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Band-gap formation and morphing in α-T3 superlattices
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Electrons in α-T3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three
atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely
flat, providing unique electronic properties. The interatomic hopping term, α, is known to strongly affect the
electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike
responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are
gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the
spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of
superlattice minibands. Here we investigate the dependency of these properties on the parameter α accounting
for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find
that superlattices can force band gaps to close and shift in energy. Our results demonstrate that α-T3 superlattices
provide a versatile material for 2D band-gap engineering purposes.
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I. INTRODUCTION

The isolation of a stable single layer of carbon atoms
arranged in a hexagonal lattice, known as graphene [1],
combined with the extraordinary electronic and transport
properties observed in the atomically thin material [1–4],
has motivated many researchers to investigate and produce
other two-dimensional (2D) materials [1,5–7]. The peculiar
electronic properties of graphene are the result of charge
carriers described by an equation analogous to the Dirac one
for relativistic particles, but here the presence of a variable
similar to a spinor representation, different from the “real”
one, results only from the crystal structure instead of from an
intrinsic property of the particles. Therefore, the charge carri-
ers in graphene are commonly referenced as pseudospin-1/2
particles [8,9]. These particles have a linear energy dispersion
where valence and conduction bands touch each other in spe-
cial points in reciprocal space called Dirac points [2,3,8,9].

Two-dimensional materials can be subjected to electro-
static potentials with a periodicity significantly larger than
the interatomic distance [10–13]. Because one can easily
change the strength of the electrostatic potential, this method
has been thoroughly investigated as a way to tune electronic
properties of the charge carriers in these 2D systems [14–20].
Superlattice potentials are known to increase the number of
Dirac points of graphene [16–18,21–25] and as such introduce
new physical modes at zero energy, as recently observed in
Ref. [26]. Some relevant applications that originated from the
periodic structures are electron beam supercollimation and
electron wave filter [24,25].
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Recently, novel and distinctive physics has emerged from
2D systems when adding an additional atom in their crystal
structure [27–34], which leads to their charge carriers in a
low-energy approach being described as enlarged pseudospin
Dirac fermions [31,32,35–37]. Among these systems, we have
a Lieb lattice with the additional atom at the edges of a square
lattice, which was recently obtained by adding carbon monox-
ide molecules to a substrate [28], and the T3 or dice lattice,
which has an additional atom at the center of the hexagonal
structure. In both, different from graphene, the massless Dirac
fermions are described as spin-1 particles and an additional
flatband touching the top of the valence and the bottom of the
conduction linear bands [38,39]. This flatband has important
and unusual effects on the electronic properties due to its dis-
persionless nature and thus an infinite effective mass [37–45].
Moreover, flatbands are predicted to be important in the search
for room-temperature superconductivity [46,47].

The graphene hexagonal lattice and T3 or dice lattice are
incorporated in the α-T3 model [38,42–45,48]. It allows a tun-
ing between the central atom arrangement and the hexagonal
structure by varying the parameter α. Graphene and T3 are the
limiting cases α = 0 and 1, respectively.

The α-T3 model has been useful to investigate physical
systems presenting Dirac fermions with a larger pseudospin
value. The α-T3 model was originally proposed to describe the
diamagnetic-to-paramagnetic transition in the orbital suscep-
tibility in an optical lattice of cold atoms [49,50]. The limiting
case α = 1 corresponds to the dice lattice, which can be
obtained by stacking three layers of SrTiO3/SrIrO3/SrTiO3

[51], or it can be generated by controlling three laser beams
propagating in towards a two-dimensional layer of cold atoms
[52]. Likewise, this model with appropriate doping and for the
case α = 1/

√
3 can be used to describe the three-dimensional

Hg1−xCdxTe system [53,54].
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Curiously, systems with charge carriers described as spin-1
massless Dirac fermions for certain energy conditions have
an angular independent Klein tunneling through rectangular
electrostatic barriers, which is called super-Klein tunneling
(SKT). This isotropic transmission is unlike single and bi-
layer graphene, which show highly anisotropic transmission
across such barriers. In addition, the tunneling into the flat-
band across a potential step for a generalized pseudospin has
been discussed as well [31,36]. Previous studies considering
Dirac fermions across electrostatic potentials in systems with
intermediate values of α reveal perfect transmission for nor-
mal incidence, and a general trend of enhanced transmission
with increasing α [36,45,48]. Moreover, when more barriers
are considered, in the case of the dice lattice the tunneling
shows little dependence on the number of barriers, whereas
for graphene the number of barriers strongly affects the
tunneling [55].

Several studies have been published aiming at a way to
create a band gap in these structures [44,56–60]. This is
necessary for practical electronic applications such as the fab-
rication of quantum information devices. It was demonstrated
that an additional mass term in α-T3 systems distorts the linear
bands around the Dirac cone and produces an energy gap with
a third band in it which could be flat or dispersive [43,44].
The position of this band inside the band gap has important
consequences for Klein tunneling of massive Dirac fermions
across potential barriers.

Motivated by the richness of the tunneling properties and
the peculiar electronic properties of Dirac fermions with in-
teger pseudospin, and aiming at understanding how the band
gap in α-T3 systems varies as a function of the tuning param-
eter α in the presence of superperiodicity, we investigate the
energy spectra and density of states (DOS) first in ungapped
α-T3 superlattices, and subsequently we take into account the
effect of different symmetry-breaking terms. In both cases, we
pay special attention to the appearance of minibands, its band
flatness, and its dependence on the coupling parameter α.

This paper is organized as follows. In the second section,
we discuss the electronic properties of charge carriers in α-T3

lattices and how this is affected by small deviations in the
atomic equivalence between the sites and the presence of mass
terms. In the third section, we develop the transfer-matrix
approach to analyze the energy spectra of Dirac fermions in
α-T3 in the presence of a 1D periodic potential. In the fourth
section, we discuss the band-gap morphing and its dependence
on (i) the coupling parameter and (ii) the symmetry-breaking
between the atomic sites by the inclusion of different mass
terms. Conclusions are presented in the fifth section.

II. FERMIONS IN α-T3 LATTICES

A. Energy spectrum and eigenstates

An α-T3 lattice is formed by the superposition of three
triangular sublattices [32]. Two of them are formed by atom
sites A and B arranged in a hexagonal lattice with hopping
term t . The additional site C is connected only to sites B by a
hopping term tuned by a parameter α, which is the parameter
that provides a continuous transition from the honeycomb
(α = 0) to the dice (α = 1) lattice and determines the strength

FIG. 1. Schematic of the α-T3 lattice where the sites of the three
sublattices are colored differently. The limit α = 0 corresponds to
the honeycomb lattice (graphenelike), and α = 1 corresponds to the
dice lattice. The hopping amplitude between the different atoms is
indicated. The region bounded by the gray lines corresponds to the
unit cell.

of coupling between the C atoms at the center of the honey-
comb lattice, as shown in Fig. 1. The distance between the
A, B, and C atoms is the same and is denoted by a0. The
hopping parameters t , α, and a0 depend on the specific atomic
composition of the lattice under consideration and completely
determine the properties of the α-T3 lattice.

The presence of the additional site C centered in the honey-
comb lattice results in some interesting electronic properties,
such as, e.g., the presence of a flatband in addition to the linear
bands and the larger value of pseudospin of charge carriers in
these lattices [31,32,38,42,45,51–54].

The lattice structure determines the kinetic energy of the
fermions in the material. The low-energy Hamiltonian of
fermions in an α-T3 lattice around the K point is given by
the 3 × 3 matrix expressed in the sublattice basis |�〉 =
(|ψA〉, |ψB〉, |ψC〉) as [32,42]

Ĥkin =

⎛
⎜⎝ 0 fξ (�k) cos θ 0

f ∗
ξ (�k) cos θ 0 fξ (�k) sin θ

0 f ∗
ξ (�k) sin θ 0

⎞
⎟⎠. (1)

In Eq. (1) we introduced the parameter θ = tan−1 α, where
θ = 0 and θ = π/4 correspond to honeycomb and dice lat-
tices, respectively. The function fξ (�k) = vF (ξkx − iky), with
vF = 3a0t/2h̄ the Fermi velocity and �k = (kx, ky ) the wave
vector. Here, ξ = ±1 is the valley index for the K and K ′
valleys, respectively [32,42]. In the absence of external po-
tentials, the eigenstates of the Hamiltonian are given by

|�±〉 =
⎛
⎝ cos θeiφk

±1
sin θe−iφk

⎞
⎠, (2)

with eigenvalues E± = ±h̄vF k, where ± indicates the con-
duction and valence bands, respectively. The angle φk =
tan−1(ky/kx ) corresponds to the angle associated with the
momentum vector. In addition, a flatband state is found,

|�0〉 =
⎛
⎝ cos θeiφk

0
sin θe−iφk

⎞
⎠, (3)
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FIG. 2. Energy spectrum of massless Dirac fermions in the α-T3

lattice (a) in the full first Brillouin zone, and (b) around the K point.

with eigenvalue E = 0 corresponding to strongly degenerate
states [31,51,52], as represented in Fig. 2. Notice that the
energy eigenvalues E do not depend on θ . The parameter is
solely affecting the eigenstates.

B. Introduction of a band gap

The Dirac point at E = 0 in the pristine α-T3 lattice is
triply degenerate as seen in Fig. 2. This degeneracy is pro-
duced by the equivalence of the three sublattices. Breaking
this equivalence will lead to a lifting of the degeneracy and
the introduction of a band gap. In general, one can include
this in the Hamiltonian by a term proportional to Û that enters
as follows:

Ĥ = Ĥkin + 	Û , (4)

with Ĥkin given by Eq. (1), and 	 measures the strength of the
symmetry breaking. The Hamiltonian in Eq. (4) is obtained
from an expansion of the tight-binding model to the nearest
neighbors of the α-T3 lattices around the K point of the first
Brillouin zone when different on-site energies are considered
[38,42,52]. In this work, we consider two different forms of
Û , respectively, given by

Û1 =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, Û2 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (5)

The effects of the inclusion of the terms Û1 and Û2 on the
energy spectrum are shown in Figs. 3 and 4, respectively.

The term Û1 introduces a site energy on the different sub-
lattices, as has been discussed for photonic crystals and optical
lattices [56,57]. The solution of Ĥ� = E� for this case gives

FIG. 3. Energy spectrum of Dirac fermions for arbitrary values
of the parameter θ in the α-T3 lattice when the symmetry-breaking
term Û = Û1 is used in Eq. (4). (a) Full first Brillouin zone, and
(b) spectrum around the K point.

FIG. 4. Energy spectrum of Dirac fermions in the α-T3 lattice for
different values of θ when the symmetry-breaking term Û = Û2 is
used in Eq. (4). The full first Brillouin zone is shown at the top
and below the energy spectrum around the K point for (a) θ = 0
(graphenelike case), (b) θ = π/12, (c) θ = π/6, and (d) θ = π/4
(dice case).

the eigenenergies

E0 = 	, E = ±
√

	2 + h̄2v2
Fk2. (6)

Correspondingly, the wave functions in this case are given by

|ψ0〉 =
⎛
⎝ cos θeiφk

0
sin θe−iφk

⎞
⎠, |ψ±〉 =

⎛
⎝α cos θe−iφk

γ

α sin θeiφk

⎞
⎠, (7)

where α = √
E + 	 and γ = √

E − 	.
Similar sublattice symmetry-breaking systems have been

discussed suggesting that such a mass potential term is attain-
able by depositing graphene on specific substrates, such as
SiC [61,62] and h-BN [63]. In Eq. (6) we find the presence
of a gap 2	 opening in the energy spectrum. This results
in massive Dirac fermions with an effective mass defined as
m = 	/v2

F . Since Eq. (6) does not depend on the parameter θ ,
the energy spectrum remains the same for all α-T3 lattices, as
shown in Fig. 3. Moreover, as long as the equivalence between
the sites A and C is maintained, the flatband is shifted and
touches only the bottom of the conduction band. Notice that
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FIG. 5. Schematic representation of the superlattice potential in
the x-y plane. Dark regions denote the barrier region with height
V (x) = Vb and the white region represents the well with zero po-
tential. The angles φw and φb in the inset, respectively, denote the
angles of the carriers in the wells and barriers regions. The profiles
of the 1D periodic potential are given by the figure at the bottom.

now the bottom of the conduction band and the top of the
valence band are quadratic in �k.

On the other hand, the term Û2 defined in Eq. (5) has been
used to describe the effect of a pseudomagnetic field [58,59],
and the dispersion relations for this case are obtained from a
solution of the nonlinear equation,

E (	2 − E2) + k2(	 cos 2θ + E ) = 0, (8)

and the eigenstate for the conduction and valence bands is
given by

|ψ〉 =
⎛
⎝α′ cos θeiφk

γ ′

β sin θe−iφk

⎞
⎠, (9)

with α′ = √
1 + 2	/(E − 	), γ ′ = √

1 + 	 cos(2θ )/E , and
β = √

1 − 2	/(E + 	).
Unlike the previous case, there is no longer equivalence

between the site C and the other sites of the crystal structure,
which means that small deviations of the coupling parameter
α result in different eigenenergies as depicted in Fig. 4. In this
case, the flatband is dispersionless only when θ = π/4 (dice
lattice) and is located in the center of the energy gap [59,60],
as shown in Fig. 4(a).

III. SUPERLATTICE

In this paper, we investigate how fermions in α-T3 lat-
tices are affected by a one-dimensional periodic electrostatic
potential. We investigate one-dimensional potentials with a
periodicity much larger than the interatomic distance, i.e.,
L/a0 � 1. We consider an infinite number of barriers pe-
riodically spaced with unit cell length L = Ww + Wb, with
Ww (Wb) the width of the well (barrier), as illustrated in Fig. 5.
The general Hamiltonian, taking into account the presence of

symmetry-breaking terms, is now given by [36,42,45]

Ĥ = Ĥkin + V (x)Î + 	Ûi, (10)

with Ĥkin given by Eq. (1), V (x) = Vb the periodic potential,
and 	Ûi represents the symmetry-breaking term, which can
be translated into a mass term. Due to translation invariance
in the y direction, the wave functions have the form � j (x, y) =
� j (x)eikyy, with the label j = w or j = b used to denote the
region of well (barrier), and � j (x) is given by

ψ j (x) = A√
2

⎛
⎝ α j cos θeiφ j

γ j

β j sin θe−iφ j

⎞
⎠eik j x

+ B√
2

⎛
⎝−α j cos θe−iφ j

γ j

−β j sin θeiφ j

⎞
⎠e−ik j x. (11)

The angles φw = tan−1(ky/kw ) and φb = tan−1(ky/kb) are the
angles associated with the direction of the momentum of the
electron in the well and barrier regions, respectively, as de-
picted in the inset of Fig. 5, and both in addition to the terms
α j , γ j , and β j are obtained from the eigenstates equation using
the Hamiltonian Eq. (10).

Moreover, the constants A, B,C, D are determined by re-
questing continuity of the wave functions. Writing the wave
functions given by Eq. (11) in the general form �(x) =
(ψA(x), ψB(x), ψC (x)) and by integrating the eigenvalue equa-
tion Ĥ� = E� over a small interval x = [−ε, ε] and allowing
the interval to approach zero, we obtain the following match-
ing conditions for the wave function on either side of the
superlattice:

ψB(−ε) = ψB(ε) (12a)

and

cos θψA(−ε) + sin θψC (−ε) = cos θψA(ε) + sin θψC (ε).
(12b)

These matching conditions are different from those of the
two limiting cases in the α-T3 model, i.e., graphenelike (α =
0) and dice lattice (α = π/4) [13,45]. For graphene, which
has pseudospin-1/2, the matching conditions simply require
the continuity of each two-component of the wave function.
For the dice lattice, which has integer pseudospin, the match-
ing condition takes into account a sum of the first and last
component of the three components of the wave function, as
indicated in Eq. (12) by setting cos θ = sin θ = 1/

√
2. Apply-

ing the matching conditions given by Eq. (12) into Eq. (11),
we obtain the transfer matrix for the α-T3 superlattice,

T = kw
(L)−1

kw
(Wb)kb (Wb)−1

kb
(0), (13)

where

k j (x) =
(

γ jeik j x γ je−ik j x

λ jeikwx − λ∗
j e

−ikwx

)
, (14)

with

λ j = cos2 θeiφ j + sin2 θe−iφ j . (15)
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Inserting Eq. (14) into Eq. (13), we get

T = 1

abaw

(
c+λ

†
b + c−λb γb(c+ − c−)

d+λ
†
b + d−λb γb(d+ − d−)

)
, (16)

where

a j = γ j (λ
∗
j + λ j ), (17a)

c+ = eikbWbγw(γbb1 + λbb2),

c− = e−ikbWbγw(γbb1 − λ∗
bb2), (17b)

d+ = eikbWb (γbλwλ∗
wb2 + γwλbb3),

d− = e−ikbWb (γbλwλ∗
wb2 − γwλ∗

bb3), (17c)

with b1 = λ∗
weikwWw + λwe−ikwWw , b2 = eikwWw − e−ikwWw , and

b3 = λweikwWw + λ∗
we−ikwWw .

According to Bloch’s theorem and requiring det[T ] = 1,
the electronic dispersion at any incident angle is given by
2 cos(KxL) = Tr(T ), where Kx = 2πn/L expresses the pe-
riodicity of the superlattice structure. This results in the
following nonlinear equation for the dispersion relation:

cos(KxL) = cos(kbWb) cos(kwWw )

− GU sin(kbWb) sin(kwWw ), (18)

where GU differs by the presence or absence of the symmetry-
breaking term. It is denoted by G0 for the gapless case, and
G1 and G2 when Û1 and Û2 are taken into account, respec-
tively. As we will demonstrate further on, since the dispersion
relation given in Eq. (18) depends on the symmetry between

the atomic sites of the crystal structure, the inclusion of small
deviations between them leads to large changes in the energy
spectra and the band gap.

The allowed states for the superlattice are obtained when
−1 � cos(KxL) � 1 in Eq. (18), which corresponds to the
energy spectra for this system in the ky plane. In addition, we
can derive the density of states (DOS) represented by D(E )
and given by

D(E ) =
∑
n,ky

δ
(
E − En,ky

)
, (19)

and expressed in units of D0 = L/h̄vF, which corresponds to
the amount of states per unit area, and L is the period of the
superlattice.

IV. PRISTINE SYSTEM

To start, we consider the pristine system corresponding to
Ûi = 0 in Eq. (10). The solution of Ĥ� j = E� j in this case
leads to α j = γ j = β j = 1 in the wave functions given by
Eq. (11). Moreover, from the secular equation det(Ĥ − E ) =
0 we obtain, respectively, the wave vectors in the x-direction
in the well and barrier regions,

kw =
√(

E

h̄vF

)2

− k2
y , kb =

√(
E − Vb

h̄vF

)2

− k2
y , (20)

with h̄vF = 3a0t/2.
From the transfer matrix in Eq. (16) we find the dispersion

relation given by Eq. (18) with GU = G0, where

G0 = 1

kwkb

[
E (E − Vb)

h̄2v2
F

+ [E2 + (E − Vb)2]k2
y [cos2(2θ ) − 1]

2E (E − Vb)
− k2

y cos2(2θ )

]
. (21)

An electrostatic superlattice is capable of multiplying the
number of Dirac points [21]. These are points in reciprocal
space where the valence and conduction bands touch each
other and around which the energy spectrum is linear. There-
fore, it is interesting to calculate how the α-T3 lattice Dirac
point is affected by the superlattice potential.

To determine the location of the Dirac points for the sym-
metric case Wb = Ww = W , we take Kx = 0 and kb = kw in
Eq. (18). Inserting this latter condition into Eq. (20), we have
E = Vb/2. Thus, Eq. (18) becomes

1 = cos2 (kbW ) + sin2 (kbW )

×
[

V 2
0 /4h̄2v2

F + 2k2
y cos2(2θ ) − k2

y

V 2
0 /4h̄2v2

F − k2
y

]
. (22)

This equation has solutions when the term between brackets is
equal to 1, or sin2(kbW ) = 1. The first possibility is obtained
for ky = 0 and corresponds to the main Dirac point at ky =
0. The second possibility leads to kbW = nπ with n being a
positive integer. This last possibility determines the position

of the extra Dirac points in ky space from Eq. (20),

ky =
√

V 2
b

4h̄2v2
F

−
(nπ

W

)2
. (23)

Note from Eq. (22) that for the symmetric case, the condi-
tion to determine the position of Dirac points is regardless of
the parameter θ . Note that when θ = 0, Eq. (22) reduces to

1 = cos2 (kbW ) + sin2 (kbW )

× [(
V 2

b /4h̄2v2
F + k2

y

)
/
(
V 2

b /4h̄2v2
F − k2

y

)]
, (24)

which is consistent with the equation that determines the Dirac
points for graphene [21]. As discussed above, there is no real
solution for Eq. (24) unless ky = 0, which represents the usual
Dirac point, or kbW = nπ [18,21,22].

On the other hand, when we set θ = π/4, Eq. (22) leads to

cos2 (kbW ) + sin2 (kbW ) = 1. (25)

Unlike the graphenelike case, Eq. (22) has many solutions and
the condition for allowed states in the dispersion relation of
Eq. (18) is always satisfied for arbitrary ky.

In Figs. 6(a)–6(d) we show the electronic band structures
at KxL = 0 for some values of the parameter θ assuming
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FIG. 6. Electronic band structures at KxL = 0 for (a) θ = 0
(graphenelike case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice
case) with Vb = 7EL , Ww = Wb = L/2, where L/a0 = 1200, and
EL = h̄vF /L.

Ww = Wb = L/2 and Vb = 7EL, where EL = h̄vF /L and
L/a0 = 1200. As discussed above, one Dirac point appears
at E = Vb/2 and kyL = 0 for 0 � θ < π/4 as shown in
Figs. 6(a)–6(c), moreover the upper and lower bands gradually
becomes closer as the structure reaches θ = π/4 (dice lattice),
when the Dirac point disappears and all states at E = 3.5EL

are allowed regardless of the values of kyL, as shown in
Fig. 6(d).

The dependence on the parameter θ observed in the energy
spectra can be better understood from the density of states
(DOS) shown in Fig. 7 for the same parameters as in Fig. 6.

FIG. 7. Density of states for θ = 0 (black solid curve), θ = π/12
(blue dashed curve), θ = π/6 (red dash-dotted curve), and θ = π/4
(magenta dotted curve) for the same parameters as in Fig. 6.
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kyL

K x
L
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FIG. 8. Valence and conduction bands of the spectrum of a su-
perlattice considering θ = 0 (graphenelike), and θ = π/4 (dice) with
Vb = 21EL , Ww = Wb = L/2, where L/a0 = 1200, and EL = h̄vF /L.

For the dice case, depicted by the magenta dotted curve, we
notice the presence of a pronounced peak, which agrees with
Eq. (25) representing the manifestation of the flatband and,
therefore, an enhancement of the number of states.

In Fig. 8 the spectrum resulting from Eq. (18) using
Eq. (21) for equal barrier and well width is plotted taking
L/a0 = 1200 and Vb = 21EL for θ = 0 and θ = π/4. We
observe for the honeycomb case, i.e., θ = 0, the appearance
of extra Dirac points localized to the left and to the right of
the main one at the energy corresponding to Vb = 10.5EL for
KxL = 0. However, at this same point for the dice case, the
Dirac points disappear giving rise to a flatband. This can be
observed more clearly in Fig. 9, where we show the super-
lattice spectrum along kyL for KxL = 0 for different values
of θ . We notice that as θ increases, the spacing between the
upper and lower bands around the Dirac points decreases.
Moreover, the group velocity along the kyL direction around
the main and the extra Dirac points denoted in Fig. 9 by the
labels I and II is shown in Fig. 10. Notice that the slope of the
dispersion relation around these points is strongly reduced as
compared to the value vF when no superlattice is imposed.

FIG. 9. Electronic band structures for KxL = 0 with θ = 0 (black
solid curve), θ = π/6 (red dashed curve), and θ = π/4 (blue dot-
dashed curve) for KxL = 0 with Vb = 21EL , Ww = Wb = L/2, where
L/a0 = 1200, and EL = h̄vF /L.
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FIG. 10. Group velocity along the ky direction around the main
Dirac point (I), and around the extra Dirac point (II) indicated in
Fig. 9.

This result is similar to the collimation effect observed in
graphene as new extra Dirac points are to arise when the
height of the potential Vb increases, as discussed in Ref. [21].
But now, the collimation effect results from changing the
coupling constant θ .

V. INTRODUCTION OF GAPS IN THE SUPERLATTICE
ENERGY SPECTRUM

Using the transfer-matrix formalism from Sec. III, we ana-
lyze the appearance and morphing in α-T3 superlattices when
including deviations in the atomic equivalence of the three
sublattices and by adding the terms Û1 or Û2.

A. Case Û = Û1

Assuming Û = Û1 in Eq. (10), we obtain the wave
functions expressed in Eq. (11) in the well ( j = w)
and barrier ( j = b) with αw = βw = √

E + 	, αb = βb =√
E − Vb + 	, γw = √

E − 	, and γb = √
E − Vb − 	.

The wave vectors in the x-direction in the well and barrier
regions are

kw =
√

E2 − 	2

h̄2v2
F

− k2
y , (26a)

kb =
√

(E − Vb)2 − 	2

h̄2v2
F

− k2
y . (26b)

From the transfer-matrix method we get the dispersion rela-
tion in Eq. (18) with GU = G1,

G1 = −1

2

[(
ηw1

ηb1

+ ηb1

ηw1

)
+ cos2(2θ )

(
k2

y

k2
b

ηb1

ηw1

+ k2
y

k2
w

ηw1

ηb1

)

− 2
k2

y

kwkb
cos2(2θ )

]
, (27)

with ηw1 = kw h̄vF/(E − 	) and ηb1 = kbh̄vF/(E − Vb − 	).
To analyze the effects on the energy spectrum, and to in-

vestigate how the Dirac points are affected due to the presence
of this symmetry-breaking term, we consider Wb = WW = W ,
and kwW = −kbW in Eq. (18) at the energy E = Vb/2, where,
for the gapless case, the Dirac points are found. When we take
into account these considerations and we assume θ = 0, the
dispersion relation becomes

cos(KxL) = cos2(kbW ) + sin2(kbW )

×
[(

V 2
b /4 + 	2

)
/h̄2v2

F + k2
y(

V 2
b /4 − 	2

)
/h̄v2

F − k2
y

]
, (28)

which has no real solution regardless of the value of ky, in-
dicating the presence of a band gap in the energy spectrum.
This result can be extended to other cases where cos 2θ �= 0
in Eq. (27).

Assuming the particular case θ = π/4, we get

cos(KxL) = cos2(kbW ) + sin2(kbW ) ×
[(

V 2
b /4 + 	2

)
/h̄2v2

F − k2
y

[(
V 2

b /4 + 	2
)
/
(
V 2

b /4 − 	2
)]

(
V 2

b /4 − 	2
)
/h̄2v2

F − k2
y

]
, (29)

which has a real solution for two touching points ky =
±

√
V 2

b /4 − 	2/h̄vF. Unlike the dice case in the absence of
a mass term discussed in Sec. III, the energy-allowed states
in the presence of a symmetry-breaking term are no longer
independent of ky at E = Vb/2.

This becomes more clear when we calculate the electronic
band structure for some particular values of the parameter
θ , the effective-mass term 	 = 0.1Vb, Vb = 7EL, and L/a0 =
1200. The results are depicted in Fig. 11, where EL = h̄vF /L.
As discussed from Eqs. (28) and (29), we can observe the
presence of a band gap in the energy spectra at E = Vb/2,
or, in terms of the unit EL, E ≈ 3.5EL, except for θ = π/4,
where the band gap is closed at the touching points ky =
±

√
V 2

b /4 − 	2/h̄vF , but we observe the formation of an-
other band gap at energy E ≈ 5EL. Moreover, the minibands
present in the energy spectra for intermediate values of θ

are no longer symmetric around the band gap, as shown in
Figs. 11(b) and 11(c). The band-gap morphing and its de-

pendence on θ can be observed when we analyze the density
of states (DOS) of those systems shown in Fig. 12. The ap-
pearance of asymmetric minibands, and the band-gap shifting
observed in Fig. 11(d), becomes clearly apparent. In addition,
unlike the graphenelike case, when we assume θ �= 0 a new
allowed energy state arises that appears as a new peak local-
ized in the energy range 7EL–8EL as observed in Fig. 12.

On the other hand, when we take a large value for the mass
term 	 = 0.4Vb maintaining the other parameters used in
Fig. 11, beyond the increased gap, we find that the minibands
change drastically. When θ �= 0, the energy spectra exhibit
significant modifications in a large range of energy, as shown
in Figs. 13(b)–13(d), where it is possible to see the appear-
ance of new minibands inside the band-gap region, unlike
the graphenelike case. The appearance of new allowed states
inside the region where for the graphenelike case there is only
a band gap is clearly seen from the density of states, as shown
in Fig. 14. In addition, the position of the touching points
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FIG. 11. Electronic band structures at KxL = 0 for (a) θ = 0
(graphenelike case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice
case) with Vb = 7EL , Ww = Wb = L/2, 	 = 0.1Vb, and Û = Û1,
where L/a0 = 1200, and EL = h̄vF /L in all cases.

given by ky = ±
√

V 2
b /4 − 	2/h̄vF depends on the mass term

value, and these points are shifted, as shown in Fig. 13(d).
From Fig. 14 we observe that there is a prominent peak when
the dice case is considered similar to Fig. 12 but localized at
different energy, which results from the increase of the mass
term 	. Moreover, it is evident that there are more allowed
states in the energy range 2EL–5EL for θ �= 0. In Fig. 15
we show the dispersion relation obtained from Eqs. (21) and
(27) assuming equal barrier and well widths, L/a0 = 1200,
Vb = 21EL, and 	 = 0.4Vb for θ = 0 and θ = π/4. Unlike

FIG. 12. Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve), and θ =
π/4 (magenta dotted curve) for the same parameters as in Fig. 11.

FIG. 13. Electronic band structures at KxL = 0 for (a) θ =
0 (graphenelike case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4
(dice case) with Vb = 7EL , Ww = Wb = L/2, 	 = 0.4Vb for Û = Û1,
where L/a0 = 1200, and EL = h̄vF /L in all cases.

the gapless case, for θ = 0 the main Dirac point at kyL = 0
is no longer observed, although the extra Dirac points on
both sides remain. Similarly, for the dice case, the upper and
lower minibands touch each other at two points kyL �= 0, as in
Figs. 11(d) and 13(d).

Moreover, when we assume the superlattice spectrum
along the kyL direction for KxL = 0 in Fig. 15, we find that
the dispersion gradually changes around the point kyL = 0,
becoming flat for θ = π/4, as shown in Fig. 16. In addition,

FIG. 14. Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve), and θ =
π/4 (magenta dotted curve) for the same parameters as in Fig. 13.

115409-8



BAND-GAP FORMATION AND MORPHING IN … PHYSICAL REVIEW B 104, 115409 (2021)

13.5

12.0

10.5

9.0

7.5
-10

1050-5 -3
0
3

K x
L

kyL

E
/E
L

13.5

12.0

10.5

9.0

7.5

E/
E

L

-10
1050-5

kyL
-3
0
3

K x
L

FIG. 15. Valence and conduction bands of the spectrum of a
superlattice considering θ = 0 (graphenelike), and θ = π/4 (dice)
with Vb = 21EL , Ww = Wb = L/2, Û = Û1, and 	 = 0.4Vb, where
L/a0 = 1200, and EL = h̄vF /L.

around the touching points the slope of the dispersion de-
creases as θ increases.

B. Case Û = Û2

For the other symmetry-breaking term denoted by Û =
Û2 in Eq. (10), we have αw = √

1 + 2	/(E − 	), αb =√
1 + 2	/(E − Vb − 	), γw = √

1 + 	 cos(2θ )/E , γb =√
1 + 	 cos(2θ )/(E − Vb), βw = √

1 − 2	/(E + 	), and
βb = √

1 − 2	/(E − Vb + 	). Consequently, the wave func-
tions kw and kb are given by

kw =
√

(E2 − 	2)E(
h̄2v2

F

)
(E + 	 cos 2θ )

− k2
y , (30a)

kb =
√

[(E − Vb)2 − 	2](E − Vb)(
h̄2v2

F

)
(E − Vb + 	 cos 2θ )

− k2
y . (30b)

FIG. 16. Electronic band structures at KxL = 0 for θ = 0 (black
solid curve), θ = π/6 (red dashed curve), and θ = π/4 (blue dot-
dashed curve) with Vb = 21EL , Ww = Wb = L/2, 	 = 0.4Vb, where
L/a0 = 1200, and EL = h̄vF /L.

FIG. 17. Electronic band structures at KxL = 0 for (a) θ = 0
(graphenelike case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice
case) with Vb = 7EL , Ww = Wb = L/2, 	 = 0.1Vb when Û = Û2,
where L/a0 = 1200, and EL = h̄vF /L in all cases.

For this case, we have

G2 = −1

2

[(
ηw2

ηb2

+ ηb2

ηw2

)
+

(
k2

y ηb2

k2
bηw2

[(E − Vb) cos 2θ + 	]2

(E − Vb + 	 cos 2θ )2

+ k2
y ηw2

k2
wηb2

(E cos 2θ + 	)2

(E + 	 cos 2θ )2

)

− 2k2
y

kwkb

[(E − Vb) cos 2θ + 	](E cos 2θ + 	)

(E − Vb + 	 cos 2θ )(E + 	 cos 2θ )

]
, (31)

and

ηw2 = kw

(E2 − 	2)(E + 	 cos 2θ )
, (32a)

ηb2 = kb

[(E − Vb)2 − 	2][(E − Vb) + 	 cos 2θ ]
. (32b)

From Eq. (10) assuming 	 = 0.1Vb for Û = Û2, and the same
values of L and Vb as in Fig. 6, we get the energy spectra
shown in Fig. 17 for different values of θ . Similar to the
case Û = Û1, we observe the presence of a band gap for all
values of θ �= π/4 around E = Vb/2, i.e., E = 3.5EL, and the
minibands tend to reach each other around this energy as θ

increases until the band gap is completely closed for the dice
case, as shown in Fig. 17(d). Like the gapless case, all energy
states when θ = π/4 are allowed regardless of the ky value,
which results in a prominent peak in the density of states
depicted in Fig. 18. This result can be expected when we
assume the condition Wb = Ww = W , E = Vb/2, and θ = π/4
in the dispersion relation for this case. Under these conditions,
the dispersion relation for the dice lattice reduces to the same
one for the gapless case represented in Eq. (25).
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FIG. 18. Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve), and θ =
π/4 (magenta dotted curve) for the same parameters as in Fig. 17.

Moreover, comparing the band-gap width observed in
Fig. 17 to the one in Fig. 11, the band gap is reduced and
shifted up, as observed in Fig. 18.

Similar to the previous gapped case, if we consider a larger
value of the mass term 	 = 0.4Vb, the band gap is increased
and other allowed states appear inside them when intermedi-
ate values of θ are considered, as shown in Fig. 19. However,
the allowed state for arbitrary values of ky at E = Vb/2 for
the dice lattice is preserved, and a peak in the density of
states is observed for θ = π/4, as shown in Fig. 20, since this
condition is independent of the value of the effective mass.

FIG. 19. Electronic band structures at KxL = 0 for (a) θ = 0
(graphenelike case), (b) θ = π/12, (c) θ = π/6, (d) θ = π/4 (dice
lattice) with Vb = 7EL , Ww = Wb = L/2, 	 = 0.4Vb when Û = Û2,
where L = 1200, and EL = h̄vF /L in all cases.

FIG. 20. Density of states for θ = 0 (black solid curve), θ =
π/12 (blue dashed curve), θ = π/6 (red dash-dotted curve), and θ =
π/4 (magenta dotted curve) for the same parameters as in Fig. 19.

The spectrum obtained from Eqs. (18) and (31) considering
equal barrier and well widths, L/a0 = 1200, Vb = 21EL, and
	 = 0.4Vb for θ = 0 and θ = π/4, is shown in Fig. 21. Sim-
ilar to a previous gapped case, for θ = 0 the upper and lower
minibands touch each other in two points, and at kyL = 0 there
is a gap. However, as discussed above, the energy where the
touching points are localized is no longer at E = Vb/2. On the
other hand, for the dice lattice the spectrum is completely flat
at kyL = 0 and E = Vb/2, similar to Fig. 8.

In Fig. 22 we show the superlattice spectrum considering
KxL = 0 along the kyL direction for some values of θ . Notice
that the energy where the touching points are localized de-
pends on θ . Moreover, like the gapless case, as θ → π/4 the
dispersion becomes flat and shifted to lower values of energy.

VI. CONCLUSIONS

We investigated the energy spectrum and the density of
states (DOS) of α-T3 lattices for different values of interlattice
hopping parameter θ = tan−1 α in the presence of a 1D su-
perlattice. We consider both the case of equivalence between
the three sublattices, and how the band gap is affected by
small deviations of this equivalence in the limit 	 � t by

14
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FIG. 21. Valence and conduction bands of the spectrum of a
superlattice considering θ = 0 (graphenelike), and θ = π/4 (dice)
with Vb = 21EL , Ww = Wb = L/2, Û = Û2, and 	 = 0.4Vb, where
L/a0 = 1200, and EL = h̄vF /L.
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FIG. 22. Electronic band structures at KxL = 0 for θ = 0 (black
solid curve), θ = π/6 (red dashed curve), and θ = π/4 (blue dot-
dashed curve) with Vb = 21EL , Ww = Wb = L/2, 	 = 0.4Vb, where
L/a0 = 1200, and EL = h̄vF /L.

considering two cases of symmetry-breaking terms denoted
by Û1 and Û2.

For the pristine system, when no symmetry-breaking term
is present, we found the condition for the appearance of Dirac
points that depends on the cosine function of the parameter θ ,
indicating that the energy level where they are located remains
the same for all cases when cos(2θ ) �= 1. When θ = π/4, all
energies are allowed for arbitrary ky. Moreover, the minibands
for intermediate values of θ tend to close around the energy
level where Dirac points are localized. In addition, when we
considered higher values of the potential, we observed extra
Dirac points localized on the right and on the left of the main
one positioned at ky = 0 for all values of θ �= π/4.

When we introduce symmetry-breaking terms into the
system, we observed the appearance of a band gap, whose
creation depends on the deviation of the equivalence be-
tween the three sublattices. When we considered the case

Û1 = diag(1,−1, 1), a band gap appears at energy E = Vb/2.
However for the dice case, around this energy, there is no
longer a band gap, and the minibands touch at two points. This
result can be observed both in the energy spectra and in their
corresponding DOS.

In addition, the minibands for larger values of the mass
term were shifted up, which is a consequence of the fact
that the sites A and C remain equivalent, leading to twofold
degeneracy of the energy spectra, as in the case when there is
no periodic potential present. Moreover, for larger values of
the potential, the main Dirac point for all θ values is no longer
present; only the extra ones appear and are localized at the
energy E = Vb/2.

When Û2 = diag(1, 0,−1), the dispersion relation, and
consequently the energy spectrum, is strongly altered. For the
dice case, we found that the condition for the allowance of the
energy states at E = Vb/2 is always satisfied regardless of ky,
similar to the gapless case. However, a band gap is still present
but is now localized at another energy. In addition, we noticed
that the band gap is smaller than the one observed when Û1.
Moreover, for larger values of the effective mass, new energy
states were observed inside the band gap as confirmed from
the density of states. In addition, for higher values of the
potential considering θ �= π/4 only the extra Dirac points
are observed, as for the previous gapped case, but now the
energy value where they are localized depends on the hopping
parameter.

The theoretical formalism and results obtained in this work
are useful for a better understanding of the band-gap behavior
of α-T3 lattices, and consequently they demonstrate that these
materials are versatile for purposes of band-gap engineering
in 2D materials, since the band gap is tunable by changing the
interlattice hopping parameter and the symmetry.
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