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As important progress for simulating realistic device materials, we report the first-principles nonequilibrium
dynamical cluster theory for simulating the quantum transport properties of nanoelectronics with inevitable
disordered defects or dopants. In this method, we formulate the nonequilibrium dynamical cluster theory in
Keldysh’s Green’s function representation, and implement it with the exact muffin-tin orbital based density
functional theory. With this method, the important correlation effects of disordered scattering and short-range
order effects can be effectively treated for the nonequilibrium electronic structure and quantum transport
calculations of devices under finite bias. Moreover, a double-energy-contour technique is devised to considerably
improve the numerical convergence in the nonequilibrium electron structure calculation. As the demonstration,
the first-principles nonequilibrium dynamical cluster theory is applied to calculate Cu/Co junction with dis-
ordered interface and Fe/vacuum/Fe magnetic tunnel junction with surface roughness. We find that a sizable
transmission decrease can be induced by including the correlation effects of disorders of few layers in the
Cu/Co junction, presenting the important transport channel closing due to disordered quantum interference. For
Fe/vacuum/Fe junction, we find that short-range order of surface roughness, with the important clustering and
anticlustering tendencies, can dramatically change the transmission properties compared to the case of (or close
to) complete randomness. The development of first-principles nonequilibrium dynamical cluster theory provides
an important approach for analyzing the process-dependent device performance, extending the capability of
first-principles quantum transport simulation.
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I. INTRODUCTION

The presence of disordered defects or intentional dopants
can significantly influence or even determine the mate-
rial properties and device functionalities, especially at the
nanoscale. [For example, a small amount of interfacial dis-
orders in Fe/MgO/Fe magnetic tunneling junction (MTJ)
can greatly decrease the tunneling magnetoresistance ratio
by orders of magnitude [1,2]]. It is known that disorder can
dramatically change the carrier transport from ballistic to
diffusive, and even to weak or full localization regime in
metallic wires. Moreover, due to the lack of self-averaging,
nanoscale field effect transistors present the important random
dopant fluctuation, giving rise to large device-to-device vari-
ability which presents great challenge for device fabrication.
Therefore, developing simulation methods to effectively treat
the important effects of inevitable disorders is critical for
process and materials design in modern device researches.
Coherent potential approximation(CPA) [3,4] as an effective
mean field theory for disorder average presently has impor-
tant applications (combining with first-principles methods) in
calculating electronic structure and mechanical properties of
alloys [5–11] and simulating the quantum transport properties
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of disordered nanoelectronic and spintronic devices [1,2,12–
16]. CPA constructs an effective medium with translational
symmetry self-consistently to obtain the disorder-averaged
physical quantities. CPA is conventionally implemented in
the singe-site approximation [17], which ignores the nonlo-
cal correlation of disorders (even neighboring). As a result,
conventional CPA is suitable for the quenched-type disorder
system, featuring complete randomness, with weak scatter-
ing and nonlocal correlation. However, in alloys with large
concentration and strong scattering, the cluster effect, namely
nonlocal correlations, is important for device and materi-
als’ property, especially towards weak and full localization
regime. Moreover, in realistic devices’ and materials’ fabri-
cation, atomic relaxation due to the annealing process can
result in disorders with short-range order, in contrast to the
quenched disorder. It has been first found that, because of the
important short-range order (SRO) effects, the resistivity of
Ti-Al alloys presents important differences between samples
annealed at different temperatures [18–20]. The relaxation of
defects has been found to present significant influences on
the transport properties of two-dimensional (2D) materials
[21]. The presence of SRO is beyond the capability of the
single-site CPA. It is therefore desirable to develop simula-
tion methods to realize the analysis of the SRO effects for
both device and process designs in modern semiconductor
technology.
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Presently, there are two mainstream methods to account
for (to some extent) the important correlations of disorders,
including supercell (SC) methods and the cluster mean-field
theories, which can approach exact results in the limit of
infinite supercell or cluster size. The supercell methods, do-
ing the disorder average by calculating different random or
quasirandom configurations [22] in a finite supercell with
periodic boundary condition, have present important applica-
tions in combination with first-principles methods. However,
the applicability of SC methods is always limited by the large
computational cost and finite supercell size. On the other
hand, cluster mean-field theories provide effective approaches
to include the spatial correlation within the cluster. As a
straightforward extension of CPA, by replacing the single
site with a cluster or molecule, molecular CPA (MCPA) is
proposed [23,24] to deal with correlation effects inside the
cluster. MCPA preserves the translational symmetry of the
cluster, but fails to conserve the full symmetry of the lat-
tice [25]. To restore the full symmetry, an elegant method
called dynamical cluster approximation (DCA), which was
originally proposed by Hettler et al. [26] (with the analyticity
proved in Ref. [27]) for describing the nonlocal dynamical
correlations in correlated electron systems, has been applied
to account for the correlation effects in atomically disordered
materials [28] (there exists different name as nonlocal CPA
(NLCPA) [29,30]). Recently, the success of DCA for disor-
dered system has been demonstrated with the tight-binding
models, including site-diagonal disorder [31–33], combina-
tion with Blackman-Esterling-Berk [34] transformation for
off-diagonal disorder [35], and with dual-fermion technique
to include nonlocal correlations [36] and with typical medium
theory for Anderson localization [37–40]. By applying the
periodic Born–von Karman (BVK) boundary conditions to the
cluster, DCA preserves the full translational and point-group
symmetries of the lattice. The DCA self-energy, describing
the effective medium of disorder average, can be calculated
for several different K points in the Brillouin zone (BZ) of
the primitive cell, beyond the self-energy of single-site CPA
calculated only at the � point. Different from the SC method
[41,42] and MCPA, DCA limits the computational cost at the
level of the primitive cell, which makes it feasible to combine
with first-principles simulations. Presently, combing DCA or
NLCPA with density functional theory (DFT) [43,44], for
example, KKR-NLCPA [30,45–47], provides an important
first-principles approach for simulating realistic alloys, and
has presented important applications in bulk systems (such as
the resistivity of CuZn and AgPd alloys with SRO effects)
[48]. However, the nonequilibrium DCA simulation of disor-
dered nanoelectronic devices has not been reported yet, while
disorders play important roles in the performance of realistic
device. In this paper, we report the approach of the DCA in
combination with nonequilibrium Green’s function (NEGF)
method and DFT to realize the first-principles quantum trans-
port simulation of the disordered nanoelectronic devices. With
this method, the important correlation effects of disorder
and SRO effects can be explicitly accounted for the elec-
tron transport calculations. The DFT-NEGF-DCA approach
is implemented within the framework of exact muffin-tin
orbital method (EMTO) [8,10,49–51], which features the
high localization and minimal basis. To demonstrate our

FIG. 1. (a) The Schwinger-Keldysh closed-time contour: starts
from −∞, passes through τ and τ ′, and finally returns to −∞.
There are four real-time quantities Qt,t̄,>,<(τ, τ ′) with τ and τ ′ on
the two branches C+ or C−. (b) Schematic illustration of a disor-
dered two-probe device. The device is divided into different principal
layers labeled by ip and contains clean left electrode ip � 0, dis-
ordered central region 1 � ip � Np, and clean right electrode ip �
Np + 1. The disordered sites are included in different DCA clus-
ters. (c) Schematic illustration of disorder-averaged two-probe device
with the DCA effective medium.

implementation of EMTO-DFT-NEGF-DCA, we calculate the
disorder correlation effect on the transmission of Cu/Co junc-
tion with disordered interfacial interdiffusion, and the SRO
effect on the spin-dependent tunneling in Fe/vacuum (Va)/Fe
MTJ with disordered surface roughness.

This paper is organized as follows: In Sec. II, we review
NEGF based quantum transport algorithm and EMTO method
for nanoelectronic device simulation. In Sec. III, we formulate
the DCA with the Keldysh’s nonequilibrium Green’s function
representation within EMTO. In Sec. IV, we introduce the
implementation of EMTO-DFT-NEGF-DCA method for the
self-consistent nonequilibrium electronic structure and trans-
port calculation. In Sec. V, we present the transport results for
disordered Cu/Co junction and Fe/Va/Fe MTJ. Finally, we
conclude our work in Sec. VI and provide more information
in the Appendix.

II. NONEQUILIBRIUM GREEN’S FUNCTION TECHNIQUE
FOR QUANTUM TRANSPORT SIMULATION WITH

EXACT MUFFIN-TIN ORBITAL METHOD

We consider an operating two-probe device-material sys-
tem, containing a central region (with disorders) sandwiched
by two semi-infinite electrodes [as shown in Fig. 1(b)], and
the electron current flow is driven by applying a bias voltage.
To treat such a quantum transport problem, the nonequilib-
rium Green’s function (NEGF) technique provides a general
approach to deal with the nonequilibrium quantum statistics
[52,53]. The central quantity in NEGF theory is the contour-
ordered Green’s function (GF) defined on the closed-time
contour, for example, Schwinger-Keldysh contour as shown
in Fig. 1(a) [52]. With the Keldysh’s rotation [54,55], the
contour-ordered Green’s function (GF) can be represented in
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the form of a real-time Keldysh’s 2 × 2 matrix, namely,

G =
(

GA 0
GK GR

)
, (1)

where GR/A/K are the respective retarded, advanced, and
Keldysh’s GFs. (Note that all the quantities in bold font in
this paper are contour-ordered quantities in the Keldysh’s
representation). As the advantage of being defined on the
closed-time contour, the NEGF in Eq. (1) satisfies the Dyson
equation, just like the equilibrium GF. As a result, to calculate
the NEGF of the central device region interested, namely Gc,
the influence of electrodes can be treated as the self-energy
such that

Gc = Gc0 + Gc0�ldGc, (2)

where �ld denotes the self-energy of electrodes, and Gc0 is the
GF of isolated central region, making the infinite device cal-
culable. Here, we consider the device in steady state, then both
the GF and self-energy can be Fourier transformed from the
time to energy domain, namely, G(ε, �r, �r′) and �ld(ε, �r, �r′).

With the three GFs in the Keldysh’s representation includ-
ing GR/A/K, the lesser and greater GFs, namely G>/<

c , could
be obtained straightforwardly by the relations [14]

G<
c = 1

2

( − GR
c + GA

c + GK
c

)
,

G>
c = 1

2

( − GA
c + GR

c + GK
c

)
,

(3)

with the important relation GA
c − GR

c = G<
c − G>

c .
Then with these different GFs, many important physical

properties of the central region can be calculated, for example,
the nonequilibrium electron density directly given by

ρc(�r) =
∫

1

2π
Im[G<

c (ε, �r, �r)]dε, (4)

the spectral function

Ac(ε) = i
(
GA

c (ε) − GR
c (ε)

)
, (5)

and the electron current flowing through the device (given by
Meir-Wingreen formula) [56]

I = ie

2h

∫ ∞

−∞
dε Tr

{
[ fL(ε)�L(ε) − fR(ε)�R]

[
GR

c − GA
c

]}

+ Tr {[�L − �R]G<
c }, (6)

where fL/R(ε) and �L/R ≡ i[�R
ld,L/R − �A

ld,L/R] are the respec-
tive Fermi function and linewidth function of left and right
electrodes.

The combination of NEGF technique with first-principles
DFT method, since the first report by Taylor et al.
[57], have been established as the work-horse approach
for quantum transport simulation of real device materials
[2,12,13,15,16,57–66]. In our previous works, we have re-
ported the exact muffin-tin orbital (EMTO) based as the
first-principles simulation of electron and spin quantum trans-
port with the scalar and full relativistics [15,16]. EMTO,
as the third-generation MTO method, features the high ac-
curacy and efficiency, desired for the simulation of device
structures (which is usually much larger than the bulk in
cell size). EMTO method utilizes the overlapped muffin-tin

potential approximation to improve the accuracy, and an im-
portant screening technique to make the basis highly localized
[67]. As another important advantage, EMTO method can be
combined with CPA to effectively treat effects of disorder
scattering on electron and spin transport [8,10,15,16]. The
EMTO, as an energy-dependent atom-centered basis [10], is
constructed as

�a
RL(ε, rR) = φa

RL(ε, rR) − ϕa
RL(ε, rR) + ψa

RL(ε, rR), (7)

where a donates the screening representation, and φRL, ϕRL,
and ψRL are the respective partial wave, free-electron solution,
and screened spherical wave. Within the EMTO method, the
overlap and Hamiltonian matrices can be analytically derived
to obtain

〈�|ε − H |�〉 = aSa(ε) − aD(ε) ≡ K (ε), (8)

where potential function D is the onsite quantity determined
by the atom of each site, the screened slope matrix Sa only
depends on the structure and is highly sparse, providing the
basis for highly efficient calculation of GFs. As a result, within
the framework of EMTO, the NEGF for the central device in
Eq. (2) can be rewritten as

Gc = [aSa
c − aDc − �ld,L − �ld,R]−1

, (9)

where �R
ld,L/R = KR

cL/cRKR
LL/RR

−1
KLc/Rc, �A

ld,L/R = �R
ld,L/R

†
,

�K
ld,L/R = (1 − 2 fL/R(ε))(�R

ld,L/R − �A
ld,L/R), SA = SR,†,

DA = DR,†, and SK = DK = 0. With the above Keldysh’s
NEGF, the physical properties of materials and devices can
be efficiently calculated with the EMTO method [15,16]. In
the practical implementation, we divide the two-probe device
into different principal layers (PLs) (as shown in Fig. 1, the
central device region contains PLs 1 � ip � Np, while the
left and right electrodes contain PLs ip � 0 and ip � Np + 1,
respectively). The size of each PL is chosen so that the kink
matrix K becomes block tridiagonal. For a perfect device
system, which is periodic in the x-y plane perpendicular to
the nonperiodic transport z direction, we apply the 2D lattice
Fourier transformation and recursive GF method [15,68,69].

III. NONEQUILIBRIUM DYNAMICAL CLUSTER
APPROXIMATION IN KELDYSH’S REPRESENTATION

FOR DISORDERED SYSTEMS

We consider a device with atomic disorders presented in
the central region [as shown in Fig. 1(b)]. For the NEGF
in Eq. (9) within EMTO for a disordered device, the atom-
dependent onsite quantity Dc,R becomes random, breaking
the translational symmetry. To obtain physically meaningful
results, the disorder average is required. To do so, one can
introduce an effective medium to give the averaged NEGF in
Keldysh’s representation with EMTO, namely,

Ḡc = [aSa
c − aD̃c − �ld,L − �ld,R]−1, (10)

where D̃c is the effective potential function describing the
disorder-averaged medium. In the previous works with scalar
and full relativistic EMTO [15,16], the single-site CPA in
combination with vertex correction has been successfully im-
plemented to solve D̃c, to obtain the averaged NEGF for
the electron and spin transport through disordered devices.
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FIG. 2. (a) Schematic illustration of DCA cluster with Born–von
Karman periodic boundary condition. (b) Schematic illustration of
BZ partition for 2D BZ of fcc(111) plane when Nxy = 4. The 4 �K‖ are
marked in the 2D BZ, the points of �k‖ within the same coarse-grained
region of �K‖ are denoted with the same color.

Despite single-site CPA features easy implementation, the as-
sociated D̃c is site diagonal (D̃c,RR′ = 0 for R 	= R′), suffering
from the absence of nonlocal correlation and short-range order
effects of disorders. To overcome the limitations of CPA, we
here introduce the approach of combining dynamical clus-
ter approximation with NEGF in EMTO to account for the
disorder cluster effects on quantum transport, presenting an
important step toward the first-principles simulation of real-
istic devices. Compared to the site-diagonal approximation
in single-site CPA, the D̃c in DCA has been developed to
contain site-off-diagonal contribution to account for nonlocal
correlation, and this is realized by calculating the D̃c on a few
coarse-grained �K in BZ by enforcing the Born–von Karman
periodic boundary condition to the finite cluster [26]. To real-
ize the DCA for the disordered two-probe device, the DCA
cluster can be chosen to contain Nz number of disordered
atomic layers along with nonperiodic transport z axis and Nxy

number of primitive cells with BVK boundary condition in
xoy plane as shown in Fig. 2(a). In such a way, the correlation
could be fully considered within the Nz × Nxy disordered sites
of the DCA cluster, while the correlation between different
DCA clusters in transport z direction is neglected. One can
group the different disordered atomic layers with important
correlations into a single DCA cluster. It is clear that, when
Nz = Nxy = 1, DCA is reduced to the single site CPA, and
the DCA approaches the exact solution when Nz include all
disordered layers in the device and Nxy → ∞. Since the
translational symmetry of the primitive cell (different from
the MCPA) is restored in DCA after the disorder average,
the GF in Eq. (10) could be rewritten with 2D Fourier trans-
formation as

Ḡc(�k‖) = [
aSa

c (�k‖) − aD̃c( �K‖,n) − �ld,L(�k‖) − �ld,R(�k‖)
]−1

,

(11)
where �k‖ is the k vector in 2D BZ of primitive lattice, and
�K‖,n is the associated nth cluster momentum which is ob-
tained by applying the Born–von Karman periodic boundary
condition to the DCA cluster, namely, exp( �K‖,n · �L‖,m) = 1,
where �L‖,m is the cluster translational vector [26]. Here,
the coarse-graining approximation D̃c(�k‖) = D̃c( �K‖,n) is ap-

plied when �k‖ = �K‖,n + �̃k‖ where �̃k‖ is the k vector of 2D
BZ for the superlattice of DCA cluster [46,47]. It is clear
that, in DCA, the disorder effects are accounted by a set of

D̃c( �K‖,n) with different �K‖,n. With the nonlocal correlations,
D̃c( �K‖) contains nonzero site-off-diagonal elements, namely,
D̃c,BB′ ( �K‖) 	= 0 (B is the basis in primitive cell), when both
B and B′ are disordered sites within the same DCA cluster,
while any site-off-diagonal elements associated with ordered
sites are still zero. Thus, we divided D̃c( �K‖,n) into two parts,
namely, D̃c( �K‖,n) = D̃c,P ( �K‖,n) + Dc,B. For the ordered sites,
the site-diagonal part Dc,B = ∑

B Dc,B is known, while all the
elements D̃c,P ( �K‖,n) = ∑

p D̃c,p( �K‖,n), where D̃c,p denotes the
effective potential function for the pth DCA cluster, need to be
solved in a self-consistent way to obtain the averaged GFs.

Within DCA, to form a set of self-consistent equations
to determine D̃c,p( �K‖,n) for different �K‖,n, a quantity called
coherent interactor �p( �K‖,n) [70] is introduced to describe the
influence of environment to the pth disordered DCA cluster,
so that

�p( �K‖,n) = [Ḡc,p( �K‖,n)]−1 + aD̃c,p( �K‖,n), (12)

where Ḡc,p( �K‖,n) is given by the relation, namely, the coarse-
graining approximation Ḡc,p( �K‖,n) = 1

Nk̃‖

∑
�̃k‖

Ḡc,p( �K‖,n +
k̃‖), where Nk̃‖ is the number of k̃‖. After solving the interactor

�p for all �K‖,n, one can obtain a real-space interactor by the
inverse Fourier transformation

[�p]RR′ = 1

Nxy

Nxy∑
n

ei �K‖,n·( �T ′‖− �T‖ )�p,B,B′ ( �K‖,n), (13)

where R, R′ are different disordered sites in the DCA clus-
ter (R = B + �T‖ and R′ = B′ + �T ′‖), and �T‖ and �T ′‖ are the
translational vectors of primitive cell for sites in the DCA
cluster. Because of the BVK boundary condition, the effec-
tive medium of DCA clusters in EMTO could be conceived
as circles with closed boundary in xoy plane as shown in
Fig. 2(a). Then, the NEGF for the pth DCA cluster with a
specific disordered configuration Q can be given as, in the
real space,

GQ
c,p = [

�p − aDQ
c,p

]−1
, (14)

where DQ
c,p = ∑

R DQ
c,p,R, and DQ

c,p,R is for the Q element at
site R for the configuration Q in the pth DCA cluster. Then,
the averaged GF of the DCA cluster is obtained by averaging
over the results for all configurations

Ḡc,p =
∑
Q

wQGQ
c,p, (15)

where wQ is the weight for each disorder configuration Q
of DCA cluster. Different from cluster GF in MCPA, Ḡc,p in
DCA features the translational symmetry of the primitive lat-
tice in the xoy plane. Once Ḡc,p is obtained, we can calculate
the effective function D̃c,p for the DCA cluster as

aD̃c,p = �p − [
Ḡ

−1
c,p

]
. (16)

Then, by enforcing the Born–von Karman periodic boundary
condition, the D̃c,p( �K‖,n) in Eq. (11) on a set of discrete K‖,n
can be evaluated with the discrete Fourier transformation,
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namely,

D̃c,p,B,B′ ( �K‖,n) =
∑

�T‖

e−i �K‖,n· �T [D̃c,p]B,B′+T‖ . (17)

By here, Eqs. (11)–(17), with all quantities in bold defined
in Keldysh’s representation, form a closed set of DCA self-
consistent equations for solving the averaged NEGF. Here,
the cluster solver consists of Eqs. (14) and (15) in which a
number of atomic configurations with complete randomness
or short-range order can be considered. The iterative calcula-
tion starts with an initial guess of a coherent interactor �p; and
then, with the cluster solver, we solve the effective potential
function D̃c,p to generate the new NEGF Ḡc with Eq. (11)
central region; finally, the new interactor �p is obtained with
Eq. (12) to start a new iteration. Such calculation iterates until
GQ

c,p is converged.
In the above, we have introduced the DCA algorithm

for calculating the disorder-averaged NEGF. However, the
electronic structure self-consistent calculation requires the
conditionally averaged GFs, namely, ḠQ

c,p,RR, for updating
the muffin-tin potential for Q element at R (to calculate the
quantity DQ

R ). By making use of Eq. (14), we can define, with
the cluster GF GQ

c,p,

ḠQ
c,p,BB = 1

NC

∑
Q,R

wQ(
GQ

c,p

)
RRη

Q,Q
p,R /cQ

B , (18)

where R = B + �T‖ denotes the site in the DCA cluster, cQ
B is

the concentration of atom Q on site B, and the occupation
operator η

Q,Q
p,R = 1 only if site R is occupied by atom Q in

the configuration Q, or otherwise η
Q,Q
p,R = 0. It can be checked

that the following relation is always satisfied:

Ḡc,p,BB =
∑

Q

cQ
B ḠQ

c,p,BB. (19)

Figure 3 presents the flow chart for the DCA loop embed-
ded in DFT calculation for the nonequilibrium self-consistent
calculation. For details about solving the three GFs GA/R/K

c
related quantities in DCA, see the Appendix.

IV. IMPLEMENTATION OF NEGF BASED
FIRST-PRINCIPLES SIMULATION OF DISORDERED

DEVICE

We have introduced the algorithm of nonequilibrium DCA
in EMTO method for averaging NEGF within the EMTO
framework for an operating electronic device with the atomic
disorder. In the following, we introduce the quantities re-
quired for self-consistent nonequilibrium electronic-structure
calculation (for example, electron density, effective muffin-tin
potential) and the calculation of disorder-averaged current in
DCA.

A. Double-energy contour for the charge density

In the EMTO based DFT self-consistent calculation of dis-
ordered device, conditionally averaged charge density nQ

B (rB)
for the atomic sphere Q at site B is required for updating
the potential V Q

B (rB) (in muffin-tin approximation) in each

FIG. 3. Flow chart of the EMTO-DFT-NEGF-DCA self-
consistent loop for the quantum transport simulation of device
materials.

iteration. Generally, nQ
B (rB) is composed of contributions from

core and valence electrons, namely, n̄Q
B (�rB) = n̄Q

B,core(rB) +
n̄Q

B,val(rB), which are calculated in different ways. n̄Q
B,core(rB)

is obtained by directly solving the eigenstates of core levels
inside the muffin-tin potential sphere, while valence density
n̄Q

B,val is evaluated by calculating the NEGF of device region,
for example, the lesser GF Ḡ<,Q.

For valence electrons,

n̄Q
B,val(�rB) =

∫ E f ,L

EBVal

dz ρ̄
Q,<
B (z, �rB, �rB), (20)

where we assume the electrode Fermi energies E f ,L > E f ,R,
and EBVal denotes the bottom of valence band. Here the real-
space nonequilibrium density (note that we omit the argument
�rB for convenience in the following)

ρ̄
Q,<
B (z) = 1

2π i

∑
L,L′

ḠQ,<
BLBL′ (z)φa,Q

BL (z)φa,Q,†
BL′ (z), (21)

where φ
a,Q
BL is the partial wave for Q element at site B.

It is known that ε < E f ,R, fL = fR = 1, and ρ̄
Q,<
B (z) thus

equal to the equilibrium density matrix, namely, satisfying
the fluctuation-dissipation theorem G< = −2i Im[GR]. More-
over, the GR(z) has important analytical property in the upper
complex energy plane, while G< is only analytical on the
real energy axis. As a result, the integration of Eq. (20) is
usually performed on a hybrid energy contour, containing CT,1
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FIG. 4. Schematic illustration of the energy contour for the
energy integration in nonequilibrium electron density calculation.
(a) The conventional contour is composed of CT,1 in the upper
complex plane from EBVal to Ef ,R and CT,2 on the real energy
axis from Ef ,R to Ef ,L . (b) Double-energy contours are composed
of four parts: C1, C2, and C4 in the upper complex energy, and
C3 on the real energy axis from Ef ,R to Ef ,L . (c) Structure of
Fe/Fe0.5Va0.5(1 ML)/Va(6 MLs)/Fe0.5Va0.5(1 ML)/Fe MTJ with
disordered interface roughness. (d), (e) For the integrated valence
charge versus nonequilibrium self-consistent iterations using the
conventional contour (e) and double-energy contour [for the 11th
atomic layer in disordered Fe/Va/Fe MTJ as shown in (c) under the
bias 1.0 V (starting from the equilibrium potential)]: blue, orange,
and green lines are for the calculations with the respective k‖ meshes
of 24 × 24, 48 × 48, and 96 × 96.

in complex energy plane and CT,2 (for E f ,R < ε < E f ,L) on
real energy axis as shown in Fig. 4(a) [61,68], namely,

n̄Q
B =

∫
CT,1

dz ĀQ
B (z) +

∫
CT,2

dz ρ̄
<,Q
B (z), (22)

where ĀQ
B (z) = − 1

π

∑
L,L′ Im[ḠQ,R

BLBL′ (z)]φa,Q
BL (z)φa,Q,†

BL′ (z).1

However, G< is a fast-changing function on the real energy
axis, the integration in Eq. (22) often presents serious
numerical convergence problem, and thus usually involves a
large number of k points in the BZ integration, making the
nonequilibrium electronic structure self-consistency hard and
the computational cost high in comparison with equilibrium
calculations.

To overcome this difficulty, it should be noted that the
nonequilibrium distribution function f NEQ

B (ε), for the energy
range E f ,R < ε < E f ,L , is close to fL = 1 and fR = 0 for the
sites near the respective left and right electrodes and decreases
dramatically in the middle part of the device. For example,

1ḠQ,R
BLBL′ (z) is replaced by ḠQ,R

BLBL′ (z) + δL′L
aRl ḊQ

Rl (z)
(

ḊQ
Rl (z)

DQ
Rl (z)

− ∑
εD

Rl

1
z−ε

D,Q
Rl

)

to avoid nonphysical poles.

it is known that f NEQ
B (ε) ≈ fL/R for the sites in the left and

right electrode buffer layers. For the sites with f NEQ
B (ε) ≈ 1,

it is not appropriate to directly integrate G<
BB on the real

energy axis, but instead we can utilize the relation G<
BB =

GA
BB − GR

BB + G>
BB in which G> is much smaller in magnitude

than G<. As a result, in the case f NEQ
B (ε) ≈ 1, the integration

for density can be rewritten as follows, based on a new energy
contour as shown in Fig. 4(b):

n̄Q
B =

∫
C1+C4

dz ĀQ
B (z) +

∫
C3

dz ρ̄
>,Q
B (z), (23)

where ρ̄
Q,>
B (z) = 1

2π i

∑
L,L′ ḠQ,>

BLBL′ (z)φa,Q
BL (z)φa,Q,†

BL′ (z). Since
the second term is quite small, the inaccuracy due to inte-
gration on the real axis is negligible, making the calculation
of charge density much more accurate than Eq. (22). On the
other hand, for the case f NEQ

B (z) ≈ 0, with the new contour,
the density can be rewritten as, equivalent to Eq. (23),

n̄Q
B =

∫
C1+C2

dz ĀQ
B (z) +

∫
C3

dz ρ̄
<,Q
B (z), (24)

where the complex contour C1 + C2 is equivalent to CT 1

as shown in Fig. 4(b). Here, since G< is small, the inte-
gration is appropriate, similar to the G> in Eq. (23). To
use Eqs. (23) and (24) in practical implementation, we
evaluate the distribution function properly as f NEQ

B (ε) =∑
Q cQ

B

∫
d�r ρ̄

Q,<
B (ε, �r)/

∫
d�r ĀQ

B (ε, �r) for each site B [it
should be mentioned that, since the formulas in Eqs. (23) and
(24) are actually equivalent for all sites, no approximation
is introduced and this treatment will improve the accuracy
of the numerical integration if used properly for different
sites]. Then, Eq. (23) is used for f NEQ

B > 0.5, while Eq. (24)
is for f NEQ

B < 0.5. In comparison with the conventional con-
tour integration, the computational cost with the new contour
in Fig. 4(b) can be importantly reduced with less real-axis
energy points and k‖ points in BZ, making the EMTO-DFT-
NEGF-DCA based self-consistent nonequilibrium electronic
structure calculation feasible.

To demonstrate the numerical accuracy and efficiency for
the integration using the double-energy contour, we make a
test for the nonequilibrium self-consistent electronic struc-
ture calculation of Fe/Va/Fe magnetic tunneling junction [as
shown in above Fig. 4(c) with disordered interfaces under
the bias 1.0 V, namely, E f ,L − E f ,R = 1.0 eV]. We compare
the integrated number of valence charge for Fe atom at the
11th site with the conventional and double-energy contour.
All the calculations start from the same equilibrium potential
at zero bias. Figures 4(d) and 4(e) compare the results of the
charge versus iteration steps with the respective conventional
and double-energy contours using different 2D k‖ meshes
for the integration at real-axis energy (for the information
of energy grids and k‖ mesh, see Ref. [71]). As shown in
Fig. 4(d) with the conventional energy contour, it is clear
that the result presents large fluctuation versus iteration step
due to the important numerical error of k‖ integration for
real-axis energy points. Although the use of dense k‖ can
decrease the magnitude of fluctuation, the numerical conver-
gence is still hard to achieve with even 96 × 96 k‖ mesh,
making the nonequilibrium self-consistency very difficult to
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reach. To fix the convergence problem with conventional en-
ergy contour, BZ integration requires a large number of k‖
points, making the calculation very inefficient. In the contrast,
as shown in Fig. 4(e) with the double-energy contour, the
results of different k‖ meshes (24 × 24, 48 × 48, and 96 × 96)
present negligible differences, and reach the nonequilibrium
self-consistency at almost the same iteration steps. Therefore,
we can see the use of double-energy contour can significantly
reduce the cost for BZ integration while maintaining high
accuracy, and thus effectively improve the nonequilibrium
electronic structure self-consistency.

B. Effective potential

For the operating device under finite bias, we adopt over-
lapping potential spheres for each atom Q and spherical cell
approximation (SCA) for the muffin-tin potential construction
(same as our previous implementation of EMTO for equilib-
rium electronic structure of two-probe devices) [15,16]. For
the central region with open-boundary condition, the effective
potential for atomic sphere Q at site B is composed of the three
parts, in SCA,

V Q
B (rB) = V Q,intra

B (rB) + V inter
B + V bias

B , (25)

where V Q,intra
B (rB), V inter

B are the potentials describing intracell
and intercell interactions, and V bias

B is the correction due to
the applied bias potential in the electrodes. V Q,intra

B (rB), V inter
B

is defined in the same way as the equilibrium cases as in
Ref. [15] for a two-probe device. V bias

B is required for satisfy-
ing the boundary condition for solving the Poisson equation of
the central region. For a given bias V , electrostatic potentials
and the associated Fermi energies (E f L/R) in the left and right
electrodes are shifted by the respective V/2 and −V/2 in our
simulation, which changes the boundary condition of device
region compared to the equilibrium case. To be smoothly
connected to the electrode potential (for example, in the +0
and Np + 1 principal layers), generally, a linear potential drop
across the central region should be introduced to match the
boundary for biased devices, namely V bias

B (ensured by the
uniqueness theorem for the Poisson equation),

V bias
B = −V

( zB

L
− 0.5

)
, (26)

where zB is the distance from site B to the left interface, and L
is the length of the central region along the z axis.

C. Short-range order with DCA

It is known that the different tendency of clustering or anti-
clustering of defects [see Fig. 5(e)], namely, short-range order
(SRO), due to the different process of realistic nanodevice,
could have important influence on the device properties. To
study the influence of SRO effect in realistic nanodevice with
EMTO-DFT-NEGF-DCA method, we characterize the SRO
with the Warren-Cowley parameters [72,73], namely,

αi = 〈�̄i〉 − q2

1 − q2
, (27)

where 〈�̄i〉 is the averaged pair-correlation function for the
ith shell of a site, and q is the concentration difference of the

FIG. 5. (a)-(d): the four possible SRO maps for the DCA cluster
of Nxy = 4 and Nz = 1. (e) Schematic illustration of SROs with
clustering and anticlustering tendencies in comparison with complete
randomness.

two elements Q1 and Q2 in the binary alloys, namely, q =
cQ1 − cQ2 . Here, �̄i = SRSR+i and SR = +1 (or − 1) when
site R is occupied by Q1 (or Q2) atom. The Warren-Cowley
parameter αi measures the ordering tendency for the presence
of the same atom pairs Q1-Q1 or Q2-Q2 (at R and a site in its
ith shell). In particular, αi = 0 describes random distribution
of atoms in the ith shell (for the case of complete randomness,
αi = 0 for all i), and αi > 0 describes more likely clustering
tendency, while αi < 0 describes more likely anticlustering
tendency.

To demonstrate our implementation of SRO in DCA, we
use the cluster, as an example, with the size of Nxy = 4 and
Nz = 1 with four different SRO maps as shown in Fig. 5
(which is also used in our simulation of SRO effects in
Fe/Va/Fe MTJ). For each SRO map, we consider all the
atomic configurations (with the same weight) under different
operation of translation, rotation, and the exchange of Q1 and
Q2 [for example, we have 2, 8, 4, 2 configurations for the
respective map in Figs. 5(a)–5(d)]. We calculate the Warren-
Cowley parameters for each SRO map: for Fig. 5(a), α1 = 1
presents the upper limit of clustering tendency; for Fig. 5(d),
α1 = −1 presents the upper limit of anticlustering tendency;
for Fig. 5(b), α1 = 0 and α2 = 0 presents a tendency close
to complete randomness; for Fig. 5(c), α1 = 0 and α2 = −1
presents a random first shell and anticlustering tendency limit
in second shell on-equilibrium electronic structure calculation
feasible.

D. Averaged transmission in DCA

As known the current formula of Eq. (6) could be rewritten
into the form of Landauer-Buttiker formula [74–76]

I = e

h

∫
dε T (ε)( fL − fR), (28)

where T = Tr[GR
c �LGA

c �R] is the transmission coefficient.
The transmission coefficient T , accounting for the full
quantum interference effect in the device, is the central quan-
tity we target in the EMTO-DFT-NEGF-DCA method for
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nanoelectronics simulation. For a disordered device, we cal-
culate the disorder average

T̄ = Tr
[
GR

c �lGA
c �r

]
, (29)

in which the average of the correlator of GR
c and GA

c ac-
counts for the effect of multiple disorder scattering. It can
be found that T̄ = Tr[−iḠc

<
�R] by utilizing the relation

Ḡ< = iḠR�LḠA for fL = 1 and fR = 0, in which Ḡc
< can be

directly known with the NEGF-DCA self-consistent calcula-
tion. For further study, the averaged transmission coefficient
is separated into two parts: the coherent part, defined as
T̄coh = Tr[ḠR

c �LḠA
c �R] accounts for the specular scattering

and the diffusive part, defined as T̄diff = T̄ − T̄coh, presents the
contribution of diffusive scattering between different chan-
nels. After disorder averaged with DCA, the lattice Fourier
transformation can be applied to obtain the �k‖-resolved trans-
mission results, namely,

T̄ (�k‖) = Tr[−iḠc
<(�k‖)�r (�k‖)],

T̄coh(�k‖) = Tr
[
ḠR

c (�k‖)�l (�k‖)ḠA
c (�k‖)�r (�k‖)

]
,

T̄diff(�k‖) = T̄ (�k‖) − T̄coh(�k‖). (30)

V. NUMERICAL RESULTS AND DISCUSSIONS

We have implemented the EMTO-DFT-NEGF-DCA
method for first-principles quantum transport simulation of
disordered nanoelectronic device, including the calculation
of both nonequilibrium electronic structure and transport
property. For more details about the self-consistent imple-
mentation for device simulation, please refer to Refs. [15,16].
In our previous implementations in Refs. [15,16], we have
demonstrated the important accuracy and advantage of the
EMTO method for calculating equilibrium electronic struc-
ture and electron’s charge and spin transport properties of the
two-probe device structures. In the following, we will focus
on the first-principles NEGF-DCA results for the transport
properties and nonequilibrium electronic structure of disor-
dered devices. For the disorder-averaged NEGF with DCA,
as an important test of the NEGF-DCA implementation, we
have checked that, for fL = fR (device is at equilibrium),
the fluctuation-dissipation theorem is satisfied, namely, the
relation Ḡ<

c = ḠA
c − ḠR

c , illustrating the correct calculation
of ḠK

c with DCA.
In this section, we will first present the transport cal-

culation with a 2D square-lattice tight-binding model, to
test the NEGF-DCA formalism for quantum transport sim-
ulation of disordered nanodevices. Then, we will present
the first-principles DCA results for the electron transport
in Cu/Co(111) junction with disordered interface, and spin-
dependent tunneling in Fe/Va/Fe junction with surface
roughness to demonstrate the disordered cluster and SRO
effects on transport. For the equilibrium electronic structure,
the conventional semicircle complex contour is adopted with
20 energy points with the Gaussian quadrature method, and
24 × 24 uniform k mesh is used for the 2D BZ for all the en-
ergy points. In the simulation of device under bias, for the non-
equilibrium electronic structure, the Gaussian quadrature
method is applied on the C1, C2, and C4 contours with the
respective 12, 6, and 8 energy points and C3 contour with 8

FIG. 6. (a) Schematic illustration of 2D square-lattice model
with seven disordered atomic layers along the z direction in the
central scattering region. (b), (c) Present the averaged transmis-
sion coefficients T̄ with different methods, for the case εim = 10.0
(εhost = 1.0). (b) For T̄ versus energy for device with seven dis-
ordered layers. (c) For T̄ versus disordered layers Nz at energy is
equal to 1.0. The pink dashed and black dotted-dashed lines with the
respective functions of A + B/Nz and A exp(−BNz ) + C are fitting
to the results of CPA-NVC and SC methods (for understanding the
scaling behaviors of different methods).

uniform energy points per eV, and 24 × 24 uniform k mesh for
the 2D BZ is adopted for energy points on C1, C2, and C4. Be-
cause the real-axis integration in the second part of Eqs. (23)
or (24) on C3 for different sites is a small quantity, we find the
use of the same k mesh as C4 is sufficient to achieve very good
convergence and numerical stability, providing an important
advantage for the nonequilibrium electronic structure calcula-
tions. Transmission coefficients for energy points on the real
axis are calculated with 204 × 204 k mesh. The local spin
density approximation for exchange-correlation functional is
employed in all our calculations [77,78]. In the simulation
of Fe/Va/Fe junction, the vacuum space is filled with empty
spheres.

A. Disorder scattering in 2D square-lattice tight-binding model

To test the NEGF-DCA transport formalism, we compare
the averaged transmission T̄ of DCA with different cluster
size and the results of supercell method with a 2D disor-
dered square-lattice tight-binding model as shown in Fig. 6(a).
The CPA-NVC results in single-site approximation are also
included for comparison [1,12,14]. We use the tight-binding
Hamiltonian H = ∑

〈i j〉 t (c†
i c j + c†

j ci ) + ∑
i εic

†
i ci, where the

hopping t is constant and εi are the disordered onsite energies
at site i. Here we consider the nearest neighbor t = 1.0, the
host εhost

i = 1.0, and the impurity ε
imp
i = 10.0 in the central

disordered device region. In Figs. 6(b) and 6(c), we present
the results for the the disorder concentration of 50% which
presents the strong scattering effects. The NEGF-DCA cal-
culations take the cluster size Nz × Nx (Nz is the full length
of the central disordered region) and supercell calculation
adopts the cell size Nz × Nx(= 50), and 1000 random atomic
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configurations are used in both NEGF-DCA cluster and su-
percell. Figure 6(b) presents the averaged T̄ versus energy
for device with Nz = 7 disordered layers. As shown, com-
pared to the supercell result, the CPA-NVC presents very
large deviation in magnitude in a wide range of energy. For
example, at E = 1.0, T̄CPA-NVC is about five times larger than
T̄SC , illustrating the important limitation of single-site CPA.
However, it is clear that NEGF-DCA provides systematic
improvement by increasing the cluster size Nx(×Nz). It can be
found the important improvement over CPA-NVC result can
be obtained with NEGF-DCA even with Nx = 1. For Nx = 25,
the NEGF-DCA results present very good agreement with
T̄SC , demonstrating the important effectiveness of the NEGF-
DCA for treating the correlation effects of strong disorder
scattering in quantum transport simulation of nanodevices.
Figure 6(c) plots the transmission versus number of disorder
layers at the energy E = 1.0 using different methods. It is
clear that the CPA-NVC results show quite large deviation
compared to the NEGF-DCA and supercell results for all the
different numbers of disordered layers. However, the results
of NEGF-DCA with Nx = 25 agree quite well with the su-
percell calculations. Moreover, it is found that the CPA-NVC
results can be fitted well to the function A + B/Nz, presenting
a behavior of diffusive conductor, while the supercell results
obey the behavior of exponential decay, namely, the function
A exp(−BNz ) + C, presenting important localization effects.
It is clear that the scaling behavior of NEGF-DCA results can
become closer and closer to the supercell as increasing the
DCA cluster size, presenting the important test for the NEGF-
DCA quantum transport method. The test of NEGF-DCA with
tight-binding model in Fig. 6 provides an important basis for
the first-principles implementation.

B. Effects of nonlocal correlation with DCA in Cu/Co
disordered junction

It is known that the single-site CPA provides an effective
and accurate method for the cases of weak scattering and low
concentration of quenched disorders without SRO, due to the
weak nonlocal correlation. However, for the cases of disor-
ders with strong scattering, high concentration and materials
and devices made with annealing process, the presence of
SRO and strong nonlocal correlations have important influ-
ence on the transport properties of materials, which requires
a cluster-level description. In this section, we investigate
the electron quantum transport in different spin channels in
Cu/Cu1−xCox/Co (111) junction with disordered interfacial
interdiffusion. In Fig. 7, we present the transmission coef-
ficient versus disorder concentration with DCA of different
cluster sizes and single-site CPA-NVC for comparison. Here,
we only consider interfacial disorders Cu1−xCox in 2 and 3
atomic monolayers (ML), and arrange all disorders in one
principal layer and one DCA cluster, namely, Nz = 2 or 3,
which is adequate to account for the full nonlocal correlation
of disorder scattering in transport direction z. We use the DCA
cluster with the disorder in complete randomness.

As we find, the DCA electronic potential presents
small difference from single-site CPA results for the
Cu/(2/3 ML)Cu1−xCox/Co junction. The transmission co-
efficients are calculated at E f based on the equilibrium

FIG. 7. The total transmission coefficients versus interfacial dis-
order concentration x in Cu/Cu1−xCox/Co (111) junction with two
((a), (c)) and three ((b), (d)) disordered monolayers. Plots (a) and
(b) are for the spin-up channel, (c) and (d) are for spin-down chan-
nel. Blue circles are for CPA-NVC results, orange squares, green
up triangles, red down triangles, and purple stars are for the DCA
calculations with the respective NDCA

xy = 1, 4, 9, and 16.

electronic structure. As presented in Fig. 7 for the Cu/Co(111)
junction, it is clear that the nonlocal correlation of interfacial
disorders has very different effects on the transmission of
spin-up and -down channels. In particular, as seen in Figs. 7(a)
and 7(b) for the spin-up channel, the results of single-site
CPA-NVC and NEGF-DCA with different cluster size present
almost the same results for different disorder concentration x,
demonstrating the nonlocal correlations of disorder scattering
in both z and x-y directions are weak. In addition, as found in
Figs. 7(a) and 7(b), the increased 1-ML disorder presents very
limited influence, and all results present small variance versus
x (for example, the transmission changes from 0.62 to the
minimum 0.614 at x = 0.25 for 3-ML disorders), presenting
the weak scattering in the spin-up channel.

However, as shown in Figs. 7(c) and 7(d), the transmission
of spin-down channel presents important dependence on the
disorder concentration for both junctions with 2- and 3-ML
disorders. In particular, more than 10% and 20% (maximum)
decrease in transmission can be found for junctions with the
respective 2- and 3-ML disorders. Moreover, importantly, the
difference between single-site CPA-NVC and DCA results is
notable for the spin-down channel, presenting the correlation
effects of disorder scattering. It is clear that, in comparison
with the CPA-NVC result, the inclusion of nonlocal correla-
tion with DCA reduces the transmission, and the transmission
decreases with the increase of DCA cluster size, presenting
the important localization effects of disorder scattering and an
important test for the implementation of DCA for quantum
transport simulation of disordered device. It is also found
that the transmission tends to converge with increasing the
DCA cluster size, consistent with the fact that DCA is exact
at infinite cluster size. Since the number of disorder layers
(2 and 3 MLs) is very limited in the present calculation,
we can only observe limited decrease in the magnitude of
transmission, for example, about 5% (maximum) decrease
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FIG. 8. The total transmission coefficient of different spin chan-
nels (left axis) and TMR (right axis) with the CPA-NVC and DCA
methods (with various SROs) for Fe/Va/Fe MTJ with surface rough-
ness of Fe0.5Va0.5.

compared to CPA-NVC results can be found in DCA Nxy = 16
calculations for both junctions. Another observation is that, at
the small concentration x or 1 − x, the nonlocal correlation
of disorder scattering is weak and the single-site CPA-NVC
results approach the DCA calculations.

C. Short-range order effects on spin-dependent tunneling in
Fe/Va/Fe junction with DCA

In the last section, we present the DCA to account for
the nonlocal correlation over the single-site CPA. In this sec-
tion, we focus on the capability of DCA for including the
SRO effects of disorders. As a demonstration, we study the
effects of short-range order in Fe/Va/Fe (100) MTJ with
disordered surface roughness which usually tends to form
local clusters (not in complete randomness). The surface
roughness is considered with alloy model FexVa1−x where Va
denotes vacuum sphere in EMTO. Here, we only consider
monolayer surface roughness on the two Fe/Va interfaces
(separated by 6-ML vacuum) with the same concentration
of x = 0.5. (More systematic study of spin-dependent tun-
neling in Fe/Va/Fe with SRO will be presented in another

work). In present calculations, the DCA cluster of the size
Nz = 1 and Nxy = 4 are used with the completely random and
SRO configurations as shown in Fig. 5. Figure 8 presents
the spin-dependent total transmission for single-site CPA-
NVC and DCA with complete randomness (DCA-R) and four
different SROs (DCA-a/b/c/d). It is clear that the results
of APC and spin-down channel in PC can be significantly
modulated by the different SROs, while the spin-up channel
in PC presents very limited variation in the different calcu-
lations. In particular, compared to the single-site CPA-NVC
and DCA-R calculations, SRO-a can significantly enhance
TPC,down and TAPC (TAPC,down = TAPC,up) by about the respective
seven and three times, and SRO-d can effectively decrease
the results by about two times, while effects of SRO-b and
-c almost unchange the results, presenting very distinct effect
of different SROs. It should be noted that the SRO map is
largely determined by the fabrication process of materials
and devices in experiments. It is already known that the
Warren-Cowley parameter α1 = 0 for both SRO-b and -c,
denoting the fact that the SRO-b/c maps are close to the com-
plete randomness. However, the fact that α1 = 1 for SRO-a
and α1 = −1 for SRO-d tells the respective clustering and
anticlustering of defects. As known, the surface relaxation
favors the tendency for clustering, and the DCA-a calculation
presents the prominent effects of clustering on spin-dependent
tunneling. The implementation of NEGF-DCA provides us
an effective way to simulate the effects of different SRO
on quantum transport through disordered devices. Moreover,
in comparison with the single-site CPA-NVC, the inclusion
of nonlocal correlation in DCA-R (completely random) only
slightly modulates the total transmission in different tunneling
channels. In addition, as an important measurement of MTJ’s
merit, the tunneling magnetoresistance ratio (TMR), namely
TMR = (TPC − TAPC)/TAPC, is also shown in Fig. 8. For the
MTJ with high concentration disorder x = 0.5, DCA-R only
slightly increases TMR to 7.7% compared to the CPA-NVC
result 3.6%. However, compared to DCA-R result, SRO-a
and SRO-d significantly increase the TMR to the respective
values 30.85% and 53.07%, while the TMR remains almost
unchanged for the cases SRO-b/c.

To further study the effects of different SRO, the k‖-
resolved transmissions of coherent and diffusive parts,

FIG. 9. The �k‖-resolved transmission (coherent and diffusive parts) of different spin channels in PC and APC with the CPA-NVC and DCA
methods (with various SROs) for Fe/Va/Fe MTJ with surface roughness of Fe0.5Va0.5.
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namely, T̄coh(�k‖) and T̄diff(�k‖) in Eq. (30), are presented for
the PC and APC in Fig. 9 for different calculations. As
shown, for the case of complete randomness, the differences
between single-site CPA-NVC and DCA-R results are minor
for all spin channels in PC and APC, further demonstrating
the weak effects of nonlocal correlation of surface rough-
ness in Fe/Va/Fe MTJ. In the DCA-R transmission results,
the coarse-graining induced boundary is not notable, namely,
D̃c,p( �K‖,n) is close to D̃CPA(�) for different �K‖,n. However,
it is found that the patterns of SRO-a and -d transmissions
for both PC and APC present significant difference from the
CPA-NVC and DCA-R results, and contain apparent bound-
aries between different coarse-grained �K‖,n region in 2D BZ,
presenting the fact that the D̃c,p( �K‖,n) can vary significantly
from each other. The important differences in D̃c,p( �K‖,n) for
different �K‖,n reveal the important effects of correlation in
SRO-a and -d . Moreover, it is seen that the short-range order
in SRO-a significantly enhances the transmission around the
� point in the diffusive part, resulting in the importance en-
hancement in the total transmission of spin-down channel in
PC and APC as shown in Fig. 8 over DCA-R. On the other
hand, compared to the DCA-R, the SRO-d result presents
important decrease in the transmission away from the � point.
Furthermore, another observation is that for SRO-b and -c,
transmission patterns and values are all very closed to the
results of DCA-R, presenting much weaker SRO effect com-
pare to SRO-a and -d , consistent with the results in Fig. 8.
However, compared to the results of SRO-b, the diffusive
part of SRO-c presents notable differences in patterns for
the spin-up channel of PC and spin-down channel of APC,
and these important differences can be attributed to the dif-
ferent SRO Warren-Cowley parameters: α1,2 = 0 for SRO-b
and α1 = 0, α1 = −1 for SRO-c. (The results of SRO-b are
more close to that of DCA-R). In addition, for different spin
channels in APC, the diffusive transmissions present rather
different patterns, but they integrate to the same total trans-
mission, providing a test for the present implementation of the
NEGF-DCA method. Here, we have seen the important effects
of the SRO on spin-dependent tunneling, revealing the ef-
fects of different device processes on the device performance.
NEGF-DCA provides an important approach to effectively
capture the important effects of short-range order on quantum
transport through the disordered device.

D. Nonequilibrium electronic structure and transport
calculations

In this section, as a further demonstration of the EMTO-
DFT-NEGF-DCA method, we present results for the nonequi-
librium electronic structure and spin-dependent tunneling
calculations in disordered Fe/Va/Fe MTJ with surface rough-
ness under finite bias. In Fig. 10(a), we investigate the
nonequilibrium distribution function at different sites, namely,
f NEQ
R = Tr[−iG<

B ]/2 Tr[Im(GR
B )], for the energy point E =

0.5(E f ,L + E f ,R) in the junction under 1.0-V bias voltage. It is
observed that f NEQ

R behaves as a sharp step function, changing
quickly from the value almost 1.0 for sites of 1–7 (on the left
side including the Fe buffer layer) to the value close to 0.0 for
sites of 10–16 (on the right side including the Fe buffer layer).

FIG. 10. The nonequilibrium properties of Fe/Va/Fe MTJ with
surface roughness of Fe0.5Va0.5: (a) nonequilibrium distribution func-
tion versus sites in the central region for the energy point E = 0.5 +
Ef ,R under the bias voltage 1 V. (b) The potential difference from the
equilibrium versus sites in central region: blue circle, orange square,
and green up triangle are for the respective applied bias voltages
0.2, 0.6, and 1.0 V. The transmission coefficients versus energy for
different spin channels for the bias voltage 1.0 V: (c)–(f) are for the
spin-up and -down channels in PC, spin-up, and spin-down channels
in APC, respectively.

f NEQ
R = 0.89 for the site 8 while f NEQ

R = 0.03 for site 9. As
an important result, the real-axis integration in Eq. (20) on
the conventional method is not appropriate for nonequilibrium
electron density for atomic spheres at the sites from 1 to 8,
while it can be very accurate for integral for sites from 9 to 16.
Therefore, the use of the double-energy-contour techniques,
including the different treatment of the energy integral for
different sites, namely, Eqs. (23) and (24) in which both the
integrands on real axis are very small quantities, can greatly
improve the numerical convergence, make the DCA based
nonequilibrium electronic structure calculations feasible.

Figure 10(b) presents the DCA-R results for the bias-
induced potential change �VR for each site, namely, the
potential difference between nonequilibrium and equilibrium
is given by the bias-induced charge redistribution, for bias
voltages of 0.2, 0.6, and 1.0 V. It should be mentioned that, for
the electronic potential, the difference between DCA calcula-
tions with different clusters and SROs is small for disordered
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Fe/Va/Fe MTJ. As shown in Fig. 10(b), it is clear that, for
the buffer layer Fe sites from both sides out of the dashed
lines, the potential is shifted almost by a constant ±V

2 con-
sistent with the electrode potential shift, while the potential
for the Va sites between the dashed lines smoothly connects
to the buffer layers potential and decrease almost linearly
along the z direction. Our present calculations for different
applied biases in Fig. 10(b) produce well the potential be-
havior in an ideal paralleled-plane capacitor with a vacuum
barrier, providing an important test for our implementation of
the EMTO-DFT-NEGF-DCA method for the nonequilibrium
electronic structure calculations.

Figures 10(c)–10(f) present the transmission results for
E f ,L > E > E f ,R for the Fe/Va/Fe junction under bias volt-
age 1.0 V. The results of DCA-R and different SRO are
compared for different spin channels in PC and APC. For
all the calculations, SRO-b transmission (in green) presents
almost the same result as DCA-R, illustrating again the SRO-b
configurations with α1 = 0, α2 = 0 are close to the complete
randomness. Meanwhile, the results of SRO-c (in red) show
small deviation from the DCA-R and SRO-b calculations in
all spin channels. However, the transmission of SRO-a (in
yellow) presents important peaks in the spin-down channel in
PC and spin-up channel in APC, which is significantly larger
than the other results, presenting abnormal phenomena due
to SRO with the clustering tendency in device materials. For
example, TPC,down = 8.8 × 10−5 and TAPC,up = 8.9 × 10−5 at
E = 0.22 for SRO-a, compared to the corresponding values
4.2 × 10−7 and 1.0 × 10−6 of DCA-R, while the notable dif-
ference between SRO-a and DCA-R can also be found in the
other two spin channels. It is also found that the SRO-d with
the anticlustering tendency presents important effects in the
spin channels of APC, but not in PC (for example, TAPC,up

reaches a maximum value 3.7 × 10−5 at E = 0.67 compared
to the DCA-R value 1.1 × 10−5). Moreover, we calculated
the total currents for different spin channels in PC and APC
to evaluate TMR = (IPC − IAPC)/IAPC, by the integrating the
transmission coefficient.2 We obtain the TMR value −7.5%
and −42.9% for the respective SRO-a and SRO-d , com-
pared to the TMR values −21.7% for DCA-R, −20.7% for
SRO-b, and −16.2% for SRO-c. The very different results
of different SROs and DCA-R demonstrate the importance
of device process and detailed structures for the transport
properties of nanoelectronics. The implementation of EMTO-
DFT-NEGF-DCA provides an effective approach for studying
the process-dependent device and material transport proper-
ties from first principles.

VI. CONCLUSIONS

In conclusion, we have developed the EMTO-DFT-NEGF-
DCA method, namely, the first-principles nonequilibrium

2The current (in atomic units) of different spin channels for DCA-
R, SRO-a–d are as follows: 2.3 × 10−6, 1.9 × 10−6, 2.3 × 10−6,
2.6 × 10−6, 2.2 × 10−6 for PC spin up, 2.9 × 10−6, 2.1 × 10−5,
2.9 × 10−6, 3.4 × 10−6, 2.0 × 10−6 for PC spin down, 5.3 × 10−6,
2.3 × 10−5, 5.2 × 10−6, 5.5 × 10−6, 6.6 × 10−6 for APC spin up,
and 1.3 × 10−6, 1.5 × 10−6, 1.4 × 10−6, 1.6 × 10−6, 7.5 × 10−7 for
APC spin down, respectively.

dynamical cluster theory, to simulate the quantum transport
through disordered nanoelectronics. In this work, DCA is
formulated in the Keldysh’s NEGF representation to enable
the effective treatment of both the correlation effects of disor-
der scattering and short-range order effects at nonequilibrium
condition. By implementing in the localized and minimal
basis EMTO, the present method features high efficiency
and accuracy for quantum transport simulation of disordered
device materials. In the practical nonequilibrium electronic
structure self-consistency, we devise a double-energy-contour
technique to increase the numerical convergence in the en-
ergy integration, making the simulation of nonequilibrium
disordered devices feasible. As an important test, we applied
the present EMTO-DFT-NEGF-DCA to calculate the elec-
tron transport in Cu/Co junction with interfacial disorder and
Fe/Va/Fe MTJ with surface roughness. We find the inclusion
of correlations of disorder scattering in very few disordered
layers can present a sizable decrease in electron transmission,
presenting the important effect of disorder-induced transport
channel closing. Moreover, in Fe/Va/Fe MTJ, it is found
that the SROs with clustering and anticlustering tendencies
can dramatically modulate the spin-dependent transmission
properties compared to the case of (or close to) complete
randomness, presenting important SRO effects on the device
functionality. The development of first-principles nonequi-
librium dynamical cluster theory extends the capability of
first-principles quantum transport simulation of disordered
devices, providing an important approach for the process-
dependent device simulation.
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APPENDIX: SELF-CONSISTENCY FOR NEGF-DCA
IN EMTO

In Sec. III, we have introduced the formulation of nonequi-
librium DCA in the Keldysh’s representation within the
EMTO framework for an operating disordered electronic de-
vice. However, it is not appropriate to directly solve the DCA
equations with 2 × 2 Keldysh’s matrices (containing A/R/K
blocks) as a whole. Because of the lower triangular form in
the Keldysh’s representation, the computation of A/R blocks,
with the relation of QA = QR,†, is independent of the K
block, while K block is connected with A/R blocks. In prac-
tical implementation, for the energy contours of C1, C2, and
C4, only the GR

c is required for each energy point. For C3, we
need calculate all the GR/A/K

c to obtain G</>
c containing the

nonequilibrium quantum statistics in Eqs. (23) and (24). For
the DCA cluster solver, namely Eqs. (14) and (15), we can
rewrite them explicitly as

GR/A,Q
c,p = [

�R/A
p − aDQ

c,p

]−1
,

GK,Q
c,p = −GR,Q

c,p �K
p GA,Q

c,p , (A1)

ḠA/R/K
c,p =

∑
Q

wQGA/R/K,Q
c,p ,
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where GA,Q
c,p = GR,Q,†

c,p . Then, based on the known averaged
ḠA/R/K, D̃A/R/K

c,p in real space can be obtained with Eq. (16)
explicitly as

aD̃R/A
c,p = �R/A

p − [
ḠR/A

c,p

]−1
,

aD̃K
c,p = �K

p + (
ḠR

c,p

)−1
ḠK

c,p

(
ḠA

c,p

)−1
. (A2)

With the Fourier transformed to �K‖,n representation, we obtain
explicitly with Eq. (17)

D̃R/A/K
c,p,B,B′ ( �K‖,n) =

∑
�T‖

e−i �K‖,n· �T [
D̃R/A/K

c,p

]
B,B′+T‖

. (A3)

The averaged GF ḠA/R/K
c (�k‖) of the central re-

gion can be calculated explicitly with the known
D̃R/K

c,p as

ḠR
c (�k‖) = [

aSa,R
c (�k‖) − aD̃R

c ( �K‖,n) − �R
ld (�k‖)

]−1
,

ḠK
c (�k‖) = ḠR

c (�k‖)
[
aD̃K

c ( �K‖,n) + �K
ld (�k‖)

]
ḠA

c (�k‖). (A4)

After applying the coarse-grained approximation,
ḠA/R/K

c,p ( �K‖,n) = 1
Nk̃‖

∑
k̃‖ ḠA/R/K

c,p ( �K‖,n + k̃‖), we generate

new coherent interactor explicitly with Eq. (12) as follows:

�R
p ( �K‖,n) = [

ḠR
c,p( �K‖,n)

]−1 + aD̃R
c,p( �K‖,n),

�K
p ( �K‖,n) = aD̃K

c,p( �K‖,n) − [
GR

c,p

]−1
GK

c,p

[
GA

c,p

]−1
( �K‖,n).
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