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Conductivity and thermoelectric coefficients of doped SrTiO3 at high temperatures
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We developed a theory of electric and thermoelectric conductivity of lightly doped SrTiO3 in the non-
degenerate region kBT � EF , assuming that the major source of electron scattering is their interaction with
soft transverse optical phonons present due to proximity to ferroelectric transition. We have used the kinetic
equation approach within relaxation-time parametrization of the collision integral and we have determined
energy-dependent transport relaxation time τ (E ) by the iterative procedure. Using electron effective mass m and
electron-transverse phonon coupling constant λ as two fitting parameters, we are able to describe quantitatively a
large set of the measured temperature dependences of resistivity R(T ) and Seebeck coefficient S(T ) for a broad
range of electron densities studied experimentally in recent paper by Collignon et al. [Phys. Rev. X 10, 031025
(2020)]. In addition, we calculated Nernst ratio ν = N/B in the linear approximation over weak magnetic field
in the same temperature range.
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I. INTRODUCTION

Very dilute three-dimensional metal originating from
band insulator strontium titanate (STO) due to tiny doping
(10−6–10−3 conduction electrons per unit cell) demonstrates
a number of rather unusual properties [1–3]. Their major
common origin is the close proximity of insulating STO to a
ferroelectric transition, which leads to a giant low-temperature
dielectric constant ε0 ≈ 20 000. In result, Coulomb interac-
tion between conduction electrons is nearly vanishing, and
standard phenomenology developed in the theory of normal
metals is not applicable. The very low attainable density n
of conduction electrons and its variability allow one to study
transport properties of doped STO in various temperature
regimes, from strongly degenerate Fermi gas at kBT � EF

to a highly nondegenerate one at kBT � EF , with EF being
the Fermi energy. The latter range is in the focus of recent
experimental studies [4,5] (see also similar mobility data in
Ref. [6] and thermoelectric data in Ref. [7]). It was found
[5] that at high temperatures T � 300 K conductivity drops
below Mott-Ioffe-Regel limit and, moreover, relaxation rate
1/τ becomes larger than its apparent quantum limit kBT/h̄.
Later on, the paper [4] demonstrates that the account for the
temperature-dependent renormalization of the effective mass
m(T ) makes the above contradiction less drastic. However, the
behavior of m(T ) found in Ref. [4] via the fitting of their data
for resistance R(T ) and Seebeck coefficient S (T ) is somewhat
unexpected. Namely, mass renormalization m(T )/m0 fitted in
[4] depends not only on temperature but also on the electron
density n, which should not be the case in the nondegener-
ate region kBT � EF studied. Also, the initial increase on
m(T ) with T growth is replaced by its drop with temper-
ature at T above 300 K, which does not have a physical
explanation.

In the present paper we reconsider theoretically the issue of
electric conductivity and thermoelectric response in a nonde-
generate electron gas, interacting with soft transverse optical
(TO) phonons. These types of phonons exist in STO due to
its proximity to ferroelectric transition [2–4,8]. Scattering of
nondegenerate electrons due to biquadratic coupling to trans-
verse optical phonons was considered in a somewhat different
context in Refs. [9,10] (see also older experiments [11,12]).
The recent paper [13] provided another approach to kinetic
properties based upon the idea of the dominant role of electron
scattering on two TO phonons; we will compare our results
with those of Ref. [13] in the final part of the paper.

We use the kinetic equation approach in a form close to that
discussed in Ref. [14] and express both resistivity R(T ) and
Seebeck coefficient S (T ) in terms of the energy-dependence
transport scattering time τ (E , T ). We emphasize that the en-
ergy dependence of τ (E , T ) is not weak, and this is the reason
why a simple proportionality relation [4] between Seebeck co-
efficient S (T ) and thermodynamic entropy per electron S(T )
is not valid, actually. Indeed, S (T ) = kB

e S(T ) follows once
τ (E , T ) can be replaced by energy-independent τ (T ), as we
will show below.

The real band structure of SrTiO3 is rather complicated
(see, e.g., [15]), and detailed calculation of transport coef-
ficients is hardly possible without use of heavy numerical
procedures based upon band-structure calculations. Some
examples of the latter type of approach can be found in
Refs. [16,17]. While Ref. [16] reported good agreement of
computed high-T mobility with experimental data, the later
Ref. [17] asserts that numerically exact band-structure cal-
culation does overestimate mobility at high T by a factor
close to 10, while providing correct T dependence. Paper
[17] hints that the discrepancy originates from temperature-
dependent polaron effect leading to the increase of effective
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electron mass with temperature. The later paper [18] presents
the results obtained by numerical implementation of this type
of approach: strong polaron effects due to electron-phonon
interactions were taken into account and good agreement with
numerically obtained data on mobility was obtained. More-
over it was found that strong incoherent effects (demonstrated
by broad electron spectral function) are developing at T ∼
250–300 K.

We will accept the general idea of the importance of
T -dependent mass renormalization and develop a semiquanti-
tative theory based upon the simplest model of parabolic elec-
tronic spectrum E (p) = p2/2m with temperature-dependent
effective mass m = m(T ). We believe that the proximity of
STO to ferroelectric transition is the key feature of this
material; most probably it is responsible for its anomalous
properties, thus we feel it useful to consider the effects of
electron interaction with TO phonons in somewhat more de-
tail. Thus our approach is clearly an alternative to the one
developed in Refs. [16,17] where coupling to high-energy
longitudinal phonons (LO) was studied as a major source of
electron scattering. We emphasize, to avoid any confusion,
that in the whole temperature we consider, the temperature-
dependent TO phonon gap h̄ωT (T ) � kBT , this condition is
well fulfilled up to 1000 K, as Fig. 6 of Ref. [4] demonstrates.
At the same time, LO phonons have much higher energy
gaps.

Our goal is to provide a simple model of electron scattering
leading to reasonable agreement with the data in the high-
temperature region T � EF (n) for both conductivity σ (T ),
Seebeck coefficient S (T ), and Nernst coefficient ν(T ). We
will show that a straightforward kinetic equation approach
leads (once moderate mass renormalization, weakly T de-
pendent at high temperatures, is taken into account) to good
agreement with the data for σ (T ) and S (T ) in a broad range
of temperatures 100 < T < 700 K and for a broad range of
electron densities 1.4 × 1017 � n � 3.5 × 1020 cm−3.

The rest of the paper is organized as follows: we formulate
our model in Sec. II, then in Sec. III we derive a Boltzmann
kinetic equation for electrons interacting quadratically with
TO phonons, and expose the major points of its solution in
terms of the effective relaxation time τTO(p). Next, in Sec. IV
we discuss the calculation of electric conductivity and thermo-
electric coefficients in terms of this effective relaxation time
(Secs. IV A and IV B) and then present our final results and
compare them with experimental data in Sec. IV C. Section V
contains our conclusions.

II. FORMULATION OF THE MODEL

We are interested in the high-temperature region where
quantum statistics of electrons is irrelevant and it is sufficient
to consider each electron individually interacting with lattice
phonons. The Hamiltonian of an electron coupled to trans-
verse optical phonons is

H =
∫

d3r

[
−h̄2 ψ†(r)∇2ψ (r)

2m(T )
+ gρmψ†(r)ψ (r)u2(r)

]
,

(1)

where ρm = 5.11 g/cm3 is the STO mass density, ψ (r) is the
electron annihilation operator, and u(r) is the atomic displace-
ment field related to the optical transverse mode (TO), ∇u =
0. Dispersion of this mode is ω(k) =

√
ω2

TO + (sk)2 where
s ≈ 7.5 × 105 cm/s is the TO mode velocity [19] and ωTO is
the temperature-dependent gap which grows with temperature
[4,8,20]; in particular, ωTO varies between 5 and 18 meV when
T grows from 100 to 800 K. Bilinear coupling (1) to trans-
verse phonons was proposed recently as a possible mechanism
for superconductivity in doped STO [21]; we develop this idea
further in a separate publication [22]. Another possible type of
electron’s coupling to transverse TO phonons may contain a
vector term of the type of i(ψ+∇ψ − H.c.)u, but we will not
consider its effects here.

Effective band mass of electrons depends [23] on their
concentration at low temperatures in the degenerate region
T � EF ; in particular, for zero-temperature mass m(0)/m0 ≈
1.8 for lowest concentrations n � 1018 cm−3, while at higher
doping n � 4 × 1018 cm−3 the same ratio m(0)/m0 ≈ 4; here
m0 is the free-electron mass. However, at high temperatures
T � 150 K Hall mobility is n independent, as follows from
the data present in Ref. [4]. The same is expected for the
effective mass, which may however depend on temperature,
for two different reasons. First, one is due to nonparabolic
dispersion with decreasing effective curvature of ξ (p) at large
momenta |p| (see Fig. 3 in Ref. [15]): at high T carriers
with energies much above the bottom of the band are most
relevant, and effective mass seen in transport characteristics
increases; moreover, at high temperatures the major contri-
bution to transport is provided by the lowest band since at
large |p| it provides the largest density of states. The second
reason for the mass enhancement is the polaron effect due
to coupling with TO phonons [18]. A special remark is in
order concerning our use of a parabolic model of spectrum
in the situation of a highly anisotropic band [15]. The point
is that at high temperatures we consider, the scattering rate
1/τTO is rather high, so electrons quickly forget the direc-
tions of their momenta, thus isotropic approximation looks
acceptable, at least for the beginning. Below we will treat
m(T ) as a phenomenological fitting function, common for all
concentrations n.

The coupling constant g in Eq. (1) has a natural dimension
Length3/Time2. We present it in the form

g = λa3ω2
L, (2)

where a = 0.39 nm is the STO lattice constant, h̄ωL ≈
100 meV is the highest energy gap of all longitudinal optical
modes, and λ is some dimensionless constant, to be deter-
mined below from the fit of our theory to the data.

III. THE KINETIC EQUATION AND EFFECTIVE
RELAXATION TIME

In this section we consider soft TO phonons as the major
source of electron scattering. In addition we consider the role
of usual acoustic phonons and demonstrate that their contribu-
tion to the scattering rate is much smaller and can be neglected
in the first approximation.
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A. Transverse optical phonons

We will study electric and thermoelectric transport in an
electron system using the Boltzmann kinetic equation. To
find the transport coefficients within linear response theory,
we expand the distribution function as fp ≈ np + δnp. Here,
np = [exp(βξp) + 1]−1 is the Fermi-Dirac distribution with
β = 1/T , and ξp = E (p) − μ with the chemical potential μ.
This helps to write the linearized Boltzmann equation in the

presence of both electric field and temperature gradient:(
−eE − ξp

∇rT

T

)
· vp

∂np(ξp)

∂ξp
= ITO{δnp}, (3)

where vp = ∂ξp/∂p = p/m∗ is the group velocity. An exact
expression for the collision integral ITO{δnp} which describes
electron scattering by two TO phonons is of the following
form (for the derivation, see Appendix A):

1

A
ITO{δnp}

= 2
∫

k1k2

δ(Ep′ + Ek1 − Ep − Ek2 )

ω(k1)ω(k2)
(δnp[(Nk2 − Nk1 )np′ − (Nk1 + 1)Nk2 ] + δnp′ [np(Nk2 − Nk1 ) + (Nk2 + 1)Nk1 ])

+
∫

k1k2

δ(Ep′ − Ek1 − Ep − Ek2 )

ω(k1)ω(k2)

(− δnp
[
Nk1 Nk2 + (

1 + Nk2 + Nk1

)
np′

] + δnp′
((

Nk2 + 1
)(

Nk1 + 1
) − np

(
1 + Nk2 + Nk1

)))

+
∫

k1k2

δ(Ep′ + Ek1 − Ep + Ek2 )

ω(k1)ω(k2)
(δnp[(1 + Nk1 + Nk2 )np′ − (Nk1 + 1)(Nk2 + 1)] + δnp′ [np(1 + Nk2 + Nk1 ) + Nk2 Nk1 ]),

(4)

where Nk = [exp(βωk ) − 1]−1 is the Bose-Einstein distribu-
tion for TO phonons, and A = π

2 g2. We use the shortcut

notation for the integrals
∫

k1k2
= ∫

BZ
d3k1d3k2

(2π )6 , where BZ stands
for the first Brillouin zone (we take it in spherical approxi-
mation). Integration over momenta in Eq. (4) is carried out
under the condition of conservation of the total momen-
tum (we neglect umklapp processes). Conservation of the
total energy is expressed in the explicit form in Eq. (4) by
the delta functions; the forms of their arguments demon-
strate that the first line corresponds to the scattering of an
electron by the TO phonon, while second and third lines
correspond to emission and absorption of two TO phonons,
correspondingly.

Scattering processes change electron energy by the typ-
ical amount ∼kBT that is of the order of typical electron
energy in the nondegenerate region kBT � EF we consider
here. Therefore the only way to proceed is to solve the ki-
netic equation (3),(4) numerically and to find nonequilibrium
correction to the distribution function δnp originating due to
electric field E or temperature gradient ∇T . It is useful to
present the result of such a computation in terms of some
effective relaxation time τTO(p, T ) according to the definition
below:

ITO{δnp} ≈ − δnp

τTO(p)
. (5)

Effective relaxation rate τ−1
TO (p; T ) which provides the best

approximation of the exact ITO{δnp} by the form of Eq. (5),
can be found by means of the iterative method, described in
detail in Appendix C.

Briefly, it works as follows. First we note that in the linear
regime over weak electric field E , modification of the electron
distribution function can be written in the form [which follows

by comparison between Eq. (3) and Eq. (5)]

δnp ≈ e τTO(p) · (vp, E)
∂nF (ξp)

∂ξp
. (6)

The form of Eq. (6) assumes it is possible to ne-
glect temperature gradient ∇rT while calculating δnp and
τTO(p), and we check it a posteriori (see the end of
Appendix C 2).

The only unknown function here is τTO = τTO(|p|). In the
case of the degenerate Fermi-gas relevant momentum p = pF

and we are left with just a single number τ for relaxation
time. At high temperatures T � EF the situation is more
complicated. Relaxation time τTO(|p|) appears to be a strong
function of the electron energy. To find this function we start
from the simplest trial with τTO(p) = τTO independent of en-
ergy, and substitute the corresponding δn(0)

p into the right-hand
side of Eq. (4). The result is then represented in the form of
Eq. (6) with somewhat different τ

(1)
TO (p) which is now energy

dependent. Then the process is repeated upon convergence
(see Appendix C 2). We have found that the difference of
the obtained τ

(2)
TO (p) and τ

(3)
TO (p) is already quite small, thus

it is possible to use τ
(3)
TO (p) as our final approximation for

the relaxation rate. It is shown in Fig. 1(a) for a number of
different temperatures. One can clearly see in Fig. 1(a) that
the momentum dependence of scattering time τTO(p) is not
weak. This is why the Seebeck coefficient S (T ) is not just
proportional to the thermodynamic entropy per electron S(T )
as was supposed in the paper [4]. Instead, we will employ an
approach provided in Ref. [14] where various transport co-
efficients were found in terms of effective energy-dependent
relaxation rate 1/τ (p). Note that our definition of effective
relaxation time τTO(p) is not a priori invariant with respect to
different sources of nonequilibrium; one could imagine that
electric field E and temperature gradient ∇T could lead to
the solutions of Boltzmann equations which correspond to
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FIG. 1. (a) Lines represent the results of the third iteration of the iterative method for the inverse scattering time normalized to the inverse
Planckian time τp/τ

(3)
TO . Here, pBZ = h̄π/a stands for the first Brillouin zone and τp = h̄/kBT . (b) Full lines show the expected qualitative

temperature dependency of the effective mass. The dashed line stands for the linear dependency chosen in the present paper. The inset shows
the comparison of the scattering time including two TO phonons averaged as τTO = 〈τTO〉/〈1〉 (blue line), AC phonon (green line), and the
Planckian time (orange line).

different τTO(p) functions. In fact, it is not the case, as we
demonstrate in the Appendix C 2, the results for a “purely
electric” source and for the case of zero-electric-current ge-
ometry, when electric field effect is completely compensated
by the effect of thermal gradient, are very close to each other.
It provides our effective relaxation time τTO(p) with more
substantial physical meaning.

B. Acoustic phonons

The other mechanism that can probably contribute to the
transport processes in the discussed temperature range is
the scattering on the longitudinal acoustic (AC) phonons.
The Hamiltonian of an electron coupling to an AC phonon
reads

Hac =
∫

Dac ψ†(r)ψ (r) div u(r), (7)

where u(r) in this case is the atomic displacement field related
to the acoustic mode. Their dispersion is given as ω(k) = vsk,
with vs ≈ 8.1 × 105 cm/s the sound velocity in STO [24]. The
constant Dac ≈ 2.87 eV is the deformation potential in STO
[25,26]. The interaction with the acoustic phonons results in a
scattering time which can be approximated via the following
expression [27]:

τAC = (8π )1/2h̄4ρmv2
s

m3/2D2
ac(kBT )3/2

. (8)

This result is compared to the contribution from the scattering
time on 2TO phonons [see the inset in Fig. 1(b)]. In the
major part of the studied region the scattering rate due to
TO phonons 1/τTO turns out to be considerably greater than
the acoustic phonon’s contribution 1/τAC. Therefore, we may
conclude that the consideration of only 2TO processes is an
appropriate approximation, although for the temperatures at
the lower end of the considered range the acoustic phonons
can change the results slightly.

IV. TRANSPORT COEFFICIENTS IN TERMS
OF EFFECTIVE RELAXATION TIME

A. Conductivity and Seebeck coefficient

Electric conductivity σ and the Seebeck coefficient S can
be expressed via τ (p) as follows [14]:

σ = e2

m
N 〈τTO(p)〉, (9)

S = − 1

eT

〈ξpτTO(p)〉
〈τTO(p)〉, (10)

where 〈· · · 〉 denotes the average 〈Xp〉 = − 4
3N

∫
p Xp(ξp +

μ) ∂np(ξp )
∂ξp

with N = 2
∫

p np(ξp). While Eq. (9) for conductivity
is evident, the result (10) for the Seebeck coefficient needs
some comments. Indeed, if one assumes τ (p) to be some
constant (independent on p), then Eq. (10) leads to the relation
S (T ) = kB

e S(T ) used for the analysis developed in Ref. [4].
In fact, the p dependence of relaxation rate is very strong, as
shown in Fig. 1(a).

Equations (9) and (10) can be derived as follows. We allow
for the presence of both electric field E and temperature gradi-
ent ∇T and express δnp using Eq. (3) for the collision integral
in the relaxation-time approximation (RTA) form (5). The
electric and thermal currents are then determined as follows:

(
JE
JT

)
= 2

∫
p

(−e
ξp

)
vpδnp =

(
σ α

β κ ′

)(
E

−∇rT

)
, (11)

where σ is electric conductivity, α = β/T due to Onsager
reciprocity relations, and Seebeck coefficient S = α/σ . The
use of δnp in the form of Eq. (3) leads then to (9) and (10).
Note that now we consider a kinetic equation in the presence
of both electric field and temperature gradient; we checked in
Appendix C 2 that the presence of ∇T does not change the
function τTO(p) found previously.
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FIG. 2. Experimental data [4] are shown by dashed lines, while full lines are used for the theoretical results. (a) Temperature dependency
of the resistivity extended to 700 K for several Nb doped SrTiO3 crystals. (b) The Seebeck coecient as a function of temperature for four Nb
doped SrTiO3 samples from 100 K to 700 K.

B. Nernst coefficient

In the presence of magnetic field B, an applied electric
field E ⊥ B leads to the temperature gradient transverse to
both E and B. The corresponding response is called Nernst
signal, N = Ey/∇xT . To calculate it we start from the general
expression (see Sec. 5 of [28]) for N in terms of electric
conductivity tensor σαβ and thermoelectric tensor ααβ :

N = Ey

∇xT
= αxyσxx − αxxσxy

σ 2
xx + σ 2

xy

. (12)

We concentrate here upon the limit of weak magnetic field and
thus consider lowest-order terms in the magnitude of B:

σxx ≈ σ ; αxx ≈ α = − eN
mT

〈ξpτTO(p)〉; (13)

σxy ≈ e3N
m2

B
〈
τ 2

TO(p)
〉
; αxy ≈ − e2N

m2T
B
〈
ξpτ

2
TO(p)

〉
. (14)

These equations lead us to the expression of the linear Nernst
coefficient ν = dN/dB|B=0:

ν =
〈
τ 2

TO(p)
〉〈ξpτTO(p)〉 − 〈τTO(p)〉〈ξpτ

2
TO(p)

〉
T 〈τTO(p)〉2 . (15)

Equation (15) will be used below to compute Nernst coeffi-
cient ν(T ) as a function of temperature.

C. Results for the electric and thermoelectric coefficients

The obtained results for the scattering time τTO enabled
calculation of the electric and thermoelectric coefficients us-
ing (9) and (10). The results of numerical computation for the
electric resistivity and the Seebeck coefficient are provided
in Figs. 2(a) and 2(b), respectively. The mass m(T ) and the
coupling constant λ were fitted to experimental data from
Ref. [4] in a way to minimize relative errors between the
data and the theory. We emphasize that the single set of λ

and m(T ) was used to fit the data for five different doping
concentrations (apart from n = 5.9 × 1018 cm−3), and relative
error is about 7%–9%. Namely, we choose λ = 0.88 (with a

relative error of 5%) and effective mass m(T ) which linearly
interpolates between 8.7m0 for 100 K to 10.7m0 for 700 K [see
Fig. 1(b)]. For the concentration nH = 5.9 × 1018 cm−3 we
found λ ≈ 0.78, which is almost 10% less than for the others.

Dependence of resistivity on temperature ρ(T ) in a broad
temperature range cannot be present by any single power law.
However, local “effective exponent” α(T ) can be introduced
via the relation α(T ) = T

ρ

dρ

dT . Our theoretic result for α(T )
corresponding to the full curves in Fig. 2(a) is present in
Fig. 3. Comparison with the data present in Fig. S1(a) of
Ref. [4] shows excellent agreement for low electron con-
centrations; in particular, peculiarity of large α ≈ 3 in the
temperature range 100–200 K is clearly reproduced by our
theory, as well as the approach to a lower value of α ≈ 3

2
at highest temperatures. At higher electron concentrations
n � 1020 the data [4] does not show so large values of α(T );
this is due to the fact that the specific temperature range
around 150 K lies below Fermi temperature EF (n)/kB, while
our calculations were done for nondegenerate electrons only.

Our predictions for the Nernst coefficient ν(T ) are shown
in Fig. 4. We present our results for different electron densities
but always for temperatures T above the corresponding Fermi
energy EF (n). At these high temperatures ν(T ) is independent

FIG. 3. Temperature dependency of the exponent α of the resis-
tivity: ρ = AT α .
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FIG. 4. Nernst coefficient ν(T ) predicted for several Nb-doped
SrTiO3 samples from 50 to 700 K. The lower inset shows the temper-
ature dependency of the Nernst coefficient in the range 300–700 K.
The upper inset shows the same dependency from 50 to 300 K.

on the density of electrons, similar to the behavior of mobility
μ(T ). While at low temperatures the Nernst signal is known
to be strongly n dependent [29], we are not aware of any
measurement of this quantity in STO in the nondegenerate
region T � EF . The upper inset in Fig. 4 shows ν(T ) in
double-logarithmic scale, where one can infer a power-law-
like behavior ν(T ) ∝ T −n with n ≈ 3.5. The lower inset is
concentrated in the high-T region where a sign change of ν(T )
is predicted at T ≈ 450 K.

V. CONCLUSIONS

We developed a theory of conductivity and thermoelectric
effects in doped strontium titanate in the nondegenerate region
T � EF (n), assuming that the major source of electron scat-
tering is due to processes which involve two soft optical (TO)
phonons. The strength of the interaction between electrons
and these TO phonons is determined by single dimensionless
parameter λ. We have found good agreement between our
theory and experiment [4] for both conductivity and See-
beck coefficient and for (almost) all electron concentrations,
using a single value of λ ≈ 0.88 and an assumption of an
enhanced effective mass, with the ratio m∗(T )/m0 varying
between about 8.7 and 10.7 in the temperature interval 100–
700 K (independent on n). A complementary study [22] of
superconductivity in STO due to exchange by 2TO phonons
produced very reasonable results with a similar value λ = 1.1
for the dimensionless coupling constant. Our kinetic equation
approach correctly reproduces a temperature dependence of
conductivity in various regions of moderate to high tempera-
ture. In particular, we obtained σ (T ) ∝ T −3 behavior between
about 100 and 200 K and slower dependence σ (T ) ∝ T −3/2

at highest temperatures (see Fig. 3), in agreement with exper-
imental data [4].

The major difference between our approach and the theory
part of Ref. [4] is that we take into account energy dependence
1/τTO(p) which spoils simple proportionality between the
Seebeck coefficient and entropy per particle. The same energy

dependence leads to a nonzero Nernst coefficient which we
calculate in the linear approximation over magnetic field.

We have used the phenomenological notion of effective
mass of electron, in spite of the fact that electron bands in STO
are rather anisotropic (apart from the very bottom of the first
band). Partial justification for the use of such approximation
comes about since we consider a high-temperature nondegen-
erate region, where electrons frequently change their energy
as well as momentum. An independent check for the value of
the effective mass about 10m0 that we used comes from the
analysis of the plasma frequency measurements [30]. Indeed,
these data for electron density n = 1.5 × 1020 cm−3 show the
drop of plasma frequency by the factor ∼1.5 while temper-
ature grows from 1 to 200 K. Using the relation m(T ) ∝
1/ω2

p(T ) we conclude that effective mass grows by the factor
∼2.2 in the same temperature range. Since low-temperature
band mass is close to 4m0 for this electron density, we find
meff (T ∼ 200) ≈ 9m0, in good agreement with the value we
used in our main analysis.

With the values obtained for our fit parameters λ and m(T ),
we find average scattering rate 〈1/τTO〉 which is below, or
at most, 20% higher, than the inverse Planckian time kBT/h̄
[see inset to Fig. 1(b)]. The energy-dependent relaxation time
τTO(p) never becomes less than 60% of the Planckian time,
and is longer than it is in the major part of the data shown in
Fig. 1(a). Therefore we expect that the use of the standard
kinetic equation we employed is possible for the problem
studied, although corrections to it may occur to be non-
negligible at highest temperatures.

Note added. We recently became aware of the paper [13],
which is devoted to the T dependence of conductivity in STO
due to scattering by 2TO phonons. While the basic mecha-
nism of electron scattering considered in [13] is the same as
in our paper, it is treated in a quite different way. Namely,
scattering by 2TO phonons is considered as effectively elastic
electron scattering by “thermal disorder” produced by slow
TO phonons. As a result, the electron scattering rate and
resistivity are found to scale as T 2/E0 at low temperatures
T � E0, where E0 depends on the strength of the coupling to
2TO phonons (estimated as ≈200 K in Ref. [13]). In addition,
the scattering rate they found is independent on the electron
energy due to the approximation of a zero TO phonon gap em-
ployed. Both these features of the low-T results of Ref. [13]
differ from our results as well as from experimental observa-
tions; we believe that their major problem is due to elastic
approximation. However, at high temperature T � E0 they
obtained σ ∝ T −3/2, via nontrivial solution beyond quasipar-
ticle approximation. This result is in qualitative agreement
with our highest-T results obtained within the kinetic equation
approach; this coincidence seems to indicate that a breakdown
of quasiparticle description due to h̄/T > τTO(p) does not
lead to substantial consequences for conductivity.
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APPENDIX A: COLLISION INTEGRAL

In order to treat the Hamiltonian (1) we must represent the
phonon operators in the second quantization form

û(r) = 1√
N

∑
k,λ

eλ
k√

2Mωk

(
âλ

ke−iωkt+ikr + e.c.
)
, (A1)

where âλ
k is the phonon annihilation operator, M is the mass

of the unit sell, N is the number of cells, and eλ
k is the λ

polarization vector. This rewrites the Hamiltonian in a form

ĤTO = g

2MN

∑
k1,k2,λ,μ

eλ
k1

eμ

k2√
ωk1ωk2

(
F̂ (1)λμ

k1k2
+ F̂ (2)λμ

k1k2

)
, (A2)

F̂ (1)λμ

k1k2
= (

âλ
k1

âμ

k2
ei(k1+k2 )r)e−i(ωk1 +ωk2 )t + e.c., (A3)

F̂ (2)λμ

k1k2
= (

âλ
k1

â†μ

k2
ei(k1−k2 )r)e−i(ωk1 −ωk2 )t + e.c. (A4)

For the scattering probability we will use Fermi’s golden rule.
Here, each term in the Hamiltonian gets a simple physical
interpretation. F̂ (1)

k1k2
will stand for the processes when two

phonons are absorbed or emitted, and F̂ (2)
k1k2

for the process
of scattering on a phonon.

Now, we take into account 〈〈ψ̂†
pψ̂p〉〉 = fp, 〈〈ψ̂pψ̂

†
p〉〉 =

1 − fp, 〈〈â†
kâk〉〉 = Nk, 〈〈âkâ†

k〉〉 = Nk + 1, where ψ̂†
p, ψ̂p are

electron creation and annihilation operators, respectively, and
fp and Nk are nonequilibrium distributions for electrons and
phonons, respectively. The last step is to represent the electron
distribution function as follows, fp ≈ np + δnp, and take the
phonon distribution to be almost equilibrium Nk ≈ Nk . Fi-
nally, the collision integral vanishes when all the distributions
are taken to be the equilibrium ones. Therefore, by saving only
the terms linear with respect to δnp we end up with (4).

APPENDIX B: PARAMETRIZATION
OF THE COLLISION INTEGRAL

The collision integral is of the form

ITO{δnp} =
∫

k1k2

f1(k1, k2, p)δnp + f2(k1, k2, p)δnp′ (B1)

where the functions f1, f2 were found in (4). The momentum
p′ is expressed via k1, k2, p. Let us fix the function δnp.
After the integration over k1, k2 we will get a function of the
momentum p: ITO ≡ ITO(p). Now, for that fixed δnp we can
introduce a function

τTO(p) = − δnp

ITO(p)
. (B2)

As a result we will have an exact parametrization of our
collision integral in a form

ITO(p) = − δnp

τTO(p)
. (B3)

The function τTO(p) introduced in this way depends indeed on
the function δnp itself. But the physical problem presumes an
existence of some source of deviation from the Fermi distri-
bution which results from a certain external source (electric
field, temperature gradient, etc.), which means that in every
specific problem τ (p) can be determined. It is not guaranteed
that the same τ (p) will be obtained for different types of
perturbation.

Our method apparently looks similar to the RTA; however,
in contrast to RTA, we do not make any approximations and
use an exact parametrization of the collision integral. For
the sake of simplicity, we call τTO(p) effective relaxation
time.

APPENDIX C: CALCULATION
OF THE RELAXATION TIME

1. The iterative method

In order to find the relaxation time we assume that
the temperature gradient in the Boltzmann equation can be
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FIG. 6. The results for the relaxation time with and without the temperature gradient considered for two values of the Seebeck coefficient.
(a) S = 700 μV/K. (b)–(d) S = 300 μV/K.

neglected. This assumption is checked in Appendix C 2.
Therefore, we can rewrite the equation for δnp in the following
form:

δnp ≈ eτTO(p) · (vp, E)
∂nF (ξp)

∂ξp
, (C1)

ITO{δnp} ≡ − δnp

τTO(p)
. (C2)

Now, let us introduce our modification of the iterative
method for this case.

Zeroth iteration. We start from the simplest trial with an
energy-independent relaxation time:

τ
(0)
TO = const. (C3)

δn(0)
p ≈ eτ (0)

TO · (vp, E)
∂nF (ξp)

∂ξp
. (C4)

First iteration. We substitute (C4) into (C2):

I (1)
TO{δn(0)

p } = Integral{δn(0)
p } ≡ − δn(0)

p

τ
(1)
TO (p)

, (C5)

−→ τ
(1)
TO (p) = − δn(0)

p

Integral
{
δn(0)

p
} , (C6)

where the word “Integral” means that we numerically evaluate
the integral in (4) using δn(0)

p defined with (C4). Here, we

know δn(0)
p as a function of p to within the constant factor τ

(0)
TO .

The key part is that I (1)
TO{δn(0)

p } is linear with respect to δn(0)
p ,

which means that the value of τ
(0)
TO cancels out from Eq. (C5).

This allows us to extract τ
(1)
TO . Using it, we find the modified

distribution function

δn(1)
p ≈ eτ (1)

TO (p) · (vp, E)
∂nF (ξp)

∂ξp
. (C7)

Second iteration. Similarly,

I (2)
TO

{
δn(1)

p

} = Integral
{
δn(1)

p

} ≡ − δn(1)
p

τ
(2)
TO (p)

. (C8)

Here, we already know δn(1)
p , so no problems in finding τ

(2)
TO .

And then

δn(2)
p ≈ eτ (2)

TO (p) · (vp, E)
∂nF (ξp)

∂ξp
. (C9)

nth iteration.

I (n)
TO

{
δn(n−1)

p

} = Integral
{
δn(n−1)

p

} ≡ −δn(n−1)
p

τ
(n)
TO (p)

, (C10)

δn(n)
p ≈ eτ (n)

TO (p) · (vp, E)
∂nF (ξp)

∂ξp
. (C11)

The convergence of the presented method cannot be guar-
anteed. However, we are working with a strictly positive
function τTO(p) > 0; hence it has a strictly positive average
value which can be considered as the τ

(0)
TO . So, we can think
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of τTO(p) as τTO(p) = τTO + �τTO(p) and if �τTO(p) is not
much greater compared to τTO, the method should converge.

Now, let us prove that if the numerical evalua-
tion shows that the method converges ( limn→∞ τ

(n)
TO =

τ
(∞)
T O ; limn→∞ δn(n)

p = δn(∞)
p ), we can guarantee that the

obtained result is the solution for (C1) and (C2). The reason
for this is that if we formally take a limit n → ∞ in (C10) and
(C11), we end up with

δn(∞)
p ≈ eτ (∞)

TO (p) · (vp, E)
∂nF (ξp)

∂ξp
, (C12)

ITO{δn(∞)
p } = Integral{δn(∞)

p } ≡ −δn(∞)
p

τ
(∞)
TO

. (C13)

The above pair of equations is fully equivalent to Eqs. (C1)
and (C2), which concludes our proof.

2. Results for τTO(p) and the role of temperature gradient

The results of the implemented method are presented in
Fig. 5. It is clear that the method converges very decently, as
the difference between the third approximation and the second
one is already quite small. Therefore, it is sufficient to con-
sider τ

(3)
TO (p) to be our final approximation for the relaxation

time.
As is clear from Eq. (C1), we neglected the temperature

gradient while developing the iterative method. Let us now
check whether this approximation was appropriate. In order
to do that we assume the absence of the charge current JE = 0
which gives a correlation between the electric field and the
temperature gradient ∇T = E/S . We consider several tem-
peratures and two values of the Seebeck coefficient. Figure 6
shows the comparison between the relaxation times computed
with and without the temperature gradient.
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