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Thermal dissipation in the quantum Hall regime in graphene
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It is widely accepted that both backscattering and dissipation cannot occur in topological systems because
of the topological protection. Here we show that thermal dissipation can occur in the quantum Hall regime in
graphene in the presence of dissipation sources, although the Hall plateaus and the zero longitudinal resistance
still survive. Dissipation appears along the downstream chiral flow direction of the constriction in the Hall plateau
regime, but it occurs mainly in the bulk in the Hall plateau transition regime. In addition, dissipation processes
are accompanied with the evolution of the energy distribution from nonequilibrium to equilibrium. This indicates
that topology neither prohibits the appearance of dissipation nor prohibits entropy increasing, which opens a new
topic on the dissipation in topological systems.
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I. INTRODUCTION

Topological systems have been attracting extensive and
ongoing interests [1–6] because of potential applications in
low-dissipation electronic devices and topologically protected
edge or surface states [4–6]. The quantum Hall (QH) effect is a
prime phenomenon in topological systems [7–10], which was
first discovered in a two-dimensional electron gas (2DEG)
system [7]. With the influence of a strong perpendicular mag-
netic field, the energy spectrum forms a series of impurity
broadened discrete Landau levels, where the extended states
exist in the center and the localized states exist at the edge
of the band [11–13]. This special energy band leads to many
peculiar properties. For example, it supports topologically
protected chiral edge states, which are characterized by the
topological properties of the wave function’s distribution in
two-dimensional lattice momentum space and the correspond-
ing topological invariant is TKNN number, also known as the
Chern number [5,14].

When the Fermi energy is between the Landau levels, the
chiral edge states exhibit quantized Hall resistance and the
corresponding longitudinal resistance is zero [15]. The QH ef-
fect can occur in macroscopic systems. In the experiment, the
quantized Hall resistance is very specified and it is insensitive
to the details of the sample, which leads to the establishment
of a new metrological standard [16,17]. Moreover, the charge
carriers in the chiral edge states are very resistant to scatter-
ing and are expected to be used in dissipationless electronic
devices [8].

Graphene, a kind of two-dimensional topological mate-
rial with an isolated single-layer hexagonal lattice of carbon
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atoms, has been found to be an ideal material for the re-
alization of the QH effect recently [18–20]. Graphene has
a unique band structure with a linear dispersion relation
near the Dirac points, which leads to many fancy proper-
ties [21–23]. Its quasiparticles obey the massless Dirac-type
equation and its Hall plateaus are assumed at the half-integer
values [18,19,24].

The dissipation sources (e.g., the electron-phonon interac-
tion, impurities) inevitably exist in real systems and could
lead to thermal dissipation with the energy transfer from
electric energy to heat energy in charge transport processes
[25,26]. Usually, dissipation is associated with the generation
of resistance [27]. The longitudinal resistance is zero in the
Hall plateau regime but nonzero in the Hall plateau transi-
tion regime. Therefore, although there are dissipation sources,
one would expect that dissipation cannot occur in the Hall
plateau regime, but only in the Hall plateau transition regime.
However, it was shown that dissipation can take place at the
QH edges through resonant impurities and electron-phonon
interactions [28,29]. In particular, using a high-sensitive non-
contact nanothermometer [30–32], Marguerite et al. [33]
reported an amazing experiment that dissipative transport hap-
pened along the chiral QH edge states in graphene but in
the bulk no dissipation occurred in either the QH plateau or
plateau transition regimes. In view of this, a thorough and
reliable analysis of thermal dissipation accompanied with en-
ergy relaxation and electron redistribution is urgent in the QH
effect.

In this paper, motivated by the recent experiment by
Marguerite et al. [33], we theoretically study the thermal
dissipation of a six-terminal graphene device under a perpen-
dicular magnetic field B. The thermal dissipation processes
require energy transfer from the electronic system to the
environment. Here we simulate the dissipation sources by
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introducing the Büttiker’s virtual leads [34], where the en-
ergy of moving electrons leaks into these virtual leads
and induces thermal dissipation. By using the tight-binding
model and the Landauer-Büttiker formalism together with the
nonequilibrium Green’s function, the local heat generation
and equivalent temperature are calculated. Our results indicate
that thermal dissipation can occur in the QH plateau regime,
deviating from the principle that backscattering and dissipa-
tion cannot happen in the QH effect due to the topological
protection. The thermal dissipation mainly appears along the
downstream chiral flow direction of the constriction, with
the relaxation length determined by the dissipation strength.
These features are in excellent agreement with the recent
experiment [33]. On the other hand, in the plateau transition
regime, the thermal dissipation primarily appears in the bulk
of graphene, which is the same as previous physical intuition
[8,33].

The rest of the paper is organized as follows. In Sec. II, we
describe the model of the system and give the details of our
calculations. In Sec. III, we show the numerical results and
some discussions. Finally, a brief conclusion is presented in
Sec. IV.

II. MODEL AND METHOD

In the tight-binding representation, the Hamiltonian of a
six-terminal graphene device [see Fig. 1(a)] can be written as
[35–38]

H =
∑

i

εic
†
i ci −

∑
〈ij〉

teiφij c†
i cj + Hd . (1)

The first and second terms describe the graphene system
including central scattering region (the blue dotted lines sur-
rounding region) and six semi-infinitely long terminals. c†

i (ci)
is the creation (annihilation) operator at site i, εi is the on-site
energy, and t is the nearest-neighbor coupling. Here i = (x, y)
is also the spatial position coordinate, as shown in Fig. 1(a).
The magnetic field B is expressed as φij = ∫ j

i
�A · d�l/φ0, with

the vector potential �A = (−By, 0, 0) in leads 1, 4, and the
central region; �A = (0, Bx, 0) in leads 2, 3, 5, 6; and φ0 = h̄/e
the flux quantum, see Appendix A. We stress that our results
still hold in square-lattice systems (or 2DEG systems). The
third term Hd = ∑

i,k εka†
ikaik + (tka†

ikci + H.c.) represents the
Hamiltonian of Büttiker’s virtual leads and their couplings to
central sites, which is used to simulate the dissipation sources.
a†

ik (aik) is the creation (annihilation) operator of the electrons
in the virtual lead i, tk is the coupling strength between the
virtual leads and the graphene. In fact, the virtual leads can
be used as dephasing probes, voltage probes, or temperature
probes, which depend on the boundary conditions of the vir-
tual leads. When the virtual leads are set as dephasing probes,
electrons can lose phase memories by going into and coming
back from the virtual leads, and the electric currents in these
virtual leads are zero [39]. When they are set as voltage
probes, the electric currents in the virtual leads are also zero
and the voltage in the virtual leads are studied. When they
are set as temperature probes, both the heat currents and the
electric currents are zero. Here we use the virtual leads to
simulate the dissipation sources, in this case electrons can lose
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FIG. 1. (a) Schematic diagram for a six-terminal graphene device
with a narrow constriction on the left side (i.e., the narrow constric-
tion is between lead 1 and leads 2, 6). The region surrounded by the
red (or green) solid lines contains dissipation sources and the region
surrounded by the blue dotted lines is the central scattering region.
In this diagram, the sizes of device are N = 16, M = 8, W = 4,
L1 = 4, Lp = 2, Lq = 4, L3 = 3, and L4 = 4. (b) and (c) show the
Hall resistance RH and longitudinal resistance Rxx vs the magnetic
field B with different dissipation strengths �d for M = N and M = 8,
respectively. Lq = 80, the dissipation sources are in the red solid lines
surrounding region and the electric currents Ji in the virtual leads are
zero.

energy by going into and coming back from the virtual leads,
i.e., the electric currents are zero and we focus on the heat
currents in the virtual leads. In addition, we consider that the
dissipation sources only exist in the region enclosed by the red
(or green) solid lines in Fig. 1(a), where each site is attached
by a virtual lead.

By using the multiprobe Landauer-Büttiker formula, the
electric current and the heat current in real leads r (r = 1, 2,...,
6) and virtual ones i can be expressed as [40–42]

Jp = 2e

h

∑
q

∫
Tpq(E )[ fp(E ) − fq(E )]dE ,

Qp = −2

h

∑
q

∫
(E − μp)Tpq(E )[ fp(E ) − fq(E )]dE , (2)

where p, q ∈ r, or i. For convenience, we define the
electric current Jp flows from lead p to central region as
the positive direction, while the heat current Qp flows
from the central region to lead p as the positive direction.
Here, the heat current Qp is induced by the flow of the
electric current, so we will call it the current-induced
local heat generation in the following. In Eq. (2),
Tpq(E ) = Tr[�pGr�qGa] is the transmission coefficient
from lead q to lead p, and

∑
q(q �=p) Tpq(E ) = ∑

q(q �=p) Tqp(E )
because of the conservation of current. The Green’s function

115411-2



THERMAL DISSIPATION IN THE QUANTUM HALL … PHYSICAL REVIEW B 104, 115411 (2021)

Gr (E ) = [Ga(E )]† = [EI − Hcen − ∑
p �r

p]−1 and the
linewidth function �p(E ) = i[�r

p(E ) − �a
p(E )]. Hcen is

the Hamiltonian of the central region. �r
p(E ) = [�a

p(E )]†

is the retarded self-energy due to the coupling to lead
p. For real leads p (p ∈ r), the self-energy �r

p can be
calculated numerically [42]. For virtual leads p (p ∈ i),
�r

p = − i
2�d , with the dissipation strength �d = 2πρt2

k and
ρ the density of states in the virtual leads [39]. We assume
that �d is independent of the energy, i.e., in the wide-band
approximation. fp(E ) = [e(E−μp)/kBTp + 1]−1 is the Fermi
distribution function in lead p, with the temperature Tp, the
chemical potential μp = EF + eVp, and the voltage Vp in lead
p.

By using the Green’s function, the energy distribution func-
tion at the site i can be expressed as

Fi(E ) = n(i, E )

LDOSi(E )
, (3)

where n(i, E ) = − i
2π

G<
ii (E ) is the electron density per unit

energy at the lattice site i and LDOSi(E ) = − 1
π

ImGr
ii(E )

is the local density of states at the lattice site i [41]. Ac-
cording to the Keldysh equation, the lesser Green’s function
G<

ii (E ) = ∑
p Gr

ip�
<
p Ga

pi and the lesser self-energy �<
p (E ) =

− fp(E )[�r
p(E ) − �a

p(E )].
When a small bias Vb is applied between leads 1 and 4 with

V1 = Vb and V4 = 0, the current flows along the longitudinal
direction. It is reasonable to assume that the transmission
coefficient Tpq(E ) is approximately independent of energy E
since the bias is small. The electric currents in leads 2, 3, 5, 6
are zero and their voltages will be calculated. In addition, the
electric currents in the virtual leads are also zero because elec-
trons go into and come back from the virtual leads, only losing
energy. The Fermi distribution function is fp(E ) = θ (μp − E )
at zero temperature. Thus, Eq. (2) can be expressed as

Jp = 2e2

h

∑
q �=p

Tpq(EF )(Vp − Vq),

Qp = −2e2

h

∑
q �=p

Tpq(EF )

(
VpVq − 1

2
V 2

p − 1

2
V 2

q

)
. (4)

Combining Jp = 0 (p ∈ {i, 2, 3, 5, 6}) with Eq. (4), the
voltages Vp, the current-induced local heat generation Qp in
these leads and the longitudinal current (J = J1 = −J4) can
be obtained. The current J is proportional to the bias Vb

and the heat generation Qp to V 2
b . The local heat generation

QL(x, y) at position i = (x, y) is QL(x, y) = Qi. Finally, the
longitudinal resistance Rxx = R14,23 = (V2 − V3)/J and the
Hall resistance RH = R14,26 = (V2 − V6)/J can be calculated
straightforwardly. The local heat generation QL(x, y) will be
studied in Sec. III A.

On the other hand, if the thermal conductivity between
the sample and environment is poor, the local heat gener-
ation Qi disappears and the local electron temperature Ti
(i.e., the temperature in the virtual leads) rises. In this case,
the virtual leads act as both the dissipation sources and the
temperature detection terminals (temperature probes), and
both Ji and Qi are zero. Notice that although both Ji and
Qi are zero in the virtual leads, the heat current density

∑
q(E − μp)Tpq(E )[ fp(E ) − fq(E )] and the electric current

density
∑

q Tpq(E )[ fp(E ) − fq(E )] are usually nonzero. So
the dissipation can occur and the virtual leads still play the role
of dissipation sources. Provided that the six real leads have
the same temperature (T1 = T2 = T3 = T4 = T5 = T6 = T ).
At low temperature and small voltage, the current Jp and the
current-induced local heat generation Qp in Eq. (2) can be
reduced as

Jp = 2e2

h

∑
q �=p

Tpq(EF )(Vp − Vq),

Qp = −2

h

∑
q �=p

Tpq(EF )

[
π2

6
k2

B

(
T 2

p − T 2
q

) − 1

2
e2(Vp − Vq)2

]
.

(5)

Here kB is the Boltzmann constant and Tp is the tempera-
ture in lead p. In the expression of the current-induced local
heat generation Qp in Eq. (5), the linear term �Tp ≡ Tp − T
exists, but the linear term (Vp − Vq) disappears because we
now focus on the heat generation at the low temperature and
small voltage, see Appendix B for details. This is different
from some previous literature on thermoelectric effects and
Peltier effect in linear response, which includes the linear term
(Vp − Vq) [43,44]. Notice that the temperature Tp (p ∈ i) in the
virtual leads may not be equal to the background temperature
T . Then by using the boundary conditions that the net currents
Jp flowing through real leads 2, 3, 5, 6 and all the virtual leads
are zero and the heat generation Qp in all the virtual leads
are also zero, the local equivalent electron temperature Ti and
voltage Vp (p ∈ r or i) can be obtained. Also notice that the
electron at the site i of the graphene is in nonequilibrium.
Here Ti is the temperature of the virtual lead i, which is in
equilibrium. Because the virtual leads are in thermal contact
with graphene and the heat current Qi from the graphene to
the virtual leads is zero, we can use the temperature Ti as an
equivalent temperature of the local nonequilibrium electron at
the site i. In Sec. III B, we will numerically study the local
equivalent temperature Ti.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculations, we set the hopping energy
t = 2.75 eV, the on-site energy εi = 0.2t (i.e., the energy
of Dirac point), and the Fermi energy EF = 0. Taking into
account the spin degeneracy, we will use h/2e2 as the resis-
tance unit. The corresponding filling factors are taken as odd
integers (ν = 1, 3, 5,...) instead of even integers (ν = 2, 6,
10,...), which are actually in accordance with the experiment
result [33]. The zigzag edge graphene ribbon is considered
[Fig. 1(a)] and the results still hold for the armchair one. The
magnetic field is expressed as the Peierls phase [37,45]: 2φ =
(3

√
3/2)a2B/φ0, with (3

√
3/2)a2B the magnetic flux thread-

ing a single hexagon and the unit of B being 4h̄/(3
√

3ea2),
where a = 0.142 nm is the lattice constant of graphene. The
device sizes are N = 120, W = 30, L1 = 10, Lp = 10, Lq =
180, L3 = 50, L4 = 50, B = 0.02, and the temperature T = 0
for all leads, which will be used in the calculations unless
stated otherwise.
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A. Hall resistance and thermal dissipation

Figures 1(b) and 1(c) show the Hall resistance RH and the
longitudinal one Rxx as functions of magnetic field B with
different dissipation strengths �d . In the absence of dissipa-
tion sources (�d = 0) and narrow constriction, RH increases
and Rxx oscillates with increasing B. At large B, the expected
plateaus at RH = (1/ν)h/2e2 with filling factors ν = 1, 3,
5,... are found, and Rxx is zero except in the plateau tran-
sition regime, owing to the formation of Landau levels and
chiral edge states [41,46]. In particular, the QH plateaus and
zero Rxx remain well in the case of either dissipation sources
or narrow constriction exist. These phenomena are consis-
tent with previous experimental [7,16,18–20] and theoretical
works [8,39,41,47]. That is, the QH effect is topologically
protected, so no dissipation and no backscattering are naively
expected.

Next, we focus on the heat generation in the presence
of dissipation sources. Without the narrow constriction, i.e.,
M = N = 120, the current-induced local heat generation QL

is almost zero in the QH plateau regime because the charge
carriers flow along the topologically protected chiral edge
states. This means that thermal dissipation and backscattering
cannot occur as expected. However, the results are different in
the presence of narrow constriction (M = 8).

Figures 2(a) and 2(b) plot the local heat generation QL

at M = 8 in the QH plateau regime with B = 0.02 (ν =
1). When B = 0.02, the magnetic length lB =

√
h̄

eB ≈ 8a ∼
M, thus backscattering will happen at the constriction and
the electrons will be in nonequilibrium states after passing
through the constriction, leading to voltage drop and work
generation at the constriction. In Fig. 2, the dissipation sources
(virtual leads) are added in the region surrounded by the red
solid lines, and QL is zero in the region with no dissipation
sources. From Figs. 2(a) and 2(b), one can see that QL is
quite large at the constriction region and the device edges,
indicating the emergence of thermal dissipation, contrary to
the intuition that the QH effect is dissipationless. Furthermore,
thermal dissipation mainly appears along the downstream
chiral flow direction of the constriction and is very weak
in the bulk. These results are in good agreement with the
recent experiment [33]. When away from the constriction, the
heat generation QL is gradually declined with a relaxation
length λ. For small dissipation strength �d , λ is very long
and QL is almost the same along the downstream channel
[Fig. 2(a)], similar to the experimental results [33]. While for
large �d , λ is short and QL decays significantly [Fig. 2(b)].
With the increase of dissipation strength �d , the total local
heat generation QLT = ∑

x,y QL(x, y) in the virtual leads in-
creases. Notice that although the thermal dissipation appears,
the QH plateaus and zero longitudinal resistance Rxx remain
well [Figs. 1(b) and 1(c)].

Figures 2(c) and 2(d) plot the local heat generation QL for
the higher filling factor ν = 3 (B = 0.01). For the higher ν,
the thermal dissipation increases significantly since there are
more edge states. From Figs. 2(c) and 2(d), we can see that
QL mainly appears along the downstream chiral flow direction
of the constriction, and is still very weak in the bulk. When
away from the constriction, the heat generation QL is grad-
ually declined with a relaxation length λ. With the increase

FIG. 2. (a)–(d) show the local heat generation QL vs lattice posi-
tion (x, y) in the QH plateau regime with a narrow constriction on the
left side [i.e., the narrow constriction is between lead 1 and leads 2, 6
in Fig. 1(a)]. B = 0.02 (ν = 1) in (a), (b), 0.01 (ν = 3) in (c), (d), and
dissipation strengths �d = 0.005 in (a), (c), 0.02 in (b), (d). (e) shows
QL at B = 0.02 for the device with a narrow constriction on the right
side [i.e., the narrow constriction is between lead 4 and leads 3, 5 in
Fig. 1(a)] and �d = 0.02. (f) shows QL in the Hall plateau transition
regime (B = 0.0116) with Lq = 80, W = 60, and �d = 0.005. The
dissipation sources are added in the region surrounded by the red
solid lines and the electric currents Ji in the virtual leads are zero.

of dissipation strength �d , the total local heat generation QLT

increases but the relaxation length λ decreases. These results
are similar to the case of filling factor ν = 1. In addition,
for the higher filling factor, the thermal dissipation is slightly
delocalized to the edge of the system because the higher edge
states are more extended. Figure 2(e) shows the local heat
generation QL for the situation that the constriction locates
at the right side. Now the thermal dissipation mainly occurs
at the lower edge, which is still aligned with the downstream
chiral flow direction of the constriction.

However, in the Hall plateau transition regime, one can
see from Fig. 2(f) that thermal dissipation mainly occurs in
the bulk as expected because the Fermi energy locates at the
spatially extended Landau level. The thermal dissipation is
slightly larger in the upper part than the lower one, as the
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FIG. 3. Local heat generation QL vs lattice position (x, y) with
Lp = 30, Lq = 80. The dissipation strength (a) �d = 0.005, (b) 0.01,
(c) 0.02, and (d) 0.05. The dissipation sources are added in the region
surrounded by the red solid lines and the electric currents Ji in the
virtual leads are zero.

electrons move toward the upper part under the magnetic
field, which is different from the recent experiment where
the thermal dissipation occurs along both the downstream
and upstream directions with no visible chirality [33]. This
experimental phenomenon may originate from the edge re-
construction in graphene [48–50], which induces additional
nontopological counterpropagating channels [51]. Our results
predict that thermal dissipation mainly occurs in the bulk
in the plateau transition regime if there is no edge recon-
struction in graphene or 2DEG systems (e.g., GaAs/AlGaAs
heterostructures). It is worth mentioning that edge reconstruc-
tion has little effect on thermal dissipation in the QH plateau
regime because the Fermi energy EF locates far from the
Landau levels in this case.

Now, we offer a detailed discussion that Lp = 10 in Fig. 2
is reasonable and the local heat generation is almost zero in the
bulk in the Hall plateau regime. Figure 3 shows the local heat
generation QL for Lp = 30 and the magnetic field B = 0.02.
When B = 0.02, the system is in the first QH plateau regime.
From Fig. 3, we can see that for the case of Lp = 30, which is
much larger than lB, the thermal dissipation along the left edge
still occurs, and mainly appears in the region with x < 10,
regardless of the dissipation strength �d . Therefore, it is rea-
sonable to assume Lp = 10. What’s more, there is no thermal
dissipation in the bulk in the Hall plateau regime. The thermal
dissipation mainly occurs along the downstream chiral flow
direction of the narrow constriction, with a relaxation length
λ related to the dissipation strength. With the increase of
dissipation strength �d , the total local heat generation QLT in
the virtual leads increases, and the relaxation length reduces.

FIG. 4. The local heat generation QL vs lattice position (x, y)
for dissipation strengths �d = 0.01 in (a) and �d = 0.05 in (b). QL

along the gray or white dotted lines in (a) and (b) are shown in
Figs. 5(a) and 5(b), respectively. The dissipation sources are added
in the region surrounded by the green solid lines and the electric
currents Ji in the virtual leads are zero.

These results are completely the same as those in Figs. 2(a)
and 2(b).

In the discussion above, the dissipation sources exist at the
constriction, so the transmission coefficient of the constriction
will be affected by �d . To eliminate the interaction between
the constriction and the dissipation sources, here we consider
the situation that dissipation sources only appear in the region
enclosed by the green solid lines in Fig. 1(a). From Figs. 4(a)
and 4(b), we can see a large heat generation QL still appears
along the downstream chiral flow direction (the upper edge of
the system) when �d �= 0, and the heat generation is almost
zero along the upstream chiral flow direction (the lower edge
of the system), just like Figs. 2(a) and 2(b).

Then, we study the thermal dissipation in more details in
the QH plateau regime. The curves in Figs. 5(a) and 5(b)
are extracted from Fig. 4 by fixing the transverse location
y or the longitudinal location x. Figure 5(a) shows the local
heat generation QL versus longitudinal location x with a fixed
transverse location y for different �d . For small dissipation
strength �d , the local heat generation QL is almost the same
regardless of x. For large �d , QL is dramatically declined with
increasing x. Figure 5(b) plots the local heat generation QL

versus transverse location y. It is obvious that the thermal
dissipation is almost zero at the lower boundary (the upstream
direction) and mainly occurs at the upper boundary (the
downstream direction). Furthermore, the thermal dissipation
obviously reduces with the increase of longitudinal location x.
For example, QL at x = 50 is much larger than that at x = 100,
and QL at x = 150 is nearly zero. In addition, at a fixed x,
the thermal dissipation oscillates with y. The wave function
|�(y)|2 of the chiral edge state is also shown in Fig. 5(b).
|�(y)|2 oscillates with y, which is very similar to the curve
QL-y. This indicates that thermal dissipation originates from
the topologically protected chiral edge states.

When dissipation sources only appear in the region
enclosed by the green solid lines in Fig. 1(a), the trans-
mission coefficient through the narrow constriction is T =∑6

q=2 Tq1 + ∑
i Ti1. Figure 5(c) shows the transmission co-

efficient T versus the magnetic field B. T is noninteger and
depends on the magnetic field B. For B = 0.02 (in the first
Hall plateau regime), T = 0.4858, and for B = 0.0116 (in
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FIG. 5. (a) The local heat generation QL vs longitudinal location
x under fixed y = 115 for different �d . (b) shows QL vs transverse
location y with �d = 0.05 for different x, and the wave function
|�(y)|2 vs location y. (c) The transmission coefficient T of the narrow
constriction vs the magnetic field B for different �d . (d) shows the
total local heat generation QLT versus dissipation strength �d . In
(a)–(c), the dissipation sources exist in the region surrounded by
the green solid lines in Fig. 1(a). In (d), the red and green curves
correspond to the dissipation sources in the regions enclosed by the
red and green solid lines, respectively. The electric currents Ji in the
virtual leads are zero in (a)–(d).

the Hall plateau transition regime), T = 0.5466. In addition,
the transmission coefficient T will be hardly affected by the
dissipation strength �d . Figure 5(d) plots the total local heat
generation QLT versus the dissipation strength �d . Without the
dissipation sources (�d = 0), the total local heat generation
QLT is zero. With the increase of �d , QLT increases mono-
tonically. For dissipation sources only exist at the sample [in
the green solid lines surrounding region in Fig. 1(a)], QLT at
large �d limit tends to a saturation value, Qmax

LT = 1
2 T (1 −

T )V 2
b 2e2/h, see the green curve in Fig. 5(d). For example,

QLT ≈ 0.1249V 2
b 2e2/h at �d = 0.2, which is very close to

Qmax
LT ≈ 0.125V 2

b 2e2/h. On the other hand, when the dissi-
pation sources exist at both the narrow constriction and the
sample [in the red solid lines surrounding region in Fig. 1(a)],
the total local heat generation QLT is much larger than that
of the dissipation sources in the green solid lines surrounding
region, but is less than 2Qmax

LT . In addition, our numerical re-
sults also indicate that the total heat generation (QT = QLT +∑6

p=1 Qp) in the whole device is equal to the Joule heating JVb

since the electric current Jp (p ∈ {i, 2, 3, 5, 6}) is zero and the
energy of the system is conserved, demonstrating the validity
of our numerical results.

B. Equivalent temperature

In the above, the temperature of the environment (the vir-
tual leads) is equal to the electronic system (the real leads).
However, if the thermal conductivity between the sample and
the environment is poor, the local heat generation Qi disap-

FIG. 6. Equivalent temperature kB�Ti (�Ti ≡ Ti − T ) vs lat-
tice position i = (x, y) with (a) �d = 0.005, (b) 0.01, (c) 0.02, and
(d) 0.05. The background temperature kBT /(eVb) = 0.1. The dissi-
pation sources exist in the region surrounded by the red solid lines
in Fig. 1(a) and both electric currents Ji and heat currents Qi in the
virtual leads are zero. The light cyan area is added artificially to show
the part without coupling of the virtual leads.

pears, thus the local electron temperature rises. Figures 6 and
7 show the equivalent temperature �Ti (�Ti ≡ Ti − T ) versus
the position i = (x, y) for the dissipation sources in the red and
green solid lines surrounding regions in Fig. 1(a), respectively.
The equivalent temperature along the downstream chiral flow
direction (the upper edge of the system) increases significantly
because of the chiral heat transport in the QH plateau regime
[52,53]. However, at the upstream direction (the lower edge
of the system), the local temperature Ti is almost equal to

FIG. 7. Equivalent temperature kB�Ti (�Ti ≡ Ti − T ) vs lattice
position i = (x, y) with (a) �d = 0.01 and (b) 0.05 . The background
temperature kBT /(eVb) = 0.1. The dissipation sources exist in the
region surrounded by the green solid lines in Fig. 1(a) and both
electric currents Ji and heat currents Qi in the virtual leads are zero.
The light cyan area is added artificially to show the part without
coupling of the virtual leads.
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FIG. 8. (a)–(d) show distribution function F vs energy E for
different x under fixed y = 115. In (a) and (b), the temperature of
the virtual leads are the same as the real leads, Ji = 0, �d = 0.01
in (a) and 0.05 in (b). In (c) and (d), the virtual leads act as the
temperature detecting terminals with Ji = 0 and Qi = 0, �d = 0.05,
kBT /(eVb) = 0.01 in (c) and 0.1 in (d). The dissipation sources are
in the green solid lines surrounding region.

the background temperature T . What’s more, the equivalent
temperature does not reduce with the increase of the longitu-
dinal location x and is almost independent of the dissipation
strength �d . For example, when the dissipation strength �d =
0.005, kB�Ti ≈ 0.1931eVb at the upper edge, which is almost
the same as kB�Ti ≈ 0.1926eVb at �d = 0.05 [Fig. 6]. Recent
experimental work [31] developed a temperature detection
technique using an ultrasensitive scanning nanothermometer
with a superconducting quantum interference device placed
on a tip. This technique allows one to obtain a spatial temper-
ature variation with submicrokelvin sensitivity.

C. Evolution of the energy distribution

In this subsection, let us discuss why thermal dissipation
can occur at the topologically protected chiral edge states
in the QH plateau regime. When the electrons injected from
lead 1 arrive at the narrow constriction, some of them will be
reflected back and the others flow through the constriction,
leading to a noninteger transmission coefficient [Fig. 5(c)].
Subsequently, the electron distribution at the downstream
edge states of the constriction is nonequilibrium. For ex-
ample, at zero temperature, the distribution function of the
downstream edge states satisfies F (E ) = 1 for energy E < 0,
F (E ) = T (E ) for 0 < E < eVb, and F (E ) = 0 for eVb < E
[see Figs. 8(a) and 8(b)]. In other words, the downstream
edge states are completely occupied for E < 0, partially
occupied for 0 < E < eVb, and empty for eVb < E . In the
presence of dissipation sources, these nonequilibrium elec-
trons will tend to be equilibrium, so the thermal dissipation
appears. The maximum thermal dissipation is the energy dif-
ference between the nonequilibrium states and the equilibrium
ones, i.e., Qmax

LT = 1
2 T (1 − T )V 2

b 2e2/h. At B = 0.02, T ≈ 0.5,
and Qmax

LT ≈ 0.125V 2
b 2e2/h. Our numerical results show that

QLT ≈ 0.1249V 2
b 2e2/h at �d = 0.2 [see Fig. 5(d)], which is

very close to Qmax
LT . Here are two points worth mentioning.

(i) Although the thermal dissipation occurs in the QH plateau
regime, backscattering cannot take place because electrons
transfer from the high energy edge state to the low one
with unchanged propagating direction during the dissipation
processes. As a result, the QH plateaus and zero Rxx can
survive well [Figs. 1(b) and 1(c)]. (ii) The thermal dissipation
and entropy generation always occur as long as the electron
distribution is nonequilibrium, no matter whether the system
is topologically protected or not. In a word, topology only
protects no backscattering but cannot protect no dissipation.

Figures 8(a) and 8(b) display the distribution Fi(E ) at dif-
ferent locations x along the downstream direction. When the
electrons pass through the constriction, they are located in se-
vere nonequilibrium states and the corresponding distribution
strongly deviates from the Fermi distribution function, as can
be seen from the curves of x = 5 in Figs. 8(a) and 8(b). In the
dissipation region, the local heat and entropy generate, which
is accompanied with the decrease of higher-energy electrons
and the increase of lower-energy electrons, then the distribu-
tion function will evolve gradually from nonequilibrium to
equilibrium with increasing x. After a long distance, the dis-
tribution will turn back to the equilibrium Fermi distribution
[Fig. 8(b)]. But for small �d , the distribution cannot return to
the Fermi distribution even at x = 160 [Fig. 8(a)].

Figures 8(c) and 8(d) show the distribution Fi(E ) versus
energy E for poor thermal conductivity between the sample
and the environment. In this case, the equilibrium distribution
in the virtual leads is different from the nonequilibrium dis-
tribution in graphene lattice site. Under a certain energy, the
occupancy of electrons in graphene and in the virtual leads
is usually different, thus the electrons will flow from the one
with more occupancy to the one with less occupancy. As a
result, the dissipation will occur and the nonequilibrium dis-
tribution F of the two-step shape also evolves gradually into
the equilibrium Fermi distribution with higher temperature,
although the local heat generation is zero. For small x (near
the narrow constriction), the distribution of the electron is
severely nonequilibrium with a two-step shape. Along the +x
direction, the electron relaxation process occurs due to the
presence of the dissipation sources, and the nonequilibrium
distribution evolves gradually into the equilibrium Fermi dis-
tribution. Without the energy loss, the temperature of the final
equilibrium distribution rises. This indicates that dissipation
and entropy can still increase.

IV. CONCLUSION

In summary, the thermal dissipation processes in the QH
regime in graphene are studied. We find that thermal dissipa-
tion can occur in the QH regime, and the relaxation length
is affected by dissipation strength. The thermal dissipation
mainly appears along the downstream chiral flow direction
of the constriction in the QH plateau regime, although the
Hall plateaus and the zero longitudinal resistance remain well.
But in the QH plateau transition regime, thermal dissipation
mainly occurs in the bulk. In addition, for the poor thermal
conductivity case, the local heat generation is zero thus the
local electron temperature rises, and it is not affected by the
dissipation strength. Furthermore, accompanying the thermal
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dissipation, the energy distribution of electrons evolves grad-
ually from nonequilibrium distribution to equilibrium Fermi
distribution. This work shows that added dissipation sources
does not destroy behavior emerging from topological states
such as the QH effect, and topology does not prohibit the
emergence of dissipation and the increase of entropy.
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APPENDIX A: PHASES φij IN THE LONGITUDINAL LEAD

In the numerical calculation, the Hamiltonian of the leads
2, 3, 5, 6 is required to obey the translational invariance along
y direction, and the Hamiltonian of the leads 1, 4 needs to
obey the translational invariance along x direction. So we
choose the vector potential �A = (−By, 0, 0) in leads 1, 4 and
the central region, �A = (0, Bx, 0) in the longitudinal leads
2, 3, 5, 6. In Fig. 9, we show the phases φij in the lead 2
and the coupling between lead 2 and the central region in
detail, which are used in our calculation. We can see that
each hexagonal lattice has a phase of 2φ along the clockwise
direction, which is equal to the number of the flux quantum
(3

√
3/2)a2B/φ0, with (3

√
3/2)a2B the magnetic flux thread-

ing a single hexagon. It is easy to prove that how to choose the
phase φij has no effect on the results, as long as the number of
the flux quantum (the sum of the phase φij along the clockwise
direction of the hexagonal lattice) in all hexagonal lattices is
2φ. Choosing different phases φij is equivalent to take the
different gauge, so the results are the same. In addition, for
the leads 3, 5, 6 and their couplings to the central region,
we also guarantee that each hexagonal lattice has a phase of
2φ along the clockwise direction and the translational invari-
ance along y direction of leads 2, 3, 5, 6 is satisfied in our
calculation.

APPENDIX B: DISAPPEARANCE OF THE LINEAR TERM
OF THE VOLTAGE DIFFERENCE �Vpq IN THE

EXPRESSION OF THE HEAT GENERATION

In Eq. (2) in the main text, Qp is electronic heat current
from the central region to the lead p, which includes the heat
currents caused by the temperature difference, by the Peltier
effect, and by the flow of electric current. When a small bias
is applied between leads 1 and 4, the electric current flows
through the device, then the thermal dissipation occurs and the
Joule heat generates while in the presence of the dissipation
sources [25,26]. Notice that the current-induced local heat
generation is proportional to (�Vpq)2 (�Vpq ≡ Vp − Vq). This
is essentially different from the heat current caused by the
Peltier effect, which is proportional to �Vpq.

FIG. 9. The zoomed-in figure of the lead 2 and the coupling
between lead 2 and the central region in Fig. 1(a). The arrows and
values represent the phase φij from the site i to j. The absence of
arrow and value in some lines indicates that their phases are zero.

Now let us discuss under what conditions the current-
induced local heat generation [the quadratic term (�Vpq)2]
dominates the heat current Qp. To clearly show this issue,
we set that the temperatures of all leads are equal (Tp = T ).
Expanding the Fermi function up to the second-order term, we
have

fp(E ) ≈ f (E ) − eVp f ′(E ) + e2V 2
p

2
f ′′(E ), (B1)

where f (E ) = 1
eε+1 , f ′(E ) = − 1

kBT
eε

(eε+1)2 , and f ′′(E ) =
1

k2
BT 2

eε−e−ε

(eε+1)2(e−ε+1)2 with ε = E−EF
kBT . Considering the Sommer-

feld expansion for the transmission coefficient

Tpq(E ) = Tpq(EF ) + (E − EF )T ′
pq, (B2)

with T ′
pq = dTpq (E )

dE |E=EF . Substituting Eqs. (B1) and (B2) into
Eq. (2), Qp changes into

Qp = 2

h

∑
q

∫
dE (E − μp)[Tpq(EF ) + (E − EF )T ′

pq]

× [
e(Vp − Vq) f ′(E ) − (e2/2)

(
V 2

p − V 2
q

)
f ′′(E )

]

= 2

h

∑
q

{
−π2

3
k2

BT 2e�VpqT ′
pq + 1

2
e2(�Vpq)2Tpq(EF )

+ 1

2
e3Vp

(
V 2

p − V 2
q

)
T ′

pq

}
. (B3)

At the small voltage difference �Vpq limit and the finite tem-
perature T , the leading term of Qp is −π2

3 k2
BT 2e�VpqT ′

pq,
which is the linear term �Vpq, depends on T ′

pq(EF ) [not
Tpq(EF )], and describes the Peltier effect [43,44]. However,
when both the voltage difference �Vpq and the temperature
T are small, the leading term of Qp in Eq. (B3) is the sec-
ond term, 1

2 (e�Vpq)2Tpq(EF ). This term is proportional to
(�Vpq)2, depends on Tpq(EF ), and describes the Joule heat
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generation by the electric current. Because the present work
studies the heat generation and assumes the small temperature

and small voltage, the term 1
2 (e�Vpq)2Tpq(EF ) emerges in

Eqs. (4) and (5) in the main text.
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