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Electric field induced injection and shift currents in zigzag graphene nanoribbons
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We theoretically investigate the one-color injection currents and shift currents in zigzag graphene nanoribbons
by applying a static electric field across the ribbon, which breaks the inversion symmetry to generate nonzero
second-order optical responses by dipole interaction. These two types of currents can be separately excited by
specific light polarization, circularly polarized lights for injection currents and linearly polarized lights for shift
currents. Based on a tight binding model formed by carbon 2pz orbitals, we numerically calculate the spectra of
injection coefficients and shift conductivities, as well as their dependence on the static field strength and ribbon
width. The spectra show many peaks associated with the optical transition between different subbands, and the
positions and amplitudes of these peaks can be effectively controlled by the static electric field. By constructing
a simple two band model, the static electric fields are found to modify the edge states in a nonperturbative
way, and their associated optical transitions dominate the current generation at low photon energies. For typical
parameters, such as a static field 106 V/m and light intensity 0.1 GW/cm2, the magnitude of the injection and
shift currents for a ribbon with width of 5 nm can be as large as the order of 1 μA. Our results provide a physical
basis for realizing passive optoelectronic devices based on graphene nanoribbons.
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I. INTRODUCTION

Graphene nanoribbon (GNR) is a narrow stripe of mono-
layer graphene with width varying from a few nanometers to
less than 50 nanometers, at which it shows exciting physical
properties in addition to graphene due to the quantum confine-
ment [1]. Combining its compatibility with industry-standard
lithographic processing [2,3] and the increasingly mature
fabrication procedure [4], GNR is considered as a potential
material for applications in nanoelectronics and optoelectron-
ics. Many efforts have been devoted to understanding its band
structures, transport properties, magnetism, chirality, optical
properties, and so on [5–8].

The widely studied GNRs include armchair GNRs (aG-
NRs) with edges orientated along the armchair directions and
zigzag GNRs (zGNRs) with edges orientated along the zigzag
directions. The band structures of GNRs have been calculated
by different models, such as first-principle calculations [1],
a continuum model based on a k · p Hamiltonian [9], and a
tight-binding model [10]. The simplest tight-binding model
shows that zGNR is always metallic with flat bands induced
by edge states, and aGNR can be either semiconducting or
metallic depending on its width [10]. After considering the
Coulomb interaction, density functional theory (DFT) cal-
culations show that all narrow GNRs have finite gaps, and
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zGNRs possess antiferromagnetic ground states [11]. The
band gap has a strong dependence on the edge orientation
and ribbon width. In such a tight-binding model, both the
eigenstates and selection rules of the optical transition can be
analytically obtained, and many absorption peaks are induced
by the optical transitions between different subbands [12,13].
The linear optical response shows strong anisotropy along
zigzag and armchair directions. With applying an external
static electric field across the ribbon, the gap can be effectively
tuned and becomes closed at an appropriate field strength;
furthermore the optical properties are effectively modulated
[14,15]. Because of the insufficient Coulomb screening, the
excitonic effects are important for narrow ribbons [16–19].

In addition to linear optical responses, the nonlinear optical
properties of GNR also attracted much attention. By tuning
the doping level electrically, Cox et al. studied the plasmon-
assisted harmonic generation, sum and difference frequency
generation, and four-wave mixing of graphene nanostructures
[20,21], and these calculated responses can be several orders
of magnitude larger than that of metal nanoparticles with sim-
ilar sizes. Karimi et al. [22] investigated the Kerr nonlinearity
and third harmonic generation of GNR modulated by scatter-
ings. Attaccalite et al. [23] showed the importance of excitonic
effects in the third harmonic generation. Wang and Andersen
studied the third harmonic generation of aGNR in the Ter-
ahertz frequencies [24–26]. Salazar et al. [27] studied two
color coherent control of zGNR, and found that the edge states
play an important role for low photon energies. Recently, Wu
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FIG. 1. Illustration of an N-zGNR. Red and gray dots correspond
to carbon atoms at the A and B sites, respectively. The unit cell of the
ribbon is indicated by the parallelogram. An external static electric
field Ed is applied across the ribbon.

et al. indicated the importance of the edge states in high-order
harmonic generation of zGNR [28]. Bonabi and Pedersen [29]
studied the electric field induced second harmonic generation
of aGNR.

In this paper, we theoretically study the one-color optical
injection current and shift current of zGNR, which are direct
currents generated by light with only one single frequency;
they are also widely referred to as circularly photogalvanic
effects and linear photogalvanic effects. These effects are re-
cently well studied in layered materials including BiFeO3 [30]
and monolayer Ge and Sn monochalcogenides [31]. Because
zGNR possesses the inversion symmetry, its second-order op-
tical responses are forbidden in the dipole approximation. An
external static electric field, which will be referred to as a gate
field afterwards, is applied to break the inversion symmetry.
We discuss the dependence of the response coefficients on the
gate-field strength and the ribbon width. Our results could be
useful for the optoelectronic devices utilizing the photogal-
vanic effects of GNR.

We arrange the paper as follows. In Sec. II we introduce a
tight-binding model of zGNR with applying a static electric
field, and give the expressions for injection coefficients and
shift conductivities. In Sec. III we discuss the contributions
from the edge bands by a simple nonperturbative treatment.
In Sec. IV we discuss the effect of the ribbon width on these
coefficients. We conclude in Sec. V.

II. MODELS

A. Tight-binding model for electronic states

A zGNR with N zigzag lines (N-zGNR) is illustrated in
Fig. 1. Taking the x axis along the zigzag direction and
the y axis along the perpendicular armchair direction with
origin in the center of the ribbon, the carbon atoms locate
at Rnmα = na1 + (m − 1)a2 + τα − ŷW/2, where a1 = a0x̂ is
the primitive lattice vector with the lattice constant a0 = 2.46
Å, a2 = a0(x̂ + √

3ŷ)/2 and m = 1, 2, . . . , N labelling zigzag
lines, and τα with α = A, B gives different atom sites as

τA = 0 and τB = (a1 + a2)/3. The width of a N-zGNR is
W = (N − 2/3)

√
3a0/2 by taking as the distance between the

outermost A and B atom lines. We describe the electronic
states in a tight-binding model formed by carbon 2pz orbitals
by considering the nearest-neighbor coupling only. When a
gate field Ed is applied along the y direction, it leads to an
electrostatic potential −Ed y, then the unperturbed Hamilto-
nian can be written as

Ĥ0 = Ĥh − eEd ŷ, (1)

with the electron charge e = −|e|. The first term Ĥh is a
hopping term with matrix elements

t 〈n1m1A|Ĥh|n2m2B〉t = t 〈n1m1A|Ĥh|n2m2B〉t
∗

= −γ0(δn1,n2δm1,m2 + δn1,n2δm1,m2+1

+ δn1+1,n2δm1,m2 ), (2)

t 〈n1m1α|Ĥh|n2m2α〉t = 0, (3)

where γ0 = 2.7 eV is a hopping parameter between nearest
neighbors [32,33], and it is consistent with recent DFT calcu-
lations [34]. The ket |nmα〉t stands for the electronic state of
the 2pz orbital of the carbon atom located at Rnmα , where the
orbitals in real space can be written in the form 〈r|nmα〉t =
φ(r − Rnmα ). The second term is the electrostatic potential, ŷ
is the y component of the position operator r̂. In this model, the
in-plane position operator has nonzero matrix elements only
at the same site as

t 〈n1m1α1|r̂|n2m2α2〉t = Rn1m1α1δn1n2δm1m2δα1α2 . (4)

Here the field Ed should be treated as the total field that the
electrons experience. Due to the dielectric screening, this field
strength is different from the external applied dc field strength.
For a wide ribbon, the total field is mostly uniform across
the ribbon, and differs with the external applied static field
by a factor. The dielectric screening can be treated with the
inclusion of carrier-carrier interaction, which is beyond the
focus of this work.

The basis Bloch states can be constructed as periodic Bloch
states or the canonical Bloch states [35]. A different choice of
the basis Bloch states does not affect the band eigenstates. In
a periodic Bloch states basis formed by

|mα, k〉b =
√

a0

2π

∑
n

eina0k|nmα〉t , for 0 � k < g, (5)

with g = 2π/a0 being the width of the Brillouin zone, the
matrix elements of the Hamiltonian Ĥ0, position operator r̂,
and velocity operator v̂ = [r̂, Ĥ0]/(ih̄) become

b〈m1α1, k1|Ĥ0|m2α2, k2〉b = H̃0
m1α1,m2α2;kδ(k1 − k2), (6)

b〈m1α1, k1|r̂|m2α2, k2〉b =
[

r̃m1α1,m2α2;k1 + ix̂δm1,m2δα1,α2

∂

∂k1

]

× δ(k1 − k2), (7)

b〈m1α1, k1|v̂|m2α2, k2〉b = ṽm1α1,m2α2;kδ(k1 − k2). (8)

The quantities P̃m1α1,m2α2;k = ∑
n eina0k

t 〈nm1α1|P̂|0m2α2〉t for
P = H0, r, and v are the Fourier transform of their matrix
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elements in the tight-binding orbitals, and their matrix ele-
ments are

H̃0
m1A,m2B;k ≡ [H̃0

m2B,m1A;k]∗ = γ0(1 + eika0 )δm1m2 + γ0δm1+1,m2 ,

(9)

H̃0
m1α,m2α;k = −eEd r̃y

m1α,m2α;k, (10)

and

r̃m1α1,m2α2;k = δm1m2δα1α2 R0m1α1 , (11)

ṽm1α1,m2α2;k = 1

ih̄
[r̃k, H̃0

k ]m1α1,m2α2 + x̂
1

h̄

∂

∂k
H̃0

m1α1,m2α2;k . (12)

In the last equation r̃k and H̃0
k are treated as matrices with

indexes mα. The gate field modifies the on-site energy of each
atom.

The band eigenstates |sk〉 with band index s can be written
as

|sk〉 =
∑
mα

[Csk]mα|mα, k〉b, (13)

where the coefficients Csk are column eigenvectors satisfying

H̃0
k Csk = εskCsk, (14)

with the corresponding eigenenergy εsk .
For the optical response, the most important quantity is

the Berry connection ξs1s2k between band eigenstates, which
is defined as 〈s1k1|r̂|s2k2〉 = δ(k1 − k2)ξs1s2k with

ξs1s2k = C†
s1k

(
r̃k + ix̂

∂

∂k

)
Cs2k . (15)

The term ξ
y
s1s2k can be evaluated directly. However, due to the

derivative with respect to k, the values of ξ x
s1s2k depend on the

phase of the eigenvectors Csk and are not easy to be evaluated
directly. Usually the off-diagonal terms can be evaluated from
the matrix elements of velocity operator

vs1s2k = C†
s1k ṽkCs2k . (16)

The usually used quantities are rk, which are defined as

ry
s1s2k = ξ

y
s1s2k, for all s1, s2, (17)

rx
s1s2k ≡

{
ξ x

s1s2k = vx
s1s2k

iωs1s2k
for s1 �= s2,

0 for s1 = s2,
(18)

with h̄ωs1s2k = εs1k − εs2k . The digonal term of ξ x
ssk appears in

the terms

Rcx
s1s2k = ∂

∂k
rc

s1s2k − i
(
ξ x

s1s1k − ξ x
s2s2k

)
rc

s1s2k, for s1 �= s2, (19)

with the c in the superscript standing for the Cartesian direc-
tions x or y. A direct calculation gives

Rcx
s1s2k = −�x

s1s2krc
s1s2k

ωs1s2k
+

i
[
rx

k , v
c
k

]
s1s2

+ Mcx
s1s2k

iωs1s2k
, (20)

with �b
s1s2k = vb

s1s1k − vb
s2s2k and

Mcx
s1s2k = C†

s1k

(
∂

∂k
ṽc

k − i
[
r̃x

k , ṽ
c
k

])
Cs2k . (21)

For zGNR, Ryx
s1s2k = i[rx

k , ry
k ]s1s2 .

B. Injection currents and shift currents

In this work, we are interested in the shift current and
one-color injection current, both of which arise from the
second-order optical response. For an incident electric field
E(t ) = E0(t )e−iωt + c.c. with the slow varying envelope
function E0(t ), the response current includes a (quasi) dc
current component J0(t ) = J0(t )x̂, which is along the ribbon
extension direction only because a dc current cannot flow
along the confined dimension. This current approximately
includes two parts J0(t ) = Ji(t ) + Js(t ). The first term Ji(t ) is
a one-color injection current, and it is

d

dt
Ji(t ) = 2iηxbc(ω)Eb

0 (t )
[
Ec

0 (t )
]∗

, (22)

and the effective sheet injection rate is ηxbc(ω) =∑
s1s2

ηxbc
s1s2

(ω) with

ηxbc
s1s2

(ω) = − iπe3

W h̄2

∫
dk

2π
�x

s1s2k

(
rc

s2s1krb
s1s2k − rb

s2s1krc
s1s2k

)
× fs2s1kδ(ωs1s2k − ω). (23)

Here fs2s1k = fs2k − fs1k gives the population difference in two
states |s2k〉 and |s1k〉, and fsk = [1 − e(εsk−μ)/kBT ]−1 is Fermi-
Dirac distribution for chemical potential μ and temperature
T . The spin degeneracy was included in Eq. (23). The second
term Js(t ) is a shift current, and it is

Js(t ) = 2σ xbc(ω)Eb
0 (t )

[
Ec

0 (t )
]∗

, (24)

where the effective sheet shift conductivity is σ xbc(ω) =∑
s1s2

σ xbc
s1s2

(ω) with

σ xbc
s1s2

(ω) = − iπe3

W h̄2

∫
dk

2π
fs2s1k

(
rb

s1s2kRcx
s2s1k + rc

s1s2kRbx
s2s1k

)
× δ(ωs1s2k − ω). (25)

Note that the expressions in Eqs. (23) and (25) are derived
following the work by Sipe and Shkrebtii [36], and they are
gauge independent with respect to the phases of band eigen-
states.

Here we briefly discuss the general properties of ηxbc(ω)
and σ xbc(ω) from the symmetry argument. The response
coefficients of ηxbc(ω) and σ xbc(ω) are third-order tensors.
As a static electric field is applied along the y direction, a
zGNR possesses a symmetry x ↔ −x and the time reversal
symmetry. We list the results for Axbc (A → η or σs) under
each symmetry operation:. (1) The symmetry x ↔ −x de-
termines that the nonzero components are Axxy and Axyx. (2)
A direct observation of Eqs. (23) and (25) gives ηxbc(ω) =
−ηxcb(ω) and σ xbc

s (ω) = σ xcb
s (ω). (3) The time reversal

symmetry [36] gives rs1s2k = rs2s1(−k) = [rs1s2(−k)]∗, vs1s2k =
−vs2s1(−k) = −[vs1s2(−k)]∗, and εsk = εs(−k). Furthermore, we
can derive �a

s1s2k = −[�a
s1s2(−k)]

∗ and Rcx
s1s2k = −Rcx

s2s1(−k) =
−[Rcx

s1s2(−k)]
∗. Then we get ηxbc(ω) = [ηxbc(ω)]∗ from

Eq. (23) and σ xbc(ω) = [σ xbc(ω)]∗ from Eq. (25). Using
the operations (1) to (3) we find the nonzero components
ηxxy(ω) = −ηxyx(ω) and σ

xxy
s (ω) = σ

xyx
s (ω) are real numbers.
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FIG. 2. (a), (b) Band structures of 24-zGNR for gate field Ed = 0, 108 V/m, 3 × 108 V/m, and 5 × 108 V/m. At zero field, the dashed
and solid curves correspond to different parity. The matrix elements of (c) r0;c

s1s2k and (d) R0;cx
s1s2k at zero gate field, with solid (dashed) curves for

imaginary (real) parts.

More specifically, by taking the light fields as E0(t ) =
E0(t )( cos θ

eiφ sin θ
), the injection and shift currents can be written

as

d

dt
Ji(t ) = 4ηxxy(ω)[E0(t )]2 cos θ sin θ sin φ, (26)

Js(t ) = 4σ xxy(ω)[E0(t )]2 cos θ sin θ cos φ. (27)

Here θ and φ are the polarization orientation angles with
respect to the direction x̂ and the circularity, respectively.
Therefore, the appearance of these currents requires both the x
and y components of the electric field. The circularly polarized
light (φ = π/2) generates injection currents only, while the
linearly polarized light (φ = 0) generates shift currents only.

III. RESULT AND DISCUSSIONS

A. Band structure

We illustrate the band structures of a 24-zGNR (W ≈ 5
nm) for different gate field Ed in Figs. 2(a) and 2(b). The bands

with energies higher than zero are labeled by s = +1,+2, . . .

successively from low-energy band to high-energy band,
and those with energy lower than zero are labeled by s =
−1,−2, . . . in a mirror way. From the symmetry x → −x,
the band energies satisfy εsk = εs(g−k) and εsk = −ε(−s)k , and
thus they are shown only in half of the Brillouin zone. The
band structure at zero gate field is plotted in Fig. 2(a) as black
solid and dashed curves. The two bands s = ±1 are almost
flat in the middle of the Brilluion zone, indicating the edge
states. The energy difference ε(+1)k − ε(−1)k decreases as k
approaches g/2 and becomes less than 1 meV for 0.38g <

k < 0.62g. At k = g/2, the two states are strictly degenerate.
All other electronic states are confined states. At k = g/2,
all the states |sg/2〉 for s > 1 are degenerate at energy γ0,
and all states |sg/2〉 for s < −1 are degenerate at energy
−γ0. At zero gate field, the inversion symmetry is preserved,
and the parity is a good quantum number for each band as
ζs = (−1)s+1sgn[s] [13,27], which is shown in the dashed
and solid curves in Fig. 2(a). There exist selection rules for
the velocity matrix elements as vx

s1s2k = 0 for ζs1 �= ζs2 and
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v
y
s1s2k = 0 for ζs1 = ζs2 , and the same selection rules hold

for ξs1s2k . Therefore, the nonzero ξ
y
s1s2k between bands with

different parities indicates that the gate field can couple bands
with different parities and then the band parity is no longer a
good quantum number.

Figure 2(c) gives the k dependence of r0;c
s1s2k for different

sets of cs1s2, where a quantity at zero gate field is indicated
by a superscript “0.” With choosing the wave functions ap-
propriately [37] r0;x

s1s2k can be set as pure imaginary numbers

and r0;y
s1s2k as real numbers. For r0;y

(−1)(+1)k , it is close to a value
W/2 = 2.5 nm for edge states and decreases for confined
states (k < 0.34g) as k decreases to 0. Figure 2(d) gives the k
dependence of R0;cx

s1s2k for the same sets of cs1s2, which locates

at around k ∼ 0.33g. We also compared the values ∂kr0;c
s1s2k and

R0;cx
s1s2k , and they show negligible difference, which indicates

all ξ 0;x
ssk can be taken as zero, as used in the Appendix.

The band structure at a gate field Ed = 108 V/m is also
plotted in Fig. 2(a). Such a gate field mostly affects the bands
s = ±1. It opens the degenerate point at k = g/2 to an energy
difference |e|E0W ∼ 0.5 eV, and separates the two nearly
degenerate flat bands with energies around ±0.25 eV. The gap
of these two bands is about ∼0.3 eV located at k ∼ 0.34g. The
band structures at stronger gate field Ed = 3 × 108 V/m and
5 × 108 V/m are shown in Fig. 2(b). In both cases, the gate
fields can significantly affect more bands including s = ±2
and s = ±3. When the field strength Ed is large enough,
the gap can be closed again, and all bands are significantly
modified. In this work, we limit the gate field Ed < 108 V/m
to ensure the reasonableness of our tight-binding model.

To better understand the effects of a weak gate field on
the edge states, we present a simple two-band model. The
sub-Hilbert space is formed by {|(+1)k〉0, |(−1)k〉0}. The
Hamiltonian in this subspace is

H edge
k =

(
εk dk

dk −εk

)
, (28)

where εk = ε0
(+1)k is the energy of band “+1” at zero gate

field, and dk = |e|Ed r0;y
(+1)(−1)k is the coupling strength, which

can be chosen as a real positive number. We used ξ
0;y
ssk = 0 to

obtain Eq. (28). From Fig. 2(c) the matrix element of r0;y
(+1)(−1)k

is around W/2 for the edge states k ∼ g/2, but decreases as k
moves to 0. The Hamiltonian in Eq. (28) has the eigenstates

|sk〉 = 1√
2

[s
√

1 + sNk|(+1)k〉0 +
√

1 − sNk|(−1)k〉0],

for s = ±1, (29)

and the eigenenergies

εsk = s
√

ε2
k + d2

k , (30)

with Nk = εk/ε(+1)k . For edge states at k = g/2, εk = 0, and
εsk = s|e|EdW/2; as k moves towards 0, εk increases slowly
till k < g/3 but dk decreases quickly, which gives a dip in
the spectra of ε+k around k ∼ g/3; when k moves further, the
bands s = ±1 are no longer nearly degenerate, and the effect
of the gate field can be treated as a perturbation.

The effects of the gate field on higher bands are basically
perturbative, thus, to focus on the influence of the edge states,
we calculate the Berry connections of the electronic states
{|sk〉, |lk〉0; s = ±1, l �= ±1} as

ξslk = 1√
2

[
s
√

1 + sNkξ
0
(+1)lk +

√
1 − sNkξ

0
(−1)lk

]
, (31)

ξ(+1)(−1)k = 1

2

i∂kNk√
1 − N2

k

x̂ + Nkξ
0;y
(+1)(−1)k ŷ. (32)

A detailed derivation is given in the Appendix.

B. Injection coefficients of 24-zGNR

We turn to the numerical evaluation of the injection co-
efficients in Eq. (23) and the shift conductivity in Eq. (25).
During the numerical evaluation, the Brillouin zone is divided
into a 3100 grid, the δ function is approximated by a Gaussian
function

δ(h̄ωs1s2k − h̄ω) → 1√
π�

e−(h̄ωs1s2k−h̄ω)2/�2
, (33)

with a broadening width � = 2 meV, and the temperature is
chosen at room temperature. The functions δ(h̄ωss′k − h̄ω) are
associated with the joint density of states, which gives the
weight to the optical transition from the s′ band to the s band.
It can be evaluated exactly as

δ(h̄ωss′k − h̄ω) =
∑

j

1

h̄|�ss′k|δ(k − k j ), (34)

with k j satisfying ωss′k j = ω.
In Fig. 3(a) the energy differences h̄ωss′k are plotted with

respect to k for different band pairs (s, s′) with the condi-
tion that | fsk − fs′k| ∼ 1. The energy differences h̄ωs(−1)k and
h̄ωs(−2)k show valleys around k ∼ g/3 for all s > 1, while
h̄ωs(+1)k shows valleys only for bands with s � 6. These
valleys determine the transition edge between these bands
and lead to divergent joint density of states from Eq. (34).
However, there is no such point for h̄ω(+1)(−1)k at zero gate
field. For the nonzero gate field, h̄ω(+1)(−1)k shows a valley
at around a similar k value ∼g/3, as discussed above. In
Fig. 3(b), the gaps between these band pairs are plotted as
functions of the gate field, and the color bar shows the k values
of the gap. The gate field modifies the gap between the bands
(±1) significantly.

Figure 4 gives the spectra of injection coefficients of a 24-
zGNR at different Ed . In general, the effects of a small Ed can
be treated perturbatively and the injection coefficients can be
connected with a third-order sheet response coefficients as

ηxbc
s1s2

(ω) = η̃xbcy
s1s2

(ω)Ed . (35)
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FIG. 3. (a) The energy difference εsk − εs′ for different (s, s′) pairs at zero gate field. (b) The gate-field dependence of the energy gaps
Eg;ss′ between different bands (s, s′). The line color indicates the k values of these gaps. The black dotted line gives the energy difference
ε(1)g/2 − ε(−1)g/2.

Figure 4(a) plots the spectra of η̃xbcy(ω) for Ed =
102, 104, 106, and 107 V/m. When the photon energy is higher
than the gap, the injection occurs. As the photon energy in-
creases, the injection coefficient increases rapidly to the first
peak, and afterwards it shows more peaks and the magnitude
of each peak decreases with the photon energy. The first five
peaks are located at around h̄ω ∼ 0.04, 0.53, 0.85, 1.16, and
1.45 eV; they slightly depend on the broadening parameter
� because the Dirac function is approximated by a Gaussian
function. When the photon energy is higher than 2.5 eV, the
injection coefficients are about zero. As the field Ed increases
from 102 V/m to 107 V/m, the value of η̃xbxy(ω) changes little
for the photon energies in certain windows (h̄ω ∈ [0.2, 0.4]
eV and a small energy range around 0.5 eV). Such an en-
ergy window is enlarged to [0.1,0.6] eV if the gate field Ed

is between 102 V/m and 106 V/m. The existence of these
windows identifies the photon energies that the pertrubative
treatment in Eq. (35) is appropriate. However, for photon
energies h̄ω > 1 eV, although the injection coefficients are
small, they differ significantly even for Ed = 102 V/m and
104 V/m, indicating a nonperturbative feature of zGNR under
electric fields.

The peaks are mostly induced by the optical transi-
tions associated with the edge bands s = ±1, as shown
in Fig. 4(b), where the spectra of η̃

xxyy
(+1)(−1)(ω) and η̃l =

η̃
xxyy
l (+1) + η̃

xxyy
l (−1) + η̃

xxyy
(+1)(−l ) + η̃

xxyy
(+1)(−l ) are plotted for Ed = 104

V/m. The electron-hole symmetry ensures η̃
xxyy
s1s2 = η̃

xxyy
−s2−s1

for an undoped ribbon. To better understand these nonper-
turbative features, from Eq. (23), we write the injection
coefficient as

η̃xxyy
s1s2

(ω) = e3

EdW h̄2

∑
j

sgn(�x
s1s2k j

) Im
[
ry

s2s1k j
rx

s1s2k j

]
fs2s1k j ,

(36)

where k j are solutions of ωs1s2k j − ω = 0 and sgn(x) is a sign
function. Equation (36) shows that the joint density of states
are canceled out with the carrier velocity. For the contribution
from the transitions between the sth edge band and other
bands l �= ±1, the coefficients can be obtained using the re-

sults in the Appendix as

η̃
xxyy
ls (ω) = e3

EdW h̄2

s

2

∑
j

√
1 − N2

k j
Im

[
ξ 0;x

s′lk j
ξ

0;y
(−s′ )lk j

]
(− fsk j ).

(37)

As an example, the spectra of η̃(+3)(+1) and η̃(+3)(−1) are
shown in Fig. 4(b). Their values are nearly opposite, thus their
sum is much smaller, which indicates an interesting cancella-
tion between the transitions. Because of the nearly degenerate
edge bands, the dependence on Ed of the injection coefficients
is complicated.

For higher gate fields, the band structures are dramatically
changed, and the understanding of the current injection cannot
be based on the quantities of ungated ribbons. The contri-
bution from η̃s(+1) becomes negligible because there is less
occupation on the band s = 1. Figures 4(c) and 4(d) give the
spectra of ηxxy(ω) at Ed = 107, 5 × 107, and 108 V/m. For
low photon energy, the injection occurs between the bands
s = −1 and s = 1. As the electric field increases from 107 to
108 V/m, the injection coefficients remain almost unchanged,
instead, the peak position changes significantly, indicating the
changes of the band structure. Similar to the cases at small
gate fields, the injection coefficients decrease with the photon
energy quickly.

We give an estimation on how large the injection current
can be at a gate field 106 V/m. The injection current usually
depends on both the carrier relaxation time and laser pulse
duration � [38]. Considering that the carrier relaxation time
strongly depends on the sample quantity and its surrounding
environment, the injection current is estimated just from laser
pulse duration as J ∼ dJ

dt � = 2η̃xxyyEd |E0|2�. At the photon
energy 0.55 eV around the second peak, our calculated current
injection rate is about 0.1 m2V−2s−1, it corresponds to the
bulk current injection rate ∼2 × 1010μAs−1V−2 considering
the 0.3-nm thickness of zGNR, which is nearly 25 times larger
than that in bulk GaAs [39]. In this case, a laser pulse with
intensity 0.1 GW/cm2 and duration 1 ps can generate an
injection current ∼1.1 μA.
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FIG. 4. (a) Spectra of injection coefficient η̃xxyy(ω) for a 24-zGNR for gates fields Ed = 102, 104, 106, and 107 V/m at room temperature;
the curves at the right of the vertical dashed line are scaled by ten times. (b) The spectra of η̃

xxyy
(+1)(−1) and η̃

xxyy
l for l = 2, 3, . . . , 8 for Ed = 102

V/m. Two specific labels mark the separated contribution of transition from band ±1 to the band l = 3. (c) The injection coefficient ηxxy

of zGNR under large electric field Ed = 107, 5 × 107, and 108 V/m at room temperature. (d) The spectra of η̃
xxy
l for l = 2, 3, . . . , 8 for

Ed = 5 × 107 V/m.

C. Shift conductivity of 24-zGNR

Figure 5(a) gives spectra of σ xxy(ω) as well as the con-
tributions from different optical transitions for a gate field
Ed = 104 V/m. The spectra show the following features. (1)
The values of the shift conductivity decrease quickly with
the photon energy for h̄ω < 0.5 eV, and drop suddenly at
h̄ω ∼ 0.55 eV to a very sharp valley, which is induced by the
divergent joint density of states between the bands ±1 and
±2. (2) With increasing the photon energy, the conductivity
shows positive peaks and negative valleys alternatively. The
first four valleys are located at 0.97, 1.33, 1.74, and 2.19 eV,
and the first four peaks are located at 1.15, 1.53, 1.97, and
2.41 eV; other peaks and valleys have much smaller ampli-

tudes. (3) The peaks and valleys have different widths, and
the widths for the third peak and the fourth valley are very
narrow. These peaks and valleys can be better understood
from transition-resolved conductivities, which are also plotted
in Fig. 5(a) for σ

xxy
(+1)(−1)(ω), σ xxy

(+3)(±1)(ω), as well as σ
xxy
l (ω) =∑

± σ
xxy
(+l )(±1)(ω) + σ

xxy
(±1)(−l )(ω) for l = 2, 3, 4, 5. Similar to

the injection processes, σ
xxy
(+s)(+s′ )(ω) = σ

xxy
(−s′ )(−s)(ω) holds for

an undoped ribbon. However, different from the injection
process, the values of σ

xxy
(+s)(±1) and σ

xxy
(±1)(−s) have similar am-

plitudes and the same signs but are located at different photon
energies, and their total contribution leads to a wider peak or
valley compared to those in the injection coefficients shown in
Fig. 4(b). The transition σ

xxy
2 is composed of two valleys: one
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FIG. 5. Spectra of shift conductivity σ xxy(ω) for an undoped 24-zGNR at different gate fields. (a) Transition-resolved contribution of
σ xxy(ω) at Ed = 104 V/m. The shadowed region gives the total conductivity. The plotted contribution from different band pairs are σ

xxy
(+1)(−1)(ω),

σ
xxy
(+3)(±1)(ω), as well as σ

xxy
l (ω) = ∑

± σ
xxy
(+l )(±1)(ω) + σ

xxy
(±1)(−l )(ω) for l = 2, 3, 4, 5. (b) Spectra of σ xxy(ω) at Ed = 102, 103, 104, 105, and 106

V/m at room temperature. (c) Spectra of σ xxy(ω) at gate fields up to 108 V/m.

is at lower photon energy, which is induced by the divergent
joint density of states at 0.56 eV, and the other is at higher
photon energy around 1 eV.

In Fig. 5(b) the shift conductivities for Ed = 102, 103,
105, and 106 V/m are plotted for a comparison. Similar to
the injection processes, the shift conductivities for photon
energies lower than 0.6 eV are mostly contributions from
the transition between two edge bands, and they are linearly
proportional to the gate field. As the gate field Ed increases
from 102 V/m to 106 V/m, the location of the first valley
does not change because of the negligible band-gap shift, but
the peak value increases linearly from 2.5 × 10−12 m2/V2 to
2.5 × 10−8 m2/V2. For photon energies higher than 0.6 eV,
the near-degenerate edge states on the flat bands play an
important role and the effects of gate field lie in the non-
perturbative regime, and the values for the shift conductivity
are almost at the same order of magnitude. In addition, the
locations of peaks and valleys shift to lower photon ener-
gies as the gate field increases. Figure 5(c) gives the spectra
of the shift conductivity for gate field up to 1 × 108 V/m.
For large Ed , the values around the first two peaks are
much larger; the first peak value shows a maximum around
Ed = 4 × 107 V/m, while the value of the second valley
changes little.

As in the case of injection current, we estimate the magni-
tude of the shift current of zGNR for a gate field 106 V/m.
At the photon energy 0.56 eV around one of the valleys,
the sheet shift conductivity is 1.57 × 10−13 AmV−2. It cor-
responds to the bulk photocurrent conductivity 524 μAV−2,
which is two times larger than that in two-dimensional (2D)
GeSe (200 μAV−2) [31]. A laser intensity 0.1 GW/cm2 can
generate a shift current ∼0.29 μA, a few times smaller than
the injection currents.

IV. WIDTH DEPENDENCE

Figure 6 gives injection coefficients and shift conductivi-
ties for zGNR with different widths W = 5, 10, 15, and 20 nm

(corresponding to N = 24, 48, 72, and 96) at two gate fields
Ed = 104 V/m and 5 × 107 V/m. With the increase of the
ribbon width, there appear more subbands, and the energy
difference of neighbor bands decreases. Therefore, both for
the injection coefficients and for shift conductivities, there
exist more peaks or valleys in the spectra with the increase
of the ribbon width, while their amplitudes change little. A
wider ribbon can generate larger currents.

For very narrow zGNR with a few zigzag lines, the interac-
tion between carriers at both edges plays an important role to
form antiferromagnetic order, for which the spin orientations
are opposite for different edges. The antiferromagnetic ground
states lead to a finite band gap [1], which can be measured by
transport experiment [40,41] and are sensitive to doping [41].
With the increase of the width of zGNR, the ferromagnetic-
antiferromagnetic energy differences per unit cell decreases to
below the order of 1 meV for N > 30 (W > 6.3 nm) [1]. The
discussion of magnetic ground states is required to include
the carrier-carrier interaction, while in this paper we focus
on the illustration of the effects of the gate field; thus the
contribution from the magnetic ground state is neglected, even
for 24-zGNR.

V. CONCLUSION

Based on a simple tight-binding model, we explored the
one-color injection currents and shift currents in zigzag
graphene nanoribbons, where a gate field across the ribbon
is applied to break the inversion symmetry. The gate field lifts
the degeneracy of the edge bands and significantly modifies
their wave functions, which leads to the nonperturbative be-
havior with respect to even very weak gate fields. The spectra
of injection coefficients and shift conductivities show fruitful
structures, including many peaks and valleys, with locations
strongly depending on the ribbon width. These fine structures
indicate the importance of the contributions from different
bands. The injection coefficients are almost positive for differ-
ent photon energies, while the sign of the shift conductivities
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FIG. 6. The spectra of injection coefficients and shift conductivities for different ribbon width W = 5, 10, 15, and 20 nm. (a) η̃xxy(ω) at
Ed = 104 V/m, (b) σ xxy(ω) at Ed = 104 V/m, (c) η̃xxy(ω) at Ed = 5 × 107 V/m, (d) σ xxy(ω) at Ed = 5 × 107 V/m.

is very sensitive on the photon energies. Under excitation by
a pulsed laser with intensity 0.1 GW/cm2, our calculation for
a 5-nm-wide zGNR shows that the injection current reaches
∼1.1 μA for a pulse with duration 1 ps, whereas the shift
current is ∼0.29 μA. Because the injection current and the
shift current can be separately excited using light with dif-
ferent polarization and their magnitudes can be well tuned
by the static electric field strength, these features could be
experimentally observed.
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APPENDIX: BERRY CONNECTIONS OF EDGE STATES

When there is no gate field, the wave functions can be chosen to satisfy

ξ 0;x
(+1)(−1)k = 0, (A1)

ξ
0;y
(+1)(−1)k = ξ

0;y
(−1)(+1)k as real numbers. (A2)
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From Fig. 2 we calculated the results of the left-hand side of

R0;cx
smk − ∂kr0;c

smk = i
(
ξ 0;x

ssk − ξ 0;x
mmk

)
r0;c

smk, for m = ±1,±2, . . . , (A3)

and found that all of them are zero in our numerical resolution. Thus in the following we will adopt ξ 0;x
ssk − ξ 0;x

llk = 0 without
giving an exact derivation. In the new basis of {|sk〉, |lk〉0}, the position matrix elements are

〈sk|r̃k + ix̂∂k|lk〉0 = 1√
2

[
s
√

1 + sNkξ
0
(+1)lk +

√
1 − sNkξ

0
(−1)lk

]
. (A4)

With the inclusion of the gate field, the diagonal Berry connections can be written as

ξ x
ssk =〈sk|r̃x

k + i∂k|sk〉 = i

2

[
(1 + sNk )ξ 0;x

(+1)(+1)k + (1 − sNk )ξ 0;x
(−1)(−1)k

]
, (A5)

then we get

ξ x
(+1)(+1)k − ξ x

(−1)(−1)k = iNk
[
ξ 0;x

(+1)(+1)k − ξ 0;x
(−1)(−1)k

] = 0. (A6)

The off-diagonal Berry connections are

ξ x
(+1)(−1)k = i

2

∂kNk√
1 − N2

k

, (A7)

ξ
y
(+1)(−1)k =Nkξ

0;y
(+1)(−1)k . (A8)

Further we can calculate

Rcx
(+1)(−1)k = ∂kξ

c
(+1)(−1)k, (A9)

Rcx
slk = ∂kξ

c
slk . (A10)
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