75B, C = −2. The corresponding system parameters are set
as C = 0.3B, A = 0.5B, Nz = 2 (layer number).

gap, such as EF/t = 0.001, 0.04, 0.08, 0.12, 0.16, and 0.20,
to investigate how disorders affect the electronic trans-
port properties. Figure 2 depicts the averaged two-terminal
conductance 〈G〉 as a function of the disorder strength W
for nonmagnetic and spin-flip disorders. For the nonmagnetic
case as displayed in Fig. 2(a), the conductance remains quan-
tized with 〈G〉 = 4e2/h in the presence of weak disorders.
Around the critical value of disorder strength, the conductance
shows a rapid decrease. As disorder strength increases, the
conductance shows a gradual decrease to zero. Particularly
at a fixed disorder strength, the closer the Fermi energy is
to the charge neutrality point EF/t = 0.00, the more it takes
for the quantized conductance to be destroyed. In contrast,
for the spin-flip disorder, the effects of disorder on the elec-
tronic transport properties are completely different from those
observed in the former case. Figure 2(b) shows the averaged
conductance as a function of disorder strength in the pres-

FIG. 2. Averaged conductance 〈G〉 as a function of W for dif-
ferent Fermi energies inside the bulk gap. The system is bilayer
graphene with parameters set to be N = 60, tR = 0.4t , and M = 0.4t .
(a) and (b) For nonmagnetic and spin-flip disorders, respectively.
4000 samples are collected for each data point.

ence of spin-flip disorder. One can find that the variation of
the averaged conductance is divided into two parts with the
increase of disorder strength, i.e., (i) in the presence of weak
disorders, the averaged conductance remains quantized with
〈G〉 = 4 e2/h before it reaches the critical disorder strength;
(ii) once disorder strength exceeds the critical value, the av-
eraged conductance gradually decreases and finally vanishes.
Contrary to the nonmagnetic case, the farther the Fermi energy
is away from the charge neutrality point EF/t = 0.00, the
more it takes for the conductance to vanish. For instance, the
averaged conductance for EF/t = 0.001 remains quantized
until (W/t ≈ 2.2), and once W/t > 2.3, it immediately drops
to zero.

B. Localization mechanism for magnetic topological insulator
thin film based QAHE

In magnetic topological insulator thin films, Fig. 3 displays
the averaged conductance as a function of disorder strength
for different Fermi energies inside the bulk gap. In the pres-
ence of nonmagnetic disorder [see Fig. 3(a)], the variation of
averaged conductance with the increase of disorder strength is
similar to the nonmagnetic case in a bilayer graphene system
[see Fig. 2(a)]. But in the presence of spin-flip disorder, as
shown in Fig. 3(b), the system exhibits a completely differ-
ent localization phenomenon in contrast to that in bilayer
graphene. The most striking feature is the appearance of an
additional quantized conductance plateau with the increase
of disorder strength W , i.e., in the presence of weak dis-
orders, the averaged conductance remains quantized with a
value of 〈G〉 = 2e2/h; when W reaches the first critical value
(e.g., WC1/B ≈ 1.90 at EF/B = 0.001), the initial quantized
plateau is destroyed and the system quickly enters a lower
quantized plateau with a value of 〈G〉 = e2/h; as W continues
to increase, the averaged conductance remains quantized at
〈G〉 = e2/h; when W reaches the second critical point (e.g.,
WC2/B ≈ 3.90 at EF/B = 0.001), the quantized plateau is de-
stroyed and the conductance gradually vanishes. We can find
that the closer the Fermi energy is to EF/B = 0.00, the more it
takes for the lower quantized conductance to be destroyed. As
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FIG. 3. Averaged conductance 〈G〉 as a function of W for dif-
ferent Fermi energies inside the bulk gap. The system is magnetic
topological insulator thin films with width set to be N = 80. (a) and
(b) For nonmagnetic and spin-flip disorders, respectively. 4000 sam-
ples are collected for each data point. The inset of (b) is the
conductance variation of the system with a higher Chern number
in EF/B = 0.002. 150 samples are collected for each data point.
The parameters in the inset are C = 0.3B, A = 0.5B, m = 1.71B,
N = 60 for C = −4, and C = 0.3B, A = 0.5B, m = 1.7B, N = 60
for C = −3, respectively.

a consequence, the lower quantized plateau almost disappears
at the conduction-band edge (EF/B = 0.20).

For magnetic topological insulator thin films, the Chern
number can be tuned by varying the thickness of the films.
The inset of Fig. 3(b) shows the averaged conductance as a
function of disorder strength for the system of C = −4 and
−3 at EF/B = 0.002. One can see that the Hall conductance
is destroyed step by step in a quantized manner. To understand
the fundamental physics that results in these anomalous trans-
port properties, we analyze the Berry curvature density in the
corresponding bulk system that reflects the nature of QAHE.

C. Berry curvature analysis

For the disordered system, we use a Berry curvature and
Kubo formula in real space to calculate Hall conductance,
which can be stated, respectively, as [55]

	α = −
∑
β �=α

2 Im〈α|vx|β〉〈β|vy|α〉
(wα − wβ )2

, (6)

σxy = −e2

h

∫
〈	(ε)〉 f (ε)dε. (7)

In the above equations, 	(ε) = 1
S Tr[	̂δ(ε − H )] describes

the Berry curvature density in the energy spectrum with the
Berry curvature operator 	̂ = ∑

α 	α|α〉〈α| , and |α〉 indi-
cates the eigenvector of |h̄wα〉 in the disordered system. S is
the area of the two-dimensional system, vx/y is the velocity
operator in the x or y direction, and f (ε) is the Fermi-Dirac
distribution.

The transport properties of bilayer graphene in the pres-
ence of nonmagnetic/spin-flip disorder are almost the same as
those in the Qi-Wu-Zhang model with Chern number C = 1
and monolayer graphene with Chern number C = 2, which
have been studied in our previous paper [45]. Therefore, in

FIG. 4. (a1)–(l1) Averaged Berry curvature density 	 as a func-
tion of energy E for different spin-flip disorder strengths W in
magnetic topological insulator thin films. (a2)–(l2) Corresponding
averaged Hall conductance σxy as a function of energy E . Pv,c

D1 (Pv,c
D2 )

represent the Berry curvature contributed by the massive Dirac bands
in the first (second) exchange process. Pv,c

R1 (Pv,c
R2 ) represent the Berry

curvature contributed by the remaining bands in the first (second)
exchange process. v (c) denotes valence (conduction) bands. 30
samples are collected for each point.

this article, we mainly explore the mechanisms of anomalous
transport properties in magnetic topological insulator thin
films. Figure 4 shows the averaged Berry curvature density
	 and Hall conductance σxy as a function of the Fermi
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energy E for different spin-flip disorder strengths W/B =
0.00, 0.60, 1.10, 1.60, 1.85, 2.15, 2.40, 2.95, 3.45,3.65,3.90,

4.25, and 4.55, respectively. At W/B = 0.00 [see Fig. 4(a1)],
we can identify two Berry curvature peaks in valence bands
and conduction bands as Pv,c

D1 , which originate from the
contribution of massive Dirac bands, while Pv,c

R1 denotes
the contribution of remaining bands, in which v/c denotes
valence/conduction bands and D1/R1 denotes the massive
Dirac/remaining bands for the first exchange process. One
can find that for Fermi energies inside the bulk band gap,
	(E ) = 0 and σxy = 2e2/h, and the Hall conductance
preserves σxy(E ) = σxy(−E ), due to the electron-hole
symmetry of energy bands. In the presence of weak disorders
[see Figs. 4(b)–4(d)], the two Berry curvature peaks Pv,c

D1 move
towards each other and shrink the band gap. The contribution
of areas covered by red/green to Hall conductance is about
±0.5e2/h. Meanwhile, the two Berry curvature peaks Pv,c

R1
are almost fixed and broadened. When the disorder strength
approaches the first critical point W/B ≈ 1.85 [Fig. 4(e)], the
bulk gap begins closing and the Berry curvature peaks Pv,c

D1
start to exchange with each other. As the disorder strength
continues to increase [see Figs. 4(f)–4(h)], one can find that
the two Berry curvature peaks Pv,c

D1 make an interchange with
the bulk gap reopening, and the Hall conductance inside the
bulk gap now becomes σxy = e2/h, which is consistent with
the above transport calculations. At even stronger disorders
[see Fig. 4(i)], one can see that the two Berry curvature
peaks Pv,c

R1 vanish, and two new peaks appear, which can be
identified as Pv,c

D2 followed by the similar definitions above.
When the disorder strength is stronger [see Figs. 4(j)–4(l)],
the two peaks Pv,c

D2 complete the second interchange process,
and finally the Hall conductance inside the bulk gap is zero,
indicating an Anderson insulator phase exists.

Figure 5 displays how the averaged Berry curvature density
and Hall conductance evolve in magnetic topological insu-
lator thin films with nonmagnetic disorder for comparison.
With the increase of disorder strength, although the two Berry
curvature peaks move towards each other and the bulk gap
shrinks, the most noticeable difference from the case of spin-
flip disorder is the lack of interchange of Berry curvature
carried by massive Dirac bands. Therefore, the system with
nonmagnetic disorder does not undergo a Berry curvature
interchange but turns directly from the QAHE state into the
Anderson insulating phase.

D. A phenomenological picture

As stated in Ref. [56], the Hall conductance can be ex-
pressed as

σxy = − 1

4π

∫∫
FBZ

dkxdkyd̂ · ∂xd̂ × ∂yd̂, (8)

where d̂ describes the spin part of the Hamiltonian, and it is
also the mapping from the Brillouin zone to the unit sphere.
The d̂ · ∂xd̂ × ∂yd̂ is the Jacobian of this mapping. The quan-
tized Hall conductance measures the skyrmion number in this
model. In the ferromagnetic graphene system with Rashba
spin-orbit coupling [29], two skyrmions located at two valleys
give rise to a total Chern number of C = 2. In the presence of
disorders, the Hall conductance (Chern number) still counts

FIG. 5. (a1)–(h1) Averaged Berry curvature density 	 as a func-
tion of energy E for different nonmagnetic disorder strengths W in
magnetic topological insulator thin films. (a2)–(h2) Corresponding
averaged Hall conductance σxy as a function of energy E . 30 samples
are collected for each point.

the number of topological charges and is quantized, as long
as the ground state is nondegenerate and separated from the
excited states by a finite energy gap [57–59]. We present
an illustrative analogy by considering the Chern numbers as
combinations of skyrmions.

The quantized Hall conductance of σxy = −e2/h is analo-
gous to a skyrmion, where the valence or conduction bands
carry a topological charge of Qv/c = ±1 [45] depending on
the spin textures [60]. In a skyrmion with a unit of posi-
tive (negative) topological charge, the spin points upwards
(downwards) at the north pole, downwards (upwards) at the
south pole, and in-plane at the equator, as vividly displayed in
Fig. 6. In the absence of disorders, valence and conduction
bands carry four topological charges labeled as “A,” “B,”
“C,” and “D” [see Fig. 6(a)]. When the spin-flip disorder is
applied [see Fig. 6(b)], all skyrmions are divided into eight
merons (labeled as “A1,” “A2,” “B1,” “B2,” “C1,” “C2,” “D1,”
and “D2”). As shown in Fig. 6(c), merons B2 and C1 move
towards each other in an attractive manner when the disorder
strength reaches the first critical point. As disorder strength
increases, merons B2 and C1 move into the valence and
conduction bands, respectively [see Fig. 6(d)]. Thus, the Hall
conductance in valence bands transits into the lower plateau
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FIG. 6. Schematic of topological charges carried by the spin textures of the valence and conduction bands in magnetic topological insulator
thin films with spin-flip disorder. (a) In the absence of disorders, valence/conduction bands carry four skyrmions with topological charges of
+1, +1, −1, and −1. (b) At weak disorders, four skyrmions are scattered to eight merons that carry half-integer topological charges and are
labeled as “A1,”“A2,” “B1,” “B2,” “C1,” “C2,” “D1,” and “D2.” (c) By further increasing disorder strength, merons B2 and C1 move towards
each other. (d) Merons B2 and C1 make an exchange, leading to Hall conductance falling on the next ladder. (e) and (f) Weak disorders hardly
affect merons A2 and D1. When the disorder strength approaches the second critical point, merons A2 and D1 move towards each other and
make an exchange, which results in the disappearance of integer conductance.

σxy = e2/h. It is noteworthy that merons D1 and A2 are not
influenced by the spin-flip disorder until disorder strength
approaches the second critical point. As disorder strength
continuously increases [see Figs. 6(e)–6(f)], merons D1 and
A2 first move towards each other, then partially overlap,
and finally exchange with each other. Meanwhile, the Hall

conductance disappears and the system enters the Anderson
insulator phase. Figure 7 displays the evolution of topological
charges carried by the spin-textures of the valence and con-
duction bands in a bilayer graphene system. In the presence
of weak disorders [see Figs. 7(a)–7(b)], four skyrmions are
divided into eight merons labeled as “A1,” “A2,” “B1,” “B2,”

FIG. 7. Schematic of topological charges carried by the spin textures of the valence and conduction bands in bilayer graphene with spin-flip
disorder. (a) In the absence of disorders, valence/conduction bands carry four skyrmions with topological charges of +1, +1, −1, and −1.
(b) At weak disorders, four skyrmions are scattered to eight merons that carry half-integer topological charges and are labeled as “A1,”“A2,”
“B1,” “B2,” “C1,” “C2,” “D1,” and “D2.” (c) By further increasing disorder strength, merons, A2 and C1, B2 and D1 move towards each other.
(d) At strong disorders, merons A2,C1 and B2,D1 and make an exchange, causing the disappearance of quantized Hall conductance.
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FIG. 8. Spin-flip disorder dependence of Hall conductance.
(a),(b) Sketch of Hall conductance as a function of spin-flip disorder
strength W, which can/cannot be realized in the magnetic topological
insulator thin films and bilayer graphene.

“C1,” “C2,” “D1,” and “D2.” Each meron carries half-integer
topological charge. When the disorder strength is stronger [see
Fig. 7(c)], the merons A2,C1 and B2,D1 do not make an in-
terchange step by step, but interchange simultaneously. After
the interchange [see Fig. 7(d)], the net charge in valence bands
is zero, indicating the system enters the Anderson insulating
phase.

By analyzing the Berry curvature of magnetic topological
insulator thin films, we find that none of topological charges
are equivalent in magnetic topological insulator thin films,
and the different responses of topological charges to spin-
flip disorder lead to the sequential charge destruction. But in
bilayer graphene, all the topological charges are equivalent,
leading to simultaneous destruction of topological charges and
direct jump of Hall conductance from maximum to zero in
the presence of spin-flip disorder. Therefore, the decrease of
Hall conductance as a function of spin-flip disorder strength
follows N → N − 1 or N → 0, as shown in Fig. 8(a). How-
ever, with the increase of spin-flip disorder strength, the Hall
conductance cannot be destroyed through 4 → 1 → 0 or 4 →
3 → 1 → 0 as displayed in Fig. 8(b).

IV. CONCLUSION

We numerically investigate disorders effects (including
nonmagnetic disorder and spin-flip disorder) on two types of
large-Chern-number QAHE systems. In the presence of non-
magnetic disorder, both systems display similar localization
behavior that turns from the QAHE state into the Ander-
son insulating state without undergoing a Berry curvature
interchange process. In the presence of spin-flip disorder, we
find that the metallic phase exists in both systems with the
increase of disorder strength, but the mechanisms of phase
transition are different. In magnetic topological insulator thin
films, the quantized conductances are destroyed step by step
from higher to lower integer plateau, and finally the sys-
tem enters the Anderson insulating phase; while in bilayer
graphene, the quantized conductances are destroyed only in
one step and eventually the system becomes the Anderson
insulator. The underlying physical mechanisms in the two
types of QAHE systems can be explained from the view
of topological charges, which are, respectively, carried by
valence/conduction bands. Our work provides a deep under-

standing of disorder effects on the QAHE systems with a
tunable Chern number.
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APPENDIX A: DERIVATION OF THE BERRY CURVATURE
FORMULA IN THE NONPERIODIC SPACE

In this Appendix, we will illustrate how the Berry curva-
ture transforms from a periodic space to a nonperiodic space.
Equations (A1)–(A3) show the definition of Berry curvature in
periodic systems, whereas Eqs. (A4)–(A8) show the definition
of Berry curvature in nonperiodic systems.

In the noninteracting electronic system, the topological
property of a two-dimensional band insulator is characterized
by the quantized charge Hall conductance [40,61]:

σxy = C e2

h
, (A1)

where C is an integer known as the first Chern number, and it
can be calculated by integrating the Berry curvature over the
first Brillouin zone (BZ) [61,62]:

C = 1

2π

∑
n

∫∫
BZ

d2k 	n(k), (A2)

	n(k) = −
∑
n �=n′

2 Im〈φnk| ∂H
∂kx

|φn′k〉〈φn′k| ∂H
∂ky

|φnk〉
(En − En′ )2

, (A3)

where 	n(k) is the momentum-space Berry curvature for the
nth band, and k = (kx, ky) represents the Bloch wave vector
in the first Brillouin zone. The summation of n runs over all
occupied valence bands below the bulk gap. The absolute
value of C corresponds to topological charges of the two-
dimensional system. Niu and Thouless further show that the
quantized Hall conductance is robust against disorders [58].
For a time-dependent Hamiltonian H (t ) without any specific
periodicity, the many-body wave function satisfies

�(x1, . . . , xi + L, . . . , xN ) = eiκL�(x1, . . . , xi, . . . , xN ),
(A4)

where κ is introduced by the twisted boundary condition, and
L is the size of the system. This is equivalent to solving a
κ-dependent Hamiltonian:

H (κ, t ) = exp(iκ
∑

xi )H (t )exp(−iκ
∑

xi ), (A5)

with the strict periodic boundary condition

�̃(κ; x1, . . . , xi + L, . . . , xN ) = �̃(κ; x1, . . . , xi, . . . , xN ).
(A6)

115414-7



YANG, ZENG, HAN, AND QIAO PHYSICAL REVIEW B 104, 115414 (2021)

The Chern number and Berry curvature can be defined as
follows:

C = 1

2π

∫ T

0
dt

∫ 2π/L

0
dk 	̃kt , (A7)

	̃kt = −i

[〈
∂�̃0

∂κ

∣∣∣∣∂�̃0

∂t

〉
−

〈
∂�̃0

∂t

∣∣∣∣∂�̃0

∂κ

〉]
, (A8)

where �̃0 is the many-body ground state. The parameter space
for κ (0 < κ < 2π/L) and t (0 < t < T ) of Berry curvature
is also a torus; even disorders exist. As long as the system
remains an insulator during the whole process, the Hall con-
ductance (Chern number) is still quantized [58,59]. Therefore,
we can define Berry curvature in a nonperiodic space to eval-
uate the influence of disorders.
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