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Electromagnetic response of composite Dirac fermions in the half-filled Landau level
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An effective field theory of composite Dirac fermions was proposed by Son [Phys. Rev. X 5, 031027 (2015)]
as a theory of the half-filled Landau level with explicit particle-hole symmetry. We compute the electromagnetic
response of this Son-Dirac theory on the level of the random phase approximation (RPA), where we pay
particular attention to the effect of an additional composite-fermion dipole term that is needed to restore
Galilean invariance. We find that once this dipole correction is taken into account, spurious interband transitions
and collective modes that are present in the response of the unmodified theory either cancel or are strongly
suppressed. We demonstrate that this gives rise to a consistent theory of the half-filled Landau level valid at
all frequencies, at least to leading order in the momentum. In addition, the dipole contribution modifies the
Fermi-liquid response at small frequency and momentum, which is a prediction of the Son-Dirac theory within
the RPA that distinguishes it from a separate description of the half-filled Landau level by Halperin, Lee, and
Read within the RPA.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) in the lowest
Landau level (LLL) is a prototypical example of a strong-
interaction phenomenon, where, due to the quenching of the
kinetic electron energy in a magnetic field, only a single (in-
teraction) scale remains [1]. Despite the absence of a small
parameter, significant progress has been made by describ-
ing FQH states in terms of composite fermions, which are
quasiparticles formed of electrons and an even number of
vortices [2]. The field-theoretical description of composite
fermions is based on a Chern-Simons theory that is obtained
from the Hamiltonian of interacting electrons in a magnetic
field by a formally exact singular gauge transformation, which
attaches a number of flux quanta to each electron [3,4]. The
advantage of this formulation is that standard many-body
approximations—such as a mean-field approximation for the
ground state and a random phase approximation (RPA) for
the fluctuations [5–7]—provide an accurate description of the
FQHE. In particular, in the special case of the half-filled
Landau level, mean-field theory predicts that the Aharonov-
Bohm flux attached to each electron precisely cancels the
external magnetic field [8], and the composite fermions form
a Fermi liquid, a field-theoretical analysis of which including
RPA excitations was first given by Halperin, Lee, and Read
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(HLR) [9]. There is considerable experimental evidence for
the existence of a compressible state of this form [10–12].

In its original formulation, however, HLR theory includes
all electron Landau levels, and must be modified in the LLL
limit to account for an effective-mass renormalization (which
sets the interaction scale) and to ensure Galilean invariance
[7,13,14]. A drawback of this modified HLR description is
that a particle-hole symmetry—which is an exact symmetry in
the LLL that links the response at filling fractions ν and 1 − ν

and constrains the properties of the half-filled Landau level—
is not apparent [15,16]. This could mean that calculations
within HLR theory have to be carefully revisited to establish
consistency with particle-hole symmetry [17,18], but it could
also point to a breakdown of this framework [19–21]. The lat-
ter point was addressed by Son, who proposed an alternative
effective Chern-Simons field theory of the half-filled Landau
level in terms of composite Dirac fermions [22]. The main dif-
ference between the Son-Dirac theory and HLR theory lies in
the nature of low-energy excitations, with the Dirac composite
fermions having an additional Berry phase [23–25]. Possible
discrepancies between the HLR and Son-Dirac theories are
of significant current interest, especially since recent experi-
ments have been able to probe the FQHE while varying the
electron density independently of a large magnetic field and
thus probe the effects of particle-hole symmetry [26].

Even though the Son-Dirac theory is formulated in terms
of composite Dirac fermions, what is not expected in the
excitation spectrum is a Dirac cone, especially high-energy
features associated with transitions between a Dirac valence
and conduction band—after all, the theory is an effective
approximation to the exact theory of nonrelativistic composite
fermions, where such a feature is absent [27,28]. The response
of the Son-Dirac theory should therefore not resemble the re-
sponse of typical Dirac materials, such as graphene. However,
what ought to be true in principle is not always obvious in
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direct calculations. In this paper, therefore, we compute the
density and current response function of the Son-Dirac theory
using the RPA, and we demonstrate how this gives rise to a
consistent theory of the half-filled Landau level, at least at
long wavelengths. This is not directly apparent since the RPA
links the response of the interacting system to the response of
noninteracting two-dimensional (2D) Dirac fermions, which
naturally includes interband excitations [29,30] and collective
modes that violate Kohn’s theorem [31,32] (for graphene,
for example, these are well-established experimental features
[33–35]). Indeed, as we show in this paper, such spurious
contributions are suppressed only if we consider a Galilean-
invariant modification of the Son-Dirac theory that includes
an additional dipole term for the composite Dirac fermion.
The remaining response at low energy and small momentum
is then consistent with the predictions of HLR theory, but
there are differences in the excitation spectrum within the RPA
between the two theories.

This paper is structured as follows: We begin in Sec. II
by introducing the Son-Dirac theory and its symmetries, and
we discuss aspects of the non-Galilean invariant response
that motivate the present study. Section III contains a field-
theoretical derivation of the response in the half-filled Landau
level using the RPA. The results of this calculation are pre-
sented in Sec. IV, which discusses in particular the response
at long wavelengths. The paper is concluded by a summary
in Sec. V. There are two Appendixes: Appendix A collects
results for the response within a modified HLR theory pro-
jected to the LLL for reference. Appendix B computes the
noninteracting response functions of two-dimensional Dirac
fermions used in the main text, which are linked to the electron
response via the RPA.

II. DEFINITIONS AND MOTIVATION

The theory proposed by Son is a Chern-Simons theory for
Dirac fermions with Lagrangian density [22]

LSD = ψ†[(ih̄∂t + ea0) + vF σ i(ih̄∂i + eai )]ψ

− e

2φ0
εμνρAμ∂νaρ + e

4φ0
εμνρAμ∂νAρ, (1)

where φ0 = 2π h̄/e, with e the electron charge, ψ is the
two-component Dirac fermion field, aμ is the Chern-Simons
gauge field, Aμ is the external vector potential, and the Fermi
velocity vF is an effective parameter that sets the strength of
the Coulomb interaction. A summation convention is implied
in this paper, where Greek indices run over μ = 0, 1, 2, with
0 (or t) a temporal index and the latin index i = 1, 2 (or x, y)
a space index, and εμνρ is the total antisymmetric tensor with
ε012 = 1. Particle-hole symmetry is realized as a combination
of time-reversal and charge conjugation, with a trans-
formation (A′

0(t, x), A′
i(t, x)) = ( − A0(−t, x), Ai(−t, x)),

(a′
0(t, x), a′

i(t, x)) = (a0(−t, x),−ai(−t, x)), and ψ ′(t, x) =
−iσ2ψ (−t, x) [22]. Note that the particle-hole symmetry
operation on this level is implemented as an antiunitary
transformation (for a review, see [36]). Different from HLR
theory, the composite Dirac fermions do not couple directly
to the external gauge field but only indirectly through the
mixed Chern-Simons term [the first term in the second line of
Eq. (1)]. In the mean-field approximation at half-filling, where

the electron density is j0 = 1/4π
2
B with 
B = √

h̄/eB the
magnetic length, the composite Dirac fermions experience no
effective Chern-Simons magnetic field 〈b〉 = 〈εi j∂ia j〉 = 0.
On that level, composite fermions have a valence and a
conduction band with linear dispersion ±h̄vF q, and (barring
spontaneous symmetry breaking [37–39]) they form a Fermi
sea with Fermi momentum kF = 1/
B and a Fermi energy
that is detuned from the Dirac point by EF = h̄vF /
B. Note
that Eq. (1) is an effective field theory, which may contain
additional terms that, for example, involve higher derivatives
or powers of the fields.

The Son-Dirac theory (1) is not invariant under Galilei
transformations. A modified version of the Son-Dirac theory
(which we shall refer to as the modified Son-Dirac theory) is
brought to Galilean-invariant form by coupling the composite
Dirac fermions directly to the external electric field Ei by
adding a dipole term [21]

LD = d · E (2)

to the action (1) with Ei = ∂iA0 − ∂0Ai and a composite-
fermion dipole moment

di = ε ji

2B
[ψ†(ih̄∂ j + ea j )ψ + (−ih̄∂ j + ea j )ψ

†ψ]. (3)

A Galilei transformation to a moving inertial frame with
coordinates x′ = x − Vt is then implemented by A′

0(t ′, x′) =
A0(t, x) + V iAi(t, x), A′

i(t
′, x′) = Ai(t, x) (such that εi jE ′

i =
εi jEi + V jB and B′ = B), and ψ ′(t ′, x′) = ψ (t, x) (the Chern-
Simons field aμ transforms in the same way as the field Aμ).
Intuitively, the dipole moment d = e
2

Bẑ × k of a composite
fermion with momentum k arises due to a separation of the
electron and vortex position by 
2

Bk and is a fundamental
feature of the half-filled Landau level [40].

To motivate the current investigation, consider the density
response of the theory (1) without including the dipole term
that ensures Galilean invariance. In this case, the frequency-
and momentum-dependent density response �00 within the
RPA is given by [22]

�00(ω, q) =
(

q

4π h̄

)2 1

[Kxx(ω, x)]∗
, (4)

where Kxx is the transverse noninteracting current response
function of Dirac fermions (a discussion and derivation of this
result is given in the remainder of the paper). Figure 1 shows
a density plot of the corresponding dynamic structure factor

S(ω, q) = 1

π
Im �00(ω, q), (5)

where the long-wavelength region q → 0 as a function of
frequency is shown at the bottom of Fig. 1. The excitation
spectrum takes a form that is typical for Dirac fermions, with
incoherent spectral weight in the low-frequency region ω <

vF q due to intraband excitations (i.e., particle-hole excitations
within the conduction band), and further weight at larger
frequencies due to interband transitions between the valence
and the conduction band of the Dirac fermions. The weight of
both the intra- and interband excitation at long wavelengths
is of order O(q2), and the interband contribution at high
frequencies decays as O(q2/ω). There is no continuous spec-
tral weight in a wedge |ω − ωc| < vF q due to phase-space
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FIG. 1. Dynamic structure factor of the unmodified Son-Dirac
theory at half-filling as predicted by the RPA. There is a Fermi-
liquid intraband contribution at low frequencies ω < vF q, but also
an additional high-frequency part caused by interband transition of
the composite Dirac fermions. A collective mode at high frequencies
and long wavelengths is also apparent. Bottom figure: Dimensionless
dynamic structure factor as a function of frequency in the long-
wavelength limit (marked by a dashed line in the full figure). The
high-frequency response (red shaded area) is spurious. Inset: Dy-
namic structure factor as predicted by the modified HLR theory,
which shows no interband transitions.

restrictions. In this region, the RPA predicts a well-defined
collective mode at long wavelengths q
B/h̄ � 0.5 starting at
a frequency  ≈ 1.667ωc with a residue of order O(q2). For
comparison, we show as an inset in Fig. 1 the corresponding
result for the dynamic structure factor of a modified version
of HLR theory that is projected to the lowest Landau level
(cf. Appendix A for a detailed discussion). The HLR theory
shows a (presumably spurious) collective mode that decouples
from the Fermi-liquid continuum at finite wave vectors, but
crucially, the response contains no interband transitions.

While the high-frequency response shown in Fig. 1 is typ-
ical for Dirac fermions, as discussed, it is unexpected for a
theory of electrons in the half-filled Landau level, for which a
Dirac cone does not exist. Indeed, at least within HLR theory
(not projected to the LLL), the only large-frequency response
of electrons in a magnetic field is associated with transitions
between electron Landau levels, with a typical energy scale
of the order of the cyclotron frequency [41], which is much
larger than the scales considered here and projected out in a
theory restricted to the LLL. In addition, the only collective

FIG. 2. Dynamic structure factor computed within the RPA for
the modified Galilean-invariant Son-Dirac theory, which includes the
dipole correction. Compared to Fig. 1, interband transitions and the
collective mode are now strongly suppressed. The same color-coding
is used in both figures for the intensity of the response.

finite-frequency mode is the magnetoplasmon, the frequency
of which is fixed by Kohn’s theorem again at the cyclotron
frequency [42]. This magnetoplasmon exhausts the f -sum
rule

f (q) =
∫ ∞

0

dω

π
ω Im �00(ω, q) (6)

at long wavelengths and is thus the only mode that contributes
at O(q2) to the dynamic structure factor. When restricted to
the lowest Landau level, the f -sum rule is of order O(q4)
[41], which is in contrast to the weight of the Dirac interband
spectrum in Fig. 1. Even if this contribution had the correct
weight, the f -sum rule would diverge linearly on account of
the 1/ω high-frequency tail (cf. Fig. 1). Note that spurious
interband excitations and a collective mode also appear in the
transverse current response, the spectral function of which
takes a similar structure to that of the density response in
Fig. 1.

The aim of this paper is to demonstrate that the composite
Dirac fermion theory (1) can be extended to give rise to
an RPA response valid at all frequencies, at least to leading
order in the wave number. We show that this is the case for
the modified Son-Dirac theory with the dipole term (2) that
restores Galilean invariance. As an illustration and preempting
a main result derived in the remainder of this paper, Fig. 2
shows the response for the Galilean-invariant theory, where
the spurious high-frequency response is indeed strongly sup-
pressed, thus reproducing this feature of HLR theory. Previous
literature focuses on the non-Galilean invariant theory [22] or
on the semiclassical limit in the vicinity of the half-filled state
ν = 1/2 ± 1/2N [20], for which the response is accurate in a
1/N-expansion for small wave numbers O(1/
BN ) and ener-
gies O(h̄vF /
BN ). Such a rigorous power-counting argument
does not apply at half-filling, and a full effective theory of the
half-filled Landau level will include additional terms beyond
(1) and (2). Here, a consistent theory that eliminates high-
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frequency modes will constrain the effective theory beyond
the leading order.

III. RPA FOR THE HALF-FILLED LANDAU LEVEL

In this section, we consider the functional integral of the
Son-Dirac partition function and derive the effective action
to second order in fluctuations of the gauge fields around the
mean-field result, which gives the RPA response functions.
To this end, we first summarize in Sec. III A the various
constraints as well as the conjugate density and current corre-
sponding to the Lagrangian (1). In Sec. III B, we then consider
the Euclidean path integral and derive the effective action.

A. Constraints and conjugate fields

The action (1) is linear in the Chern-Simons field a0, which
is a Lagrange multiplier that enforces a constraint on the
composite fermion density

J0 = ψ†ψ = B

2φ0
. (7)

The external magnetic field thus sets the density of composite
fermions. This is different from HLR theory, where the elec-
tron density (which in HLR is equal to the composite fermion
density) constrains the Chern-Simons magnetic field b [9].
Likewise, the spatial components ai enforce a constraint on
the composite fermion current [21,22,43]

Ji = vF ψ†σ iψ = − 1

2φ0
εi jE j + 1

2φ0
εi jE j = 0. (8)

The second term, which cancels the first contribution, arises
from the dipole correction (2) in conjunction with the con-
straint (7). Galilean invariance thus induces a backflow
correction such that the composite Dirac fermion current does
not respond to the electric field.

Unlike in HLR theory, the composite particle density J0

and current Ji in the Son-Dirac theory are not equal to the
conserved electron density and current. Instead, the electron
density, which is conjugate to the field eA0, is given by [21]

j0 = 1

2φ0
(B − b) − ∂id

i, (9)

where b = εi j∂ia j , and di is the dipole moment defined in
Eq. (3). The last term is just the polarization charge of dipoles
with dipole moment di. Using the definition in Eq. (3), this
expression can be cast in a different form,

j0 = B

2φ0
− εi j∂i

(−ih̄

2B
(ψ†

↔
∂ jψ )

)
. (10)

Identifying the external magnetic field B with the density of
composite fermions, Eq. (7), we see that density fluctuations
are linked to the vorticity of the Dirac field. Likewise, the
current conjugate to the external field eAi is

ji = εi j

2φ0
(Ej − e j ) + ∂0di + ε ji∂ jm (11)

with e j = ∂ ja0 − ∂0a j and m = ε jkEk
2B2 ih̄(ψ†

↔
∂ jψ ). The last two

terms again follow from the dipole term (2) that restores

Galilean invariance. The second-to-last term is the contribu-
tion induced by electric dipoles with dipole moment di, and
the last term—which arises from a variation of the magnetic
field in the denominator of Eq. (3)—is characteristic for the
current induced by magnetic dipoles with magnetization M =
mêz. On a mean field level, the definition of the density (9)
along with

ν = φ0

B
〈 j0〉 = 1

2
(12)

implies that the expectation value of the Chern-Simons mag-
netic field 〈b〉 is zero, such that the composite Dirac fermions
do not experience an effective magnetic field. As we consider
an isotropic system, the corrections to the particle density and
current arising from the dipole term (2) do not contribute to
the mean-field result. They will, however, change the fluctu-
ations (which now couple directly to the external gauge field
through the dipole term) and thus the response functions.

B. Random phase approximation

In this section, we derive the linear response function for
the density and current of the Son-Dirac theory on the level of
the RPA. To this end, we consider the Euclidean path integral
and expand around the mean-field saddle point up to second
order in the external gauge fields. The kernel of this expansion
is related to the response functions by analytical continuation.
As discussed in the Introduction, the advantage of the RPA
is that the response functions of the interacting theory are
expressed in terms of the free noninteracting response func-
tions of 2D Dirac fermions, which can be computed in closed
analytical form (cf. Appendix B).

The starting point is the Euclidean partition function

Z[A] =
∫

D[ψ†, ψ, aμ] e−SE[ψ†,ψ,aμ,Aμ], (13)

where SE is the Euclidean action corresponding to the La-
grangian (1) (i.e., obtained after a Wick rotation to imaginary
time t = −iτ h̄),

LE
SD = ψ†[(∂τ − ea0) + vF σ i(−ih̄∂i − eai )]ψ − diEi

+ e

2φ0
εμνρAμ∂Eνaρ − e

4φ0
εμνρAμ∂EνAρ, (14)

where the derivative is now ∂Eμ = ( i
h̄∂τ , ∂x ). In the following,

we denote by Āμ a background-field configuration with con-
stant magnetic field B̄ such that B = B̄ + δB and Ei = δEi, i.e.,
we split off the gauge field fluctuations as

Aμ = Āμ + δAμ. (15)

In addition, we have āi = 0 in the half-filled Landau level,
and we split off fluctuations in the Chern-Simons field as a0 =
ā0 + δa0 and ai = δai. Within linear response, we have

〈 jμ(x)〉 =
∫

dy �μν (x, y) eδAν (y), (16)

where the density with μ = 0 is given in Eq. (9) and the cur-
rent with μ = i is given in Eq. (11), and we use a three-vector
notation x = (τ, x) for the coordinates. The response kernel is
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given by

�μν (x, y) = − δ2 lnZ[δA]

δ(eδAμ(x))δ(eδAν (y))

∣∣∣∣
Aμ=Āμ

. (17)

We shall work in Coulomb gauge where ∇ · A = 0. In Fourier
space with an external momentum oriented along the y-axis,
q = (0, |q|), this implies Ay = 0 (note that we will continue
to use Greek indices for the summation over the 0 and x com-
ponent). In this convention, �00 denotes the density response
function, �xx denotes the transverse current response func-
tions, and �0x denotes the mixed density-current response.

The Son-Dirac action is quadratic in the composite fermion
fields, such that the Grassmann integral can be performed
directly. This gives an effective Euclidean action

Seff = − Tr ln[−G−1] + e

φ0

∫
q

{
AT (−q)

C(q)

2
a(q)

− AT (−q)
C(q)

4
A(q)

}
, (18)

where G−1 is the inverse Green’s function, and we define A =
(A0, A1) as well as

C(q) =
(

0 −iqy

iqy 0

)
. (19)

In position space, the Green’s function can be written in a
form that separates out the fluctuations,

G−1(x) = G−1
0 (x) − V (x), (20)

where G0 is the bare propagator with Fourier transform

G−1
0 (q) = ih̄ω − (vF h̄q · σ − ā0). (21)

This is the free propagator of two-dimensional Dirac elec-
trons, where the mean-field contribution ā0 acts as a chemical
potential. The Fourier transform of the fluctuation terms reads

V (1)(k|q) = −eδa0(q) − vF σ i(eδai(q))

+ (h̄k + h̄q/2) × δE(q)

B̄
(22)

to leading order in the fluctuations, and

V (2)(k|q, q′) = δE(q) × eδa(q′)
B̄

− [h̄k + h̄(q + q′)/2] × δE(q)

B̄2
δB(q′) (23)

to second order, where the electric field is in the plane (we
neglect fluctuations beyond quadratic order, which will not
contribute to the RPA response). Pictographically, the fluctua-
tions V (1) and V (2) describe vertex terms that couple the Dirac
electrons to the external gauge field and the Chern-Simons
gauge field, respectively. These vertices are shown in Fig. 3,
where it is convenient to introduce the conversion matrix

T iν (q) =
(

iqy 0
0 ω

)
, (24)

which maps the external vector potential to the electric field
fluctuation, εi jδEj (q) = [T (q)]iνδAν (q). In Fig. 3, continuous
lines denote the Dirac field, the wavy line denotes the external
field, and the dashed line denotes the Chern-Simons field.

(a)

(b)

FIG. 3. (a) Feynman rules for the Dirac propagator and the
Chern-Simons terms. The Dirac field is indicated by a continuous
line, the Chern-Simons gauge field is shown by a dashed line, and
the external vector potential is shown by a wavy line. (b) Feynman
rules for the vertex terms that couple the composite Dirac field to the
Chern-Simons gauge field and the external vector potential. Terms on
the left-hand side contribute at leading linear order in the gauge field
fluctuations, and terms on the right-hand side contribute at second
order. For the latter, we only show momentum configurations that
will contribute a diamagnetic term to the response.

Only the second vertex contains Pauli matrices, while the
remaining terms are diagonal in spinor space. The last term
in Eq. (22) and both terms in (23) are due to the dipole term.
The remaining Feynman rules are then as usual, where one
imposes momentum and energy conservation at each vertex
and integrates over each undetermined loop momentum with
measure

∫
k = ∫

d (h̄ω)dk/(2π )3.
In the following, we use the decomposition (20) to expand

the trace of the logarithm (18) to second order in the field
fluctuations δaμ and δAμ. At the leading linear order, the
effective action reads (omitting terms that evaluate to zero)

S(1)
eff = −

∫
k

tr[G0(k)]δa0(0) + B̄

2φ0
δa0(0) − B̄

2φ0
δA0(0),

(25)

where the trace runs over the spinor indices. The correspond-
ing Feynman diagrams are shown in Fig. 4(a). The first term
in Eq. (25) follows from the leading-order expansion of the
logarithm in Eq. (18) [diagrammatically, this is the first tad-
pole diagram in Fig. 4(a), with the second evaluating to zero],
the second line is the mixed Chern-Simons term, and the last
line is the Chern-Simons term for the external gauge field.
Evaluated at the saddle point, this contribution has to vanish.
Indeed, varying with respect to δa0 and δai, we reproduce the
constraints (7) and (8) to leading order,

〈J0〉 =
∫

k
tr[G0(k)] = B̄

2φ0
, (26)

〈Ji〉 = vF

∫
k

tr[G0(k)σ i] = 0. (27)
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(a)

(b)

FIG. 4. Diagrams contributing to the effective action up to sec-
ond order in the gauge field fluctuations. (a) Contributions at linear
order. The first two diagrams represent tadpole diagrams, some of
which are zero. (b) Contributions at quadratic order in the gauge
fields. The first line shows paramagnetic response functions, the
second line shows the Chern-Simons terms, and the third line shows
diamagnetic terms.

The value of the mean-field contribution ā0 is adjusted to set
the density (26). Relation (27) is satisfied by dint of the sym-
metry properties of free Dirac fermions [the corresponding

term is omitted in Eq. (25)]. In addition, the first variation with
respect to δAμ gives a mean-field density of n = B̄/2φ0 and a
vanishing mean-field current, as expected for the half-filled
Landau level.

To second order in the field fluctuations, the effective ac-
tion is (again omitting terms that evaluate to zero)

S(2)
eff = 1

2

∫
q

{
e2δaT (−q)K(q) δa(q)

− e

2φ0
δaT (−q) [R(q)T (q)] δA(q)

− e

2φ0
δAT (−q) [T T (−q)RT (−q)] δa(q)

+ e2δAT (−q) [T T (−q)�(q)T (q)] δA(q)
}

− e

2φ0

∫
q
δaT (−q) C(q)δA(q)

+ e

4φ0

∫
q
δAT (−q) C(q)δA(q)

+ 1

eB̄

∫
k

tr[G0(k)]
∫

q
eδa1(−q) [T (q)]1ν eAν (q).

(28)

Diagrammatically, the various contributions are shown in
Fig. 4(b). The first four terms in Eq. (28) in curly brackets
[first line in Fig. 4(b)] are contributions to a paramagnetic
response, where the Dirac fermions are integrated out at the
one-loop level. They are defined as

Kμν (q) =
∫

k
tr

(
G0(k)G0(k + q) vF G0(k)σ 1G0(k + q)

vF σ 1G0(k)G0(k + q) v2
F σ 1G0(k)σ 1G0(k + q)

)
, (29)

Rνi(q) = 4π
2
B

∫
k

tr

( −h̄kxG0(k)G0(k + q) (h̄ky + h̄qy/2)G0(k)G0(k + q)

vF h̄kxG0(k)σ 1G0(k + q) −vF (h̄ky + h̄qy/2)G0(k)σ 1G0(k + q)

)
, (30)

�i j (x, y) = 
4
B

∫
k

tr

(
k2

x G0(k)G0(k + q) kx(ky + qy/2)G0(k)G0(k + q)

kx(ky + qy/2)G0(k)G0(k + q) (ky + qy/2)2G0(k)G0(k + q)

)
. (31)

These “Dirac Lindhard functions” can be evaluated in closed
analytical form, which is done in Appendix B. The mixed
response function R(q) as well as the direct dipole response to
the external field �(q) are due to the dipole terms in Eqs. (9)
and (11). Returning to Eq. (28), the next two terms in the
second and third line [second line in Fig. 4(b)] arise from
the Chern-Simons terms. Finally, the last term [third line in
Fig. 4(b)] is a diamagnetic contribution. This term cancels
with the x0-contribution of the mixed Chern-Simons term two
lines prior. We express the sum of these two terms using a new
conversion matrix

C̃(q) =
(

0 −iqy/ω

0 0

)
(32)

such that the mixed Chern-Simons term reads
− e

2φ0

∫
q δaT (−q) C̃(q)T δA(q). A similar cancellation

between the dipole correction and the Chern-Simons term
was noted in Ref. [43].

The RPA consists of bringing the effective action to
quadratic form in the Chern-Simons fluctuation δaμ, in which
case the Gaussian path integral over that field decouples. This
is accomplished by shifting

eδa(q) → eδa(q) − 1

2φ0
[K−1](R + C̃)T δA(q), (33)

which gives the full effective action at second order in the
external field:

Seff = −1

2

∫
q

[TeδA(−q)]T

{
� +

( 1

4π h̄

)2

× [R + C̃(−q)]TK−1(−q)[R + C̃(q)]

}
[TeδA(q)]

+ e

4φ0

∫
q
δAT (−q)CδA(q). (34)
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Using Eq. (17), this effective action determines the linear
response functions. The retarded response functions are then
obtained by analytic continuation from Euclidean imaginary
frequencies to real frequencies, iω → ω + i0. The results of
this calculation are discussed in the next section.

IV. RESULTS

In this section, we discuss the results for the density re-
sponse function, the transverse current response function, and
the Hall response function. Using the result (34) to compute
the response function (17) gives

�μν (q) = 1

4π h̄
Cμν − [T (−q)�T (q)]μν +

(
1

4π h̄

)2

× [
T (−q)(R + C̃)TK−1(R + C̃)T (q)

]μν
. (35)

There are three separate contributions to this function: The
first term arises from the AdA term; the second one is a direct
response of noninteracting dipoles that couple directly to the
external field; and the third term is an indirect response, where
composite fermions couple to the external probe through the
Chern-Simons field. Different from the non-Galilean invariant
theory, this indirect coupling is no longer merely mediated
by the mixed Ada Chern-Simons terms but may also occur
through the current-dipole response R of composite fermions.

As derived in Appendix B, the free Dirac response func-
tions without magnetic field have the following nonzero
components:

Kμν =
(

K00 0
0 Kxx

)
, (36)

Rνi =
(

0 R02

Rx1 0

)
, (37)

�i j =
(

�11 0
0 �22

)
. (38)

These response functions and their analytic continuation to
real frequency that gives the retarded Dirac response are cal-
culated in Appendix B. In terms of these components, we
obtain the following results for the retarded response func-
tions:

�0x(ω, q) = −iqy

2eφ0
, (39)

�00(ω, q) =
(

q

4π h̄

)2 ZL(ω, q)

[Kxx(ω, q)]∗
+ q2�11(ω, q), (40)

�xx(ω, q) =
(

q

4π h̄

)2 ZT (ω, q)

[K00(ω, q)]∗
+ ω2�22(ω, q), (41)

with the dimensionless residue functions

ZL(ω, q) = |Rx1(ω, q)|2, (42)

ZT (ω, q) =
∣∣∣∣1 + ω

q
R02(ω, q)

∣∣∣∣
2

. (43)

Note that the absence of a term of order O(1) in the residue
(42) is due to the cancellation of the Chern-Simons term with
the tadpole correction as discussed following Eq. (28).

For reference, we also note the result for the density and
transverse current response in the non-Galilean invariant the-
ory [i.e., without the dipole term (2)] first derived by Son [22].
The density response is stated in Eq. (4) and the transverse
current response is

�xx
0 (ω, q) =

(
q

4π h̄

)2 1

[K00(ω, q)]∗
. (44)

There is no direct dipole response �, and the residue terms
ZL and ZT are equal to unity. As discussed in the Introduc-
tion, these response functions show a spurious behavior at
finite frequencies, which is rectified when including the dipole
correction. In the following sections, we will discuss the prop-
erties of the full response functions (39)–(41) in detail.

Before we proceed, note that it is straightforward to extend
our calculation to a more general case that includes an addi-
tional interaction potential [4,7]. On the level of the RPA, this
term is taken into account as a Hartree correction that changes
the effective vector potential by

�A0(x) =
∫

d2x′ V (x − x′)〈δ j0(x′)〉. (45)

Electrons are then assumed to respond to the Hartree potential
in addition to the external vector potential δAμ. In Fourier
space, we have 〈δ j〉 = �[δA + V 〈δ j〉], where �μν is the RPA
response derived previously without the interaction potential
and V = (V (q) 0

0 0). The full RPA response �̃ is then linked to
the response � by

�̃−1 = �−1 − V. (46)

In particular, for the density response, we have [�̃00]−1 =
[�00]−1 − V (q).

A. Hall response function

The first response (39) is the Hall response function, which
is completely fixed by the AdA Chern-Simons term and re-
ceives no corrections on the RPA level for the versions of the
Son-Dirac theory discussed here. It is connected to the Hall
conductivity by [4]

σH = lim
ω→0

lim
qy→0

ie2

qy
�0x(ω, qy) = e2

2h
. (47)

This result agrees with the exact long-wavelength limit
predicted by particle-hole symmetry [16]. Particle-hole sym-
metry also predicts a subleading correction of order O(q2),
σH = e2

2h (1 − q2
2
B/4) for vF q � ω [19,44], which is not re-

produced by the RPA calculation. However, this problem is
shared between HLR and the Son-Dirac theory in the form
considered in this paper, and the latter theory incorporates this
correction if half the action of a fully filled Landau level is
added to the Son-Dirac action [19],

S = − e

φ0

∫
q

A0(−q)
1 − q−q2
2

B/2 − q2
2
B/2

q
B
A1(q), (48)

with further modifications if an explicit Coulomb interaction
is taken into account. Note that this term does not affect the
density and current response function discussed in the next
sections.
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B. Density response function

Consider first the density response (4) of the unmodified
Son-Dirac theory, which is proportional to the inverse Dirac
current response Kxx. In the long-wavelength limit, the Dirac
current response takes the form (in dimensionless notation
where ν = ω
B/vF , x = q
B, and K̂xx = 2π h̄
BKxx/vF )

K̂xx(ν, x) = −1

2
+ ν

8
ln

∣∣∣∣2 + ν

2 − ν

∣∣∣∣ + i
πν

8
�(ν − 2). (49)

The full expression valid at all momenta is given in Appendix
B. The real part of this response crosses zero at a finite fre-
quency ν = 1.667 11, which, as discussed in the Introduction,
gives rise to a spurious collective mode in the dynamic struc-
ture factor of the non-Galilean invariant theory (cf. Fig. 1).
In addition, there is incoherent spectral weight corresponding
to interband transitions with asymptotic weight O(x2/ν) that
leads to a UV divergence of the f -sum rule (6). In the static
limit, the Dirac current response reads

K̂xx(ν, x) =
(

− πx

8
−

√
x2 − 4

2x
+ x

4
arcsin

2

x

)
�(x − 2).

(50)

This function vanishes for momenta q
B < 2, which is linked
to a divergent orbital susceptibility of Dirac electrons at fi-
nite detuning [45]. For the Son-Dirac theory, this implies a
divergent static response function, which is changed to a linear
function of momentum if a Coulomb interaction is included,
the latter result being consistent with HLR theory [9]. Finally,
in the Fermi-liquid scaling regime at small momentum and
frequency, we have (defining the scaling variable s = ω/vF q)

lim
ω,q→0

SSD(ω, q) = q2
B

2π2h̄vF

√
1 − s2

4s
�(s < 1). (51)

Indeed, neglecting the high-frequency response present in the
Son-Dirac theory, the density response (51) at small frequen-
cies is equal to the HLR result (Appendix A) if we identify the
Fermi velocity in the Son-Dirac theory and the effective mass
parameter in HLR theory in the natural way, vF = h̄kF /m∗.
The real parts of the density response are equal as well,
such that both theories predict a (sub)diffusive mode with
frequency ν = −ix2( α

2 + 2x
3 ) [9,22], where α = e2/h̄vF is the

dimensionless Coulomb interaction strength [46]. Moreover,
evaluating the f -sum rule using the low-frequency response
(51), we obtain the scaling

f̄ (q) = π

4
(q
B)4, (52)

as required in the LLL from the Girvin-Mac Donald-
Platzman algebra [41]. Evaluating the static structure factor
in this limit gives an asymptotic IR-divergent scaling S(q) =
O((q
B)3 ln(q
B)), consistent with a compressible phase at
half-filling [41] and again the same as for HLR theory [9,47]
(cf. Appendix A). Of course, these calculations ignore the
spurious interband excitations and collective modes discussed
previously, which give a divergent contribution to the sum
rules.

Consider now the density response (40) of the modified
Son-Dirac theory, which involves the density response of the
original Son-Dirac theory modified by a dipole residue factor

FIG. 5. Small-momentum and small-energy scaling limit of the
dipole residue terms ZL and ZT as a function of the scaling parameter
s = ω/vF q. Both residues decay rapidly for frequencies larger than
ω > vF q, which leads to a strong suppression of the response at large
frequencies ω ∼ h̄vF /
B.

ZL as well as a direct response term that describes the direct
coupling of dipoles to the external probe. Crucially, the dipole
residue ZL [Eq. (42)] leaves the low-frequency response of
the Son-Dirac theory discussed above unchanged but strongly
suppresses the spurious large-frequency response. To see this,
consider the low-momentum scaling form of (42),

lim
ω,q→0

ZL(ω, q)

=
{

1, s < 1,

1 − 8s2 + 8s4 − 4s(2s2 − 1)
√

s2 − 1, s > 1.
(53)

This result is shown as a continuous orange line in Fig. 5, and
the full result for this part of the dynamic structure factor is
shown in Fig. 2. For ω < vF q, the residue term in Eq. (53)
is unity [such that the dynamic structure factor in the scaling
regime is unchanged from the Son-Dirac result (51)] and then
decays very quickly [on a scale of O(q)] to zero with an
asymptotic form (1/2s)4 = v4

F q4/16ω4. The spurious inter-
band transitions and the collective mode (which set in at a
much larger frequency) are then suppressed by four further
orders of magnitude as O(q6) at small momentum. Indeed, as
is apparent from Fig. 2, this suppression of spectral weight at
ω > vF q holds for all momenta. In particular, if one restricts
the response to the Chern-Simons contribution, the f -sum
rule is finite for all momenta, which is shown in Fig. 6. The
f -sum rule takes the form (52) at small momentum, has a
kink at the point where the spurious collective mode joins the
particle-hole continuum, and then crosses over to an asymp-
totic power-law scaling O((q
B)4).

The full RPA response (40) contains an additional direct
dipole-dipole response term q2�11. In the small-momentum
limit, this response reads (in dimensionless form �̂11 =
2π h̄�11/vF 
B)

�̂11(ν, x)

= −x4(4 + 3ν2)

8ν2
+ 3x4ν

32
ln

∣∣∣∣2 + ν

2 − ν

∣∣∣∣ + i
3iπνx4

32
�(ν − 2)

(54)
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FIG. 6. f -sum rule computed using the indirect contribution to
the density response of the modified Son-Dirac theory. The dashed
line indicates the limit (52).

with the full result for all momenta and frequencies computed
and stated in Appendix B. The corresponding contribution
to the dynamic structure factor is shown in Fig. 7. Interband
transition are suppressed as O(q4) in the low-momentum limit
and thus subleading compared to the original Son-Dirac the-
ory, where they are of order O(q2). However, beyond this
order, due to the linear frequency behavior (54), sum rules
at arbitrary momentum are no longer finite, and higher-order
corrections to the Son-Dirac theory will have to be taken into
account to obtain a consistent theory of the half-filled Landau
level. At quadratic order, where the high-frequency response
is absent, the dipole response will affect the Fermi liquid
scaling regime, where it contributes a term

lim
ω,q→0

SMSD,d (ω, q) = q2
B

2π2h̄vF
4s

√
1 − s2 �(s < 1) (55)

to the dynamic structure factor in addition to Eq. (51). The
static response of the full result is unchanged, but there is
added spectral weight near the particle-hole threshold ω 
vF q. Note that this direct dipole contribution to the RPA
response of the modified Son-Dirac theory is not contained
in the RPA response of the modified HLR theory.

To illustrate the difference between the RPA response of
the Son-Dirac theory, the modified Son-Dirac theory, as well

FIG. 7. Spectral function of the direct dipole response q2�11 as
a function of momentum and frequency.

FIG. 8. Dynamic structure factor of the modified HLR theory
(top row), the Son-Dirac theory (middle row), and the modified
Son-Dirac theory (bottom row) for a fixed Coulomb interaction
strength α = 0.5. While HLR and Son-Dirac theories make similar
predictions, there is a difference compared to the modified Son-Dirac
theory, which is marked by an enhanced incoherent spectral weight
near the particle-hole threshold.

as the modified HLR theory, we show in Fig. 8 the dynamic
structure factor of the modified HLR theory, the Son-Dirac
theory, and the modified Son-Dirac theory (top to bottom
row) including a dimensionless Coulomb interaction strength
α = 0.5 (note that the HLR interaction parameter is identified
as r̂s = 2α when setting vF = h̄kF /m∗). The panels on the
left-hand side show a density plot of the dynamic structure
factor, and plots on the right-hand side show it as a function of
frequency for five fixed momenta q
B = 0.1, 0.2, 0.3, 0.4, and
0.5. For small momenta, the Coulomb interaction is sublead-
ing and the dominant feature is the low-frequency divergence
(51) that is also sketched in the bottom plot of Fig. 1. This
divergence is cut off at finite momenta by the Coulomb inter-
action, such that the response is linear at small frequencies.
At larger frequency, there is additional incoherent spectral
weight that slowly decays up to the phase-space boundary
ω = vF q. As is apparent from the figure and discussed in
this section, the RPA results for the Son-Dirac theory and
the modified HLR theory in this regime are very similar.
There is, however, a clearly visible difference compared to the
modified Son-Dirac theory, which has increased incoherent
weight near threshold. This distinguishes the RPA response
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FIG. 9. Spectral function Im �xx of the transverse current response as a function of momentum and frequency for (a) the non-Galilean
invariant theory [Eq. (44)]; (b) the full indirect response [Eq. (41)] including the dipole residue; and (c) the direct dipole response ω2�22.

of the modified Son-Dirac theory from the RPA response of
the modified HLR theory.

C. Transverse current response function

A similar discussion to that for the density response func-
tion applies to the transverse current response function (41).
Figure 9 shows (from left to right) the spectral function
Im �xx of the non-Galilean invariant response (44), the indi-
rect Galilean-invariant response that arises from the coupling
to the Chern-Simons field [first term in Eq. (41)], as well as
the direct dipole response [second term in Eq. (41)]. In the
small-momentum limit, the Dirac density response is given
by (in dimensionless form K̂00 = 2π h̄vF 
BK00)

K̂00(ν, x) = − x2

2ν2
+ x2

8ν
ln

∣∣∣∣2 + ν

2 − ν

∣∣∣∣ + iπx2

8ν
�(ν − 2), (56)

which, as for the density response, gives rise to a pole at
ν = 1.667 11 with contributions from interband transitions
diverging linearly at large frequency as O(ωq0). The small-
momentum limit of the dipole residue ZT is given by

lim
ω,q→0

ZT (ω, q) =
{

1+3s2

1−s2 , s � 1,(
1 + 2s2 − 2s3√

s2−1

)2
, s > 1,

(57)

which at large frequencies decays as 9q4/16ω4, thus sup-
pressing the collective mode and interband contributions. This
result is shown as a continuous green line in Fig. 5. Different
from the density response function, the dipole residue is not
equal to unity in the Fermi-liquid scaling region, and thus the
response differs from the non-Galilean result (44). Indeed, the
corresponding spectral function takes the form

lim
ω,q→0

Im �xx,a(ω, q) = vF q2
B

2π h̄

s(1 + 3s2)

4
√

1 − s2
�(s < 1). (58)

The small-momentum limit of the additional direct
dipole response ω2�22 is (in dimensionless form

�̂22 = 2π h̄�22/vF 
B)

�̂22(ν, x)

= −x2(12 + ν2)

8
+ x2ν3

32
ln

∣∣∣∣2 + ν

2 − ν

∣∣∣∣ + i
iπν3x2

32
�(ν − 2)

(59)

with the full momentum and frequency dependence presented
in Appendix B. In the low-frequency and momentum scaling
limit, the dipole response contributes a term

lim
ω,q→0

Im �xx,b(ω, q) = vF q2
B

2π h̄

4s3

√
1 − s2

�(s < 1) (60)

to the spectral function. As for the density response, this
contribution is negligible in the static limit but changes the
response near threshold. The enhancement of spectral weight
is due to both the dipole residue, which diverges as ZT ∼
2/|1 − s| near s  1, as well as the direct dipole response �22.

V. SUMMARY

In summary, we have discussed the response of the Son-
Dirac theory of the half-filled Landau level using the random
phase approximation. If a dipole correction is included that
renders the Son-Dirac theory Galilean invariant, we find that
the response is free of spurious high-frequency excitations,
which are natural features in the response of Dirac materi-
als but not expected for a theory of the LLL. Furthermore,
while the response of the Son-Dirac theory reproduces many
features of HLR theory at small frequencies and momenta,
the dipole term increases the response near the particle-hole
boundary. This is a prediction of the Son-Dirac theory within
the RPA that differs from the modified HLR theory within
the RPA. In future work, it would be interesting to extend the
present calculation to other gapless filling fractions ν = 1/2n
and ν = (2n − 1)/2n, for which a generalization of the Son-
Dirac theory has been proposed [25,48,49], and to states in
the Jain sequence ν = n/(2n + 1) and ν = (n + 1)/(2n + 1),
which are described by fully filled Landau levels of composite
fermions [22].
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APPENDIX A: HALPERIN-LEE-READ RESPONSE
IN THE LLL

This Appendix collects for reference results for the elec-
tron response within HLR theory at half-filling restricted to
the lowest Landau level, which are compared in the main text
with the findings of this paper.

The starting point is a modified version of HLR theory that
contains as a parameter an interaction-renormalized mass m∗
instead of the bare mass m (for a review, see Ref. [7]). In
order to restore Galilean invariance, this theory must include
a Fermi-liquid back-flow term, the strength of which is set by
the p-wave Fermi liquid parameter F1 = m

m∗ − 1. Within this
framework, response functions can be computed in closed an-
alytic form on the level of the RPA and linked to the response
functions of the nonrelativistic two-dimensional electron gas
(2DEG). The LLL limit corresponds to the limit of fixed
filling fraction ν ∼ O(m0) and diverging cyclotron frequency
ωc ∼ O(m−1). This is the limit of vanishing bare mass, m → 0
and F1 → ∞, respectively. Units are now set by the renor-
malized mass, such that energies are measured in units of
h̄ω̃c = h̄eB/m∗ with a dimensionless frequency ν = h̄ω/h̄ω̃c

and wave number x = q
B (note that this unit of energy differs
from the standard definition of a 2DEG EF = h̄2k2

F /2m∗ with
Fermi momentum kF = 1/
B by a factor of 2).

At half-filling, the dimensionless density response is [7]

[�̂00]−1(ν, x) = m∗

2π h̄2 [�00]−1

= [
K̂0

00

]−1 − 2r̂s

x
− 2ν2

x2
− 4

x2

([
K̂0

xx

]−1−2
)−1

,

(A1)

where r̂s = r0/ã0 is the dimensionless Coulomb interaction
strength, defined as the ratio of average electron spacing r0 =
1/

√
πn and interacting Bohr radius â0 = h̄2/m∗e2. The ex-

pression (A1) contains the standard 2DEG response functions
[4]

ReK̂αα (ν, x) = −hα (ν, x)

− 1

x

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 A1,

gα
>

(
ν
x + x

2

)
B1,

gα
>

(
ν
x + x

2

) − gα
>

(
ν
x − x

2

)
C1,

gα
>

(
ν
x + x

2

) + gα
>

(
ν
x − x

2

)
D1,

(A2)

ImK̂αα (ν, x) = −1

x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gα
<

(
ν
x + x

2

) − gα
<

(
ν
x − x

2

)
A1,

−gα
<

(
ν
x − x

2

)
B1,

0 C1,

0 D1,

(A3)

FIG. 10. Left panel: phase-space regions used to parametrize
the free-particle response functions of 2D electrons. Right panels:
f -sum rule (top) and static structure factor (bottom) of HLR the-
ory projected onto the lowest Landau level. The continuous blue
lines indicate the full result, and the dashed red lines exclude a
collective mode that decouples from the continuum response at finite
momentum.

where the four regions are sketched in Fig. 10(a), with

hα (ν, x) =
{−1, α = 0,

x2

12 + ν2

x2 , α = x,
(A4)

gα
>(ν, x) =

{√
z2 − 1, α = 0,

1−z2

3

√
z2 − 1, α = x,

(A5)

gα
<(ν, x) =

{√
1 − z2, α = 0,

1−z2

3

√
1 − z2, α = x.

(A6)

The full results are shown in the inset of Fig. 1. It is interesting
to note that there is a collective mode that emerges at larger
momentum q
B � 1.9.

The small-momentum behavior of the full HLR response
is (without a Coulomb term, i.e., r̂s = 0)

�̂00(ν, x) =
{(− 1

4 + i
√

1−s2

4s

)
x2, s < 1,(− 1

4 +
√

s2−1
4s

)
x2, s > 1.

(A7)

The results for the f -sum rule and the static structure factor
within HLR theory are shown in Figs. 10(b) and 10(c), where
the blue continuous lines denote the full contribution of both
the continuum and the collective mode that emerges at larger
momenta (cf. the inset in Fig. 1), and the red dashed line
excludes the collective mode. The projected f -sum rule takes
the value (52) for all momenta. Moreover, the static structure
factor vanishes as S(x) = O(x3 ln x), the same as discussed in
the main text after Eq. (52).

APPENDIX B: LINEAR RESPONSE OF COMPOSITE
DIRAC FERMIONS

In the main text, the response of electrons in the half-filled
lowest Landau level is expressed via the RPA in terms of
six linearly independent response functions of noninteracting
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2D Dirac fermions. In this Appendix, we compute these re-
sponse functions in closed analytical form. Two of these Dirac
response functions—the density and current response—are
discussed in the graphene literature as well [29,30,45], while
to the best of our knowledge the four independent response
functions involving the dipole term are new. Here, we derive
all response functions for completeness.

Evaluating the frequency integral in Eqs. (29)–(31) gives
the standard Lindhard form of the response functions,

Mμν (iω, q)

=
∫

dk
(2π )2

∑
ss′

f (Es′ (k′)) − f (Es(k))
Es′ (k′) − Es(k) − ih̄ω

Fμν

ss′ (k, k′), (B1)

where M is either one of the response functions K , R, and �

discussed in the main text, f (Es(k)) = nF [Es(k) − μ] is the
Fermi-Dirac distribution for a system with chemical potential
μ (μ = EF = h̄vF /
B at zero temperature), Es(k) = ±h̄vF k
is the single-particle energy of a Dirac state with wave vector
k and chiral band index s = ±1, and Fμν

ss′ (k, k′) is the ma-
trix element of the vertex terms between two single-particle

eigenstates |ks〉 and |k′s′〉. Here, Fμν

ss′ (k, k′) is formed by an
appropriate product of two of the following single-particle
matrix elements:

〈k′s′|I|ks〉 = 1

2
(1 + ss′ei(φ−φ′ ) ), (B2)

〈k′s′|σ x|ks〉 = 1

2
(seiφ + s′e−iφ′

), (B3)

〈k′s′|−i
↔
∂x

2
|ks〉 = k cos φ + k′ cos φ′

2
(1 + ss′ei(φ−φ′ ) ), (B4)

〈k′s′|−i
↔
∂y

2
|ks〉 = k sin φ + k′ sin φ′

2
(1 + ss′ei(φ−φ′ ) ), (B5)

where φ and φ′ are the angles of the vectors k and k′ in the
complex plane.

It is convenient to split the response into an intrinsic part
Mμν

− that describes the response of a system at μ = 0 (i.e.,
where the Fermi level is precisely at the Dirac point) as well
as an extrinsic part Mμν

+ that contains the correction of finite
detuning:

Mμν (iω, q) = Mμν
− (ω, q) + Mμν

+ (ω, q), (B6)

Mμν
− (iω, q) =

∫
dk

(2π )2

[
f (E−(k′)) − f (E−(k))
E−(k′) − E−(k) − ih̄ω

Fμν
−−(k, k′) + f (E−(k′))Fμν

+−(k, k′)
E−(k′) − E+(k) − ih̄ω

− f (E−(k))Fμν
−+(k, k′)

E+(k′) − E−(k) − ih̄ω

]
, (B7)

Mμν
+ (iω, q) =

∫
dk

(2π )2

[
f (E+(k′)) − f (E+(k))
E+(k′) − E+(k) − ih̄ω

Fμν
++(k, k′) + f (E+(k′))Fμν

−+(k, k′)
E+(k′) − E−(k) − ih̄ω

− f (E+(k))Fμν
+−(k, k′)

E−(k′) − E+(k) − ih̄ω

]
. (B8)

In the following, we evaluate both contributions in turn, com-
puting first the Euclidean response at imaginary frequency
Mμν (iω, q) and then performing the analytic continuation
iω → ω + i0 to obtain the retarded response. We shall use
dimensionless variables

q = kF x = x/
B, (B9)

h̄ω = EF ν = h̄vF ν/
B. (B10)

In addition, we introduce dimensionless response functions,
which we shall indicate by a hat, as follows:

K00(iω, q) = N0K̂00

(
ν = ω

vF kF
, x = q

kF

)
, (B11)

Kxx(iω, q) = v2
FN0K̂xx

(
ν = ω

vF kF
, x = q

kF

)
, (B12)

�11(iω, q) = 
2
BN0�̂

11

(
ν = ω

vF kF
, x = q

kF

)
, (B13)

�22(iω, q) = 
2
BN0�̂

22

(
ν = ω

vF kF
, x = q

kF

)
, (B14)

R02(iω, q) = v−1
F R̂02

(
ν = ω

vF kF
, x = q

kF

)
, (B15)

Rx1(iω, q) = R̂x1

(
ν = ω

vF kF
, x = q

kF

)
, (B16)

where N0 is the density of states of a noninteracting system at
the Fermi surface,

N0 = kF

2π h̄vF
= 1

2π h̄vF 
B
. (B17)

Note that if we define an effective mass m by vF = h̄kF /m,
this is equivalent to the noninteracting density of states of the
2DEG, for which N 2DEG

0 = m/2π h̄2.

1. Intrinsic response

In this section, we consider the intrinsic contribution to the
response Mμν

− , which is the full response if the Fermi energy
is at the Dirac point. In this case, only interband transitions
(which have ss′ = −1) contribute, Eq. (B7), such that

Mμν
− (iω, q) = −

∫
dk

(2π )2

[
Fμν

+−(k, k′)
E−(k′) − E+(k) − ih̄ω

− Fμν
−+(k, k′)

E+(k′) − E−(k) − ih̄ω

]
. (B18)

To evaluate this part, it is convenient to shift the integration
variable k → k − q/2 with q = (0, q) and transform to an
elliptic coordinate system with ±q/2 at the focus points [50],

kx = q

2
sinh μ sin ν (B19)

ky = q

2
cosh μ cos ν, (B20)
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where μ > 0 and −π < ν < π . The Jacobian of the transfor-
mation is

∣∣∣∣∂ (kx, ky)

∂ (μ, ν)

∣∣∣∣ = q2

4
(sinh2 μ + sin2 ν). (B21)

In these coordinates, the matrix elements are

〈
k + q

2
s′
∣∣∣∣I

∣∣∣∣k − q
2

s

〉

= 1

sinh μ − i sin ν
×

{
sinh μ, ss′ = +1,

−i sin ν, ss′ = −1,
(B22)〈

k + q
2

s′
∣∣∣∣σ x

∣∣∣∣k − q
2

s

〉

= s

sinh μ − i sin ν
×

{
cosh μ sin ν, ss′ = +1,

i sinh μ cos ν, ss′ = −1,

(B23)〈
k + q

2
s′
∣∣∣∣kx

∣∣∣∣k − q
2

s

〉

= q

2

sinh μ sin ν

sinh μ − i sin ν
×

{
sinh μ, ss′ = +1,

−i sin ν, ss′ = −1,
(B24)〈

k + q
2

s′
∣∣∣∣ky

∣∣∣∣k − q
2

s

〉

= q

2

cosh μ cos ν

sinh μ − i sin ν
×

{
sinh μ, ss′ = +1,

−i sin ν, ss′ = −1.
(B25)

The square of the joint denominator in all of these expressions
cancels with the Jacobian. Furthermore, note the distance to
the focal points,

∣∣∣∣k + q
2

∣∣∣∣ = q

2
(cosh μ + cos ν), (B26)∣∣∣∣k − q

2

∣∣∣∣ = q

2
(cosh μ − cos ν), (B27)

which implies that the denominator in Eq. (B18) only depends
on μ, and the ν-integration in Eq. (B18) can be performed
directly. The subsequent μ-integration is elementary but re-
quires a cutoff � = �̂/
B in momentum space to regulate the
expression. The result of this calculation is

K̂00
− (iν, x) = πx2

8
√

x2 + ν2
, (B28)

K̂xx
− (iν, x) = �̂

2
− π

√
x2 + ν2

8
, (B29)

�̂11
− (iν, x) = 3x2�̂

32
− 3πx2

√
x2 + ν2

128
, (B30)

�̂22
− (iν, x) = x2�̂

32
− πx2ν2

128
√

x2 + ν2
. (B31)

Note that there is no intrinsic contribution to the mixed
current-dipole response function R.

2. Extrinsic response

Shifting the integration variables in Eq. (B8), the full ex-
trinsic response reads

K̂μν
+ (iν, x) =

∫
d2y

(2π )2
f (E+(y))

×
[

F̂++
μν (−y′,−y)

E+(y)−E+(y′)−iν
− F̂++

μν (y, y′)
E+(y′)−E+(y)−iν

+ F̂−+
μν (−y′,−y)

E+(y)−E−(y′)−iν
− F̂+−

μν (y, y′)
E−(y′)−E+(y)−iν

]
.

(B32)

Introducing polar coordinates for the y-integration, the re-
sponse function is expressed as

K̂μν
+ (iν, x) =

∫ 1

0
dy y Ĵμν

E (iν, y, x), (B33)

where Ĵμν
E (iν, y, x) is the angle integral of Eq. (B32). It is

evaluated by transforming to a complex integration contour
z = eiθ around the unit circle. The numerator reads

z2[(y ∓ iν)2 − |y + x|2] = −xyz(z − z1)(z − z2), (B34)

where the positions of the three simple poles are

z0 = 0, (B35)

z1 = − x2 + ν2 ± 2iyν

2xy

+ 1

2xy

√
(x2 + ν2)[x2 − (2y ∓ iν)2], (B36)

z2 = − x2 + ν2 ± 2iyν

2xy

− 1

2xy

√
(x2 + ν2)[x2 − (2y ∓ iν)2]. (B37)

We have z1z2 = 1 with |z1| < 1 and |z2| > 1. The integral is
evaluated by applying the residue theorem and picking up
the two poles at z0 and z1 inside the contour. Performing the
integration yields

K̂00
+ (iν, x) = −1

2
+ x2

8
√

x2 + ν2

× [z
√

1 − z2 + arcsin z](2−iν)/x
−iν/x + (ν → −ν),

(B38)

K̂xx
+ (iν, x) = − ν2

2x2
+

√
x2 + ν2

8

× [z
√

1 − z2 − arcsin z](2−iν)/x
−iν/x + (ν → −ν),

(B39)

�̂11
+ (iν, x) = x2

8
√

x2 + ν2

×
[

1

4
z(2z2 − 1)

√
1 − z2 + 1

4
arcsin z

](2−iν)/x

−iν/x

+ (ν → −ν), (B40)
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�̂22
+ (iν, x) = x2

8
√

x2 + ν2

[
2

3
(z2 − 1)

√
1 − z2

](2−iν)/x

−iν/x

+ (ν → −ν), (B41)

R̂02
+ (iν, x) = x2

8
√

x2 + ν2

×
[

1

4
z(2z2 − 5)

√
1 − z2 − 3

4
arcsin z

](2−iν)/x

−iν/x

+ (ν → −ν), (B42)

R̂x1
+ (iν, x) = (x2 + ν2) R̂02

+ (iν, x). (B43)

3. Results

In this section, we perform the analytic continuation to
real frequencies iν → ν + i0 of the results for the intrinsic
and extrinsic response functions computed in the previous two
sections. We parametrize our results as shown in Fig. 11. We
first state the full result for the four response functions K00,
Kxx, �11, and �22:

ReM̂αα (ν, x) = − hα (ν, x) − f α (ν, x)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gα
>

(
2+ν

x

) − gα
>

(
2−ν

x

)
A1,

gα
>

(
2+ν

x

)
B1,

gα
>

(
2+ν

x

) − gα
>

(
ν−2

x

)
C1,

π A2,
π
2 + gα

<

(
2−ν

x

)
B2,

gα
<

(
2+ν

x

) + gα
<

(
2−ν

x

)
C2,

(B44)

ImM̂αα (ν, x)

= − f α (ν, x)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π A1,
π
2 + gα

<

(
2−ν

x

)
B1,

0 C1,

−gα
>

(
2+ν

x

) + gα
>

(
2−ν

x

)
A2,

−gα
>

(
2+ν

x

)
B2,

0 C2,

(B45)

FIG. 11. Frequency-momentum regions for the noninteracting
Dirac response function.

with

hα (ν, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, α = 0,
ν2

x2 , α = x,

x2 + ν2(ν2+4)
x2 − 2(ν2 + 1), α = 1,

−2 − 4ν2

x2 − ν4

x2 , α = 2,

(B46)

f α (ν, x) = 1

8
√

|ν2 − x2|

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2, α = 0,

ν2 − x2, α = x,
3
4 x2(ν2 − x2), α = 1,

1
4 x2ν2, α = 2,

(B47)

and

gα
<(z) =

⎧⎪⎪⎨
⎪⎪⎩

arcsin z + z
√

1 − z2, α = 0,

arcsin z − z
√

1 − z2, α = x,
arcsin z − 1

3 z(2z2 − 5)
√

1 − z2, α = 1,

arcsin z + z(2z2 − 1)
√

1 − z2, α = 2,

(B48)

gα
>(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−arccosh z + z
√

z2 − 1, α = 0,

−arccosh z − z
√

z2 − 1, α = x,

−arccosh z − 1
3 z(2z2 − 5)

√
z2 − 1, α = 1,

−arccosh z + z(2z2 − 1)
√

z2 − 1, α = 2.

(B49)

Taking the limit of small momentum gives the results stated in
Eqs. (56), (49), (54), and (59) in the main text. Figures 12–15
show the four response functions K00, Kxx, �11, and �22 as
a function of frequency for four momenta q
B = 0.5, 1, 2,
and 3, where top panels show the imaginary part and bot-
tom panels show the real part. The Dirac density response
K00 and transverse current response Kxx function have been
computed before in the graphene literature [29,30,45]. Our
results agree with these works (where we identify kF = 1/
B

and EF = h̄vF /
B).
The result for the remaining two response functions R02

and Rx1 is

ReR̂β (ν, x) = − hβ (ν, x) − f β (ν, x)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gβ
>

(
2+ν

x

) − gβ
>

(
2−ν

x

)
A1,

gβ
>

(
2+ν

x

)
B1,

gβ
>

(
2+ν

x

) + gβ
>

(
ν−2

x

)
C1,

0 A2,

gβ
<

(
2−ν

x

)
B2,

gβ
<

(
2+ν

x

) + gβ
<

(
2−ν

x

)
C2,

(B50)

ImR̂β (ν, x)

= − f β (ν, x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 A1,

gβ
<

(
2−ν

x

)
B1,

0 C1,

−gβ
>

(
2+ν

x

) + gβ
>

(
2−ν

x

)
A2,

−gβ
>

(
2+ν

x

)
B2,

0 C2,

(B51)
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FIG. 12. Dimensionless density response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5, 1, 2, and
3. The top panels show the imaginary part and the bottom panels show the real part.

FIG. 13. Dimensionless transverse current response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5,
1, 2, and 3. The top panels show the imaginary part and the bottom panels show the real part.

FIG. 14. Dimensionless longitudinal dipole response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5,
1, 2, and 3. The top panels show the imaginary part and the bottom panels show the real part.
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FIG. 15. Dimensionless transverse dipole response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5,
1, 2, and 3. The top panels show the imaginary part and the bottom panels show the real part.

with

hβ (ν, x) =
{− 2ν

x − ν(ν2−x2 )
6x , β = 02,

−1 + 2ν2

x2 + (x2−ν2 )2

6x2 , β = x1,
(B52)

f β (ν, x) = 1

8
√

|ν2 − x2|

{
x2ν, β = 02,

x(x2 − ν2), β = x1,
(B53)

gβ
<(ν, x) = 2

3
(z2 − 1)

√
1 − z2, (B54)

gβ
>(ν, x) = 2

3
(z2 − 1)

√
z2 − 1. (B55)

Figures 16 and 17 show the response functions R02 and Rx1

as a function of frequency for four momenta q
B = 0.5, 1, 2,
and 3, where top panels show the imaginary part and bottom
panels show the real part. Note the limiting value at small
momentum,

R̂02(ν, x) = − x

ν
− x3

ν3

ν2 − 3

ν2 − 4
, (B56)

R̂x1(ν, x) = x2

ν2(ν2 − 4)
, (B57)

from which the scaling of the residue terms ZL, ZT = O(q4)
at long wavelengths is directly apparent.

a. Small-argument scaling limit

In the small-frequency region and small momentum region
(A1 and A2), introduce the scaling variable ν = sx:

K̂00(sx, x) =
{

1 + i s√
1−s2 A1,

1 − s√
s2−1

A2,
(B58)

K̂xx(sx, x) =
{−s2 + is

√
1 − s2 A1,

−s2 + s
√

s2 − 1 A2,
(B59)

�̂11(sx, x) =
{

2 − 4s2 + i4s
√

1 − s2 A1,

2 − 4s2 + 4s
√

s2 − 1 A2,
(B60)

�̂22(sx, x) =
{

2 + 4s2 + i 4s3√
1−s2 A1,

2 + 4s2 − 4s3√
s2−1

A2,
(B61)

R̂02(sx, x) =
{

2s + i 2s2√
1−s2 A1,

2s − 2s2√
s2−1

A2,
(B62)

R̂x1(sx, x) =
{

1 − 2s2 + i2s
√

1 − s2 A1,

1 − 2s2 + 2s
√

s2 − 1 A2.
(B63)

FIG. 16. Dimensionless density-dipole response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5, 1,
2, and 3. The top panels show the imaginary part and the bottom panels show the real part.
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FIG. 17. Dimensionless current-dipole response function of Dirac electrons for four different momenta (left to right panel) q
B = 0.5, 1,
2, and 3. The top panels show the imaginary part and the bottom panels show the real part.

Taking the absolute value of the last two expressions gives the
results for the residue terms (53) and (57) stated in the main
text. We also note the expansion of the inverse functions

[K̂xx(sx, x)]−1 =
{

−1 − i
√

1−s2

s A1,

−1 +
√

s2−1
s A2,

(B64)

[K̂00(sx, x)]−1 =
{

1 − s2 − is
√

1 − s2 A1,

1 − s2 − s
√

s2 − 1 A2.
(B65)
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