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Spin splitting and spin Hall conductivity in buckled monolayers
of group 14: First-principles calculations

S. M. Farzaneh *

Department of Electrical and Computer Engineering, New York University, Brooklyn, New York 11201, USA

Shaloo Rakheja †

Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 29 September 2020; revised 31 August 2021; accepted 1 September 2021; published 27 September 2021)

Elemental monolayers of group 14 with a buckled honeycomb structure, namely, silicene, germanene, stanene,
and plumbene, are known to demonstrate spin splitting as a result of an electric field parallel to their high-
symmetry axis, which is capable of tuning their topological phase between a quantum spin Hall insulator and an
ordinary band insulator. We perform first-principles calculations based on density functional theory to quantify
the spin-dependent band gaps and the spin splitting as a function of the applied electric field and extract the main
coefficients of the invariant Hamiltonian. Using linear response theory and the Wannier interpolation method,
we calculate the spin Hall conductivity in the monolayers and study its sensitivity to an external electric field.
Our results show that the spin Hall conductivity is not quantized and, in the case of silicene, germanene, and
stanene, degrades significantly as the electric field inverts the band gap and brings the monolayer into the trivial
phase. The electric-field-induced band gap does not close in the case of plumbene with a spin Hall conductivity
that is robust to the external electric field.
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I. INTRODUCTION

The buckled monolayers of group 14 possess a topological
phase known as the quantum spin Hall insulator [1]. An exter-
nal electric field, via a substrate or a gate contact, provides
an experimentally feasible way to tune the spin properties
of these materials, which is highly desirable in spintronics
applications [2]. Calculations show that an external electric
field is capable of switching the topological phase into a trivial
band insulating phase [3]. Moreover, it is well known [3,4]
that the electric field induces spin splitting in the bands at
the K point of the Brillouin zone. However, the impact of
the electric-field-induced spin splitting on the quantum spin
Hall phase and the spin Hall conductivity is relatively less ex-
plored. With the recent experimental realization of stanene [5]
and plumbene [6], it is desirable to investigate the impact of
the electric field on the spin splitting and, consequently, the
spin Hall conductivity via systematic first-principles calcula-
tions based on density functional theory and linear response
theory.

Elemental monolayers of group 14 of the periodic table
are two-dimensional (2D) crystals of carbon, silicon, germa-
nium, tin, and lead, which are known as graphene, silicene,
germanene, stanene, and plumbene, respectively. This family
of 2D materials possesses a variety of properties ranging from
Dirac energy dispersion of the low-energy excitations at the K
point and a spin-orbit-induced band gap to the possibility of
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a quantum spin Hall insulating phase which is tunable via an
external electric field [7]. Following the successful isolation
of graphene a decade ago [8], other members of this fam-
ily came into existence, starting with silicene [9–12], which
was followed by germanene [13,14] and, more recently, by
stanene [5,15,16] and plumbene [6]. In their most stable con-
figuration, they show a buckled honeycomb structure which
possesses a lower symmetry than that of graphene. Therefore,
in general, the electronic states are expected to have a lower
number of degeneracies. Since these monolayers consist of
elements heavier than carbon, spin-orbit coupling is expected
to affect the electronic band structure more significantly. In
fact, as one goes from silicene to plumbene, the intrinsic band
gap at the K point increases, and the Fermi velocity decreases.

Spin-orbit coupling in the buckled monolayers is of es-
sential importance both in fundamental physics such as the
quantum anomalous Hall effect [17,18] and the quantum spin
Hall effects [3,19] and also in spintronics applications such as
the spin-polarized transistor [20], spin-valley logic [21–23],
spin filter [2,24], valley-polarized metal [25], and electrical
switching of magnetization via spin-orbit torques [26]. Rich
literature exists on theoretical works on buckled monolayers
in the past decade based on group theoretic works [4,27,28],
effective Hamiltonians [3,28–32], and first-principles calcu-
lations based on density functional theory [2,29,30,33–45].
Nevertheless, only a few first-principles works [2,36,37,40]
studied the effect of the electric field in buckled monolayers.
Of these studies, only Refs. [2,36] include the relativistic
spin-orbit coupling effects. Ab initio studies [46–48] on the
spin Hall conductivity of germanene and stanene have only
recently become available. Here, we go a step further by

2469-9950/2021/104(11)/115205(10) 115205-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4145-0991
https://orcid.org/0000-0001-7501-275X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.115205&domain=pdf&date_stamp=2021-09-27
https://doi.org/10.1103/PhysRevB.104.115205


S. M. FARZANEH AND SHALOO RAKHEJA PHYSICAL REVIEW B 104, 115205 (2021)

FIG. 1. A two-dimensional buckled honeycomb crystal with lat-
tice constant a and buckling size d . The primitive unit cell is shaded
in gray, and the primitive vectors are drawn in red. Dark and light
circles denote atoms on different sublattices. The first Brillouin zone
along with the reciprocal vectors is shown in the bottom right.

analyzing the electronic properties of all the monolay-
ers: silicene, germanene, stanene, and plumbene. For each
monolayer, we systematically investigate the effect of electric-
field-induced spin splitting in conjunction with the spin Hall
conductivity via fully relativistic first-principles calculations
for a wider range of electric fields and energies than in previ-
ous works [2,47]. We quantify various spin properties of the
buckled monolayers such as the spin splitting, spin-dependent
band gaps, critical electric field required for topological phase
transition, coefficients of the low-energy invariant Hamilto-
nian, and spin Hall conductivity with and without the electric
field.

A brief group theoretic analysis of the bands at the K point
is provided in Sec. II, where we show how the symmetry
classification of the bands changes as the spin-orbit coupling,
the buckling, and the electric field are introduced one by
one. First-principles calculations of the band structure and
the spin-split bands of the monolayers are studied in detail in
Sec. III, where the effect of the external electric field is taken
into account in the self-consistent Kohn-Sham equations. The
coefficients of an invariant Hamiltonian describing the low-
energy band structure at the K point are extracted in Sec. IV.
The spin Hall conductivity of the monolayers is calculated and
discussed in Sec. V. The paper concludes with a summary of
key findings and outlook in Sec. VI.

II. CRYSTAL STRUCTURE AND SYMMETRIES

The crystal structure of the monolayers of group 14 con-
sists of atoms arranged in a honeycomb structure, as shown
in Fig. 1. The honeycomb structure can be thought of as
a Bravais lattice with a basis of two atoms, i.e., dark and
light circles in Fig. 1. The dark and light circles each consist
of a triangular Bravais lattice by themselves. In general, an
out-of-plane buckling in the honeycomb structure can ex-
ist depending on the relative stability of the sp2 and sp3

hybridizations as well as the exchange-correlation poten-
tials [33]. The buckling size, denoted by d , is the distance
between the two triangular sublattices. The buckling is zero

FIG. 2. Symmetry classification of the Dirac point with respect
to the group of the wave vector at the K point. As one goes from
spinless graphene to the buckled monolayers in the presence of the
spin-orbit coupling and the external electric field, different symme-
tries are introduced or broken, and consequently degeneracies and
symmetry properties change.

in the case of planar graphene but increases monotonically as
one goes from the lighter to the heavier elements of group
14. The first Brillouin zone of the honeycomb structure is
also shown in Fig. 1, where the nonequivalent high-symmetry
points on the boundary of the Brillouin zone, K and K ′, host
the low-energy excitations. The symmetry of planar graphene
is classified by the symmorphic space group P6/mmm (No.
191), which is homomorphic to point group D6h. The buckled
monolayers have a lower symmetry than that of graphene
because the sixfold rotational symmetry reduces to a threefold
one and the horizontal mirror symmetry is broken as well.
However, they retain the inversion symmetry. Their symme-
try is classified by space group P3m1 (No. 164) with the
corresponding point group D3d , which is a subgroup of D6h.
Although Ref. [28] studied the global symmetry properties of
graphene systems, here, we focus on the symmetry properties
of the K point in the Brillouin zone.

Group theoretic arguments can provide insight into the
qualitative behavior of the bands such as the number of de-
generacies and how or if they are lifted as the symmetry is
lowered. The details of the symmetry analysis and the sym-
metry tables are provided in the Supplemental Material [49].
Here, the symmetry properties are briefly mentioned. Figure 2
illustrates the qualitative behavior of the bands in the vicinity
of the K point. It illustrates how the irreducible representa-
tions (IRs) of the bands at the Dirac point change. Specifically,
the degeneracies are lifted as one goes from graphene to other
lower-symmetry materials in the presence of buckling and
an external electric field. Each step is denoted by a point
group corresponding to the group of the wave vector at the
K point. Starting from spinless graphene with point group
D3h, the Dirac point is labeled with E ′′, a two-dimensional IR
which implies a twofold degeneracy at the Dirac point [50].
The effect of the spin-orbit coupling can be shown by using
the double group representations which are obtained by the
direct product of the point group with the spinor representa-
tion D1/2, i.e., D3h ⊗ D1/2. The IRs of this double group are
at most two-dimensional. Therefore, no fourfold degeneracy
(including spins) is allowed at the Dirac point, and therefore,
a gap opens up. After the inclusion of spinors with the repre-
sentation E , the IR of the bands at the Dirac point changes
to E ′′ ⊗ E = E1 + E3, which are two twofold bands. The
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TABLE I. Parameters in the setup of the first-principles calcula-
tions.

C Si Ge Sn Pb

Wave function Ecut (Ry) 40 45 50 70 46
Charge density Ecut (Ry) 326 180 200 280 211
Number of bands 16 16 16 36 36
Energy convergence threshold (a.u.) 10−8

Force convergence threshold (a.u.) 10−7

Number of Wannier orbitals 8

Calculation No. of k points

Structural optimization 12 × 12 × 1
Self-consistent field 48 × 48 × 1
Band structure k path 150
Density of states 96 × 96 × 1
Wannier interpolation 800 × 800 × 1

buckling breaks some of the symmetries of the planar
graphene structure such as the in-plane mirror symmetry and
the sixfold rotational symmetries resulting in point group D3.
No degeneracy is lifted as the buckling is introduced and
the bands are represented with the same twofold degeneracy
but with labels according to point group D3, i.e., E1(D3h) →
E1(D3) and E3(D3h) → {1E + 2E}(D3). The electric field re-
duces the symmetry further to point group C3, which contains
only one-dimensional representations, and therefore, all de-
generacies are lifted. Although group theory can predict the
spin splitting, the ordering and the energy of the bands are
obtained only through calculations or experiments.

III. FIRST-PRINCIPLES CALCULATIONS

First-principles calculations based on density func-
tional theory are performed via the QUANTUM ESPRESSO

suite [51,52]. The projector augmented wave method [53],
which generalizes the pseudopotential method, is used to
improve the computational efficiency. The pseudopotential
files were obtained from Ref. [54]. Scalar-relativistic pseu-
dopotentials are used for structural relaxation, whereas fully
relativistic pseudopotentials are used to capture spin-orbit
coupling effects. The exchange-correlation functional utilizes
the generalized gradient approximation [55]. Other parame-
ters and details of the first-principles setup are presented in
Table I.

The lattice parameters are obtained with the structural
optimization using the Broyden-Fletcher-Goldfarb-Shanno al-
gorithm, which is a quasi-Newton optimizer in which the
forces are calculated using the Hellmann-Feynman theorem.
The optimized lattice parameters, such as the lattice constant
and the buckling height, which minimize the total force and
stress, are listed in Table II. As seen from Table II, the
values are similar to the ones reported previously in the litera-
ture [2,29,34]. The supercell contains a 20 Å vacuum to avoid
fictitious interlayer interaction due to the periodic boundary
condition. The external electric field is modeled as an effective
sawlike potential which is added directly to the self-consistent
Kohn-Sham equations. The magnitude of the homogeneous
electric field, which is perpendicular to the crystal plane, is

TABLE II. Optimized structural parameters of graphene, sil-
icene, germanene, stanene, and plumbene, i.e., the lattice constant
a and the buckling size d as defined in Fig. 1.

C Si Ge Sn Pb

a (Å) 2.466 3.868 4.022 4.652 4.924
d (Å) 0.000 0.453 0.687 0.862 0.939

increased gradually to ease the convergence. The pressure of
the crystal is kept below 0.5 kbar. The nonzero pressure is
mostly due to the periodicity in the direction perpendicular
to the crystal plane and can be reduced by increasing the
vacuum size further. However, its effect on the optimized
lattice constant is negligible, i.e., 0.001 Å for a vacuum twice
as large.

The fully relativistic band structures of graphene, silicene,
germanene, and stanene along with their densities of states are
illustrated in Fig. 3. The bands shown in the energy window
are composed of only s and p orbitals as the d orbitals, in the
case of germanene, stanene, and plumbene, are narrow and
localized far below the Fermi energy. The density of states ap-
proaches zero at the Fermi energy due to the band gap caused
by the spin-orbit coupling effects. The density of states of

FIG. 3. The band structures of graphene, silicene, germanene,
stanene, and plumbene along with their corresponding densities of
states (DOS) in 1/eV units. The energy axis is relative to the Fermi
energy denoted by the gray horizontal line.
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FIG. 4. The effect of the electric field on the band structures of
silicene, germanene, stanene, and plumbene at the K point of the
Brillouin zone along the x direction. The energy axis is relative to the
Fermi energy denoted by the gray horizontal line. The spin splitting
and the change in the band gap depend on the relative strength of the
electric field and the spin-orbit coupling. The electric field is in V/Å.

graphene is more dispersed due to its higher bandwidth com-
pared to other monolayers. The band gap of graphene is very
small, of the order of μeV, due to the weak atomic spin-orbit
coupling of carbon atoms. The resulting band gaps of silicene,
germanene, stanene, and plumbene are 1.5, 23.7, 77.2, and
477 meV, respectively. There is a good match between these
values and the ones reported before [2,29]. In the presence
of an electric field the inversion symmetry of the crystal is
broken, and the degeneracies of the bands at the K and K ′
points are lifted. Figure 4 depicts the spin-split bands in the
vicinity of the K point with and without an external electric
field. The energy window for plumbene is chosen to be larger
than the rest to capture the band gap. The band gap without
an electric field is a result of the intrinsic spin-orbit coupling,
which is stronger for the monolayers with heavier elements.
We note that the energy band diagram looks the same for the
K ′ point except that the spins are the opposite of that at the K
point due to the time reversal symmetry, i.e., E↑(K ) = E↓(K ′).
The spin splitting is not uniform across the k space. It peaks at
the K point and decays outward. The spread of the splitting is
also not the same for different monolayers. Figure 5 shows the
spread of spin splitting close to the K point in the presence of
an electric field with a magnitude of 0.1 V/Å. As seen from
Fig. 5 the heavier the element is, the stronger the spin-orbit
coupling is, and the larger the band gap is, which in turn corre-
sponds to a heavier effective mass and therefore a more widely
spread spin splitting. To investigate the impact of the electric
field more closely we calculate the band structure for a wide
range of electric field magnitudes. Figure 6 plots the spin-up
and spin-down band gaps along with the spin splitting of each

FIG. 5. The spread of the spin splitting induced by the electric
field (E = 0.1 V/Å) in the vicinity of the K point for silicene,
germanene, stanene, and plumbene.

band as a function of the electric field. The general behavior
of the spin-dependent band gap is that the spin-down band
gap linearly increases, whereas the spin-up band gap initially
decreases until it reaches zero or the valley polarized metal
state [25] and then increases again. It has been shown [3] that
a topological phase transition occurs at the zero-gap point,
therefore changing the topological phase from a quantum spin
Hall insulator to an ordinary band insulator. The transition
does not occur for plumbene in the field range shown in Fig. 6.
Higher-order effects, due to the stronger spin-orbit coupling in
plumbene, emerge at around E = 0.8 V/Å, which stops the
gap from closing and making the transition. The transition
for silicene happens at a relatively smaller electric field of
E = 0.018 V/Å, compared to that of germanene, E = 0.21
V/Å, and that of stanene, E = 0.56 V/Å. This suggests that
germanene and stanene might be better candidates for any

FIG. 6. The spin-dependent band gap and the spin splitting as
a function of the external electric field for silicene, germanene,
stanene, and plumbene. The spin-up band gap closes at the crit-
ical electric field. Germanene and stanene show a band inversion
at the critical field, whereas no transition happens for silicene and
plumbene.
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FIG. 7. The in-plane spin texture in the vicinity of the K point.
The thickness of the curves is proportional to the magnitude of the
in-plane spin projection. The electric field is set to E = 0.1 V/Å.

device application based on the topological phase transition
as silicene might be easily pushed into its trivial regime due
to the substrate-induced electric field [43]. We note that the
spin splitting stops increasing right at the transition field and
saturates to a value equal to the intrinsic band gap. The upper
bound on the spin splitting results from the intrinsic spin-orbit
coupling of the crystal, as shown elsewhere [56].

The electric field introduces Rashba-like spin-orbit cou-
pling, which in turn leads to an in-plane spin texture. Figure 7

illustrates the expectation value of the in-plane spin projection
in the presence of an electric field with magnitude E = 0.1
V/Å in the vicinity of K . The left and right columns cor-
respond to the two spin-split conduction bands, which are
highly spin-polarized in the z direction, i.e., 〈Sz〉 ≈ ±h̄/2.
At this specific value of the electric field, silicene, which is
in the trivial insulator phase, shows a spin projection opposite
to the rest of the monolayers. Germanene shows a significant
trigonal warping in the spin texture which indicates that the
higher-order spin-orbit terms are more pronounced in ger-
manene than in other monolayers. As we will see in Sec. V,
these spin-orbit terms are responsible for the deviation of the
spin Hall conductivity from the quantized value.

IV. EFFECTIVE HAMILTONIAN

The theory of invariants provides a systematic approach for
obtaining an effective Hamiltonian which is expanded to the
desired order in terms of the wave vector k, the spin s, and the
external electric field E [57]. In general, the terms appearing
in the invariant expansion are the various tensor products of k,
s, and E that are invariant under the symmetry operations of
the point group and therefore transform according to the iden-
tity representation. The coefficients of the invariant expansion
are quantified by first-principles calculations or experiments.
Here, we utilize a 4 × 4 effective Hamiltonian which contains
invariant terms that are at most linear in k, s, and E . This effec-
tive Hamiltonian was derived by Geissler et al. [4] for silicene
in the presence of the spin-orbit coupling and the electric field.
The basis of the Hamiltonian consists of two spin and two
sublattice states. The effective Hamiltonian resulting from the
invariant expansion is H(k) = H0(k) + HE (k), where H0(k)
is the Hamiltonian without the external electric field,

H0(k) = a1τzσzsz + a2(τzkxσx + kyσy) + a3σz(sxky − sykx ).
(1)

Here, τz = ±1 denotes the K and K ′ nonequivalent valleys,
respectively. The Pauli matrices σi and si operate in the sublat-
tice and spin spaces. The coefficients a1 = �SO/2, a2 = h̄vF,
and a3 are interpreted as the spin-orbit band gap, the Fermi
velocity, and a Rashba-like spin-orbit coupling term [28,29]
which also introduces some corrections to the Fermi velocity.
In the current section we do not list the values for a3 but
provide the values of the spin-orbit gap and the Fermi velocity.
The Hamiltonian is modified in the presence of the electric
field by HE (k) as follows:

HE (k) = a4σzs0Ez + a5τzσ0szEz + a6σ0(sxky − sykx )Ez

+ a7(τzσxsy − σysx )Ez + a8(σxkx + τzσyky)szEz

+ a9(σx(sxky+ sykx )+ τzσy(sxkx − syky))Ez. (2)

The terms proportional to a4 and a5 represent the electric-
field-induced spin splitting. The a4 term introduces a spin
splitting close to only the K point, whereas the spin split-
ting by the a5 term is almost independent of the value of
k. From the first-principles band structure in the previous
section we know that the splitting decreases moving away
from the K point. Therefore, it is reasonable to assume that
a4 
 a5. Hence, we quantify only the a4 coefficient. The term
a6 represents a Rashba-like energy shift which displaces the
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TABLE III. Coefficients a1–a4 of the effective Hamiltonian given
by the invariant expansion in Eqs. (1) and (2) and extracted by fitting
the DFT results for different monolayers.

Silicene Germanene Stanene Plumbene

a1 (eV) 0.0007 0.0119 0.0386 0.2385
a2 (eV Å) 3.499 3.177 2.783 1.599
vF (105 m/s) 5.316 4.827 4.228 2.429
a3 (eV Å) 0.009 0.069 0.46 0.85
a4 (eV Å) 0.0417 0.0564 0.0689 0.0589

spin-polarized bands horizontally. Similarly, since the hor-
izontal shifts in the first-principles band structure are neg-
ligible, we have a4 
 a6. Finally, the terms a7, a8, and a9

represent higher-order corrections to the spin-splitting and
the Fermi velocity. Although symmetry allows many terms
in the invariant expansion, four coefficients, a1, a2, a3, and
a4, are sufficient to describe the four low-energy bands in the
vicinity of the K point. These coefficients for silicene, ger-
manene, stanene, and plumbene are listed in Table III. These
values are mostly in accordance with the ones previously
reported [2,29]. As seen from Table III, heavier elements show
a relatively larger intrinsic band gap, a lower Fermi velocity,
and a stronger spin-orbit coupling. However, the electric-field-
induced spin-splitting denoted by a4 shows similar values for
different monolayers. We note that the values of a4 are consid-
erably smaller than a value one would estimate by assuming a
bare electric potential, that is, �SO/Ed . This is mainly due to
the screening of the electric field by the carriers, which in turn
leads to carrier redistribution between the sublattice layers
and, consequently, reduces the effectiveness of the external
electric field. The effective Hamiltonian is valid as long as the
higher-order effects of the electric field are not present, that is,
E < 0.8 V/Å.

We note that there are different numbers reported in the
literature for the Rashba parameter of stanene. For instance,
Ref. [29] reports a Rashba parameter of aλR = 0.045 eV Å,
whereas Ref. [2] reports aλR = 0.088 eV Å. These numbers
are an order of magnitude smaller than the value reported
in our work, i.e., 0.46 eV Å. Although the values obtained
for silicene and germanene are comparable to the ones in the
literature, the discrepancy in the case of stanene could result
from a different method used to fit the effective model to
the ab initio results. Since the a3 term does not change the
band gap or the Fermi velocity of the bands, we resorted to
the expectation value of the in-plane spin operators to fit the
a3 parameters, which might not be the case in other works.
While other parameters of the model are more or less similar
to the ones reported before, the Rashba values seem not to be
conclusive and require further investigation.

V. SPIN HALL CONDUCTIVITY

The spin Hall conductivity is a linear response coefficient
that describes a spin current as the response of the system
to an applied electric field. It can be calculated by using the
Kubo formula in terms of a Berry-like curvature �

γ

αβ,n(k),

also called the spin Berry curvature, as follows [58]:

σ
γ

αβ = −
(

e2

h̄

)(
h̄

2e

)∫
d3k

(2π )3

∑
n

f (εn,k)�γ

αβ,n(k), (3)

where f (εn,k) is the Fermi-Dirac distribution function. The
spin Berry curvature is given as

�
γ

αβ,n(k) = h̄2
∑
m �=n

−2 Im{〈nk|J γ
α |mk〉〈mk|vβ |nk〉}

(εn,k − εm,k)2
, (4)

where vβ is the velocity operator and J γ
α = {vα, σγ }/2 =

(vασγ + σγ vα )/2 is the spin velocity operator.
Using the effective Hamiltonian derived in the last sec-

tion, we first calculate the contribution of the Dirac bands
at the Fermi level to the spin Hall conductivity. In doing
so, we assume that the dominant contribution to the spin
Hall conductivity comes from the K point. As we will see,
this assumption might not hold true as the low-energy levels
appear at the � point as well for stanene. Nevertheless, since
the electric field induces the band inversion only at the K
point, it is still useful to provide an estimate of the spin Hall
conductivity from the Dirac bands. The Hamiltonian of the
system, considering the distant bands in the vicinity of the K
point, is

H =
(

H0(k) H01(k)
H10(k) H1(k)

)
, (5)

where H0(k) is the effective Hamiltonian given in Eq. (1),
H1(k) represents the distant bands, and H01(k) is the inter-
action between the low-energy bands and the distant bands.
Assuming that the distant bands are interacting only weakly,
which might not be true in general, it can be shown from
the Löwdin partitioning that the effect of the distant bands is
quadratic in the leading order. That is,

H̃ (k) = H0(k) + O
(
H2

01(k)
)
. (6)

Considering only the H0(k) term, the spin Hall conductivity
can be obtained from the Kubo formula as worked out in [59]:

σ z
xy = a2

2

a2
2 + a2

3

e

4π
, (7)

where a2 and a3 correspond to the Fermi velocity and the
intrinsic spin-orbit coupling and are given in Table III. A
spin-orbit coupling term that is much smaller than the Fermi
velocity term, i.e., a3 � a2, results in a quantized spin Hall
conductivity σ z

xy in units of e/4π as predicted before in the
literature [46,47,59]. As we discuss next, the spin Hall con-
ductivity calculated from first principles within the density
functional theory is not quantized in e/4π . This discrepancy
suggests that the assumptions made in the derivation of Eq. (7)
may not be correct; that is, the coupling to the distant bands
contributes significantly to the spin Hall conductivity. We
note that even if the Hamiltonian is completely diagonalized,
the contributions from the matrix elements of the velocity
operator are still present as the energy eigenstates are not
simultaneously eigenstates of the velocity operator as well.
Therefore, a complete picture of the spin Hall effect in these
materials requires us to incorporate a full band Hamiltonian.
We do so by performing first-principles calculations based on
density functional theory.
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We note that earlier works in the literature calculated the
spin Hall conductivity of germanene [46] and stanene [47] at
the Fermi level. We go a step further by including silicene and
plumbene in our calculations as well as providing results for
a wide range of energies and for several values of the external
electric field.

The spin Hall conductivity is, in general, a tensor of rank
3 with 27 components. However, one need not calculate all
the components as symmetry simplifies the calculations by
relating the components to each other. The space group of
the buckled monolayers, P3m1, corresponds to the magnetic
Laue group 3m11′. According to this symmetry classification,
it can be shown that the number of independent tensor com-
ponents reduces to four [60]. Out of these four components,
σ z

xy = −σ z
yx dominates the rest. This is, in fact, the component

corresponding to the quantum spin Hall effect. Here, we cal-
culate σ z

xy for the buckled monolayers over a wide range of
energies. To evaluate Eq. (3), we use the Wannier interpola-
tion method [61–63] recently implemented in the WANNIER90
code [62,64]. This method takes advantage of the smoothness
of the maximally localized Wannier gauge to integrate the
spin-Berry curvature over the Brillouin zone. The results are
shown in Fig. 8, where the spin Hall conductivity is in units
of e/4π = (e2/h)(h̄/2e).

The plots in the left column show σ z
xy in the absence of the

external electric field, and therefore, the bands are not spin
split. As seen from Fig. 8, the values of σ z

xy at the Fermi energy
are not quantized. The quantization value is in units of e/4π .
The values for silicene, germanene, stanene, and plumbene at
the Fermi level are σ z

xy =0.20, 1.05, 1.80, and 3.41, respec-
tively. These values suggest that the heavier the element is,
the higher spin Hall conductivity it shows at the Fermi en-
ergy. This behavior is consistent with previous calculations for
three-dimensional topological insulators [46,65]. The reason
that σ z

xy is not quantized is, in general, due to terms that do
not conserve spin sz, as pointed out in the literature [1,47].
From the invariant Hamiltonian in Eqs. (1) and (2) one can
see that [H, sz] �= 0 due to the existence of Rashba-like terms
such as the term with coefficient a3. It is worth mentioning
that the a3 term is a result of the buckling and is not present
in planar structures such as graphene [57], which shows a
quantized spin Hall conductivity. Although a significant a3

term in Eq. (7) could explain a spin Hall conductivity that is
smaller than e/4π in a Dirac band model, it cannot describe
the corresponding values of stanene and plumbene which are
greater than e/4π . As mentioned, this pertains to the fact that
the contributions of the other bands below the Fermi level are
not negligible. Moreover, as seen from Fig. 9, which illustrates
the k-resolved spin Berry curvature, contributions from other
points in the Brillouin zone such as the � point in stanene also
contribute to the spin Hall conductivity.

The behavior of the spin Hall conductivity in the presence
of an electric field depends on the topological phase of the
system. The right column of Fig. 8 illustrates σ z

xy in the close
vicinity of the Fermi level for several values of the electric
field where the magnitude of the electric field is changed in
steps of 0.1 V/Å. Our general observation is that for electric
fields less than the critical value the spin Hall conductivity
at the Fermi energy remains the same. As the electric field
nears the critical value and goes beyond it, the spin Hall

FIG. 8. Spin Hall conductivity as a function of the Fermi energy
for different values of the electric field for silicene, germanene,
stanene, and plumbene. The left column shows the SHC for a wide
range of energies, whereas the right column contains zoomed-in plots
in the vicinity of the Fermi energy. The electric field is changed in
0.1 V/Å increments.
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FIG. 9. k-resolved contribution to the spin-Berry curvature for
silicene, germanene, stanene, and plumbene.

conductivity degrades significantly. This is the result of field-
dependent terms in the invariant Hamiltonian in Eq. (2) which
introduce additional spin mixing and therefore degrade the sz

conservation. From a lattice point of view, the switching of
the topological phase to the trivial phase by the electric field
can be interpreted as the point where the asymmetry between
the sublattices outweighs the intrinsic spin-orbit coupling. As
a consequence, the ground state changes from the linear com-

bination of different sublattices to a single sublattice with both
spins. Therefore, the system does not consist of two copies of
the integer quantum Hall state [1] anymore, and the quantum
spin Hall phase is destroyed. As seen from Fig. 8 the value of
σ z

xy at the Fermi energy for silicene, germanene, and stanene,
in the presence of an electric field greater than the critical
value, decreases significantly, whereas the value for plumbene
that has no critical value remains the same. This shows that
the topological quantum spin Hall phase and the spin Hall
conductivity in plumbene are robust to the perpendicular elec-
tric field, which can be beneficial for spin generation device
applications with robustness to the external field effects. On
the other hand, silicene, germanene, and stanene could be
suitable candidates for device applications requiring switch-
ing between the topological and trivial phases. It is worth
mentioning that the spin Hall conductivity of stanene does
not seem to be constant inside the gap as the electric field
is increased. The main reason is that the actual gap is smaller
than the gap at the K point. This is due to the fact that the
valence band at the � point has a slightly higher energy than
the top of the valence band at the K point, resulting in an
indirect band gap.

VI. CONCLUSIONS

By performing systematic first-principles calculations
based on density functional theory we calculated the fully
relativistic band structure of the buckled monolayers of
group 14 with and without an external electric field. Various
spin properties of the monolayers, such as the spin split-
ting, spin-dependent band gaps, coefficients of the invariant
Hamiltonian, and spin Hall conductivity, were calculated. The
main result of this work is the energy-dependent spin Hall
conductivity of the buckled monolayers for various values of
the electric field. Our results show that in contrast to the pre-
diction of the simplified two-band Dirac Hamiltonian [59], the
spin Hall conductivity is not quantized in these monolayers.
Previous ab initio works [46,47] on germanene and stanene
reported a quantized spin Hall conductivity. Our results show
that it could be accidental that the spin Hall conductivity of
germanene is close to the quantization value, i.e., 1.05 (e/4π ).
We do not observe the same quantization for stanene, silicene,
and plumbene. We argued that the reason for this discrepancy
is the coupling to the remote bands as well as contributions
from other points of the Brillouin zone such as the gamma
point. Another reason could be the use of a different method
by Ref. [47] for the calculation of the spin Hall conductivity.
The results also suggest that silicene, germanene, and stanene
are suitable for applications involving the topological phase
transition, whereas plumbene, due to the absence of a critical
electric field, is more suitable for applications requiring a spin
Hall effect that is robust to external fields. It should be noted
that there are inherent limitations to the density functional the-
ory such as the underestimation of the band gap which could,
in principle, affect our numerical results. This limitation can
be alleviated to an extent by including the self-energy using
the GW method in the ab initio framework. However, the
qualitative conclusions of this work are expected to remain
the same. Moreover, verifying numerical results, such as the
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value of the spin Hall conductivity, requires comparing theory
with experimental data. However, since the spin Hall effect
is difficult to observe directly, experiments involving indirect
methods of measuring spin currents, such as the spin-torque
ferromagnetic resonance method [66], will prove to be valu-
able in this regard.
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