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Fixed-phase diffusion Monte Carlo study of activation gap and skyrmion excitations
of a ν = 1 system in the presence of charged impurities
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The discrepancy between the theoretically calculated and experimentally measured activation gaps in quantum
Hall effect has long been a puzzle. We revisit this issue in the context of the ν = 1 quantum Hall state, while
also incorporating the skyrmion physics. We find that the finite width and the Landau level mixing effects are
not sufficient to explain the observed activation gap. We further show that the presence of charged impurities
located adjacent to the quantum well can cause a significant reduction in the activation gap, while also causing a
suppression of the skyrmion size.
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I. INTRODUCTION

Ever since the discovery of the fractional quantum Hall
effect (FQHE) [1,2], many theoretical achievements have been
made [3,4] and a lot of experiment discoveries are success-
fully explained. However, a lot of questions remain. One of
them is to quantitatively understand the excitation gap of
FQHE states. The experimentally measured gaps [5–11] are
found to be significantly lower than the theoretically predicted
ones [12–17]. We note here that even for the filling factor
ν = 1, the theoretical value of the gap to charged excitations
[18–21] is much greater than the values observed in exper-
iments [22,23]. That is the discrepancy we address in this
work, with the belief that an understanding of it will help
resolve the discrepancy for the fractional quantum Hall gaps.

In the noninteracting picture, the ground state is fully po-
larized and the low-energy excitation of the system in the
small Zeeman energy limit consists of a quasiparticle and
a quasihole pair, where a single spin-up electron is flipped
and added to the lowest Landau level of the opposite spins.
The energy of this excitation is modified substantially due
to interaction, thus producing a gap that is much larger than
the Zeeman splitting. There is another effect that lowers the
gap, which has to do with the formation of the so-called
skyrmion excitations. This appears most dramatically at zero
Zeeman energy. Here, the ground state is still fully spin polar-
ized due to exchange effects. However, exact diagonalization
studies by Rezayi [24,25] showed that even the removal of
a single electron from the ground state (or adding one more
electron into the system) makes the system a spin singlet.
This spin-singlet state was later identified by Sondhi et al.
[26] to be the skyrmion state. This has lower energy than the
state involving the flip of the spin of a single electron. For
finite Zeeman energies, a skyrmion of a finite size is obtained
[18,19,25–28].

The activation gaps predicted by the skyrmion physics
[18,19] are significantly larger than experimental values mea-
sured in GaAs quantum wells [22,23]. Therefore, it requires

further study to investigate what factors suppress the gap in
realistic conditions.

Many articles have tried to explain what led to the reduc-
tion in the activation gap. Earlier Hartree-Fock calculations
show that the finite width and the Landau level mixing (LLM)
can lower the skyrmion gaps [18–20]. A two-dimensional
(2D) fixed-phase diffusion Monte Carlo (DMC) study by
Melik-Alaverdian et al. [21] shows that while either the fi-
nite width or the LLM reduces the gap, the LLM has a
much weaker influence for finite width systems. While all
these studies show that the LLM and the finite width effect
are responsible for the reduction of the activation gap, there
is still a difference between the experimental gap and the
theoretical gap including the correction of all these effects.
A disorder-averaged Hartree-Fock calculation performed by
Murthy shows that the effect of disorder may play a key role in
reducing the excitation gap [29]. Another study by Wan et al.
based on the calculation of Chern number [30] also shows the
significance of disorder. These studies show that the activation
gap is generally reduced in the presence of disorders, with
or without the skyrmion physics. However, to the best of our
knowledge, there is no work so far that includes the influence
of the finite width, the LLM, and disorder altogether. There-
fore, a model that quantitatively captures all these factors in a
realistic manner is needed.

In this paper, we report on our three-dimensional (3D)
fixed-phase DMC study of the skyrmion gap of a ν = 1 sys-
tem in the presence of charged impurities. Our study includes
the LLM, the finite width effect, and the influence of charged
impurities simultaneously. Our calculation shows that without
any impurities, the LLM and the finite width effect are not
sufficient to reduce the activation gap to the value that has
been observed in experiments. On the other hand, within our
model, charged impurities that interact with the system by
Coulomb interaction lead to an additional reduction in the
activation gap. The calculated gap in the presence of charged
impurities agrees with experiments reasonably well, given that
all the characteristic parameters of impurities are in the range
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that is allowed by standard GaAs quantum well experiments
[22,23]. We also find that the charged impurities suppress the
size of skyrmions.

In the following sections, we first review the background of
the skyrmion physics at ν = 1. We next show our variational
Monte Carlo (VMC) as well as DMC studies of the change
of the gap due to the finite width and the LLM effect without
any impurities. Finally, we show how the charged impurities
influence the gap, and compare our results with experiments.

II. ν = 1 SKYRMION

In this section, we briefly review the background of the
skyrmion physics. Throughout this paper, we specify the unit

of length to be the magnetic length lB =
√

h̄c
eB and the unit of

energy to be the Coulomb energy e2/εlB. We also define the
LLM parameter κ to be the ratio between the Coulomb energy
and the cyclotron energy κ = e2/εlB

h̄ωc
, where ωc = eB

mc . We work
with the spherical geometry, where a magnetic monopole of
the strength Q is placed at the center of the sphere to generate
the uniform magnetic field on the surface, which produces a
magnetic flux of 2Qhc/e. Before we introduce the skyrmion
wave functions, it is necessary to first give the ground state
wave function for the quantum Hall state at ν = 1 and the
quasiparticle as well as the quasihole wave functions. The
ground state wave function at ν = 1 is obtained by filling
up all the lowest Landau level orbitals. This requires the
number of electrons N and the magnetic strength Q to satisfy
2Q + 1 = N . The ground state wave function (unnormalized)
reads

�gs;N =
∏

1� j<k�N

(u jvk − ukv j ), (1)

where ui = cos(θi/2)eiφi/2 and vi = sin(θi/2)e−iφi/2 are spinor
coordinates [31,32] of the ith particle, where θi and φi are the
usual spherical angles. Because of the rotational symmetry,
the quasiparticle and quasihole wave functions are most con-
veniently constructed by adding or removing electrons at the
north or the south pole. In this paper, because we are calcu-
lating the energies of the quasihole and quasiparticle states
independently and thus no interaction between the quasipar-
ticle and quasihole is involved, it is in principle allowed to
put the quasiparticle (hole) at either pole. Nonetheless, we
place the quasihole at the north pole and the quasiparticle at
the south pole for the convenience of description. We refer
readers to Ref. [12] for a systematic study of Landau orbitals
and quasiparticle (hole) wave functions on the sphere.

The quasihole wave function is obtained by removing an
electron from the ground state at the north pole of the sphere
by setting uN = 0 and vN = 1:

�h;N−1 =
∏

1� j<k<N

(u jvk − ukv j )
∏

1� j<N

u j . (2)

We note that because for the ground state and the quasihole
wave functions, only the spin-up orbitals are occupied, we do
not write down the spins explicitly. We will write down the
spin part of the wave functions explicitly when we give wave
functions for the quasiparticle state and the skyrmion state to
avoid any confusion since those two states involve both spins.

To calculate the excitation gap, we also need the wave
function for the quasiparticle state. The wave function is con-
structed by adding an electron to the ground state at the south
pole of the sphere:

�p,N+1 = A[�1,NYQQ(−Q)] ↑1 · · · ↑N↓N+1], (3)

where A is the antisymmetrization operator, ↑ and ↓ denote
up and down spins, and YQQ(−Q) is the magnetic harmonic in
the LLL with the maximum quantum number for Lz[12]:

YQQ(−Q) =
[

2Q + 1

4π

]1/2

v2Q. (4)

We use the skyrmion wave function on the sphere proposed
by MacDonald et al. [33]. The skyrmion wave function for
N − 1 particles with K + 1 spins flipped relative to the ground
state is given by

�K
sk;N−1 = �gs,N−1

∑
{i1,...,iK }

[vi1 ...viK u j1 ...u jN−1−K

× ↓i1 · · · ↓iK ↑ j1 · · · ↑ jN−1−K ], (5)

where the sum is over all distinct particle indices and j’s
denote the particles other than i1, i2, ..., iK . When K = 0, the
above wave function becomes the quasihole wave function,
i.e., �h;N−1 = �K=0

sk;N−1, as expected.
In principle, one can also obtain the wave function for the

antiskyrmion by applying the particle-hole (PH) conjugation
on the skyrmion wave function in the Fock space. However,
we do not include this state in our study because of the reasons
that we are going to discuss shortly.

The gap for flipping a single particle is defined as


ph = Ep + Eh − 2Egs + EZ. (6)

Here Ep is the total energy of the quasiparticle state with N +
1 particles, Eh is the total energy with N − 1 particles, and
Egs is the ground state energy of N particles. The gap of the
skyrmion-antiskyrmion pair of S = 2K + 1 total spins flipped
is defined as


sk-ask(K ) = Esk(K ) + Eask(K ) − 2Egs + (2K + 1)g, (7)

where g is the Landé g factor and the relationship that EZ = Sg
has been used. When the LLM is not considered, the PH
symmetry is preserved. In this case the energies of generating
a pair of quasihole-skyrmion and a pair of quasiparticle-
antiskyrmion are the same. Therefore one can rewrite Eq. (7)
as


sk-ask(K ) = 
ph + 2δ(K ), (8)

where δ(K ) = Esk − Eh = Eask − Ep. On the other hand,
when the PH symmetry is broken by the LLM, Eq. (8) does
not hold anymore and one needs to explicitly calculate the gap
of generating a pair of skyrmion and antiskyrmion to obtain
the proper excitation gap. However, the antiskyrmion state is
very difficult to handle in the DMC algorithm, which prevents
us from performing an explicit calculation for antiskyrmion
state. Nonetheless, we will continue to use Eq. (8) even when
LLM is present. This is because the LLM typically only makes
a small modification on the energy and only breaks the PH
symmetry slightly at experimental parameters [34–37]. Com-
pared to the big energy discrepancy that we are concerned
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with throughout this paper, Eq. (8) is still a very accurate
estimation of the activation gap.

For an infinite system, there is no upper limit of K . How-
ever, for a finite system of N particles, the maximum value
of K is N/2. In general, 
sk-ask of different K values are
different, and the actual K observed in the experiment is the
one that gives the lowest energy. To determine the value of K ,
we use the Monte Carlo methods to calculate the energies of
skyrmion states at all possible K’s separately and pick out the
one that has the lowest 
sk-ask.

III. VARIATIONAL MONTE CARLO STUDY

In this section we introduce our VMC study of the problem.
There are two different calculations that are performed. First,
we neglect the finite width of the quantum well. Next, we
perform a calculation that includes the finite width effect of
the quantum well by taking the effective Coulomb interaction
between particles as

Veff(r) =
∫

dz1

∫
dz2

ρ(z1)ρ(z2)√
r2 + (z1 − z2)2

, (9)

where ρ(z) is the transverse distribution, which is evaluated
in local density approximation at zero magnetic field [8,38].
In our study, the width of the quantum well is sufficiently
narrow that only the lowest subband is involved. (We choose
the parameters similar to those in Refs. [22,23] where the
carrier densities are around 1011 cm−2 and the quantum well
widths are around 20 nm, which corresponds to a width of
1 − 2lB.)

The results are shown in Fig. 1. We find that the finite width
effect can reduce the energy gap by about 20%–30%. The gap
after the inclusion of finite width is still significantly greater
than experimental values. We note that our results agree with
earlier Hartree-Fock and Monte Carlo calculations [18–20].
We also show the total number of reversed spins S from our
calculation. The smallest system has 24 particles so the largest
K considered in our calculation is 12. This sets an upper limit
of S in our calculation to be 25.

IV. DIFFUSION MONTE CARLO STUDY

Because the VMC results suggest that the finite width itself
is not sufficient to explain the reduction in the activation gap,
we proceed to explore how LLM influences the gap. This is
done by the fixed-phase DMC calculation. The fixed-phase
DMC is a type of the DMC method and it is specialized to
solve the many-body Schrödinger equation where the wave
functions for the system cannot be written as real functions
(e.g., FQHE systems where time-reversal symmetry is bro-
ken). Essentially, this method approximates the phase of the
ground state wave function by the phase of a well-defined trial
wave function �T and uses the standard DMC technique to
solve for the amplitude of the wave functions. In this paper,
we consider both 2D and 3D cases. For 2D DMC, the trial
wave functions are chosen to be the ansatz wave functions
introduced above (�gs, �h, �p, or �sk). The trial wave func-
tion for 3D DMC is chosen to be the product of the 2D wave

FIG. 1. The gap and the total number of reversed spins calculated
by VMC and DMC methods for skyrmion states at ν = 1. Top: exper-
imental and theoretical gaps at different parameters. Bottom: the total
number of reversed spins calculated by VMC and DMC methods. In
the legend, W stands for the quantum well width in nanometers and
n stands for the carrier density in 1010 cm−2. Experimental data are
plotted with scattered marks with the mobilities labeled by μ in units
of 106 cm2/V s.

function and the transverse wave function:

�T = �
∏

i

ψ (zi ), (10)

where � is one of �gs, �h, �p, or �sk, and
∏

i ψ (zi ) =∏
i cos( πzi

W ) is the transverse trial wave function in the infinite
square well of the width W . We note that the real GaAs quan-
tum well is not infinitely deep. However, the systematic bias
due to the infinite well approximation is negligible, because
the penetration of the transverse wave function into the wall is
small in a typical situation [37].

Compared with the VMC, in which the wave function is
always lowest Landau level projected, the DMC algorithm
does not restrict the final state to be lowest Landau level
projected and it allows the mixing with higher Landau levels.
The LLM in the DMC is controlled by the LLM parameter κ .
In the limit of κ → 0, the DMC calculation degrades to the
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FIG. 2. The mobility due to Coulomb scattering as a function
of the impurity separation d , calculated with the Born approx-
imation. Left: Z = 0.5 and nimp = 2.8 × 1011 cm−2. Right: Z =
1 and nimp = 1.4 × 1011 cm−2. The dashed lines show the mo-
bility values observed in Ref. [22] (μ = 5 × 104 cm2/ V s, n =
1.4 × 1011 cm2/ V s) and Ref. [23] (μ = 5 × 105 cm2/V s, n =
1011 cm−2).

VMC [45,46]. For ν = 1, κ = 1.07 at n = 1.4 × 1011 cm−2.
The DMC method has been proven to be effective in solving
FQHE problems [21,34,36,39–44] and we also refer readers to

Refs. [45,46] for general introduction of the standard DMC.
Some technical details of the 3D DMC method can also be
found in Ref. [37].

In Fig. 1 we also show our DMC results. First we show
the 2D DMC result in which the system is strictly 2D. Next
we show the 3D DMC result in which the finite width effect is
automatically included. We find that LLM itself can reduce the
gap by about 20%–30%, which is comparable to the reduction
caused by finite width effect alone. When both LLM and finite
width are considered, the gap is only further decreased by very
little. The fact that the LLM has a much weaker effect for
finite width systems agrees with the conclusion in Ref. [21].
This is not very surprising, as the finite width effect softens the
repulsion between particles, less mixing with higher Landau
levels is needed.

V. THE ROLE OF CHARGED IMPURITY

Based on our results from VMC and DMC, we find that
the LLM and finite width are not sufficient to explain the
discrepancy between theory and experiments. Another im-
portant factor that has not been included in our study is the

FIG. 3. The activation gap calculated by VMC and 2D DMC methods for skyrmion at ν = 1 with charged impurity q separated from the
quantum well by the distance d . Top left: q = 0.5e and d = 10 nm. Top right: q = 0.5e and d = 20 nm. Bottom left: q = e and d = 20 nm.
Bottom right: q = e and d = 30 nm. In the legend, W stands for the quantum well width in nanometers and μ is the mobility in 106 cm2/V s.
The LLM of 2D DMC is κ = 1, which corresponds to n = 1.4 × 1011 cm−2. Experimental data are drawn with scattered points for comparison.
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influence of disorders. It is believed that at low temperatures,
the scattering process is dominated by charged impurities via
the Coulomb interaction [47]. This is partially justified by
the fact that the theoretically calculated mobility due to the
Coulomb scattering agrees with experiments [48–50]. For our
purpose, we consider a simple model: a negatively charged
impurity q is placed above the north pole of the sphere and
a charged −q impurity is placed above the south pole. We
place the impurities at these locations because in general
quasiholes are attracted to negative charges and quasiparticles
are attracted to positive charges. Since we add the quasihole
at the north pole and the quasiparticle at the south pole, such
a configuration should be energetically favored. We also note
that because only one skyrmion-antiskyrmion pair is inside
our system, there is only one pair of charged impurities. This
configuration is only suitable to study sparsely distributed im-
purities since each skyrmion is only affected by one impurity.
We next specify the separation between the impurities and the
quantum well to be some values of the order of a few hundred
angstroms. The separation is chosen as such because experi-
mentally the Coulomb impurities are typically introduced in
a doping region that is separated from the quantum well by

a few hundreds of angstroms. We will see shortly that this is
also supported by a quantitative calculation of the mobility
through estimating the relaxation time (μ = eτ

m ) due to the
Coulomb scattering. In general, one needs a sophisticated
model to properly include the effects from finite width of the
quantum well, the distribution of impurities, and the screening
effect on the permittivity [47,51]. However, because we do not
know all these details, we can only look for a semiquantitative
description of the disorder at best. The mobility of the 2D
electron gas in the Born approximation at zero temperature
reads [51]

μ = 8e(kF d )3

Z2π h̄nimp
, (11)

where d is the separation between the impurity and the 2D
system, kF is the Fermi wave vector, Ze is the impurity charge,
and nimp is the 2D density of impurities. In our study, we make
the assumption that the total charge of impurities is the same
as the total charge of electrons, i.e., Znimp = n. In Fig. 2, we
show that for Z = 0.5 and Z = 1, this model gives a mobility
that agrees with the value measured in experiments [22,23]
when d is around 10–30 nm.

FIG. 4. The number of total reversed spins of skyrmions at different impurity separations d calculated by VMC and 2D DMC in the
presence of charged impurities in the quantum well at n = 1.4 × 1011 cm−2. Top left: d = 10 nm. Top right: d = 20 nm. Bottom left:
d = 30 nm. Bottom right: d = 40 nm.
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The results from VMC and 2D DMC calculation are shown
in Fig. 3. In general, we find that the inclusion of charged
impurities leads to a much better agreement between the the-
oretical and the experimental values of the activation gap. We
find that for both impurity charges (q = e and q = 0.5e), the
skyrmion physics arises at small Zeeman energy and the gaps
are comparable to experiments. Our calculation also gives
the values of S at different g’s. Our calculation suggests that
the skyrmion physics can survive a wide range of charged
impurity strength and distance. Particularly, a system with
a large impurity charge and a large impurity distance can
coincide with a system with a small impurity charge and
a small impurity distance in their gaps. This gives a pos-
sible explanation for why the samples from Ref. [23] and
Ref. [22] have very similar excitation gaps while their mobil-
ities differ by about ten times. Lastly we show that there is a
suppression effect on the skyrmion size due to the presence
of impurities. As one can see in Fig. 4, when we fix the
impurity charge to be 0.5e, the occurrence of the large size
skyrmions (S > 2) is delayed as the charge distance decreases.
This can be understood by the fact that the skrymion with
a large K value has its charge distribution more extended,
so the pointlike impurity has a stronger attraction with small
skyrmions. The calculation suggests that in order to obtain
large-size skyrmions experimentally, the charged impurities
should be separated from the quantum well distantly.

VI. CONCLUSION

In this paper, we have revisited the question of the discrep-
ancy between the theoretically calculated and experimentally
measured activation gaps in the ν = 1 quantum Hall state.
We have found that the puzzle cannot be resolved by only
considering the finite width effect and the LLM effect. We
have proposed a simple model to include the influence of
sparsely distributed charged impurities and our conclusion is
that the Coulomb impurities can greatly reduce the activa-
tion gap and they can also suppress the size of skyrmions.
While our model can explain the experimental observations,
it may lack realistic details, and thus our model is at its best a
semiquantitative account of the puzzle. More experiments are
required to further elucidate this issue.
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