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Terahertz spectroscopy of semiconductor microcavity lasers: Photon lasers
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Semiconductor microcavities can exhibit various macroscopic quantum phenomena, including Bose-Einstein
condensation of polaritons, Bardeen-Cooper-Schrieffer (BCS) states of polaritons, and photon lasing (lasing
with negligible Coulombic exciton effects). An important aspect of possible experimental identification of these
states is a gap in the excitation spectrum (the BCS gap in the case of a polaritonic BCS state). Similar to the
polaritonic BCS gap, a light-induced gap can exist in photon lasers. Although polaritonic BCS states have been
observed on the basis of spectroscopy in the vicinity of the laser frequency, the direct observation of polaritonic
BCS gaps using light spectrally centered at or around the emission frequency has not been achieved. It has been
conjectured that low-frequency (terahertz) spectroscopy should be able to identify such gaps. In this first of two
studies, a theory aimed at identifying features of light-induced gaps in the linear terahertz spectroscopy of photon
lasers is developed and numerically evaluated. It is shown that spectral features in the intraband conductivity, and
therefore in the system’s transmissivity and absorptivity, can be related to the light-induced gap. For sufficiently
small Drude damping this includes spectral regions of THz gain. A future study will generalize the present
formalism to include Coulomb effects.

DOI: 10.1103/PhysRevB.104.115305

I. INTRODUCTION

Semiconductor microcavity lasers are examples of open-
dissipative-pumped systems that undergo phase transitions
to states with spontaneously broken symmetry. In the sim-
ple case of a so-called photon laser, i.e., a microcavity
laser in which Coulombic exciton effects between the charge
carriers (electrons and holes) are negligible, the interband
polarization and light field in the cavity can be viewed as
generalized order parameters of the symmetry-broken state.
In addition to photon lasers, semiconductor microcavities
have been intensively studied because of a variety of in-
triguing polariton effects (see, for example, Refs. [1–32]).
In the low-density regime, polaritons, quasiparticles com-
prised of excitons (bound electron-hole pairs) and photons
(the cavity light field), have been found to undergo Bose-
Einstein condensation (for reviews, see, e.g., Refs. [5,21])
which can be viewed as a limiting case of lasing processes
in a semiconductor microcavity. In the intermediate density
regime, the concepts of excitonic and polaritonic Bardeen-
Cooper-Schrieffer (BCS) states have long been discussed
(e.g., [19,20,33–38]). As in the case of the photon laser, above
the lasing threshold the interband polarization and the light
field in the cavity can be viewed as generalized order param-
eters because both are nonzero macroscopic fields that appear
spontaneously (in practice as a result of an instability triggered
by a fluctuation). One of the key features of a BCS state, be
it in superconductivity or BCS generalizations to excitons or
polaritons, is the existence of a gap in the excitation spectrum.

*binder@optics.arizona.edu

A recent experimental observation of a polariton laser in
the BCS regime has been reported in Ref. [39]. An estimate
of the polaritonic BCS gap given in that publication was later
confirmed on the basis of a rigorous linear-response theory
of the condensed many-particle state [40]. The value of the
polariton BCS gap in the range of experimentally accessible
pump powers was between approximately 1 and 10 meV. Due
to the reflectivity stop band of the high-quality microcavity,
whose width is on the order of 10 meV, direct interband
spectroscopy (using light spectrally centered in the vicinity
of the lasing frequency) is presently unable to observe polari-
tonic BCS gaps of less than 10 meV. Therefore, it has been
conjectured in Ref. [39] that low-frequency terahertz (THz)
spectroscopy should be more suitable for the observation of
a polaritonic BCS gap because the microcavity will not act
as a resonator for light of that frequency. In other words, the
THz spectroscopy can be performed on the semiconductor
quantum well inside the cavity without any effect of the cavity
on the THz field.

The formal and physical analogy between the theory of
superconductivity and a semiconductor excited by a coher-
ent optical field with frequency in the interband continuum
(i.e., light frequency larger than the fundamental band gap
of the semiconductor Eg), has been discussed as early as
1970 (see Ref. [41]). In that analysis, the coherent field
is a strong external field, strong enough to create gaps in
the single-particle spectrum of the valence and conduction
bands. While at a formal level the light-induced gaps in
the band structure of a semiconductor with noninteracting
electrons and holes are gaps in the single-particle spectrum,
whereas in the BCS superconductor the gaps are in the ex-
citation spectrum of the (correlated) many-particle state, it
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is helpful to view the light-induced gaps in analogy to the
BCS gaps since, without interaction, the excitation spectrum
of the many-particle state is given by the single-particle
excitation spectrum. These light-induced energy gaps in semi-
conductors excited by strong optical fields may be called
Galitskii-Elesin gaps [41–43]. In semiconductor lasers, this
effect is closely related to spectral hole burning. In this
paper, instead of an external coherent field, the gaps are
created by the laser light field, which in turn is brought
about by spontaneous symmetry breaking [the U(1) symmetry
related to the phase of the coherent field]. Experimental sig-
natures of spectral hole burning have been reported as early
as 1979 in Ref. [44] and investigated theoretically, e.g., in
Refs. [45–48].

More recently, the opening of gaps in the energy bands
has been investigated in the case of exciton polaritons in
GaAs semiconductor microcavities [49] and in bulk GaAs
[50]. The use of dressed electron-hole-photon states reveals
the connection among these closely related effects, as well
as other connected phenomena such as Rabi splitting or the
Mollow triplet in resonance fluorescence [16,36,40,49,51,52].

In the following we will refer to light-induced gaps,
schematically shown in Fig. 1, as Galitskii-Elesin gaps if
brought about by an external coherent light field, and as
BCS-like gaps if brought about by the internal laser light
field within the semiconductor microcavity, i.e., after spon-
taneous symmetry breaking above the laser threshold. In the
idealized case of carriers occupying only states below the
chemical potential up to the wave vector at which the light-
induced gap occurs, and that only transitions from the lower
to the upper branches occur, the intraband pair-excitation re-
gion assumes the form shown in Fig. 2(b). This is similar to
the well-known pair-excitation region for a zero-temperature
plasma shown in Fig. 2(a) (see, for example, Fig. 5.12 of
Ref. [53]), but with a vertical shift due to the light-induced
gap [see Eqs. (E2) and (E3) in Appendix E]. The presence
of the the light-induced branches (the dashed lines in Fig. 1)
enables optical transitions with small and even zero wave
vector q, which, as we show below, can be probed in THz
spectroscopy.

Terahertz and far-infrared radiation have been used in a
wide range of spectroscopic measurements [54], including
the observation of intraexcitonic and intraband transitions in
semiconductors [55–61], analysis of polariton condensates
[25], charge carrier dynamics [62,63], nonlinear terahertz
spectroscopy [64], detection of Berry curvatures [65], and the
spectroscopy of graphene [66,67] and noncrystalline materials
[68]. Furthermore, terahertz gain and stimulated emission as
a result of intraexcitonic transitions (3p-2s, 2p-1s) have been
shown in Refs. [69,70], and THz excitation and possible THz
lasing via stimulated emission from the 2p exciton to the 1s
exciton-polariton or, alternatively, between the the upper and
lower 1s exciton polariton branches in semiconductor micro-
cavities have been studied in Refs. [71–80]. THz emission due
to the Rabi splitting of a two-level system (a simpler version of
the effect seen in this paper) and optical triplet harmonics pro-
duced by optical pumping were proposed in Ref. [81]. Similar
studies of THz emission for the cases of asymmetric quantum
wells and dots were performed in Refs. [82–85]. In this paper,
the intraband matrix element which permits dipole-allowed

FIG. 1. Schematic of the parabolic two-band band structure with
the conduction band (CB) in red and the valence band (VB) in blue,
renormalized by the light field (dressed bands). In this paper, we call
the branches shown as solid lines original branches, and those shown
as dashed lines light-induced branches. In the limit of vanishing
light field, the original branches become the undressed bands and the
light-induced branches vanish [cf. the spectral function in Eq. (36)].
The light-induced gap of size 2|��| and the laser transition frequency
ω� are indicated. Also indicated by green vertical arrows are two
examples of vertical (in k space), coherent transitions between the
original and light-induced branches. In the case discussed in the main
part of this paper (cf. Sec. V) THz absorption (dashed green upward
arrow) can be overcompensated by THz gain (solid green downward
arrow). But the resulting effective gain may be less than the THz
absorption due to the Drude term (not indicated in this figure).

THz transitions derives not from an engineered asymmetrical
microstructure nor from different excitonic states, but from the
inherently asymmetric wave functions of those electron states
with nonzero quasimomentum.

The objective of this first study, and a planned subsequent
study, is to lay out the theory of intraband (as opposed to
intraexciton) THz spectroscopy for microcavity lasers. In this
first study, we focus on the photon laser. The photon laser
is not only a mathematically convenient model; the limiting
case of a semiconductor microcavity without Coulomb in-
teraction has been related to a photonic BEC in Ref. [20].
Even though Coulombic exciton effects are neglected (only
Coulombic scattering and relaxation effects are accounted
for at a phenomenological level), the theory to be laid out
below is relatively complex, owing to the interplay of the
laser (condensed phase) with the THz linear response the-
ory. However, because of the absence of Coulomb effects
the results are still relatively intuitive and mathematically
transparent. In particular, we show that spectral features in
the laser’s low-frequency conductivity (as well as transmis-
sivity, reflectivity, and absorptivity/gain) can be uniquely
related to the BCS-like gap that the laser induces upon
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FIG. 2. Schematic diagrams of the intraband pair-excitation re-
gion (PER). (a) The well-known PER for an electron gas (i.e., a
single parabolic band without light-induced gaps) in the T → 0 limit
in which the states up to the Fermi wave vector kF are occupied
[53]. (b) Schematic of the PER corresponding to Fig. 1, under the
simplifying assumption that the electrons (and similarly the holes)
occupy only the original branch below the light-induced gap up to
the wave vector at which the light-induced gap occurs, and that only
transitions from the lower to the upper branches occur.

itself. Since we are using a single-time equation-of-motion
technique, rather than two-time Green’s functions that readily
yield spectral functions, we clarify the connection between
our results and the single-particle spectral function through a
second formulation of our theory where we use an analog to
the Nambu-space theory. We identify features in our theory
with the polariton-BCS single-particle energy structure and
spectral function [49], evaluated for the case of vanishing
Coulomb potential. In a subsequent study we plan to extend
the present formalism to include Coulomb and hence polariton
effects.

This paper is organized as follows. In Sec. II, we for-
mulate the theoretical basis for the dynamical behavior of a
two-band semiconductor quantum well inside a single-mode
microcavity, including both the laser field (at interband transi-
tion frequencies) and a weak THz probe field. In Sec. III, we
provide the general linear response theory for the THz field,
formulated in terms of the populations and optical coherences
in the undressed band picture. Further analysis is provided
in Sec. IV, where we present the linear THz response in a
basis similar to the Nambu space in superconductivity, which
can also be called the dressed-band picture. This is helpful
for interpreting the results from the general theory given in
Sec. III. In Sec. V, we present numerical results, analysis, and
interpretation for the case of the photon laser, the case of an
external coherent field, and the case of a microcavity laser

in quasithermal equilibrium. In Sec. VI, we summarize our
findings.

II. THEORETICAL BASIS

Our model system is a semiconductor quantum well in
a microcavity with a direct band gap and parabolic bands
around k = 0. The parameters of the lowest conduction band
and the highest heavy-hole valence band of GaAs, each having
double spin degeneracy, are used here. The dynamical degrees
of freedom are the conduction band electrons, the valence
band holes, and the laser field in the cavity. The linear re-
sponse of this system to an applied THz probe is considered.
Only the coupling between the charged particles and the laser
and THz fields are included in the interaction Hamiltonian.
The two photon fields are treated as distinct since they are
spectrally well separated. The laser field is assumed to be
classical, neglecting the effects of its quantum fluctuations.
The Coulomb interactions between the charged particles are
also neglected. In the derived dynamical equations, the effects
of dephasing, pumping, and dissipation are included via phe-
nomenological gain and loss terms.

Our model Hamiltonian for the electrons, holes, and laser
field photons is

Ĥ =
∑
α,k

εαka†
αkaαk +

∑
λq

h̄ωλqc†
λqcλq

+
∑

λehq,k

[
�λ

eh(k, q)cλqa†
e,ka†

h,q−k + H.c.
]

+
∑
ναq,k

gν
α (k, q)AT ν (q, t )a†

α,q+kaα,k, (1)

where aek, ahk, and cλq are the annihilation operators for a
conduction band electron, a valence band hole, and a laser
field photon, respectively. k and q are two-dimensional (2D)
wave vectors in the quantum well’s plane (all wave vectors
in this paper are in-plane unless specified otherwise). λ labels
the optical photon spin. We consider interband transitions only
between the highest heavy-hole valence band and the lowest
conduction band. So, the band subscripts label the degenerate
spin orbitals: e = ± 1

2 , h = ± 3
2 . The subscript α runs through

both electron and hole bands. Parabolic bands are used for
the charges εek = h̄2k2

2me
+ Eg and εhk = h̄2k2

2mh
, where mα is the

effective mass in band α (both me and mh are positive in our
case), and Eg is the band gap. ωλq is the cavity resonance
frequency.

We invoke the rotating-wave approximation in setting the
interband electron-hole-laser interaction term. While treated
as an input parameter in the numerical calculations, the inter-
band coupling strength �λ

eh(k, q) can be given by �λ
eh(k, q) =

−|dcv(k, q) · ε�λ|
cav(zQW)
√

2π h̄ωλq/εb. The interband
dipole moment is dcv(k, q) = iqe〈c, k + q|p̂|v, k〉/(m0ωλq),
where m0 is the free-space electron mass, qe is the magnitude
of the electron’s charge (qe > 0), and the states |c, k〉 (|v, k〉)
in the electron momentum matrix element are conduction
(valence) band Bloch wave functions. 
cav(zQW) is the
cavity photon mode wave function along the z direction
evaluated at the position of the quantum well zQW, εb is the
background dielectric function inside the cavity, and ε�λ is the
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polarization unit vector of the optical field. (Some nuances
of the relation between the interband dipole and momentum
matrix elements are discussed in Ref. [86]; see also Ref. [87].)
The specific form of the interband matrix element governing
the e = ± 1

2 to h = ± 3
2 transitions yields (see, e.g., Ref. [39])

dcv(k, q) · ε�λ = dcv(k, q)δ|e+h|,1δe+h,λ where the angular
momentum labels in the conduction-valence band picture are
related to those in the electron-hole picture via c = e and
v = −h. In other words, for a given conduction band, the
corresponding valence band and laser-photon polarization
are fixed. We may call this form of selection rules “circular
selection rules.” In our numerical evaluations, we approximate
�λ

eh(k, q) by its value at k = q = 0.
The THz probe is treated in the Hamiltonian (1) as a

classical applied vector potential AT ν (q, t ). ν denotes the
THz field polarization. We use a gauge in which the scalar
potential is zero [87] so that ET ν (x, t ) = − 1

c ∂AT ν (x, t )/∂t ,
with x being the three-dimensional (3D) spatial coordinates.
The probe induces intraband transitions with the coupling
gν

α (k, q). With the approximation of isotropy and q � k, the
coupling strength is evaluated as

gν
α (k, q) � gν

α

(
k + 1

2
q
)

= − sαqe

mαc
h̄

(
k + 1

2
q
)

· εν, (2)

where εν is the polarization unit vector for the THz field and
sα is the sign of the particle’s charge: se = −1, sh = 1. Our
study is restricted to so-called s polarization, where the THz
field is polarized normal to the plane of incidence, and thus
in the plane of the quantum well and perpendicular to the 2D
vector q.

Using the Hamiltonian in Eq. (1) and the Heisenberg pic-
ture, we derive the single-time equations of motion of the
interband polarization peh(k1, k2, t ) ≡ 〈ah,k2 (t )ae,k1 (t )〉, the
intraband density matrices fα (k1, k2, t ) ≡ 〈a†

α,k2
(t )aα,k1 (t )〉,

and the laser field amplitude (the squared magnitude of which
is the 2D photon density in the designated mode) E�λ(q, t ) ≡
(1/

√
A)〈cλq(t )〉, where A is the system’s cross-sectional area.

Our classical approximation of the photon field leads to the
factorization of expectation values of products of photon
and fermion operators, which closes the set of equations.
The Hamiltonian (1) does not account for pumping, cavity
loss via emission of the laser field, and for carrier scat-
tering, relaxation, and dephasing (via electron-electron and
electron-phonon interaction). We include these effects phe-
nomenologically in the same way as was done in Ref. [39] by
extending the equations of motion for the interband polariza-
tion, carrier distributions, and cavity laser field by appropriate
incoherent terms that contain incoherent rates γ . We then
obtain the equation of motion for the interband polarization:

(
ih̄

∂

∂t
− (

εek1 + εhk2

))
peh(k1, k2, t ) =

∑
k′λ

[
�λ

eh(k1, k1 + k′)E�λ(k1 + k′, t )
[
δk2,k′ − fh(k2, k′, t )

]

−�λ
eh(k′, k2 + k′) fe(k1, k′, t )E�λ(k2 + k′, t )

]
+

∑
k′ν

[
gν

h(k′, k2 − k′)AT ν (k2 − k′, t )peh(k1, k′, t )

+ gν
e(k′, k1 − k′)AT ν (k1 − k′, t )peh(k′, k2, t )

] + ih̄
∂ peh(k1, k2, t )

∂t

∣∣∣∣
incoh

, (3)

the equation for the electron distribution function(
ih̄

∂

∂t
− (

εek1 − εek2

))
fe(k1, k2, t ) =

∑
k′λ

[
�λ

eh(k1, k1 + k′)p∗
eh(k2, k′, t )E�λ(k1 + k′, t )

−�λ∗
eh (k2, k2 + k′)peh(k1, k′, t )E∗

�λ(k2 + k′, t )
]

+
∑
k′ν

[
gν

e(k′, k1 − k′)AT ν (k1 − k′, t ) fe(k′, k2, t )

− gν
e(k2, k′ − k2)AT ν (k′ − k2, t ) fe(k1, k′, t )

] + ih̄
∂ fe(k1, k2, t )

∂t

∣∣∣∣
incoh

, (4)

the equation for the hole distribution function(
ih̄

∂

∂t
− (

εhk1 − εhk2

))
fh(k1, k2, t ) =

∑
k′λ

[
�λ

eh(k′, k1 + k′)p∗
eh(k′, k2, t )E�λ(k1 + k′, t )

−�λ∗
eh (k′, k2 + k′)peh(k′, k1, t )E∗

�λ(k2 + k′, t )
]

+
∑
k′ν

[
gν

h(k′, k1 − k′)AT ν (k1 − k′, t ) fh(k′, k2, t )

− gν
h(k2, k′ − k2)AT ν (k′ − k2, t ) fh(k1, k′, t )

] + ih̄
∂ fh(k1, k2, t )

∂t

∣∣∣∣
incoh

, (5)
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FIG. 3. Geometry of the THz probe wave, used in the derivation
of Eqs. (10) and (13), and in Appendix A. The quantum well is taken
to be at z = 0. The cavity material in the vicinity of the QW is taken
to be dielectric with relative permittivity εb.

and the single-mode equation for the cavity field1

[
ih̄

∂

∂t
− h̄ωλq

]
E�λ(q, t ) =

∑
ehk

�λ∗
eh (k, q)peh(k, q − k, t )

+ ih̄
∂E�λ(q, t )

∂t

∣∣∣∣
incoh

. (6)

The specific form of the incoherent (dephasing, relaxation,
and pump) contributions will be chosen appropriately for the
laser and discussed in Appendix B.

In Eqs. (1) and (3)–(6), the general form of the intra-
band matrix element gν

α (k, q) is used. Hence, these equations
are valid for general systems that may be anisotropic. As
mentioned above, the specific form of the intraband matrix
element using effective masses and isotropic parabolic bands,
gν

α (k + 1
2 q) in Eq. (2), is used below and in the numerical

evaluation.
Equations (3)–(6) describe the (two-dimensional) dynam-

ics inside the quantum well. We choose a simple setting,
shown in Fig. 3, for the propagation of the external THz probe.
The zero-width quantum well lies between two dielectric
media. The medium on the incident (transmitted) side has a
dielectric constant of ε1 (ε2). A coordinate system is set up in
which the z axis is normal to the quantum well’s plane, the
plane of incidence is the x-z plane, and the quantum well is
placed at z = 0. The THz probe field propagates according to
Maxwell’s equations with the intraband current in the quan-
tum well as a source field:[

n2(z)

c2

∂2

∂t2
+ ∇×∇ ×

]
ET (r, t )

= 4π

c2
δ(z)

∑
α,q

∂

∂t
Jα (q, t )eiq·r‖ , (7)

1An alternative to the single-mode equation for the cavity field
based on the propagation of the light through the entire microcavity
structure has been given in Ref. [32].

where r = (x, y, z) and r‖ = (x, y). In our gauge, ET ν (r, t ) =
− 1

c ∂AT ν (r, t )/∂t . n(z) is the background refractive index of
the cavity material, n(z) = √

ε1 for z < 0, and = √
ε2 for

z > 0. The vector components of the two-dimensional current
Jαν = Jα · εν are limited to the plane of the quantum well
(note the delta function in z) and consist of a paramagnetic
part J pν

α and a diamagnetic part Jdν
α :

Jαν (q, t ) = J p
αν (q, t ) + Jd

αν (q, t ),

J p
αν (q, t ) = 1

A
∑

k

sα h̄qe

mα

(
k + 1

2
q
)

· εν fα (k + q, k, t ),

Jd
αν (q, t ) = − 1

A
∑
kq′

q2
e

mαc
AT ν (q′) fα (k + q, k + q′, t ). (8)

The use of the effective mass mα in the diamagnetic current
has been shown in Ref. [88] to be a consequence of including
the THz field in the Hamiltonian interband transition term in
the more fundamental Bloch wave-function model.

Equations (3)–(8) form a closed set of equations for the
combined system of the laser and the THz probe. Of interest
is the laser’s linear response to the THz field. To obtain this,
Eqs. (3)–(6) are expanded up to first order in the THz field.
The zeroth-order steady-state fields, which describe the un-
perturbed steady-state laser, are discussed in Appendix B. The
properties of the first-order equations and solutions are further
developed in the next several sections. Included here are some
remarks on the steady-state laser solution and the relation of
the first-order current to the THz reflectivity, transmissivity,
and absorptivity.

We denote the perturbation order of the solution by a super-
script. The laser emission being primarily normal to the QW,
the zeroth-order optical field is set to have zero in-plane mo-
mentum E (0)

�λ (q, t ) = δq0E (0)
�λ (t ). This implies a corresponding

momentum restriction on the zeroth-order density matrix and
interband polarization f (0)

α (k1, k2, t ) = δk2,k1 f (0)
α (k1, t ), α =

e, h, and p(0)
eh (k1, k2, t ) = δk2,−k1 p(0)

eh (k1, t ). In the expressions
for the zeroth-order fields, we remove the momentum labels
made redundant by the delta functions. When the laser reaches
a monochromatic steady state, the occupation f (0)

α (k) is time
independent while the interband polarization p(0)

eh (k, t ) and the
light field E (0)

�λ (t ) oscillate at a lasing frequency ω�.
The first-order current Jν(1)

α (q, t ) induced by the THz field
is given by Eq. (8) with the density matrix fα set equal to
its first-order component f (1)

α . In the frequency domain, the
THz field and the total current induced by it are related by the
conductivity matrix∑

e

J (1)
eν (q, ω) +

∑
h

J (1)
hν

(q, ω)

=
∑
ν ′

σ ν ′
T ν (q, ω)ẼT ν ′ (q, ω). (9)

ẼT ν (q, ω) is the time-frequency Fourier transform of
ET ν (q, t ), which is the THz electric field in the quantum well’s
plane,

ET ν (q, t ) =
∫

dr‖e−iq·r‖ET ν (r‖, z = 0, t ).
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Using spatial symmetry arguments and those expressions
given in Sec. III which determine the conductivity
matrix, one can show that the off-diagonal elements of
σ ν ′

T ν vanish. Therefore, in the remainder of the paper,
only the diagonal terms are considered. For brevity they
are denoted by σ ν

T ν ≡ σT ν . Like the current density, the
conductivity can be written as a sum of a paramagnetic term
σ

p
T ν (q, ω) = [

∑
e J p(1)

eν (q, ω) + ∑
h J p(1)

hν
(q, ω)]/ẼT ν (q, ω)

and a diamagnetic term σ d
T ν (q, ω) = [

∑
e Jd (1)

eν (q, ω) +∑
h Jd (1)

hν
(q, ω)]/ẼT ν (q, ω).

The outgoing (reflected and transmitted) THz waves are
given in terms of the conductivity. We quote the result here,
the derivation being given in Appendix A. For an s-polarized
probe, the electric field points along the y axis in our coordi-
nate system (εν = ŷ). The intensities (magnitudes of Poynting
vectors) of the incident, reflected, and transmitted THz beams
are denoted by I (i)

y , I (r)
y , and I (t )

y , respectively. The transmis-
sivity |T |2, reflectivity |R|2, and absorptivity A are given by

|T (qx, ω)|2 ≡ I (t )
y

I (i)
y

=
√

ε2

ε1

∣∣∣∣ 2

1 + β(qx, ω)

∣∣∣∣
2

, (10)

|R(qx, ω)|2 ≡ I (r)
y

I (i)
y

=
∣∣∣∣1 − β(qx, ω)

1 + β(qx, ω)

∣∣∣∣
2

, (11)

A(qx, ω) = 1 − |T (qx, ω)|2 − |R(qx, ω)|2

= 4(Re [β(qx, ω)] − √
ε2/ε1)

|1 + β(qx, ω)|2 , (12)

where

β(qx, ω) = 1

qiz

(
qtz + 4πω

c2
σTy(qx, ω)

)
. (13)

qx is the x component of the wave vector common to the
incident and the two outgoing waves, and qiz and qtz are the
z components of the wave vectors of the incident wave and
transmitted wave, respectively.

Because the model system is symmetric under coor-
dinate inversions in the plane of the quantum well, i.e.,

symmetric under the transformation (x, y) → (−x,−y), the
conductivity has the symmetry σT ν (q, ω) = σT ν (−q, ω). The
THz conductivity σT ν (q, ω) is the Fourier transform of the
conductivity in real space σT ν (r, t ). The real-space con-
ductivity is real, as it is the ratio of two real quantities
Jαν (r, t ) and ET ν (r, t ). Therefore, the Fourier transform of the
conductivity obeys the relation σT ν (q, ω) = σ ∗

T ν (−q,−ω).
Combining these two symmetries gives a symmetry in ω space
σT ν (q, ω) = σ ∗

T ν (q,−ω). In polar coordinates in the complex
plane, this is |σT ν |(q, ω) = |σT ν |(q,−ω) and arg σT ν (q, ω) =
− arg σT ν (q,−ω). The quantities R and T are functionals of
σT ν , and so obey the same symmetries. Since A, |R|2, and |T |2
are real quantities, they all have the symmetry of the form
A(q, ω) = A(q,−ω).

III. LINEAR TERAHERTZ RESPONSE

The first-order (in the THz field) terms in the expansion of
Eqs. (3)–(6) dictate the time evolution of the material’s linear
response to the THz probe. Being interested in the spectral de-
composition of the response, we lay out below the first-order
equations in frequency space. Since the zeroth-order quanti-
ties are assumed to be monochromatic [see Eq. (B12)], with
lasing frequency ω�, it is convenient to adopt the following
convention in the time Fourier transform of the variables:

p(1)
eh (k1, k2, t ) =

∫
dω

2π
e−i(ω+ω� )t p̃(1)

eh (k1, k2, ω),

E (1)
�λ

(q, t ) =
∫

dω

2π
e−i(ω+ω� )t Ẽ (1)

�λ (q, ω),

f (1)
α (k1, k2, t ) =

∫
dω

2π
e−iωt f̃ (1)

α (k1, k2, ω), α = e, h

ET ν (q, t ) =
∫

dω

2π
e−iωt ẼT ν (q, ω).

The frequency-space THz electric field is related to the vector
potential by ÃT ν (q, ω) = c

iω ẼT ν (q, ω). The first-order equa-
tions of the frequency-space variables are the the equation for
the first-order interband polarization,

{h̄ω − [�ε(k, q − k) − h̄ω�] + iγp} p̃(1)
eh (k, q − k, ω)

=
∑

λ

{
− [

f̃ (1)
e (k, k − q, ω)�λ

eh(k − q, 0) + f̃ (1)
h (q − k,−k, ω)�λ

eh(k, 0)
]
Ẽ (0)

�λ

+ [
1 − f (0)

h (q − k) − f (0)
e (k)

]
�λ

eh(k, q)Ẽ (1)
�λ (q, ω)

}

+
∑

ν

{[
p̃(0)

eh (k − q)gν
e

(
k − 1

2
q
)

+ p̃(0)
eh (k)gν

h

(
1

2
q − k

)]
c

iω
ẼT ν (q, ω)

}
, (14)

the equation for the first-order electron distribution function,

[h̄ω − �εe(k, k − q) + iγ f ] f̃ (1)
e (k, k − q, ω)

=
∑

λ

{
p̃(0)∗

eh (k − q)�λ
eh(k, q)Ẽ (1)

�λ
(q, ω) − p̃(0)

eh (k)�λ∗
eh (k − q,−q)Ẽ (1)∗

�λ
(−q,−ω) + p̃(1)∗

eh (k − q,−k,−ω)�λ
eh(k, 0)Ẽ (0)

�λ

− p̃(1)
eh (k, q − k, ω)�λ∗

eh (k − q, 0)Ẽ (0)∗
�λ

}
+

∑
ν

{[
f (0)
e (k − q) − f (0)

e (k)
]
gν

e

(
k − 1

2
q
)

c

iω
ẼT ν (q, ω)

}
, (15)
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the equation for the first-order hole distribution function,

[h̄ω − �εh(q − k,−k) + iγ f ] f̃ (1)
h (q − k,−k, ω)

=
∑

λ

{
p̃(0)∗

eh (k)�λ
eh(k, q)Ẽ (1)

�λ
(q, ω) − p̃(0)

eh (k − q)�λ∗
eh (k − q,−q)Ẽ (1)∗

�λ
(−q,−ω) + p̃(1)∗

eh (k − q,−k,−ω)�λ
eh(k − q, 0)Ẽ (0)

�λ

− p̃(1)
eh (k, q − k, ω)�λ∗

eh (k, 0)Ẽ (0)∗
�λ

}
+

∑
ν

{[
f (0)
h (−k) − f (0)

h (q − k)
]
gν

h

(
1

2
q − k

)
c

iω
ẼT ν (q, ω)

}
, (16)

and the equation for the first-order cavity field,[
h̄ω − h̄ωλ0 + h̄ω� + iγE

]
Ẽ (1)

�λ
(q, ω)

=
∑
keh

�λ∗
eh (k, q) p̃(1)

eh (k, q − k, ω).

(17)

Here, �ε(k, q − k) = εek + εh(q−k) and �εα (k1, k2) =
εαk1 − εαk2 , with α = e, h.

Equations (14)–(16) can be formally solved as a system
of matrix equations. To simplify the algebra, the angular mo-
menta e, h, and λ are chosen to be one of the two sets of values
that satisfy the circular selection rules. Then, by eliminating
the f̃ (1)

α from Eq. (14) using Eqs. (15) and (16), p̃(1)
eh , Ẽ (1)

�λ , and
ẼT ν can be related by the 2 × 2 matrix equation

p̂(1)
eh = M−1NÊ (1)

�λ + M−1
∑

ν

QνÊT ν, (18)

where

p̂(1)
eh =

(
p̃(1)

eh (k, q − k, ω)

p̃(1)∗
eh (k − q,−k,−ω)

)
,

Ê (1)
�λ =

(
Ẽ (1)

�λ (q, ω)

Ẽ (1)∗
�λ (−q,−ω)

)
, and ÊT ν =

(
ẼT ν (q, ω)

Ẽ∗
T ν (−q,−ω)

)
.

(19)

The 2 × 2 matrices M, N , and Qν are functions only of
the zeroth-order quantities, and their formulas are given
in Eqs. (C3)–(C5), respectively, in Appendix C. Since the
THz field ET ν (r, t ) is real, expressions with the Fourier-
transformed THz field can be written using the symmetry
ẼT ν (q, ω) = Ẽ∗

T ν (−q,−ω).
Equation (17) can also be written as a 2 × 2 matrix equa-

tion that relates Ê (1)
�λ and p̂(1)

eh :

JÊ (1)
�λ −

∑
k

C p̂(1)
eh = 0, (20)

where J and C are defined in Eqs. (C1) and (C2), respectively.
Applying

∑
k C to Eq. (18) gives(

J −
∑

k

CM−1N

)
Ê (1)

�λ =
∑

ν

(∑
k

CM−1Qν

)
ÊT ν,

so

Ê (1)
�λ =

∑
ν ′

(
J −

∑
k

CM−1N

)−1(∑
k

CM−1Qν ′
)

ÊT ν ′

≡
∑
ν ′

Dν ′
(q, ω)ÊT ν ′ . (21)

Substituting Eq. (21) into (18) yields

p̂(1)
eh =

∑
ν ′

(
M−1NDν ′ + M−1Qν ′)

ÊT ν ′

≡
∑
ν ′

X ν ′
(k, q, ω)ÊT ν ′ . (22)

Finally, with the definition

f̂ (1) ≡
(

f̃ (1)
e (k, k − q, ω)

f̃ (1)
h (q − k,−k, ω)

)
(23)

the f̃ (1)
α in Eqs. (15) and (16) can be written in matrix form as

f̂ (1) =
∑
ν ′

�[GDν ′ + HX ν ′ + L]ÊT ν ′ ≡
∑
ν ′

V ν ′
(k, q, ω)ÊT ν ′ .

(24)

The formulas for the component matrices of V are given in
Eqs. (C10)–(C13).

The conductivity is calculated from Eqs. (8) and (9) as

σ
p
T ν (q, ω) = c

ẼT ν (q, ω)A

×
∑

k

[∑
h

gν
h

(
k − 1

2
q
)

f̃ (1)
h (q − k,−k, ω)

−
∑

e

gν
e

(
k − 1

2
q
)

f̃ (1)
e (k, k − q, ω)

]
(25)

and

σ d
T ν (q, ω) = iq2

e

ωq + iγD

× 1

A
∑

k

[∑
e

f (0)
e (k)

me
+

∑
h

f (0)
h (−k)

mh

]
.

(26)

The THz polarization ν enters the paramagnetic THz con-
ductivity σ

p
T ν (q, ω) explicitly in Eq. (25) through the factors

gν
α . Additionally, a sum over all THz polarizations occurs in

Eq. (24) and enters Eq. (25) through the f (1)
α . However, as

stated below Eq. (9), the ν ′ �= ν contributions vanish from the
integral over k due to the spatial symmetries of the integrand,
leaving only ν-diagonal contributions to the conductivity.
Equation (26) is the diamagnetic or Drude conductivity, with
the Drude scattering rate γD included phenomenologically
[59,62].
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In general, Eq. (25) has to be evaluated numerically, and
we show results in Sec. V. However, in the limiting case
of an e-h plasma at zero temperature and not coupled to a
cavity, so that the laser field Ẽ (0)

�λ and interband polarization
p̃(0)

eh are absent and only the Lindhard contributions to f̃ (1)
α

remain [see Eq. (C14)], one can obtain an analytical result
for the paramagnetic conductivity. This is useful in order to
check numerical results against analytical results in at least
one limiting case. The analytical result for the Lindhard term
is given in Appendix G.

IV. THZ RESPONSE IN THE NAMBU BASIS

The linear response theory developed in Sec. III provides a
general framework for the THz response, and we will show
below in Sec. V that it indeed predicts features that can
be interpreted as signatures of light-induced and BCS-like
gaps schematically shown in Fig. 1. Since, however, this
theory is a single-time theory, one might ask whether the
relation between the results of the single-time formalism and
Fig. 1 can be further substantiated. The usual approach to
single-particle spectral functions involved two-time Green’s
functions, and their evaluation for the case of excitonic BCS
states and light-induced gaps has been discussed, e.g., in
Refs. [35,49,89]. In those works, the relation to conven-
tional concepts of superconductivity is evident. The purpose
of this section is to elucidate the relationship between the
single-time response theory and conventional concepts of the
theory by reformulating the single-time theory. The reformu-
lation utilizes an approach analogous to the Nambu space
(or Nambu spinor representation) approach frequently used in
condensed matter theories. Using this approach, we can relate
the frequency and wave-vector-dependent intraband response
function f (1)

e (k, k − q, t ) to the single-particle spectral func-
tion, and hence identify features in the frequency-dependent
conductivity as resulting from gaps in the spectral function.

The THz linear response equations, Eq. (14) for p̃(1)
eh and

Eqs. (15) and (16) for f (1)
α , α = e, h in Sec. III, are written in

the frequency domain. For clarity, we temporarily transform
them back to the time domain. If it is approximated that γp =
γ f ≡ γ , then the equations can be written as a single 2 × 2
matrix equation[

ih̄
∂

∂t
+ iγ

]
D̃(1)(k, q, t )

= h(k)D̃(1)(k, q, t ) − D̃(1)(k, q, t )h(k − q)

+ M�(k, q, t ) +
∑

ν

MT ν (k, q, t ). (27)

The p(1)
eh and f (1)

α are now represented by the matrix

D̃(1)(k, q, t ) ≡
(

f (1)
e (k, k− q, t ) p̃(1)

eh (k, q− k, t )

p̃(1)∗
eh (k− q,−k, t ) − f (1)

h (q− k,−k, t )

)
,

(28)

where p(1)
eh (k1, k2, t ) = p̃(1)

eh (k1, k2, t )e−iω�t , ω� being the laser
frequency. The matrix h(k) is

h(k) =
(

ξe(k) �(k)
�∗(k) −ξh(−k)

)
, (29)

where

ξα = εα (k) − h̄ω�

2
, α = e, h (30)

�(k) = �λ
eh(k, 0)Ẽ (0)

�λ (31)

and E (0)
�λ (t ) = Ẽ (0)

�λ e−iω�t . If the k dependence of the coupling
strength is neglected, so that �λ

eh = �λ
eh(0, 0), then the Rabi

energy is �� ≡ |�λ
ehẼ (0)

�λ |. In this section, we choose the zero
point in the electron band structure to be halfway between the
valence and conduction band, not, as in Fig. 1, at the top of
the valence band. Hence, in this section εek = h̄2k2

2me
+ Eg/2 and

εhk = h̄2k2

2mh
+ Eg/2.

The structure of Eq. (27) shows that D̃(1) can be regarded
as a density matrix and h(k) as a Hamiltonian governing the
evolution of the THz fluctuations that D̃(1) represents. D̃(1) and
h(k) are similar to the 2 × 2 Green’s function and Hamilto-
nian matrices, respectively, introduced in Nambu space and
used, for example, in the BCS theory of superconductivity
[90]. �(k) is the analog of the BCS pairing gap function, and
the laser photon energy h̄ω� here takes the place of twice the
electron chemical potential in BCS.

M� and MT ν are matrices linear in Ẽ (1)
�λ and ET ν , re-

spectively. These two matrices do not contain f (1)
α nor p̃(1)

eh
explicitly. The THz field source matrix is

MT ν (k, q, t )

= [
p̂(0)

eh (k, t ) − f̂ (0)(k, t )
]
ĝν (k, q, t )

+ ĝν (k, q, t )
[
p̂(0)

eh (k − q, t ) + f̂ (0)(k − q, t )
]
, (32)

where f̂ (0)(k, t ) ≡
(

f (0)
e (k, t ) 0

0 f (0)
h (−k, t )

)
,

p̂(0)
eh (k, t ) ≡

(
0 p̃(0)

eh (k, t )
−p̃(0)∗

eh (k, t ) 0

)
,

ĝν (k, q, t ) ≡
(

hν
Te(k, q, t ) 0

0 hν
T h(q − k, q, t )

)
,

and hν
T α (k, q, t ) ≡ gν

α

(
k − 1

2
q
)

AT ν (q, t ).

α = e, h and p(0)
eh (k, t ) = p̃(0)

eh (k)e−iω�t .
The matrix M�(k, q, t ) is proportional to E (1)

�λ (q, t ).
E (1)

�λ (q, t ) is calculated through the matrix D, as defined in
Eq. (21). As explained in Appendix C, D(q, ω) is relatively
small for THz realistic q, and vanishes entirely for q = 0. The
same is true for M�(k, q, t ), as it is linear in D(q, ω). Further
below, we will, for clarity, only consider the q = 0 case. Since
M�(k, 0, t ) does not contribute to the THz response, we omit
its explicit expression.

We solve Eq. (27) by using a normal-mode expansion. The
eigenvalues of h(k) are

λ±(k) = ξ−
eh(k) ± Eeh(k), (33)

where

ξ±
eh(k) = ξe(k) ± ξh(−k)

2
,

Eeh(k) =
√

[ξ+
eh(k)]2 + |�(k)|2. (34)
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If εe(k) = εh(−k), which is taken to be true in this paper since
it is approximated that me = mh, then λ±(k) = ±Eeh(k). The
two eigenvectors of h(k) are(

x+(k)
y+(k)

)
=

(
u(k)eiθ (k)/2

v(k)e−iθ (k)/2

)
,(

x−(k)
y−(k)

)
=

(
v(k)eiθ (k)/2

−u(k)e−iθ (k)/2

)
, (35)

where u(k) =
√

1

2

(
1 + ξ+

eh(k)

Eeh(k)

)
,

v(k) =
√

1

2

(
1 − ξ+

eh(k)

Eeh(k)

)
,

and �(k) ≡ |�(k)|eiθ (k).

The eigenvectors are labeled by the same index as the eigenen-
ergies, i.e., h(x±

y±) = λ±(x±
y±). The eigenvectors are normalized

to unity: |x±|2 + |y±|2 = 1. We follow the common BCS no-
tational convention in using the symbols u(k) and v(k) in the
eigenvectors.

The eigenenergies defined by Eq. (33) are identical to those
obtained elsewhere in the literature from the single-particle
spectral function, if the Coulomb-induced renormalization is
neglected (cf. Refs. [35,49,50,89]). These eigenenergies are
shown below, in Sec. V. There, we will also show the corre-
sponding spectral function

Ae/h(k, ω) = 2|u(k)|2 γ

[h̄ω − ξ−
eh(k) ∓ Eeh(k)]2 + γ 2

+ 2|v(k)|2 γ

[h̄ω − ξ−
eh(k) ± Eeh(k)]2 + γ 2

(36)

as well at the joint density of states for vertical intraband
transitions (i.e., transitions between the two branches of the
conduction band, and equivalently between the two branches
of the valence band). The spectral function corresponding to
the single-particle Hamiltonian (29) can be obtained through
standard Green’s functions techniques. The diagonal elements
of the resulting 2 × 2 matrix for the spectral function are the
γ → 0 limit of Eq. (36). (This expression was also given in
Ref. [49].)

The matrix h(k) can be diagonalized by the unitary trans-
formation

h(k) = U (k)d (k)U †(k),

where d (k) =
(
λ+(k) 0

0 λ−(k)

)
,

and U (k) =
(

x+(k) x−(k)
y+(k) y−(k)

)
. (37)

Under the same transformation, Eq. (27) becomes[
ih̄

∂

∂t
+ iγ

]
D(1)(k, q, t )

= d (k)D(1)(k, q, t ) − D(1)(k, q, t )d (k − q)

+ U †(k)

[
M�(k, q, t ) +

∑
ν

MT ν (k, q, t )

]
U (k − q),

(38)

where D(1)(k, q, t ) ≡ U †(k)D̃(1)(k, q, t )U (k − q).
We solve Eq. (38) in frequency space. After some algebra,

the solution to the Fourier-transformed equation (38) is ob-
tained as

D(1)(k, q, ω)

=
( t11

h̄ω−[λ+(k)−λ+(k−q)]+iγ
t12

h̄ω−[λ+(k)−λ−(k−q)]+iγ
t21

h̄ω−[λ−(k)−λ+(k−q)]+iγ
t22

h̄ω−[λ−(k)−λ−(k−q)]+iγ

)
,

(39)

where the quantities ti j, i, j = 1, 2, are the elements of the
frequency-domain source matrix:

U †(k)[M�(k, q, ω) + MT ν (k, q, ω)]U (k − q) =
(

t11 t12

t21 t22

)
.

(40)

Equation (40) shows that there are resonances at energy dif-
ferences between the two bands λ+(k) − λ−(k − q) in the
response. The strength of the response depends on the pro-
jection functions u(k) and v(k).

To clarify the formalism, the q = 0 case is treated be-
low. We first obtain the matrix elements ti j of Eq. (40).
Since M�(k, q = 0, ω) = 0 as explained above, the matrix
in Eq. (40) is U †(k)MT ν (k, 0, ω)U (k). Equation (32), trans-
formed to frequency space, is simplified to

MT ν (k, 0, ω) =
(

0 p̃(0)
eh (k)hν

T (k, ω)

−p̃(0)∗
eh (k)hν

T (k, ω) 0

)
,

(41)

where

hν
T (k, ω) ≡ hν

Te(k, 0, ω) + hν
T h(k, 0, ω). (42)

Using the definition of gν
α , the relation Ã∗

T ν (−q,−ω) =
ÃT ν (q, ω), implied by the input time-domain vector potential
being real, and ÃT ν (q, ω) = c

ωi ẼT ν (q, ω), we obtain hν
T (k, ω)

explicitly as

hν
T (k, ω) = h̄qe

imrω
k · εν ẼT ν (0, ω), (43)

where mr is the electron-hole reduced mass 1
mr

= 1
me

+ 1
mh

.
Explicitly, in the eigenstate basis, the source matrix is

U †(k)MT ν (k, 0, ω)U (k)

= hν
T (k, ω)

∣∣p̃(0)
eh (k)

∣∣
×

(
2iu(k)v(k) sin θ0 −u2(k)eiθ0 − v2(k)e−iθ0

v2(k)eiθ0 + u2(k)e−iθ0 −2iu(k)v(k) sin θ0

)
,

(44)

where θ0 is the phase difference between p̃(0)
eh (k) and �(k):

θ0(k) = θp(k) − θ (k), p̃(0)
eh (k) = ∣∣p̃(0)

eh (k)
∣∣eiθp(k).

We substitute the matrix elements from Eq. (44) into Eq. (39)
to yield D(1)(k, 0, ω) and then obtain D̃(1)(k, 0, ω) as

D̃(1)(k, 0, ω) = U †(k)D(1)(k, 0, ω)U (k). (45)
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Carrying out the algebra gives the elements of D̃(1)(k, 0, ω) as

f (1)
e (k, k, ω) =

∑
ν

hν
T (k, ω)

∣∣ p̃(0)
eh (k)

∣∣u(k)v(k)

×
[

2i[u2(k) − v2(k)] sin θ0(k)

h̄ω + iγ

− cos θ0(k) + i[u2(k) − v2(k)] sin θ0(k)

h̄ω − �λ(k) + iγ

+ cos θ0(k) − i[u2(k) − v2(k)] sin θ0(k)

h̄ω + �λ(k) + iγ

]
,

(46)

f (1)
h (k, k, ω) = f (1)

e (−k,−k, ω) (47)

and

p̃(1)
eh (k,−k, ω)

=
∑

ν

hν
T (k, ω)

∣∣ p̃(0)
eh (k)

∣∣eiθ (k)

×
[

4iu2(k)v2(k) sin θ0(k)

h̄ω + iγ

+ u2(k)
cos θ0(k) + i[u2(k) − v2(k)] sin θ0(k)

h̄ω − �λ(k) + iγ

+ v2(k)
cos θ0(k) − i[u2(k) − v2(k)] sin θ0(k)

h̄ω + �λ(k) + iγ

]
,

where �λ(k) ≡ λ+(k) − λ−(k). f (1)
α , α = e, h, are inde-

pendent of spin, and in a reflection-symmetric system,
f (1)
α (−k,−k, ω) = − f (1)

α (k, k, ω).
Equation (8) relates the occupation fluctuation f (1)

α to
the THz-induced paramagnetic current J p(1)

αν , which gives the
paramagnetic conductivity σ

p
T ν by Eq. (9). The result is

σ
p

T ν (q = 0, ω)

=
∑

α=e,h J p(1)
αν (0, ω)

ẼT ν (0, ω)

= ic
Sd

A
α0

h̄ω

(
h̄2

mr

)2 ∑
k

(k · εν )2
∣∣p̃(0)

eh (k)
∣∣u(k)v(k)

×
[

2i[u2(k) − v2(k)] sin θ0(k)

h̄ω + iγ

− cos θ0(k) + i[u2(k) − v2(k)] sin θ0(k)

h̄ω − �λ(k) + iγ

+cos θ0(k) − i[u2(k) − v2(k)] sin θ0(k)

h̄ω + �λ(k) + iγ

]
, (48)

where α0 = q2
e/(h̄c) = 1/137.04 is the fine-structure

constant and Sd = 2 is the spin degeneracy. In the
weak absorption limit, the absorption is proportional to
Re σ

p
T ν (q = 0, ω), which is proportional to the sum of

Re [ f (1)
e (k, k, ω)/ẼT ν (0, ω)] over the k states. For each

k, there are three peaks in Re [ f (1)
e (k, k, ω)/ẼT ν (0, ω)],

at frequencies ±�λ and 0. The factor u(k)v(k) limits

the contributing k region to be around the BCS-like gap.
The peak at ω = 0 is proportional to sin θ0, which is
nonzero when the steady-state laser has a nonzero loss
rate, corresponding to a nonequilibrium steady state. For an
ideal eh-photon condensate at (quasi)thermal equilibrium,
sin θ0 = 0, implying that, under our assumption of γp = γ f ,
this peak is absent in the THz response of that system (see
Appendix F). For the peaks at h̄ω = ±�λ, the THz probe AT ν

perturbs the order parameter peh directly, not fα . The laser
field transfers the perturbation from peh to fα , thus creating an
intraband current. We also note that the delta function in the
joint density of states (JDOS), which is derived in Appendix
D and will be discussed and used in Sec. V, coincides with
the peaks in the integrand of the real part of the conductivity,
which can be seen in the limit of γ → 0, in which case
the real part of Eq. (48) gets a delta-function contribution
from the second term in the square brackets with the same
argument as in the JDOS [cf. Eq. (D3)].

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present our main results, in particu-
lar signatures of light-induced intraband gaps in measurable
quantities such as THz transmissivity and absorptivity and
the underlying intraband conductivity. In order to build some
intuition for the expected results, we first recall a few basic
facts of optical response. In a nonexcited two-band semi-
conductor quantum well without (excitonic) Coulomb effects,
a light field in the visible or near-infrared spectrum and in
normal incidence (i.e., in-plane wave vector q = 0) can in-
duce vertical (in k-space) transitions between the valence and
conduction bands. In contrast, vertical intraband transitions
cannot be induced by a THz field since the limit q → 0 limits
optical transitions to zero frequency. For the case of a doped
semiconductor at zero temperature, this can be seen from
the intraband pair excitation region shown in Fig. 2(a) (this
can be obtained from the Lindhard response function, see for
example Ref. [53]).

Intraband excitations in normal incidence become possible
if one considers intersubband transitions or excitonic effects
(e.g., 1s to 2p exciton transitions), both of which are not part
of our present considerations. Instead, we are interested in
vertical (or almost vertical) intraband transitions made possi-
ble by the strong coherent light field, which can be either the
laser light itself or an external coherent light field. Discussions
of single-particle spectral functions of the conduction band
(and similarly of the valence band) can be found, for example,
in Refs. [35,41,49,89], and in Fig. 4 we show the conduc-
tion band spectral function (36). The light-induced bands are
clearly visible, and transitions between the original branches
(i.e., the conduction band in the absence of the light field) and
the light-induced branches become possible (see also Fig. 1).
In this paper, we call these light-induced vertical intraband
transitions.

For the simple case of electrons occupying the states below
the light-induced gap, the pair-excitation region is shown in
Fig. 2(b). This includes the possibility of vertical transitions.
We show the joint density of states (JDOS) for light-induced
vertical intraband transitions in Fig. 4, and present mathe-
matical details in Appendix D. The JDOS has a lower bound
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FIG. 4. (a) Joint density of states for transitions between the
lower and upper branches of the renormalized conduction band.
(b) Color map of the spectral function from Eq. (36) [cf. Eq. (30)
of Ref. [49]]. For this and all subsequent figures, the parameters are
given in Table I, unless noted otherwise.

given by the light-induced gap; the (van Hove) singularity is
typical for a one-dimensional parabolic band minimum and
follows here from the geometry of a ring in two dimensions
with nonzero radius k�, in which case the two-dimensional
parabolic band minimum loses its two-dimensional rotation
symmetry. At higher energies, the JDOS exhibits a step, which
is the usual signature of a two-dimensional DOS of parabolic
bands and stems here from the vertical transition at k = 0. In
the following, we will focus on measurable signatures due to
the light-induced gap and compare features in the measurable
quantities to the energetic position of the light-induced gap or,
equivalently, to the lower bound of the JDOS.

In addition to the intraband pair excitations, the low-
frequency response of a semiconductor contains a strong
component of the Drude response (diamagnetic response),
corresponding to a collective excitation of the charge carriers.
This response is proportional to 1/[ω(ω + iγD)], with the phe-
nomenological decay rate γD. In the following, we will first
use an (idealized) small value for the Drude decay γD in order
to establish the principal result that the THz measurement can
observe the light-induced gaps. For that case, we find that the
linear THz response corresponds to THz gain. In a second

TABLE I. Material parameters used for the numerical results.
Italics denote values different from those used in Ref. [39]. These
values are used for the plots, unless otherwise noted.

Parameter Symbol Value

Bohr radius for GaAs aB 140 Å

No. of QW’s NQW 1

3D, QW exciton binding energy E 3D
B 3.2 meV

Band-gap energy Eg 1.562 meV
Cavity frequency ωcav 1.574 meV

e-h reduced mass mr
h̄2

2E3D
B a2

B

e effective mass me 2mr

h effective mass mh 2mr

Relative permittivity εb
e2

2aBE3D
B

Interband coupling strength �(k, q) 6.404 neV cm
Cavity E field loss rate γE 0.2 meV
Pump density npump 1012 cm−2

Pump relax. rate γpump 0.4 meV
Nonradiative loss rate γnr 0.1 μeV
Dephasing γp 0.2 meV
Fermi dist. relax. rate γF 2γp

Effective cond. elec. temp. T 10 K
Drude scattering rate γD 10 μeV
THz probe angle of incidence θi 0◦

step, we will look at larger, more realistic values of the Drude
decay and show that information on the light-induced gaps
can still be extracted, albeit in this case without the presence
of THz gain.

In order to relate the intuition, based on vertical light-
induced intraband transitions (Fig. 1) between the original
and the light-induced branches to our present theory, we show
in Fig. 5 the magnitude of the linear response of the carrier
density f̃ (1)

e (k, k, ω) from Eq. (15) for the case of q = 0.
Note that the vertical scale in Fig. 4 is the single-particle
energy, while that in Fig. 5 is the photon energy (frequency)

FIG. 5. Color map of the absolute value of the linear den-
sity response function | f̃ (1)

e (k, k, ω)| with k = (0, k). Here, 2�� =
2.985 meV.
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FIG. 6. THz probe response for γpump = 0.2, 1.4, 2.6, 3.8 meV, for normal incidence, θi = 0 or equivalently q = 0, and with Drude decay
γD = 0.01 meV. All parameters except γpump are as given in Table I. (a) Joint density of states (cf. Appendix D). (b), (c) Real and imaginary
parts of the low-frequency conductivity. Since we are considering the q = 0 case (except in Fig. 12), the conductivity does not depend on the
polarization direction, and in this section, we denote it σ (ω). (d) Transmissivity. (e) Absorptivity. (f) Reflectivity. The singularity in the JDOS
comes from transitions across the BCS-like gap 2|��|. The real part of the conductivity Re σT ν (ω) clearly shows a valley which is tracked by
the singularity in JDOS. For the given (small) value of γD, the minima in Re σT ν (ω) then appear as regions of gain, or negative absorptivity,
in the absorptivity plot A(ω), and also the transmissivity exhibits gain (|T |2 > 1). The Drude response dominates the imaginary part of the
conductivity Im σ (ω) and the reflectivity |R|2.

of the THz field. Our intuition is based on transitions (i.e.,
differences of energies) in Fig. 4, which corresponds to ab-
solute frequencies in Fig. 5. The linear density response
exhibits a strong signal at zero frequency, which corresponds
to transitions between a certain initial state and the same
final state. Light-induced vertical intraband transitions corre-
spond to peaks in | f̃ (1)

e (k, k, ω)|, not differences as in Fig. 4.
The comparison of Figs. 4 and 5 shows that, as mentioned
above, our single-time theory does indeed capture the physics
usually associated with spectral functions and thus two-time
Green’s functions. This correspondence is further established
in Sec. IV.

We now show that not only the linear density response, but
also the measurable THz transmissivity and absorptivity spec-
tra of a photon laser contain information on the light-induced
gaps (which, as noted above, in the case of the photon laser we
call BCS-like gaps). Figure 6 shows, in addition to the intra-
band conductivity, the transmission, reflection, and absorption
of the THz probe. We see a clear correspondence between the
singularity in the JDOS (at the energy of the BCS-like gap)
and an extremum in the transmission and absorption. On the
other hand, the reflectivity does not show such an extremum
and is dominated by the Drude response. The exact position
of the extremum is not exactly at the energy of the BCS-like
gap, in part because of line-shape effects of the various de-
cay contributions, such as the monotonically decreasing (as a
function of ω) Drude contribution, but clearly track the BCS-
like gap energy as we increase the pump rate. This is seen
more clearly in Fig. 7, where we show the energetic position
of the absorption minimum and the BCS-like gap energy as

a function of pump rate. This establishes the main claim of
our study, namely, that the BCS-like gap can in principle be
observed in THz spectroscopy.

FIG. 7. Comparison of the absorptivity minimum h̄ωB and the
BCS-like gap 2�� as a function of the pump rate γpump for the data
shown in Fig. 6. The light red line denotes the magnitude of the BCS-
like gap 2��. The dark blue line shows the frequency h̄ωB for which
the real part of the conductivity Re σT ν (ω) is a minimum; that is, h̄ωB

is defined such that Re σT ν (ωB) = min Re σT ν (ω). The plot shows
that the BCS-like gap is closely tracked by the gain maximum, over
a wide range of pumping rates.
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FIG. 8. Real part of the conductivity Re σT ν (ω), which is similar
in line shape to the absorptivity A(ω), for various pump densities
npump. Here and in the following figures, the vertical dashed lines
indicate the frequency of the onset of the JDOS, which is the same
as the light-induced gap.

However, the parameters in Figs. 6 and 7 have been chosen
to be idealized in order for the principal effect to be clearly
seen. For predictions of measurements under presently re-
alistic conditions, we need to relax the idealized parameter
choices. One of the two idealizations in Figs. 6 and 7 is
the assumption that we can freely vary the pump rate. In
typical experiments, not the pump rate but the pump density
can readily be varied since the former is modeling the relax-
ation of optically or electronically injected charge carriers via

FIG. 9. Comparison of the absorptivity minimum h̄ωB and the
BCS-like gap 2�� as a function of the pump density npump. The
light red line denotes the magnitude of the BCS-like gap 2��. The
dark blue line shows the frequency h̄ωB for which the real part of
the conductivity Re σT ν (ω) is a minimum; that is, h̄ωB is defined
such that Re σT ν (ωB) = min Re σT ν (ω). The BCS-like gap is tracked
by the minimum in Re σT ν (ω), for changing npump. �� levels off
almost completely, while the carrier density ne keeps increasing
with increasing npump. Because the Drude conductivity increases for
increasing ne, the minimum in Re σT ν (ω) does not level off as much
as ��.

FIG. 10. Real part of the conductivity vs frequency for various
values of the Drude decay rate γD. The inset shows a zoomed-in
region for the smaller values of γD. The JDOS is shown as a dashed
line. This high-frequency decay of the real part of the conductivity
follows approximately that of the JDOS.

electron-phonon and electron-electron interactions, and the
latter is determined by the injection power. When we vary
the pump density, rather than the pump rate, the BCS-like
gaps do not vary strongly once the pump density is sufficiently
high. This is because the carrier distribution functions are in
the regime of Fermi degenerate functions (basically steplike
functions), and additional density is only in k states that are
not involved in the lasing process and thus have no effect on
the laser intensity or the BCS-like gap. Nevertheless, Fig. 8
shows that the absorption still has a minimum corresponding
to the BCS-like gap, and Fig. 9 shows that the minimum still
tracks the energy of the BCS-like gap, even though in this
case the change of the BCS-like gap levels off with increasing
pump density.

FIG. 11. Second frequency derivative of the real part of the con-
ductivity vs frequency for various values of the Drude decay γD. This
shows that the BCS-like gap is again visible in Re σT ν (ω) when the
second derivative is plotted. The JDOS is shown as a dashed line.
The high-frequency decay of the second derivative of the real part of
the conductivity follows approximately that of the JDOS.
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FIG. 12. The magnitude |T | and phase arg T of the complex
transmission coefficient T of the THz probe wave, as a function of
ω for different angles of incidence θi, i.e., θi = 0◦, 15◦, 30◦, 45◦, s-
polarized THz light, and with this paper’s default value for the Drude
decay γD = 0.01 meV. θi is defined with respect to the background
medium, not the angle of incidence from outside the microcavity. The
probe geometry is as in Fig. 3. The plot shows that in the region of
the BCS-like gap and for higher frequencies, the angle of incidence
has only a small effect on the THz transmissivity.

The second idealization used in Fig. 6 is the use of a small
Drude decay rate. Increasing the Drude scattering rate so that
it is of the same order of magnitude as the BCS gap can make
the Drude response dominant. The minima or maxima are
then superposed with a monotonically decreasing Drude con-
tribution and, instead of being absolute extrema, they are only
small variations that cannot be readily identified, as shown in
Fig. 10. In order to still have access to the information from
the linear response f̃ (1)

e (k, k, ω) and thus the BCS-like gaps,
one can take the second frequency derivative, for example, of
the absorptivity or of the real part of the conductivity. This
is shown in Fig. 11. Doing so make the BCS-like gap again
readily visible.

Until now, we have shown results for the case of normal
incidence. In experiments, the THz probe might be at oblique
incidence, but this has little effect on the findings presented
above. To show this, Fig. 12 has results for various angles of
incidence (measured with respect to the surface normal of the
quantum well at the position of the quantum well inside the
cavity). We see that qualitative features of the transmission
depend only weakly on the angle of incidence, with the main
variation being the low-frequency Drude response affecting
the phase of the complex transmissivity.

FIG. 13. Color map of the linear density response function
f̃ (1)
e (k, k, ω) with k = (0, k). (a) Real part, (b) imaginary part.

We now comment further on the issue of THz gain, which
can be seen in Fig. 6. While the THz gain shown in Fig. 6 is
only obtained for a very small value of the Drude decay γD,
the fact that it can be obtained as a matter of principle makes
some further analysis desirable.

Figure 13 shows again the linear density response, sim-
ilarly to Fig. 5, but now separately the real and imaginary
parts. We see a sign change across k�, with f̃ (1)

α (k�, ω) = 0.
To further analyze how this sign change is related to the
THz gain, it is beneficial to use the theoretical formulation
developed in Sec. IV. A plot of the linear density response
using γp = γ f , which obeys Eq. (46) of Sec. IV, is shown in
Fig. 14. First, we note that a comparison of Figs. 13 and 14
shows that the region close to the BCS-like gap is not sensitive
to the choice of the decay constants. Hence, we can analyze
the origin of the gain based on Fig. 14 and use the underlying
theory, Eqs. (46), (48), and (25).

We have THz gain when the real part of the THz conduc-
tivity is negative; see Fig. 6 or Eqs. (12) and (13). Hence, the
condition for gain is that the real part of the right-hand side
(RHS) of Eq. (48) is negative. For positive ω, the gain with
frequencies close to the BCS-like gap comes from the second
term inside the square brackets of Eq. (48). The condition
for the summand on the RHS of Eq. (48) being negative
is the same as the RHS of Eq. (46) being positive if we
choose ẼT ν to be positive and real valued, in order to have
a convenient way to relate the signs of Eqs. (46) and (48).
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FIG. 14. Color map of the linear density response function
f̃ (1)
e (k, k, ω) with k = (0, k). (a) Real part, (b) imaginary part. In

contrast to Fig. 13, here γp = γ f = 0.2 meV, so that it can be ana-
lyzed using the formulas from Sec. IV.

Now our condition for THz gain at a given wave vector is
that the real part of f̃ (1)

e (k, k, ω) is positive. In our case of
the photon laser, the second term inside the square brackets
of Eq. (46) changes sign at k�. Specifically, both cos θ0(k)
and [u2(k) − v2(k)] change sign, while sin θ0(k) does not.
In our case, the sin θ0(k) term is negligible compared to the
cos θ0(k) term, which is negative below and positive above k�,
as can be seen from Fig. 15, using the fact that with our phase

conventions, cos θ0(k) = −Re p̃(0)
eh (k)

| p̃(0)
eh (k)| . While in our numerical

solution we set the arbitrary phase of the laser field Ẽ (0)
�λ to

zero and use a real-valued coupling constant �λ
eh, one can see

from the steady-state equations (B9)–(B11) that θ0 does not
depend on the phase convention of �λ

ehẼ (0)
�λ . Hence, we find

that in our photon-laser case, in the vicinity of k�, k states
below k� contribute to THz absorption at frequencies in the
vicinity of the BCS-like gap, while those above k� contribute
to THz gain. This is exemplified by the green vertical arrows
in Fig. 1.

According to Eq. (48) or (25), we have to sum up all
k contributions to determine whether the absorption or gain
contribution is dominant. In the k sum in Eq. (48), the factor
of (k · εν )2, from the intraband matrix element, favors the f̃ (1)

α

states with greater |k| over those with lower |k|. Therefore,

FIG. 15. (a) The electron density functions f (0)(k) [Eq. (B22)]
and the (b) real and (c) imaginary parts of the steady-state polariza-
tion function p̃(0)

eh (k) [Eq. (B23)] for different pump densities np.

FIG. 16. Real part of the THz conductivity Re σTy(q = 0, ω) for
an eh-photon system in quasiequilibrium (cf. Appendix F).
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FIG. 17. Real part of the THz conductivity Re σTy(ω) for the case
of a quantum well irradiated by a strong external coherent light field
in normal incidence with frequency h̄ωext = Eg + 10 meV.

from the numerics, we find that the gain overcompensates the
absorption, in the frequency region around 2��; see Fig. 6.

In the zero-dephasing limit, the dependence of the THz
gain on the optical steady state can be shown analytically if
the results of Appendix B for | p̃(0)

eh (k)| cos θ0(k) are used in
Eq. (48). Then, the conductivity integrand depends only on
the cos θ0(k) component of p̃(0)

eh (k), and in the limit of zero
dephasing γ → 0,

Re lim
γ→0

σ
p

T ν (ω > 0)

= −cSdα0�
2
�

2h̄3ω3
θ (h̄ω − 2��)

×
{(√

h̄2ω2 − 4�2
� + h̄ω̃�

)[
2 f +

R (ω) − 1
]

+
(√

h̄2ω2− 4�2
�− h̄ω̃�

)[
2 f −

R (ω)− 1
]
θ
[
�λ(0)− h̄ω

]}
,

(49)

where h̄ω̃� ≡ h̄ω� − Eg, Eg being the band gap, and

f ±
R (ω) ≡ fR

(√
2mr

h̄2

√
h̄ω̃� ±

√
h̄2ω2 − 4�2

�

)
. Like the JDOS

[cf. Eq. (D3)], Eq. (49) has a term that is multiplied by a step
function and therefore does not contribute for h̄ω > �λ(0),
and a term with no upper-bound step function. The bounded
term results from the region k < k� and is positive, so that
it contributes to absorption. The other, first term in Eq. (49)
derives from the integration over k > k� and is negative, con-
tributing to gain, until k ≈ kF , the Fermi wave number, where
it becomes positive. This sign dependence on k is the same as
that of −| p̃(0)

eh (k)| cos θ0(k). Essentially, the THz in-quadrature
susceptibility integrates over the optical in-phase polarization,
independently of the relative phase of the THz and optical
fields. In the limit of 2�� � h̄ω̃�, the THz conductivity is
equivalent to a third-order nonlinear susceptibility χ (3).

The fact that THz gain is in principle possible results
from the fact that our photon laser is an open-dissipative and
pumped system. The zeroth-order intraband polarization and
distribution functions given in Appendix B are different from

functions in a thermal equilibrium system or, more precisely,
in the case of a microcavity laser, quasithermal equilibrium. In
order to show that the THz gain is indeed absent if the system
is in quasithermal equilibrium, we use the quasithermal equi-
librium solutions from Ref. [49] and show in Appendix F that
the sign of the conductivity is fixed with the real part being
positive, eliminating the possibility of THz gain. We show in
Fig. 16 an example for this case.

In addition to the BCS-like gaps in the (nonequilibrium)
photon laser, we also analyzed light-induced gaps in the case
of a quantum well irradiated by a strong coherent external
light field with frequency in the interband continuum. As
mentioned above, we call these gaps Galitskii-Elesin gaps. An
example is shown in Fig. 17. The underlying equations for the
zeroth-order solutions are obtained from Eqs. (B13) and (B14)
by replacing the cavity field Ẽ (0)

�λ with an external coherent
field Ẽ ext

λ , and the laser frequency ω� by the frequency of
the external field ωext. In this case, Eq. (B15) is omitted.
The electron density is be solved consistently with ne = nF,e,
and the final results follow from Eqs. (B22) and ((B23). An
example of this case is shown in Fig. 17, which shows a result
similar to those of the (nonequilibrium) photon laser. In other
words, the Galitskii-Elesin gaps can be related to extrema in
the THz spectrum.

Finally, regarding the possibility of observing THz gain
in open-dissipative and pumped photon laser as well as the
quantum well irradiated by a strong coherent external light
field, we note again that the (paramagnetic) THz gain can
be overwhelmed by the absorption due to the (diamagnetic)
Drude term if the Drude decay is large.

VI. CONCLUSION

To summarize, we have developed a linear-response theory
for the low-frequency optical response of a microcavity laser
with a two-band semiconductor quantum well in the photon-
laser approximation (i.e., without excitonic Coulomb effects).
In GaAs (the example treated in this paper) and similar III-V
semiconductors, the low-frequency response of interest to this
paper is in the THz regime. The stationary two-band system
exhibits BCS-like gaps in each of the two bands. We have
shown that these light-induced gaps can give rise to structures
(minima or maxima) in the measurable quantities associated
with the linear THz response, notably the real part of the
(intraband) conductivity and the (THz) absorption. Thus, THz
spectroscopy of GaAs or other conventional semiconductors
could be a valuable tool to identify BCS-like gaps that cannot
be readily seen with light fields whose frequencies are in
the vicinity of interband transitions and thus within the stop
band of the microcavity. While our numerical results have
focused on GaAs, our analysis can in principle also be applied
to other semiconductors, where the BCS-like gaps might be
larger and the intraband spectroscopy frequencies lie outside
the conventional THz band.

In addition to the correlation between structures in the
linear-response function and BCS-like gaps, we have found
that photon lasers can in principle exhibit THz amplification.
This amplification, however, can only be seen if the Drude
decay is sufficiently small. Furthermore, we have shown that
the THz amplification is absent if the system is in quasither-
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mal equilibrium. While past studies have found the Drude
scattering rate under differing conditions [91–94], it would
be beneficial if future studies provide a microscopic model
for the Drude damping in the photon laser, possibly pointing
to pathways toward reducing the magnitude of the Drude
damping.

Finally, we have shown that, as expected, Galitskii-Elesin
gaps give rise to the same structure in the THz linear re-
sponse functions as BCS-like gaps. In a next step, the role
of Coulomb effects, and thus exciton and exciton-polariton
effects, in a polariton laser that operates in the polariton-BCS
regime, which was studied in Ref. [39], will be investigated.
Furthermore, future studies may investigate the THz emission
in the BEC-BCS crossover regime and in the BEC regime.
Such studies could shed light on how the condensation-
induced gap transforms during the BEC-BCS crossover, and
could also further elucidate the role of polariton trapping
[10,11,15] (which has been found to be an effective tool in
the manipulation and creation of polariton BEC states) on the
gap in the condensed state.
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APPENDIX A: QUANTUM-WELL THz TRANSMISSION

Equations (10)–(13), relating the THz transmissivity, re-
flectivity, and absorptivity to the conductivity in the quantum
well, are derived in this Appendix. We refer to Fig. 3 for the
propagation geometry. The boundary conditions on the THz
electric field ET and magnetic field BT at the quantum well
(z = 0) are, for η ↓ 0,

ε2ET z(r‖, η) − ε1ET z(r‖,−η) = 4πρ2D(r‖), (A1)

BTy(r‖, η) − BTy(r‖,−η) = −4π

c
J2D,x (r‖), (A2)

BT x(r‖, η) − BT x(r‖,−η) = 4π

c
J2D,y(r‖), (A3)

ET x(r‖, η) = ET x(r‖,−η), (A4)

ETy(r‖, η) = ETy(r‖,−η), (A5)

BT z(r‖, η) = BT z(r‖,−η), (A6)

where r‖ = (x, y). The 3D representations of the charge and
current densities are

ρ(r‖, z) = δ(z)ρ2D(r‖), J(r‖, z) = δ(z)J2D(r‖).

Expressed in terms of the induced current defined in
Eqs. (8), the vector 2D current is J2D(r‖) = ∑

ν[
∑

e J (1)
eν (r‖) +∑

h J (1)
hν

(r‖)]εν .
The incident fields are denoted by E (i)

T , B(i)
T , the reflected

fields by E (r)
T , B(r)

T , and the transmitted fields by E (t )
T , B(t )

T .
We have ET (r‖, z) = E (i)

T (r‖, z) + E (r)
T (r‖, z) for z < 0 and

ET (r‖, z) = E (t )
T (r‖, z) for z > 0 and similar relations for the

magnetic fields. Suppose the incident field is an s-polarized
(in our coordinate system εν = ŷ), monochromatic plane wave
with frequency ω and wave vector qi = qixx̂ + qizẑ, where
qi ≡ |qi| = √

ε1ω/c. The wave’s electric and magnetic fields
are written as (z < 0)

E (i)
T (x, t ) = Ẽ (i)

T ei(qi ·x−ωt )ŷ,

B(i)
T (x, t ) = (qixẑ − qizx̂)

c

ω
Ẽ (i)

T ei(qi ·x−ωt ),

where x = (x, y, z). Similarly, the reflected fields are (z < 0)

E (r)
T (x, t ) = Ẽ (r)

T ei(qr ·x−ωt )ŷ,

B(r)
T (x, t ) = (qrxẑ − qrzx̂)

c

ω
Ẽ (r)

T ei(qr ·x−ωt ),

where qr = qrxx̂ + qrzẑ, qr = √
ε1ω/c, and the transmitted

fields are (z > 0)

E (t )
T (x, t ) = Ẽ (t )

T ei(qt ·x−ωt )ŷ,

B(t )
T (x, t ) = (qtxẑ − qtzx̂)

c

ω
Ẽ (t )

T ei(qt ·x−ωt ),

where qt = qtxx̂ + qtzẑ, qt = √
ε2ω/c. Substituting these ex-

pressions into the condition (A5) gives

Ẽ (i)
T eiqixx + Ẽ (r)

T eiqrxx = Ẽ (t )
T eiqtxx, ∀ x

which implies

qix = qrx = qtx ≡ qx, (A7)

Ẽ (i)
T ν + Ẽ (r)

T ν = Ẽ (t )
T ν . (A8)

Equation (A7), together with the dispersion relations, lead to
qrz = −qiz and q2

t = (ε2/ε1)q2
i , which gives

q2
tz =

(ε2

ε1
− 1

)
q2

x + ε2

ε1
q2

iz.

The 2D current is a plane wave inside the quantum well,
propagating in the x direction:

J2D(x, y, t ) = J̃2Dei(qxx−ωt )ŷ. (A9)

Equation (A3) becomes

qiz
(
Ẽ (i)

T − Ẽ (r)
T

) − qtzẼ
(t )
T = 4πω

c2
J̃2D. (A10)

The conductivity at frequency ω for this y-polarized probe is
given by

σTy(qx, ω) = J̃2D

Ẽ (t )
T

. (A11)

The transmissivity |T |2 and reflectivity |R|2 are the ratios,
respectively, of the transmitted and reflected energy fluxes to
the incident energy flux. Equations (A8), (A10), and (A11)
give these quantities as

|T (qx, ω)|2 ≡
√

ε2

ε1

∣∣∣∣ Ẽ (t )
T

Ẽ (i)
T

∣∣∣∣
2

=
√

ε2

ε1

∣∣∣∣ 2

1 + β(qx, ω)

∣∣∣∣
2

, (A12)

|R(qx, ω)|2 ≡
∣∣∣∣ Ẽ (r)

T

Ẽ (i)
T

∣∣∣∣
2

=
∣∣∣∣1 − β(qx, ω)

1 + β(qx, ω)

∣∣∣∣
2

, (A13)
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A(qx, ω) = 1 − |T (qx, ω)|2 − |R(qx, ω)|2

= 4(Re [β(qx, ω)] − √
ε2/ε1)

|1 + β(qx, ω)|2 , (A14)

where A(qx, ω) is the absorptivity and

β(qx, ω) = 1

qiz

(
qtz + 4πω

c2
σTy(qx, ω)

)
. (A15)

When ε1 = ε2, Eq. (A15) reduces to

β(qx, ω) = 1 + 4πω

qzc2
σTy(qx, ω). (A16)

APPENDIX B: CONTINUOUS-WAVE LASER
DISTRIBUTIONS

Our model of a microcavity quantum-well laser is based on
Eqs. (3)–(6) in the absence of a THz probe.

As explained at the end of Sec. II, the unperturbed
(by the THz probe) fields are treated as of zeroth
order in ET ν and carry a superscript (0). Their
momentum dependence is simplified to E (0)

�λ (q, t ) =
δq0E (0)

�λ (t ), f (0)
α (k1, k2, t ) = δk2,k1 f (0)

α (k1, t ), α = e, h,
and p(0)

eh (k1, k2, t ) = δk2,−k1 p(0)
eh (k1, t ). Scatterings, e.g.,

carrier-carrier and phonon-carrier, tend to relax the intraband
carrier distributions to thermal distributions while pumping
keeps the system in a nonequilibrium state. These effects
are modeled by adding the following incoherent terms to
the equation for f (0)

α (k, t ), α = e, h, where we distinguish
incoherent relaxation and pump terms:

h̄
∂ f (0)

α (k, t )

∂t

∣∣∣∣
relax

= −γF
(

f (0)
α (k, t ) − fF (k)

)
(B1)

− γnr f (0)
α (k, t ),

h̄
∂ f (0)

α (k, t )

∂t

∣∣∣∣
pump

= −γpump
(

f (0)
α (k, t ) − fp(k)

)
, (B2)

fF (k) is the thermal distribution to which the carriers relax
via incoherent intraband scattering, i.e., if summed over k and
spin it yields the same density as the actual density, i.e., the
density obtained when f (0)

α (k, t ) is summed over k and spin,
and fp(k) is a distribution to which the carriers are driven by
the pump, and which, if summed over k and spin gives the
pump density np, which we use as an input parameter. We
model fp(k) also by a Fermi distribution. We have, explicitly,

fx(k; μx ) = 1

e(εk−μx )/kBT + 1
, (B3)

where x ∈ {F, p}. T is an effective temperature which can
generally be different from the lattice temperature since it
accounts for the dynamical equilibrium between the creation
of carriers high in the bands and the electron-hole recombi-
nation (and other loss) processes [39]. The thermal (μF ) and
pump (μp) chemical potentials are constrained to give the
actual and pump densities, respectively. Furthermore, γF is
the effective intraband thermalization rate, γpump is the pump
rate, i.e., the relaxation rate to the pump distribution, and γnr

is the nonradiative decay rate. For simplicity, we assume in
the numerical evaluation the electron and hole masses to be
equal, and thus the electron and hole populations to share the

same distributions fF (k) and fp(k) and parameters γF , γpump,
and γnr. We model the dephasing of the interband polarization
and the cavity decay of the cavity field as

h̄
∂ p(0)

eh (k, t )

∂t

∣∣∣∣∣
dephasing

= −γp p(0)
α (k, t ), (B4)

h̄
∂E (0)

�λ (t )

∂t

∣∣∣∣∣
decay

= −γE E (0)
�λ (t ). (B5)

This phenomenological model of pump and loss and relax-
ation is also used in Ref. [39] and is more fully discussed
there.

The sum of the two terms in Eqs. (B1) and (B2) can be
simplified to

h̄
∂ f (0)

α (k, t )

∂t

∣∣∣∣
relax

+ h̄
∂ f (0)

α (k, t )

∂t

∣∣∣∣
pump

= −γ f
(

f (0)
α (k, t ) − fR(k)

)
, (B6)

where γ f may be interpreted as an effective carrier relaxation
rate

γ f = γF + γpump + γnr (B7)

and fR(k) is an effective target distribution

fR(k) = 1

γ f
[γF fF (k) + γpump fp(k)]. (B8)

With the incoherent pump, loss, and relaxation terms in-
cluded, Eqs. (3)–(6) for the zeroth-order fields become[

ih̄
∂

∂t
− (εek + εh(−k) − iγp)

]
p(0)

eh (k, t )

=
∑

λ

[
1 − f (0)

e (k, t ) − f (0)
h (−k, t )

]
�λ

eh(k, 0)E (0)
�λ

(t ),

(B9)

ih̄
∂

∂t
f (0)
α (k, t ) =

∑
λ

2i Im
[
p(0)∗

eh (±k, t )�λ
eh(±k, 0)E (0)

�λ (t )
]

− iγ f
(

f (0)
α (k, t ) − fR(k)

)
, (B10)[

ih̄
∂

∂t
− h̄ωλ0 + iγE

]
E (0)

�λ (t ) =
∑
ehk

�λ∗
eh (k, 0)p(0)

eh (k, t ).

(B11)

In Eq. (B10), the upper sign in ± is for α = e and the
lower sign is for α = h. In the following it is assumed
that f (0)

e (k, t ) = f (0)
h (−k, t ) ≡ f (0)(k, t ), and f (0)(−k, t ) =

f (0)(k, t ).
We seek steady-state solutions to Eqs. (B9)–(B11), in

which the positive-frequency parts of p(0)
eh and E (0)

�λ oscillate
at the lasing frequency ω�:

E (0)
�λ

(t ) = Ẽ (0)
�λ e−iω�t , p(0)

eh (k, t ) = p̃(0)
eh (k)e−iω�t , (B12)

and the density distributions are constant in time. We consider
only isotropic solutions so that f (0)(k) and p(0)

eh (k) depend
only on the momentum’s magnitude k ≡ |k|. Specializing to
the case of heavy-hole bands, we have only one electron-hole
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spin configuration coupled to each photon circular polariza-
tion: �λ

eh vanish except for �+
−1/2,3/2 and �−

1/2,−3/2. Since only
one term contributes to the sum over (e, h) or λ in the equa-
tions, we remove the summation symbols over these variables.
With these simplifications, we substitute the solution form
(B12) into Eqs. (B9)–(B11) and obtain

[h̄ω� − �ε(k) + iγp]
∣∣ p̃(0)

eh (k)
∣∣eiθ0(k)

= [1 − 2 f (0)(k)]
∣∣�λ

eh(k, 0)
∣∣∣∣Ẽ (0)

�λ

∣∣, (B13)

− 2
∣∣ p̃(0)

eh (k)
∣∣∣∣�λ

eh(k, 0)
∣∣∣∣Ẽ (0)

�λ

∣∣ sin θ0(k)

= γ f [ f (0)(k) − fR(k)], (B14)

[h̄ω� − h̄ωλ0 + iγE ]
∣∣Ẽ (0)

�λ

∣∣ =
∑

k

∣∣�λ
eh(k, 0)

∣∣∣∣p̃(0)
eh (k)

∣∣eiθ0(k),

(B15)

where �ε(k) = εek + εh(−k). As mentioned above, we con-
sider parabolic bands εα = h̄2k2

2mα
. The phase θ0(k) is essentially

the relative phase between the interband polarization and the
photon field: θ0(k) = θp(k) − θ� (k, 0) − θE where θp, θ� , and
θE are the phases of p̃(0)

eh , �λ
eh, and Ẽ (0)

�λ , respectively. The above
equations are augmented by the density constraints mentioned
above, namely, that the steady-state distribution f (0)(k) and
the thermal distribution fR(k) sum to the same density:

nF = ne = nh, (B16)

where

nF = 2
∫

d2k

(2π )2
fF (k), nα = 2

∫
d2k

(2π )2
f (0)
α (k), (B17)

and α = e, h.
Apart from the material parameters in the Hamiltonian (1),

the input to solving Eqs. (B13)–(B16) includes the gain and
loss parameters {γF , γpump, γnr, γp, γE }, the effective temper-
ature T , and the pump chemical potential μp, which specifies
a target carrier density np the pump drives the electron-
hole population towards and thus is a measure of the pump
strength. The output result includes the field components
|Ẽ (0)

�λ |, | p̃(0)
eh (k)|, θ0(k), and f (0)(k), the lasing frequency ω�,

and the chemical potential μF of the thermal distribution.
Because Eq. (B14) is an integral equation, the number of

equations to be solved, after discretization, is roughly equal to
the number of k points. The numerical task of solution can
be made much simpler by some algebraic manipulation of
the equations. As we show below, Eqs. (B13)–(B16) can be
reduced to three algebraic equations relating |Ẽ (0)

�λ |, ω�, and
μF , which are to be solved numerically, and | p̃(0)

eh (k)|, θ0(k),
and f (0)(k) are expressed explicitly in terms of these three
quantities.

The real and imaginary parts of Eq. (B13) are∣∣p̃(0)
eh (k)

∣∣([h̄ω� − �ε(k)] cos θ0(k) − γp sin θ0(k))

= [1 − 2 f (k)]
∣∣�λ

eh(k, 0)
∣∣∣∣Ẽ (0)

�λ

∣∣, (B18)

cos θ0(k) = − h̄ω� − �ε(k)

γp
sin θ0(k),

∣∣p̃(0)
eh (k)

∣∣ �= 0.

(B19)

Substituting cos θ0(k) from Eq. (B19) into Eq. (B18), we
obtain

∣∣ p̃(0)
eh (k)

∣∣ sin θ0(k) = −γp[1 − 2 f (0)(k)]
∣∣�λ

eh(k, 0)
∣∣∣∣Ẽ (0)

�λ

∣∣
[h̄ω� − �ε(k)]2 + γ 2

p

.

(B20)
Independently, Eq. (B14) leads to

∣∣ p̃(0)
eh (k)

∣∣ sin θ0(k) = −γ f [ f (0)(k) − fR(k)]

2
∣∣�λ

eh(k, 0)
∣∣∣∣Ẽ (0)

�λ

∣∣ . (B21)

We equate the right-hand sides of Eqs. (B20) and (B21) to
obtain f (0)(k) as a function of |Ẽ (0)

�λ |, μF [through fR(k)], and
ω�:

f (0)(k) = fR(k) +
(

1
2 − fR(k)

)
γ 2

p I

[h̄ω� − �ε(k)]2 + γ 2
p (1 + I )

, (B22)

where the dimensionless intensity is I ≡ 4|�λ
eh (k,0)|2|Ẽ (0)

�λ
|2

γpγ f
. Sub-

stituting the expression for f (0)(k) in Eq. (B22) back into
Eq. (B13) gives∣∣ p̃(0)

eh (k)
∣∣eiθ0(k) = [1 − 2 fR(k)]

∣∣�λ
eh(k, 0)

∣∣∣∣Ẽ (0)
�λ

∣∣
× h̄ω� − �ε(k) − iγp

[h̄ω� − �ε(k)]2 + γ 2
p (1 + I )

. (B23)

Substituting Eq. (B23) into Eq. (B13) and canceling Ẽ (0)
�λ gives

h̄ω� − h̄ωλ0 + iγE =
∑

k

∣∣�λ
eh(k, 0)

∣∣2
[1 − 2 fR(k)]

× h̄ω� − �ε(k) − iγp

[h̄ω� − �ε(k)]2 + γ 2
p (1 + I )

.

(B24)

Equation (B16) and the real and imaginary parts of Eq. (B24)
form a set of three independent, nonlinear equations for
the three unknown, dependent variables ω�, Ẽ (0)

�λ , and μF .
The system can be solved numerically using, e.g., Newton’s
method [95]. Once these dependent variables are obtained,
f (0)(k) can be calculated via Eq. (B22) and p̃(0)

eh (k) by
Eq. (B23). f (0)(k) and p̃(0)

eh (k) are plotted in Fig. 15 for varying
pump densities np.

In Eq. (B22), the coefficient of 1
2 − fR(k) is an unnormal-

ized Lorentzian centered at k = k� ≡ 1
h̄

√
2mr h̄ω̃� and with

width γ 2
p (1 + I ). | p̃(0)

eh (k)|eiθ0(k) in Eq. (B23) is, for a given k,
formally equivalent to the polarization of a two-level medium
under continuous-wave excitation in the rate equation approx-
imation, which shows power broadening [96].

APPENDIX C: LINEAR THz RESPONSE MATRICES

In this Appendix, explicit expressions are provided for the
linear THz response matrices used in Sec. III. Their behavior
for q = 0 is also discussed.

The matrices that appear in Eq. (20), J and C, are given by

J (ω) =
(

ξγ (ω) 0
0 ξ ∗

γ (−ω)

)
, (C1)

C(k, q) =
(

�λ
eh(k, q) 0

0 �λ∗
eh (k − q,−q)

)
, (C2)
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where ξγ (ω) = h̄ω − (h̄ωλ0 − h̄ω�) + iγE , and h̄ωλ0 is the
cavity resonance frequency with zero transverse wave vector.

The matrices M, N , and Q first appear in Eq. (18). These
matrices are written as

M(k, q, ω) =
(

a(k, q, ω) b(k, q, ω)
c(k, q, ω) d (k, q, ω)

)
, (C3)

N (k, q, ω) =
(

r(k, q, ω) s(k, q, ω)
t (k, q, ω) u(k, q, ω)

)
, (C4)

Q(k, q, ω) = c

2iω

(
v(k, q, ω) x(k, q, ω)
y(k, q, ω) z(k, q, ω)

)
. (C5)

The energy differences which appear in M, N , and Q are expressed as

ξα (k1, k2, ω) ≡ h̄ω − (
εαk1 − εαk2

) + iγ f , α = e, h

ξeh(k1, k2, ω) ≡ h̄ω − (
εek1 + εhk2 − h̄ω�

) + iγp. (C6)

The elements of the matrices M, N , and Q are given by

a(k, q, ω) = ξeh(k, q − k, ω) − ∣∣Ẽ (0)
�λ

∣∣2

(∣∣�λ
eh(k − q, 0)

∣∣2

ξe(k, k − q, ω)
+

∣∣�λ
eh(k, 0)

∣∣2

ξh(q − k,−k, ω)

)

b(k, q, ω) = (
Ẽ (0)

�λ

)2
�λ

eh(k − q, 0)�λ
eh(k, 0)

(
1

ξe(k, k − q, ω)
+ 1

ξh(q − k,−k, ω)

)
,

c(k, q, ω) = (
Ẽ (0)∗

�λ

)2
�λ∗

eh (k − q, 0)�λ∗
eh (k, 0)

(
1

ξ ∗
e (k − q, k,−ω)

+ 1

ξ ∗
h (−k, q − k,−ω)

)
,

d (k, q, ω) = ξ ∗
eh(k − q,−k,−ω) − ∣∣Ẽ (0)

�λ

∣∣2

( ∣∣�λ
eh(k, 0)

∣∣2

ξ ∗
e (k − q, k,−ω)

+
∣∣�λ

eh(k − q, 0)
∣∣2

ξ ∗
h (−k, q − k,−ω)

)
; (C7)

r(k, q, ω) = �λ
eh(k, q)

{(
1 − f (0)

e (k) − f (0)
h (q − k)

) − Ẽ (0)
�λ p̃(0)∗

eh (k − q)�λ
eh(k − q, 0)

ξe(k, k − q, ω)
− Ẽ (0)

�λ p̃(0)∗
eh (k)�λ

eh(k, 0)

ξh(q − k,−k, ω)

}
,

s(k, q, ω) = �λ∗
eh (k − q,−q)Ẽ (0)

�λ

(
p̃(0)

eh (k)�λ
eh(k − q, 0)

ξe(k, k − q, ω)
+ p̃(0)

eh (k − q)�λ
eh(k, 0)

ξh(q − k,−k, ω)

)
,

t (k, q, ω) = �λ
eh(k, q)Ẽ (0)∗

�λ

(
p̃(0)∗

eh (k − q)�λ∗
eh (k, 0)

ξ ∗
e (k − q, k,−ω)

+ p̃(0)∗
eh (k)�λ∗

eh (k − q, 0)

ξ ∗
h (−k, q − k,−ω)

)
,

u(k, q, ω) = �λ∗
eh (k − q,−q)

{(
1 − f (0)

e (k − q) − f (0)
h (−k)

) − Ẽ (0)∗
�λ

[
�λ∗

eh (k, 0) p̃(0)
eh (k)

ξ ∗
e (k − q, k,−ω)

+ �λ∗
eh (k − q, 0) p̃(0)

eh (k − q)

ξ ∗
h (−k, q − k,−ω)

]}
;

(C8)

and

v(k, q, ω) = −Ẽ (0)
�λ

{
�λ

eh(k − q, 0)

ξe(k, k − q, ω)

[
f̃ (0)
e (k − q) − f̃ (0)

e (k)
]
gν

e

(
k − 1

2
q
)

+ �λ
eh(k, 0)

ξh(q − k,−k, ω)

[
f̃ (0)
h (−k) − f̃ (0)

h (q − k)
]
gν

h

(
1

2
q − k

)}

+ p̃(0)
eh (k − q)gν

e

(
k − 1

2
q
)

+ p̃(0)
eh (k)gν

h

(
1

2
q − k

)
,

x(k, q, ω) = −Ẽ (0)
�λ

{
�λ

eh(k − q, 0)

ξe(k, k − q, ω)

[
f̃ (0)
e (k − q) − f̃ (0)

e (k)
]
gν

e

(
k − 1

2
q
)

+ �λ
eh(k, 0)

ξh(q − k,−k, ω)

[
f̃ (0)
h (−k) − f̃ (0)

h (q − k)
]
gν

h

(
1

2
q − k

)}

+ p̃(0)
eh (k − q)gν

e

(
k − 1

2
q
)

+ p̃(0)
eh (k)gν

h

(
1

2
q − k

)
,
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y(k, q, ω) = −Ẽ (0)∗
�λ

{
�λ∗

eh (k, 0)

ξ ∗
e (k − q, k,−ω)

[
f̃ (0)
e (k) − f̃ (0)

e (k − q)
]
gν

e

(
k − 1

2
q
)

+ �λ∗
eh (k − q, 0)

ξ ∗
h (−k, q − k,−ω)

[
f̃ (0)
h (q − k) − f̃ (0)

h (−k)
]
gν

h

(
1

2
q − k

)}

+ p̃(0)∗
eh (k)gν

e

(
k − 1

2
q
)

+ p̃(0)∗
eh (k − q)gν

h

(
1

2
q − k

)
,

z(k, q, ω) = −Ẽ (0)∗
�λ

{
�λ∗

eh (k, 0)

ξ ∗
e (k − q, k,−ω)

[
f̃ (0)
e (k) − f̃ (0)

e (k − q)
]
gν

e

(
k − 1

2
q
)

+ �λ∗
eh (k − q, 0)

ξ ∗
h (−k, q − k,−ω)

[
f̃ (0)
h (q − k) − f̃ (0)

h (−k)
]
gν

h

(
1

2
q − k

)}

+ p̃(0)∗
eh (k)gν

e

(
k − 1

2
q
)

+ p̃(0)∗
eh (k − q)gν

h

(
1

2
q − k

)
. (C9)

The matrices in Eq. (24) are defined as

G(k, q) =
(

p̃(0)∗
eh (k − q)�λ

eh(k, q) −p̃(0)
eh (k)�λ∗

eh (k − q,−q)

p̃(0)∗
eh (k)�λ

eh(k, q) −p̃(0)
eh (k − q)�λ∗

eh (k − q,−q)

)
, (C10)

H (k, q) =
(−Ẽ (0)∗

�λ �λ∗
eh (k − q, 0) Ẽ (0)

�λ �λ
eh(k, 0)

−Ẽ (0)∗
�λ �λ∗

eh (k, 0) Ẽ (0)
�λ �λ

eh(k − q, 0)

)
, (C11)

L(k, q, ω) = c

2iω

(
f (0)
e (k − q) − f (0)

e (k) 0

0 f (0)
h (−k) − f (0)

h (q − k)

)(
gν

e

(
k − 1

2 q
)

gν
e

(
k − 1

2 q
)

gν
h

(
1
2 q − k

)
gν

h

(
1
2 q − k

)), (C12)

�(k, q, ω) =
( 1

ξe(k,k−q,ω) 0
0 1

ξh (q−k,−k,ω)

)
. (C13)

The matrix

f̂ (1)
L ≡

(
f̃ (1)
e,L (k, k − q, ω)

f̃ (1)
h,L(q − k,−k, ω)

)
= �LÊT ν (C14)

gives the Lindhard-type linear response of the carrier den-
sities. This is evaluated analytically in the limits of zero
temperature T → 0 and zero pump and decay γ f → 0 in
Appendix G. However, for normal THz wavelengths, q � k,
the matrices Dν and L are quite small compared to X ν . When
q = 0, Dν = 0 and L = 0 exactly. That L(q = 0) = 0 can
be seen directly from the first matrix in the definition of L,
Eq. (C12).

It is also true that Dν (q = 0, ω) = 0 because Dν is a sum
of terms linear in the factors gν

α (k). To see this, note that of the
matrices that appear in the definition of D in Eq. (21), only Q
contains any factors of gν

α . As is shown in Eqs. (C5) and (C9),
Q is linear in the factors gν

α . All of the other (zeroth-order)
functions that enter the linear response matrices are taken to
be isotropic in the QW’s plane f (k) = f (k). As given by
Eq. (2), gν

α ∝ k. Therefore, the elements of Dν (q = 0) have
the form

∑
k k f (k), where f (k) is isotropic in k. As this is an

integral with even limits over an odd function, it is zero.
More generally, any of the quantities that are k sums of

terms linear in gν
α will be proportional to q. Because at THz

frequencies the EM field has q � k, those quantities that
contain sums over only odd powers of gν

α are negligible com-
pared to those that contain even powers of gν

α . Fundamentally,
the intraband processes induced by the THz field break the
rotational symmetry of the quantum well.

APPENDIX D: JOINT DENSITY OF STATES

In this Appendix we provide brief remarks on the joint
density of states governing vertical transitions between the
original and the light-induced branches (see Fig. 4). Under the
influence of the optical field, the band structure is effectively
modified to have two branches with energies λ±(k), given by
Eq. (33). The transition energy between the two band branches
is

�λ(k) = λ+(k) − λ−(k) =
√

4�2
� +

(
h̄2k2

2mr
− h̄ω̃�

)2

,

(D1)
where the Rabi frequency is �� ≡ |�λ

eh(0)Ẽ (0)
�λ |, the reduced

mass is given by 1
mr

= 1
me

+ 1
mh

, and here, h̄ω̃� = h̄ω� − Eg,
Eg being the band gap. The minimum value of the transi-
tion energy is min �λ(k) = �λ(k�) = 2��, which occurs at

k� =
√

2mr ω̃�

h̄ . k� is the quasimomentum at which the electron
and hole energies in the undressed bands are resonant with the
laser frequency h̄ω�.

The density of states g(ε) is defined by

Sd

A
∑

k

f (k) =
∫

dε g(ε) f (ε(k)),

where Sd is the spin degeneracy factor. The joint density of
states (JDOS) [97] for a transition from the α band to the β
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band is

gJ (ε) = Sd

A
∑

k

δ(ε − [εβk − εαk]).

The JDOS for transitions from the lower branch to the
upper branch of the dressed conduction band is given by

gJ (ε) = Sd

2π

∫ ∞

0
k dk δ[ε − �λ(k)]

= Sd

2π

∑
i

ki∣∣ d�λ(ki )
dk

∣∣ ,
where �λ(ki ) = ε, ki � 0

⇒ ki =
√

2mr

h̄

√
h̄ω̃� ±

√
ε2 − 4|��|2; (D2)

and where the spin degeneracy is Sd = 2. This is evaluated to
give the JDOS as

gJ (ε) = mr

π h̄2

ε√
ε2 − 4�2

�

θ (ε − 2��)[1 + θ [�λ(0) − ε]],

(D3)

where �λ(k = 0) =
√

h̄2ω̃2
� + 4�2

� is the maximum transi-
tion energy for k < k�.

The joint density of states, Eq. (D3), is shown in Fig. 4(a).
At the BCS gap ε = 2��, there is a Van Hove singularity in
the JDOS [98]. The limit as ε approaches 2�� is

lim
δ≡ε−2|��|→0+

gJ (ε) = lim
δ→0+

2mr

π h̄2

√
��

δ
θ (δ).

The plot in Fig. 4(a) shows that the BCS gap Van Hove
singularity is the dominant feature in the JDOS. Semiconduc-
tor absorption spectra are often functions of the JDOS [97].
Therefore, the BCS gap is expected to be a noticeable feature
in the THz spectra. In many of the plots in this paper, the BCS
gap is indicated with a dashed, vertical line.

For ε < �λ(0), there are two equal contributions to the
JDOS. One contribution is from transitions between the two
dressed band branches for k � k�, and the other is from tran-
sitions with k � k�, as shown in Fig. 4(b). When ε > �λ(0),
transitions with k < k� no longer contribute to the JDOS. This
gives rise to the step at high energies in Fig. 4(a).

APPENDIX E: PAIR-EXCITATION REGION

In this Appendix, the calculations of the pair-excitation
regions shown in Fig. 2 are explained.

By an extension of an argument in Ref. [53], the rate of pair
excitations from one band α to another α′ for a given q, ω is

R+,α→α′ (q, ω) =
∑

k

δ[h̄ω − εα′ (k) + εα (k − q)]

× fα (k − q)[1 − fα′ (k)], (E1)

up to a proportionality factor. The rate of pair deexcita-
tions or relaxations back from α′ to α for the same q, ω is
R−,α→α′ (q, ω), which is equal to R+,α′→α (−q,−ω). The net
rate of pair excitations is then Rα→α′ = R+,α→α′ − R−,α→α′ .

We define the pair-excitation region (PER) as that q, ω

domain for which R+,α→α′ (q, ω) �= 0. In the following, we

consider the PER for q, ω > 0. Analytical formulas are pro-
vided for two limiting cases of transitions accessible in the
band structure depicted in Fig. 1. In general, pair-excitation
regions can be calculated using Eq. (E1).

For an e-h plasma at zero temperature and not coupled
to a cavity, the intraband pair excitation region is given in
Ref. [53] and shown in Fig. 2(a). For a given q, the maximum
and minimum ω > 0 transitions begin from the Fermi wave
number kF . The boundaries of the PER are parabolic, like the
original band structure.

In a photon laser, the band structure is modified and the
eigenenergies are λ±(k), given in Eq. (33). The BCS-like
gap is clearly revealed in the PER if the λ−(k) light-induced
branch is occupied for approximately k � k� (and so here
we define kF ≡ k�), and the λ+(k) light-induced branch is
unoccupied. This is the case for an electron-hole-photon sys-
tem in quasithermal equilibrium, in the T → 0 limit (cf.
Appendix F).

If only transitions to the λ+(k) branch, and to k � k�, are
allowed, then the pair-excitation region is given by

2�� � h̄ω � �� + λ+(k� + q) if q < 2k�;

��+λ+(k�−q) � h̄ω � ��+λ+(k�+q) if q > 2k�. (E2)

If transitions from the lower light-induced branch λ−(k) to the
upper light-induced branch λ+(k) are allowed for all k, then
the PER is modified in the domain q < 2k� to be

2�� � h̄ω � max

{
λ+(q) − λ−(0)

λ+(k� + q) + ��

}
. (E3)

This case is plotted in Fig. 2(b).

APPENDIX F: QUASI-THERMAL-EQUILIBRIUM MODEL

A quasi-thermal-equilibrium model assumes that the elec-
trons, holes, and photons are in thermal equilibrium with each
other at temperature T . The populations are not determined
by pump and decay processes, as in the open system, but by
the chemical potential μ, which is used as a parameter. Within
the Hartree-Fock (or self-consistent field) approximation, the
expectation values for the interband polarization, carrier dis-
tributions, and coherent light field amplitude can be obtained
from the Hamiltonian and a density operator for the grand-
canonical ensemble. This has been done in Ref. [49]. Our
Hamiltonian (1) coincides with that used in Ref. [49] if the
Coulomb contributions in Ref. [49] are neglected. Hence, in
this case we can use the quasi-thermal-equilibrium solutions
given as Eqs. (16)–(18) in Ref. [49]. Written in the notation of
this paper, the solutions are

Ẽ (0)
�λ =

∑
k′

|�λ
eh|

h̄ω0λ − μ
p̃(0)

eh (k′), (F1)

p̃(0)
eh (k) = ��

2Eeh(k)
tanh

(
Eeh(k)

2kBT

)
, (F2)

f (0)
e/h (±k) = 1

2

[
1 − ξ+

eh(k)

Eeh(k)
tanh

(
Eeh(k)

2kBT

)]
. (F3)

The distribution function in Eq. (F3) denotes f (0)
e (k) for elec-

trons and f (0)
h (−k) for holes. ξ+

eh(k) and Eeh(k) are defined
in Eq. (34), and h̄ω0λ is the fundamental cavity mode. In
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the absence of Coulomb interactions, and with �λ
eh taken as

independent of k, the Rabi energy �� = |�λ
ehẼ (0)

�λ | is also k
independent. The laser frequency is given by h̄ω� = μ. By
substituting Eq. (F2) into (F1), a single nonlinear equation is
found which determines the Rabi frequency:

1 =
∑

k

∣∣�λ
eh

∣∣2

h̄ω0λ − μ

1

2Eeh(k)
tanh

(
Eeh(k)

2kBT

)
. (F4)

It is necessary for h̄ω0λ � μ for Eq. (F4) to have a solution.
Once Eq. (F4) is solved for �� for a given set of input param-
eters, the expectation values given by Eqs. (F1)–(F3) can be
calculated.

Equations (F1)–(F3) satisfy the monochromatic semicon-
ductor Bloch equations (SBEs) (B13)–(B15) when h̄ω� =
μ and the phenomenological reservoir interaction terms are
zero, i.e., γp, γ f , and γE = 0. Therefore, as the THz spectrum
is calculated as a perturbation on the SBEs, the formalism of
this paper can be used to calculate the THz spectrum for the
quasiequilibrium case. Using Eq. (48), Re σ

p
T ν (ω) is plotted in

Fig. 16, with finite γ and varying chemical potential μ̃. Then,
taking the necessary limit γ → 0 gives the (ω > 0)-resonant
paramagnetic THz conductivity as

σ
p

T ν (ω) = c

2π

α0

h̄ω

(
h̄2

mr

)2 ∫ ∞

0
k3dk u(k)v(k)

× ��

2Eeh(k)
tanh

(
Eeh(k)

2kBT

)

×
[
P i

h̄ω − �λ(k)
+ πδ[h̄ω − �λ(k)]

]
. (F5)

The delta function in the last line gives the real part of the
conductivity, while the Cauchy principal value (P) integral
gives the imaginary part. This delta function is the same as
that which appears in the formula for the JDOS. Evaluating
the delta function and simplifying gives the real part of the
conductivity,

Re σ
p

T ν (ω) = cα0�
2
�

h̄2ω2

θ (h̄ω − 2��)√
h̄2ω2 − 4�2

�

tanh

(
h̄ω

4kBT

)

×
[
2h̄ω̃�θ [�λ(0) − h̄ω]

+
(

h̄ω̃� +
√

h̄2ω2 − 4�2
�

)
θ [h̄ω − �λ(0)]

]
.

(F6)

For ω, T , and h̄ω̃� > 0, the real part of the paramagnetic
THz conductivity is non-negative, Re σ

p
T ν (ω) � 0. In turn, the

absorptivity is non-negative, i.e., there is no THz gain in the
quasiequilibrium case. The absence of THz gain means that
a system in chemical and thermal quasiequilibrium would
not impart energy to a probe beam. The THz spectrum is
dominated by a single, sharp peak at the BCS gap 2��.

APPENDIX G: ANALYTICAL SOLUTION FOR THE
LINDHARD RESPONSE

In this Appendix, we summarize the derivation of the ana-
lytical expression of the THz paramagnetic conductivity in a

noninteracting gas of electrons and holes in a quantum well
that is not coupled to a laser field. The result is related to the
2D Lindhard function (cf. [99]).

According to Eqs. (8) and (9), the paramagnetic conductiv-
ity is given by the THz-induced current J pν(1)

α which depends
on the induced density fluctuations f̃ (1)

α , α = e, h. Setting Ẽ (0)
�λ

and p̃(0)
eh to zero in Eqs. (15) and (16) gives the linear density

fluctuation as

f̃ (1)
αL (k + q, k, ω) = c

iω

(
f (0)
α (k) − f (0)

α (k + q)

h̄ω − εα,k+q + εα,k + iγ f

)

× gν
α (k + q/2)ẼT ν (q, ω), α = e, h.

(G1)

We substitute this into Eqs. (8) and (9) and, after some
algebraic simplification, obtain the paramagnetic conductivity
as

σ
p

T ν (q, ω) = c
4α0

i

∑
α∈{e,h}

1

h̄ω′
α

Lαν (q′, ω′
α ), (G2)

where α0 = q2
e

h̄c = 1
137.04 is the fine-structure constant and

Lαν (q′, ω′
α ) ≡

∫ dk′
xdk′

y

(2π )2

[(
k′ + 1

2
q′

)
· εν

]2

×
(

f (0)
α (k + q) − f (0)

α (k)

h̄ω′
α − (2k′ · q′ + q′2) + iγ ′

α

)
. (G3)

We have scaled the momenta by the Fermi momentum kF and

the energies by the Fermi energy εαF = h̄2k2
F

2mα
:

k′ = k
kF

, q′ = q
kF

, h̄ω′
α = h̄ω

εαF
,

ε′
α,k = εα,k

εαF
, γ ′

α = γ f

εαF
, α = e, h. (G4)

The Fermi momentum is defined as the radius of the (zero-
temperature) Fermi sphere corresponding to a given density
Sd k2

F
4π

= ne = nh, where Sd = spin degeneracy, assumed to be
the same for e and h.

The steady-state distribution f (0)
α has so far been left as

arbitrary. To gain analytic insight, we consider the case of
a quasiequilibrium electron-hole plasma at zero temperature
(T = 0) and vanishing damping losses (γ ′

α → 0). In this case,
the steady-state occupation is f (0)

α (k) = θ (kF − k), and

f (0)
α (k + q) − f (0)

α (k)

= −θ (|k + q| − kF )θ (kF − k)

+ θ (kF − |k + q|)θ (k − kF ). (G5)

In the limit γ ′
α → 0, the Sochocki-Plemelj theorem yields

lim
γ ′

α→0

1

h̄ω′
α − (2k′ · q′ + q′2) + iγ ′

α

= P 1

h̄ω′
α − (2k′ · q′ + q′2)

− iπδ[h̄ω′
α − (2k′ · q′ + q′2)]. (G6)
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With Eqs. (G5) and (G6), the imaginary part of Eq. (G3) becomes

Im Lαν (q′, ω′
α ) =

∫
d2k′

4π

[(
k′ + 1

2
q′

)
· εν

]2

δ[h̄ω′
α − (2k′ · q′ + q′2)][θ (|k + q| − kF )θ (kF − k) − θ (kF − |k + q|)θ (k − kF )].

(G7)

We orient our coordinate system so that x̂ points in the direction of q. Then the factor in the integrand in Eq. (G7) that depends
on the THz polarization vector becomes, for the two linear polarization directions,

s polarized :
[(

k′ + 1
2 q′) · εν

]2 = k′2
y , p polarized :

[(
k′ + 1

2 q′) · εν

]2 = (
k′

x + 1
2 q′)2

cos2 φ,

where φ is the angle between εν and the x̂ axis. The result of the integration in Eq. (G7) is as follows. For 0 � q′ � 2, 0 �
h̄ω′

α � 2q′ − q′2,

Im Lαν (q′, ω′
α ) = 1

4πq′

{ 1
3 [(1 − a2

−)3/2 − (1 − a2
+)3/2], s pol.( h̄ω′

α

2q′
)2

cos2 φ[
√

1 − a2− −
√

1 + a2+], p pol.

For 0 � q′ � 2, 2q′ − q′2 � h̄ω′
α � 2q′ + q′2, and for q′ � 2, q′2 − 2q′ � h̄ω′

α � q′2 + 2q′,

Im Lαν (q′, ω′
α ) = 1

4πq′

{ 1
3 (1 − a2

−)
3
2 , s pol.( h̄ω′

α

2q′
)2

cos2 φ

√
1 − a2−, p pol.

Im Lαν (q′, ω′
α ) = 0 for elsewhere in the range ω′

α � 0. In the above,

a± = h̄ω′
α

2q′ ± q′

2
.

The value of Im Lαν (q′, ω′
α ) for negative ω′

α is obtained via the symmetry relation (for inversion-symmetric systems)

Lαν (q′,−ω′
α ) = L∗

αν (q′, ω′
α ). (G8)
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