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We consider three-dimensional lattice SU(Nc ) gauge theories with multiflavor (Nf > 1) scalar fields in the
adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-
symmetry pattern, and determine the nature of the transition lines. In particular, we study the role played by
the quartic scalar potential and by the gauge-group representation in determining the Higgs phases and the
global and gauge-symmetry-breaking patterns characterizing the different transitions. The general arguments
are confirmed by numerical analyses of Monte Carlo results for two representative models that are expected to
have qualitatively different phase diagrams and Higgs phases. We consider the model with Nc = 3, Nf = 2 and
with Nc = 2, Nf = 4. This second case is interesting phenomenologically to describe some features of cuprate
superconductors.
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I. INTRODUCTION

Gauge symmetries represent a fundamental feature of high-
energy particle theories [1–3] and of emerging phenomena in
condensed matter physics [3–6]. It is therefore important to
understand the role they play in gauge models. In particular, it
is crucial to have a solid understanding of how they relate to
global symmetries and of their role in determining the phase
structure of the model, the nature of its different Higgs phases,
and of its quantum and thermal transitions.

We address these issues in three-dimensional (3D) lattice
gauge models with multicomponent scalar fields. We consider
a lattice model with O(Nf ) global invariance, SU(Nc) local
invariance, and in which the scalar-matter field transforms in
the adjoint representation of SU(Nc) and in the fundamental
representation of O(Nf ) [7,8]. This model is of direct phe-
nomenological interest. In particular, the gauge model with
Nc = 2 and Nf = 4 has been proposed as an effective model
for optimal doping criticality in hole-doped cuprate supercon-
ductors [9,10].

Studies addressing the interplay between global and gauge
non-Abelian symmetries in 3D models have been already
reported. We mention Refs. [11,12] that studied models with
fields transforming under the fundamental representation of
the gauge group: Ref. [11] studied a model with a local
SU(Nc) and a global SU(Nf ) invariance and Ref. [12] studied
a model with global O(Nf ) and local SO(Nc) invariance. Other
studies have focused on Abelian U(1) gauge theories [13,14],
such as the lattice Abelian-Higgs model with compact [15–19]
and noncompact [20–23] gauge fields, and with higher-charge
scalar fields [24–30].

In this paper we extend these studies. First, we investigate
the role played by the gauge-group representation of the scalar
fields. In particular, we consider lattice SU(Nc) gauge theories
with multiflavor scalar matter in the adjoint representation.

Second, we consider a generic quartic scalar potential, obtain-
ing a richer phase diagram with different Higgs phases. We
mention that some results for this model have been already
reported in Ref. [10], which discusses the phase diagram
and the different Higgs phases for Nc = 2 and Nf = 4. We
extend here those results, presenting a numerical analysis of
the nature of the phase transitions along the transition lines
that separate the different phases. We also mention that the
phase behavior of the same model has been studied also in two
dimensions [31], finding that the asymptotic zero-temperature
behavior (continuum limit) is the same as in models defined
on symmetric spaces that have the same global symmetry [32].

The phase diagram of the lattice SU(Nc) gauge model with
multiflavor scalar matter in the adjoint representation depends
on the number of colors Nc and flavors Nf . Its low-temperature
Higgs phases are essentially determined by the nature of the
scalar configurations in the low-temperature limit, and also by
the topological properties of the gauge fields. In particular,
qualitatively different behaviors emerge for Nf � N2

c − 1 and
Nf > N2

c − 1. In the first case it is possible to have only one
low-temperature Higgs phase, while in the second case several
low-temperature Higgs phases are present. Correspondingly,
we observe transitions that are related to the breaking of the
global-symmetry group acting on the scalar fields, and topo-
logical transitions separating phases with different topological
properties of the gauge field. We present numerical studies
based on Monte Carlo simulations for one representative of
each class of models. We study the model for Nc = 3 and
Nf = 2 (in this case we have Nf < N2

c − 1) and for Nc = 2
and Nf = 4, for which Nf > N2

c − 1. Some numerical results
for Nc = 2 and Nf = 4 in the strong gauge-coupling limit
were also reported in Ref. [10].

The model with one scalar field, i.e., with Nf = 1, is also
phenomenologically interesting: it is relevant for electron-
doped cuprates [9]. However, its phase diagram is somewhat
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trivial, as it presents a single thermodynamical phase, with
two continuously connected regimes, a disorderedlike and
a Higgs-type regime [9,33]. Indeed, the existence of a dis-
tinct low-temperature Higgs phase requires the breaking of a
global-symmetry group, which is only possible for Nf � 2.

The paper is organized as follows. In Sec. II we define the
lattice SU(Nc) gauge model with Nf scalar fields in the adjoint
representation. In Sec. III we introduce the observables and
discuss their finite-size scaling (FSS) behavior, which will
be at the basis of our numerical analyses. In Sec. IV we
determine the minimum-potential configurations, which spec-
ify the different Higgs phases, and characterize the global-
and gauge-symmetry-breaking patterns. In Sec. V we discuss
the renormalization-group (RG) flow of the statistical field
theory that is associated with the lattice model, focusing on
the case Nc = 2. In Sec. VI we discuss some limiting cases,
corresponding to simpler models for which some features of
the phase diagram are already known. The next two sections
are dedicated to the presentation of the numerical results. In
Sec. VII we discuss the phase diagram of the model with
Nc = 3 and Nf = 2, which is a representative of models with
Nf � N2

c − 1. Section VIII reports a numerical analysis of
the more interesting case with Nc = 2 and Nf = 4, for which
Nf > N2

c − 1. Finally, in Sec. IX we summarize and draw our
conclusions. Some details on the Monte Carlo (MC) simula-
tions and numerical analyses are reported in the Appendix.

II. LATTICE SU(Nc) GAUGE MODELS WITH ADJOINT
SCALAR FIELDS

We consider lattice gauge models that are invariant un-
der local SU(Nc) and global O(Nf ) transformations, with
scalar fields that transform under the adjoint representation
of SU(Nc) and under the fundamental representation of the
O(Nf ) group. They are defined on cubic lattices of linear
size L with periodic boundary conditions. The fundamen-
tal variables are real matrices �

a f
x , with a = 1, . . . , N2

c − 1
(color index) and f = 1, . . . , Nf (flavor index), defined on the
lattice sites, and gauge fields Ux,μ ∈ SU(Nc) associated with
the lattice links [2]. The partition function is

Z =
∑
{�,U }

e−βH , β = 1/T (1)

H = HK (�,U ) + HV (�) + HG(U ), (2)

where the lattice Hamiltonian H is the sum of the kinetic term
HK of the scalar fields, of the local scalar potential HV , and of
the pure-gauge Hamiltonian HG. As usual, we set the lattice
spacing equal to one, so that all lengths are measured in units
of the lattice spacing.

The kinetic term HK is given by

HK (�,U ) = −J
Nf

2

∑
x,μ

Tr �t
x Ũx,μ �x+μ̂, (3)

where the matrix Ũ ab
x,μ is the adjoint representation of the

original link variable Ux,μ, explicitly defined as

Ũ ab
x,μ = 2 Tr( U †

x,μT aUx,μT b ), a, b = 1, . . . , N2
c − 1 (4)

where T a are the N2
c − 1 generators in the fundamental

representation, normalized so that Tr T aT b = 1
2δab. In the

following we fix J = 1, so that energies are measured in
units of J .

The scalar potential term HV is written as

HV (�) =
∑

x

V (�x),

V (�) = r

2
Tr �t� + u

4
(Tr �t�)2 + v

4
Tr (�t�)2, (5)

which is the most general quartic potential invariant under
O(Nf ) ⊗ O(N2

c − 1) transformations. For v = 0, the symme-
try group of HV (�) is larger, namely, the O(M ) group with
M = Nf (N2

c − 1).
Finally, the pure-gauge plaquette term reads as

HG(U ) = − γ

Nc

∑
x,μ>ν

Re Tr �x,μν,

�x,μν = Ux,μ Ux+μ̂,ν U †
x+ν̂,μ U †

x,ν , (6)

where the parameter γ plays the role of inverse gauge cou-
pling.

The model is invariant under global O(Nf ) transformations
�a f → ∑

g O f g�ag, and under local SU(Nc) transformations

Ux,μ → VxUx,μV †
x+μ̂, �a f

x →
∑

b

Ṽ ab
x �b f

x , (7)

where Vx is an SU(Nc) matrix and Ṽx is the corresponding
matrix in the adjoint representation [Ṽ can be obtained from
V using the analog of Eq. (4)].

In our study we focus on a representative model with fixed-
length scalar fields �x, satisfying

Tr �t
x�x = 2. (8)

Formally, this model can be obtained by taking the limit
u, r → ∞ keeping the ratio r/u = −2 fixed. The correspond-
ing lattice Hamiltonian reads as

H = −Nf

2

∑
x,μ

Tr �t
x Ũx,μ �x+μ̂

+v

4

∑
x

Tr
(
�t

x�x
)2 − γ

Nc

∑
x,μ>ν

Re Tr �x,μν. (9)

Models with generic values of r and u are expected to have
the same qualitative behavior as this simplified model.

For γ = 0 each matrix Ux,μ can be multiplied by an ar-
bitrary (x, μ)-dependent element of the gauge-group center
ZNc without changing the Hamiltonian, thus implying that
the gauge group is SU(Nc)/ZNc . In particular, this implies
〈Tr �x,μν〉 = 0 for γ = 0. Note also that, for Nc = 2 and again
for γ = 0, because of the isomorphism SU(2)/Z2 = SO(3),
we recover an SO(3) gauge theory with scalar matter in the
fundamental representation.

For γ �= 0, the gauge Hamiltonian breaks the previous
symmetry. However, the Hamiltonian is still invariant under a
subgroup of those transformations. More precisely, it is invari-
ant under the transformations Ux,μ → c(xμ)Ux,μ, where c(xμ)
is an element of the gauge-group center that depends only
on xμ (the component μ of the position vector). When this
symmetry is not spontaneously broken, Wilson loops obey the
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area law and color charges transforming in the fundamental
representation are confined.

Finally, for γ → ∞, the link variables Ux,μ become equal
to the identity, modulo gauge transformations. Thus, one re-
covers a matrix scalar model which is invariant under global
O(Nf ) ⊗ O(N2

c − 1) transformations [for v = 0, the global-
symmetry group is O(M ) with M = Nf (N2

c − 1)]. This is
strictly true only for an infinite system. On a finite lattice
with periodic boundary conditions, it is not possible to set
Ux,μ = 1 on all links and, therefore, one ends up with a scalar
model with SU(Nc) [since the fields transform under the ad-
joint representation, the group is more precisely SU(Nc)/ZNc ]
fluctuating boundary conditions [see Ref. [34] for a discussion
in the context of U(1) gauge models].

III. OBSERVABLES, ORDER PARAMETER,
AND FINITE-SIZE SCALING

To investigate the phase diagram of the lattice SU(Nc)
gauge theory (9), we consider the energy density and the
specific heat, defined as

E = − 1

3L3
〈H〉, CV = 1

L3
(〈H2〉 − 〈H〉2). (10)

The critical properties of the scalar fields can be monitored by
using the correlation functions of the gauge-invariant bilinear
operators

B f g
x = 1

2

∑
a

�a f
x �ag

x , Q f g
x = B f g

x − 1

Nf
δ f g, (11)

which satisfy Tr Bx = 1 and Tr Qx = 0 due to the fixed-length
constraint. The bilinear scalar operator Qx provides the nat-
ural order parameter for the breaking of the global O(Nf )
symmetry. As we use periodic boundary conditions for all
fields, translation invariance holds. We define the two-point
correlation function

G(x − y) = 〈Tr QxQy〉, (12)

the corresponding susceptibility χ = ∑
x G(x), and the

second-moment correlation length

ξ 2 = 1

4 sin2(π/L)

G̃(0) − G̃(pm)

G̃(pm)
, (13)

where G̃(p) = ∑
x eip·xG(x) is the Fourier transform of G(x),

and pm = (2π/L, 0, 0). We also consider RG-invariant quan-
tities, such as the Binder parameter

U =
〈
μ2

2

〉
〈μ2〉2

, μ2 = 1

L6

∑
x,y

Tr QxQy (14)

and

Rξ = ξ/L. (15)

At continuous transitions RG-invariant quantities, generically
denoted by R, scale as [35]

R(β, L) = fR(X ) + L−ωgR(X ) + · · · , (16)

where

X = (β − βc)L1/ν, (17)

and next-to-leading scaling corrections have been neglected.
The function fR(X ) is universal up to a multiplicative rescal-
ing of its argument, ν is the critical exponent associated
with the diverging correlation length, and ω is the exponent
associated with the leading irrelevant operator. In particular,
U ∗ ≡ fU (0) and R∗

ξ ≡ fRξ
(0) are universal, depending only on

the boundary conditions and aspect ratio of the lattice. Since
Rξ defined in Eq. (15) is an increasing function of β, we can
write

U (β, L) = F (Rξ ) + O(L−ω ), (18)

where F (x) depends on the universality class, boundary
conditions, and lattice shape, without any nonuniversal multi-
plicative factor. Equation (18) is particularly convenient to test
universality-class predictions, as it permits a direct compari-
son of results for different models without requiring a tuning
of nonuniversal parameters.

The Binder parameter U is also useful to identify weak
first-order transitions, especially when large lattices are re-
quired to obtain evidence of a finite latent heat or of a bimodal
energy distribution. Indeed, at a first-order transition, the max-
imum Umax of U increases as the volume L3, i.e. [36–38],

Umax = a L3 + O(1). (19)

This is the key point which distinguishes first-order from con-
tinuous transitions. Indeed, at a continuous phase transition,
U is finite as L → ∞; at the critical point U converges to
a universal value U ∗, while the data of U corresponding to
different values of Rξ collapse onto a scaling curve as the
volume is increased. Therefore, U has a qualitatively different
scaling behavior for first- and second-order transitions. The
absence of a data collapse in plots of U versus Rξ may be
considered as an early indication of the first-order nature of
the transition [39]. To identify the transition, one can also con-
sider the specific heat. At first-order transitions, its maximum
value Cmax(L) asymptotically increases as [36]

Cmax(L) = �2
h

4
L3 + O(1), (20)

where �h is the latent heat, defined as the difference �h =
E (β → β+

c ) − E (β → β−
c ). Moreover, the value of β cor-

responding to the maximum converges to the critical value
βc as βmax,C (L) − βc ≈ c L−3. Note that Cmax(L) may also
diverge at continuous transitions (this occurs when α > 0),
and therefore the identification of the order of the transition
from the behavior of Cmax(L) requires a detailed analysis of
its asymptotic large-L behavior.

IV. HIGGS PHASES

The lattice gauge models we consider may have different
Higgs phases associated with different symmetry-breaking
patterns. They are determined by the minima of the local
scalar potential (5), namely,

V (�) = v

4
Tr (�t�)2, (21)

in the fixed-length limit Tr �t� = 2. In the following we sum-
marize (using the notations of Ref. [31]) the main properties
of these phases, which crucially depend on the number of
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colors Nc, of flavors Nf , and on the parameter v [9,10,31].
Moreover, as we shall see, their nature may also depend on
the behavior of the fluctuations of variables associated with
the gauge-group center ZNc , which are expected to undergo a
transition at positive values of γ .

A. Model for v < 0

For v < 0 the minimum-potential configurations can be
generally written as [9,31]

�a f =
√

2 saz f , (22)

where s and z are unit real vectors of dimension N2
c − 1 and

Nf , respectively. To identify the symmetry-breaking pattern
at the transition, we should identify the stabilizer group (little
group in Wigner’s notation) of the solution (22), i.e., the group
of O(Nf ) transformations that leave the field (22) invariant,
modulo gauge transformations. Explicitly, we should find the
orthogonal matrices O f g such that∑

g

O f gsazg =
∑

b

Ṽ absbz f , (23)

for some V ∈ SU(Nc) (the tilde indicates the adjoint repre-
sentation). It is immediate to verify that V should satisfy
| ∑ab saṼ absb| = 1, so that Eq. (23) can be written as∑

g

O f gzg = ±z f . (24)

The invariance group is therefore Z2 ⊗ O(Nf − 1) and the
global-symmetry-breaking pattern is

O(Nf ) → Z2 ⊗ O(Nf − 1). (25)

We also define a gauge-symmetry-breaking pattern as the
stabilizer of the minimum-potential solution with respect to
the gauge group. For this purpose, we determine the matrices
V ∈ SU(Nc) such that ∑

b

Ṽ absb = sa. (26)

Defining T̂ = ∑
a saT a, and using Eq. (4) we obtain

2
∑

a

T aTr (V †T aV T̂ ) = T̂ . (27)

Using the completeness relation for the generators, we end
up with the condition [V, T̂ ] = 0. The stabilizer subgroup is
therefore U(1) ⊕ U(Nc − 2), so that for v < 0 we observe a
gauge-symmetry-breaking pattern

SU(Nc) → U(1) ⊗ U(Nc − 2), (28)

independently of the flavor number Nf . In particular, for Nc =
2, we have [10] SU(2)→ U(1) [equivalently, disregarding dis-
crete subgroups, it corresponds to O(3)→ O(2)]. Note that we
are not claiming here that the gauge symmetry is broken in
the standard statistical-mechanics sense (i.e., that we can force
the system in one specific minimum, for instance, by appro-
priately fixing the boundary conditions), as this is forbidden
by well-known rigorous arguments [40–42]. The right-hand
side of the gauge-symmetry-breaking pattern only represents

the residual gauge symmetry of the minimum-potential con-
figuration once the scalar fields have been fixed to a specific
value by means of an appropriate gauge-fixing condition (see
Ref. [42] for a discussion of the role of gauge fixings), i.e.,
once a specific value of s in Eq. (22) has been chosen.

One may also establish a correspondence between the crit-
ical behavior of the SU(Nc) gauge model (9) and the 3D
RPNf −1 model [31]. Consider indeed the limit v → −∞ at
fixed β and J . In this limit Bx, defined in Eq. (11), becomes

B f g
x = z f

x zg
x, (29)

i.e., it corresponds to a local projector onto a one-dimensional
subspace. If we now assume that the dynamics in the gauge
model is determined by the fluctuations of the order parameter
Bx, or equivalently of Qx, we identify the effective scalar
model as the RPNf −1 model. Indeed, the standard nearest-
neighbor RPN−1 action is obtained by taking the simplest
action for a local projector P f g

x :

HRP = −J
∑
x,μ

Tr PxPx+μ̂, P f g
x = ϕ f

x ϕg
x, (30)

where ϕa
x is a unit vector. We do not expect the limit v → −∞

to be relevant. The crucial property should be the structure
of the low-temperature configurations, and thus we expect
RPNf −1 in the whole phase in which the symmetry-breaking
patterns (25) and (28) hold. We recall that 3D RPN−1 models
undergo continuous transitions only for N = 2: they belong
to the XY universality class. For any N > 2, transitions are
of first order, as predicted by the Landau-Ginzburg-Wilson
(LGW) theory [43,44].

B. Model for v > 0

The behavior of the model is more complex for v > 0.
The minimum-potential configurations can be parametrized
as [9,31]

�ag =
√

2

q

q∑
k=1

CakF kg, q = Min
[
Nf , N2

c − 1
]
, (31)

where C and F are orthogonal matrices of dimension N2
c − 1

and Nf , respectively. To further simplify this expression we
should distinguish two cases: Nf � N2

c − 1 and Nf > N2
c − 1.

For Nf � N2
c − 1, we can simplify Eq. (31) into

�ag =
√

2

q
Cag, C ∈ O

(
N2

c − 1
)
. (32)

Moreover, for Nc = 2, since the adjoint representation of
SU(2) is equivalent to SO(3), one may further simplify the
representation of the minimum-potential configuration: all
such configurations are obtained by applying gauge transfor-
mations to �ag = √

2/q δag.
The global invariance group of the minimum configura-

tions is given by those transformations O ∈ O(Nf ) such that

∑
g

O f gCag =
∑

b

Ṽ abCb f , (33)
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for some SU(Nc) matrix V . This condition implies that O f g =
(CtṼ tC) f g. Since the matrix CtṼ tC is an element of the
adjoint representation of SU(Nc), O should be an Nf × Nf

submatrix of an element of SU(Nc)adj. The stabilizer group
is therefore

O(Nf ) ∩ SU(Nc)adj. (34)

For Nf = 2 and 3, since SU(Nc)adj includes SU(2)adj = SO(3)
and inversion transformations on the first Nf components,
we have O(Nf ) ∩ SU(Nc)adj = O(Nf ). Thus, at least for these
two values of Nf , the symmetry of the minimum configura-
tions and of the disordered phase is the same. Therefore, no
transition is expected: the system is always disordered for
Nf = 2 and 3 and any Nc � 2 and both the global and local
symmetries are unbroken in this case.

The behavior for larger values of Nf is less clear, but it
is likely that, for Nf large but still satisfying the constraint
Nf � N2

c − 1, the stabilizer group is smaller than O(Nf ), and
therefore transitions are possible. However, the general ar-
gument presented in Ref. [31] indicates that such transitions
cannot be driven by the condensation of the bilinear operator
Q. Indeed, the parameter Q defined in Eq. (11) vanishes if the
fields are given by Eq. (31), as it does in the disordered phase.

For Nf > N2
c − 1, the minimum-potential configurations

can be parametrized as [31]

�ag =
√

2

q
F ag, F ∈ O(Nf ). (35)

Modulo global O(Nf ) transformations, a simple representative
is �ag = √

2/q δag. For what concerns the global-symmetry-
breaking pattern, the transformations O ∈ O(Nf ) that leave
the minimum-potential configurations invariant modulo gauge
transformations satisfy the condition Oab = Ṽ ab, so that the
symmetry-breaking pattern is

O(Nf ) → O
(
Nf − N2

c + 1
) ⊕ SU(Nc)adj. (36)

For Nc = 2, it becomes

O(Nf ) → O(Nf − 3) ⊕ SO(3). (37)

If we additionally set Nf = 4, it becomes O(4) → O(3),
which is the symmetry-breaking pattern of the O(4) vector
model. If we consider the gauge group, instead, since the only
matrix that leaves �ag = √

2/q δag invariant is Ṽ = 1, the sta-
bilizer group is the center ZNc . The gauge-symmetry-breaking
pattern is therefore

SU(Nc) → ZNc . (38)

In the previous discussion we have characterized the phases
on the basis of the different minima of the potentials. How-
ever, phases may also depend on topological properties of
the gauge fields, which are controlled by the coupling γ . In
particular, the modes related to the center of the gauge group
ZNc may undergo a confining-deconfining phase transition
at finite values of γ , giving rise to low-temperature Higgs
phases that have the same global and local gauge-symmetry-
breaking patterns, but that differ for the topological nature
of the gauge-center excitations. We expect these phenomena
to be relevant for v > 0, when the gauge-symmetry-breaking

pattern is SU(Nc) → ZNc , so that the minimum-potential con-
figurations are only invariant under the gauge-group center.

To understand the role of the gauge-group center, we con-
sider the limit β → ∞ keeping κ ≡ βγ fixed. In this limit, the
relevant configurations minimize the potential and the scalar
kinetic energy HK . As discussed in Ref. [31], for v > 0 the
minimization of HK implies Ũx,μ = 1, so that Ux,μ = λx,μ ∈
ZNc . In this limit, model (9) reduces to the lattice ZNc gauge
theory

HZNc
= −κ

∑
x,μ>ν

Re λx,μ λx+μ̂,ν λ̄x+ν̂,μ λ̄x,ν . (39)

In three dimensions, this lattice discrete gauge model under-
goes a continuous transition at a finite κc (see Sec. VI D for
more details). For example, for Nc = 2 the Hamiltonian (39)
corresponds to a lattice Z2 gauge theory [4], which presents
a small-κ confined phase and a large-κ deconfined phase
(which may carry topological order at the quantum level [5]),
separated by a critical point at κc = 0.761 413 292(11) (see
Sec. VI D). If the ZNc gauge transition persists for finite
values of β, then, when varying γ , we may have different
low-temperature Higgs phases that are associated with the
same gauge-symmetry pattern SU(Nc) → ZNc but that differ
in the large-scale behavior of the ZNc variables. This may
lead to a change of the nature of the phase transition from
the disordered to the Higgs phases when Nf > N2

c − 1, or
give rise to observable effects on the scalar Q correlations for
Nf � N2

c − 1, which are not expected to order for v > 0.

V. RG FLOW OF THE GAUGE FIELD THEORY

In this section we discuss the RG flow of the statistical field
theory corresponding to the lattice model (2), focusing on the
case Nc = 2. The starting point is a scalar theory in which
the fundamental field is a real matrix �a f (a = 1, . . . , N2

c − 1
and f = 1, . . . , Nf ), transforming as the corresponding lattice
field (see Sec. II). The corresponding Hamiltonian includes all
field monomials of dimension less or equal to four that are in-
variant under global O(Nf ) ⊗ O(N2

c − 1) transformations. To
obtain a model invariant under SU(Nc) gauge transformations,
we add an SU(Nc) gauge field Aa

μ and set Aμ ab ≡ iAk
μT k

A,ab,
where T k

A,ab = −i f abk are the SU(Nc) generators in the adjoint
representation [ f abc are the structure constants of the SU(Nc)
group]. The Hamiltonian density is

H = 1

4g2
0

(
F k

μν

)2 + (∂μ�a f + Aμ ab�b f )2 + 1

2
r Tr �t�

+ 1

4
u0(Tr �t�)2 + 1

4
v0[Tr (�t�)2 − (Tr �t�)2], (40)

where F k
μν is the non-Abelian field strength associated with

the gauge field Ak
μ. To determine the nature of the transitions

described by the continuum SU(Nc) gauge theory (40), one
studies the RG flow determined by the β functions of the
model in the coupling space.

In the ε-expansion framework, the RG flow close to four
dimensions is determined by the one-loop MS β functions.
Introducing the renormalized couplings u, v, and α = g2, the
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one-loop β functions for Nc = 2 are given by [9]

βu = −εu + 3Nf + 8

6
u2

+Nf − 1

3
(v2 − 2uv) − 3uα + 9

4
α2,

βv = −εv + Nf − 5

6
v2 + 2uv − 3vα + 9

8
α2,

βα = −εα + Nf − 22

12
α2, (41)

where ε ≡ 4 − d . The normalizations of the couplings can
be easily inferred from the above expressions.1 The β func-
tions (41) have a stable fixed point for sufficiently large Nf ,
more precisely for Nf > N∗ + O(ε) with N∗ ≈ 210.5. In par-
ticular, in the large-Nf limit the β functions can be written
in terms of the large-Nf parameters û ≡ Nf u, v̂ ≡ Nf v, α̂ ≡
Nf α, as

βû = −εû + 1

6
û2 + 1

3
(û − v̂)2,

βv̂ = −εv̂ + 1

6
v̂2, βα̂ = −εα̂ + 1

12
α̂2, (42)

which have a stable fixed point located at

α̂∗ = 12ε, û∗ = 6ε, v̂∗ = 6ε. (43)

Note that the stable fixed point in the large-Nf limit is located
in the region v > 0. Thus, it should describe the continuous
transitions between the disordered phase and the positive-v
Higgs phase discussed in Sec. IV B.

VI. SOME PARTICULAR CASES

In this section we discuss some particular cases of the
gauge model (9), which correspond to lattice models that
have already been studied in the literature. This analysis will
provide us some indications on the phase diagram of the full
theory.

A. Model for Nc = 2, γ = 0, and v = 0

For Nc = 2 and γ = 0, the model (9) is equivalent to
a lattice SO(3) gauge model with Nf scalar flavors in the

1The β functions (41) must be equal to those of the SO(3) gauge
theory in the fundamental representation. They indeed agree for Nc =
2 with those of the SO(Nc ) gauge model reported below:

βu = − εu + NcNf + 8

6
u2 + (Nf − 1)(Nc − 1)

6
(v2 − 2uv)

− 3

2
(Nc − 1)uα + 9

8
(Nc − 1)α2,

βv = − εv + Nc + Nf − 8

6
v2 + 2uv

− 3

2
(Nc − 1)vα + 9

8
(Nc − 2)α2,

βα = − εα + Nf − 22(Nc − 2)

12
α2.

We report them here, as a few misprints are present in the expressions
reported in Ref. [12].

fundamental representation. The Hamiltonian is

H = −Nf

2

∑
x,μ

Tr �t
x Vx,μ �x+μ̂ + v

4

∑
x

Tr
(
�t

x�x
)2

, (44)

where the link variables Vx,μ belong to the fundamental rep-
resentation of the gauge group SO(3). For v = 0 this model
was discussed in Ref. [12]. It was predicted that, for any Nf ,
the system undergoes a finite-temperature transition which is
the same as in the corresponding RPNf −1 model [cf. Eq. (30)].
Therefore, one predicts a continuous XY transition for Nf = 2
and a first-order transition for any Nf > 2. Indeed, in the
LGW Hamiltonian appropriate for the RPNf −1 model [43,44],
a cubic �3 term is always present for Nf > 2, a presence
which is usually considered as an indication of a first-order
transition for 3D statistical models.

These predictions have been confirmed numerically [12].
For Nf = 2 there is a continuous XY transition at βc =
1.976 90(7), while for Nf = 3 there is a first-order transition
at βc ≈ 1.77. These numerical results indicate that, for v = 0,
the relevant low-temperature configurations are those of the
form (22), that correspond to the minima of the potential for
v < 0.

B. The limit γ → ∞
For γ → ∞ the variables Ux,μ converge to the identity,

apart from gauge transformations. Thus, we obtain the scalar
model

H = −Nf

2

∑
x,μ

Tr �t
x �x+μ̂ + v

4

∑
x

Tr
(
�t

x�x
)2

, (45)

with a global O(Nf ) ⊗ O(N2
c − 1) symmetry. For v = 0, the

symmetry group is larger, namely, O(M ) with M = Nf (N2
c −

1), and therefore we expect continuous transitions belong-
ing to the O(M ) vector universality class. For v �= 0, the
models (45) may undergo a finite-temperature continuous
transition only if a corresponding universality class exists and,
in particular, only if the corresponding LGW �4 theory has
a stable fixed point. RG analyses indicate that continuous
transitions are possible for Nf = 2 and Nc = 2 [35,38,45–50],
for both v < 0 and v > 0, and for [51] Nf = 4 and Nc = 2
when v < 0. Moreover, for v > 0 there is a stable fixed point
for sufficiently large Nf at fixed Nc and sufficiently large Nc at
fixed Nf (in particular for Nc = 2 and any Nf ) [38,45,52]. It is
not clear whether the fixed points of the O(Nf ) ⊗ O(N2

c − 1)
field theory are relevant for the behavior for finite values of γ .
For instance, the O(M ) fixed point that controls the behavior
for γ = ∞ and v = 0 is unstable with respect to the gauge
coupling, and is therefore irrelevant for the finite-γ behavior,
although it is expected to give crossover effects for large
values of γ . There are at present no analogous results for
v �= 0.

C. The limit β → ∞
In the limit β → ∞ the behavior of the system is con-

trolled by the configurations minimizing the Hamiltonian. As
already discussed in Sec. IV, two different low-temperature
phases occur for v < 0 and v > 0. Therefore, in this limit we
expect a transition line for v = 0 and any γ . The transition
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line should be of first order for any Nf and Nc, as it separates
phases that correspond to different minima of the potential.

D. The limit β → ∞ keeping κ ≡ βγ fixed

Let us now consider the limit β → ∞ keeping κ ≡ βγ

fixed. As mentioned in Sec. IV B, for v > 0 the model (9)
reduces to the lattice ZNc gauge theory defined in Eq. (39).
This model can be related by duality to the Nc-state clock spin
model [29], characterized by a global ZNc symmetry. For q =
2, the q-state clock model is equivalent to the standard Ising
model and thus we expect an Ising transition. Duality allows
us to obtain κc for Nc = 2: κc = 1

2 ln coth βI,c, where βI,c is
the inverse temperature of the Ising model. Using [53] βI,c =
0.221 654 626(5), we obtain κc = 0.761 413 292(11). For q =
3, the q-state clock model is equivalent to a three-state Potts
model, which can only undergo first-order transitions. For
larger values of q, we expect a continuous transition. It be-
longs to the Ising universality class for [54] q = 4, and to the
3D XY universality class for [54–56] q � 5. Note, however,
that in the q → ∞ limit we recover the pure U(1) gauge
theory, with λx,μ ∈ U(1), which is known [57] to have no
transitions for finite values of κ . Therefore, if a transition
occurs for any finite q, we must have κc → ∞ in the q → ∞
limit.

Since for v > 0 and Nf > N2
c − 1 the low-temperature

Higgs phase is characterized by the gauge-symmetry-breaking
pattern SU(Nc) → ZNc (see Sec. IV B), it seems natural to
expect that the confinement-deconfinement center transition
also persists for finite β, giving rise to two different positive-v
Higgs phases, depending on γ .

For v < 0, the low-temperature Higgs phase is character-
ized by a residual continuous gauge symmetry [see Eq. (28)].
Since 3D pure gauge theories with continuous gauge group
do not display any confinement-deconfinement transition, the
same is expected to happen for the model (9) when v < 0.

E. The limit v → ±∞
For |v| → ∞, configurations are constrained to be minima

of the the scalar potential (21). For v → +∞, the scalar
fields take the form (31), reducing the model to a particular
σ model. Transitions are expected for Nf > N2

c − 1, with the
global-symmetry-breaking pattern (36) [or (37) for Nc = 2].
For Nf = 4, Nc = 2, the global-symmetry-breaking pattern is
O(4)→ O(3) and therefore the transition should belong to the
O(4) vector universality class.

For v → −∞ scalar variables take the form (29). As dis-
cussed in Sec. IV A, one expects to recover the effective
RPNf −1 model (30), whose transitions are continuous for Nf =
2 and of first order for any Nf > 2.

VII. RESULTS FOR Nc = 3 AND Nf = 2

In this section we determine the phase diagram for Nf = 2,
Nc = 3, and γ = 0. According to the discussion reported in
Sec. VI C, since Nf < N2

c − 1, for β = ∞ there is only one
ordered Higgs phase, which is obtained for v < 0. For finite
values of β we expect therefore only two phases: a disordered
phase and an ordered Higgs phase, separated by a single tran-
sition line. As discussed in Sec. IV, the transitions between

v

β

XY

1st order

SU(3)→U(1)⊕U(1)
Higgs phase

disordered
phase

γ = 0

FIG. 1. A sketch of the phase diagram for Nc = 3, Nf = 2, and
γ = 0, inferred from the numerical results.

the disordered and Higgs phases should be described by an
effective RP1 model, which is equivalent to the XY model for
Z2 gauge-invariant observables. Therefore, such transitions
should belong to the XY universality class [35], if they are
continuous. The transition line is expected to approach the
point v = 0 in the β = +∞ limit. Moreover, since this ending
point should correspond to a first-order transition as outlined
in Sec. VI C, we expect the transition line to become of first
order for large values of β. The phase diagram obtained from
our MC simulations (see Fig. 1) is fully consistent with these
considerations. Note that the transition line intersects the line
v = 0 at a finite β value, so that the ordered Higgs phase is
also present for finite-β positive values of v. Of course, the
transition line should be reentrant since vc → 0+ for β → ∞.

To verify the phase diagram sketched in Fig. 1, we have
performed simulations for v = 0 varying β, and at fixed β

(we have considered β = 5.2, 6, 7.5, 9, 12) varying v. We
have verified the reentrant nature of the transition line and that
the transition changes from a continuous one to a first-order
one as β increases (the tricritical point, where the order of
the transition changes, should satisfy 6 � βtri � 7.5). Some
technical details on the MC simulations are reported in the
Appendix.

The FSS analysis of the data at v = 0 and γ = 0 (see
Figs. 2 and 3) provides a clear evidence of a continuous transi-
tion at βc ≈ 4.84. If we plot Rξ versus (β − βc)L1/ν , using the
XY correlation-length exponent [55,58,59] ν = 0.6717(1),
we obtain an excellent collapse of the data, confirming that
the transition belongs to the XY universality class. Fits of
Rξ using the XY estimate for the critical exponent ν lead to
an accurate estimate of the critical point βc = 4.8374(2). The
best evidence for an XY critical behavior is provided by the
plots of U versus Rξ . The data approach the universal curve of
the XY universality class obtained by MC simulations of the
standard XY model. Differences get smaller and smaller with
increasing L. Moreover (see the inset of Fig. 3), deviations are
consistent with the expected FSS scaling behavior

U (L, Rξ ) − F (Rξ ) ≈ L−ωFω(Rξ ), (46)

where F (Rξ ) is the universal curve associated with the XY
universality class, ω = 0.789(4) is the leading XY scaling
correction exponent [55], and Fω(Rξ ) is a scaling function that
is universal apart from a multiplicative factor.
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4.7 4.75 4.8 4.85 4.9 4.95 5

β

0.5

1

Rξ

L=12
L=16
L=24
L=32
L=48

Nc=3, Nf =2, v=0

-12 -8 -4 0 4 8

(β − β
c
)L

1/ν

0.5

1

Rξ

L=12
L=16
L=24
L=32
L=48

Nc=3, Nf =2, v=0

FIG. 2. Top: plot of Rξ versus β for Nc = 3, Nf = 2, γ = 0,
and v = 0. Bottom: plot of Rξ versus (β − βc )L1/ν , using the XY
correlation-length exponent ν = 0.6717 and βc = 4.8374. Data col-
lapse on an asymptotic curve with increasing L.

We have also performed simulations at fixed β, varying v.
The numerical results show evidence of an XY continuous
transition for β = 5.2 and β = 6 (see Fig. 4), at vc ≈ 0.23
and vc ≈ 0.58, respectively. On the other hand, we observe
first-order transitions for β = 7.5 at vc ≈ 0.99 (see Fig. 5), for
β = 9 at vc ≈ 0.75, and for β = 12 at vc ≈ 0.45. Note that
these results are consistent with the fact that the transitions
become of first order as β increases and that vc → 0+ in the
limit β → ∞ (see Sec. VI C).

We do not expect the phase diagram to change for finite
γ > 0 since the main features of the disordered and of the
Higgs phase should not depend on γ . On the other hand, for
γ = ∞, the phase diagram should significantly change (see
Sec. VI B). One expects three different phases: one disor-
dered phase, and two different ordered phases, characterized
by different breakings of the global O(Nf ) ⊗ O(N2

c − 1), i.e.,
O(2) ⊗ O(8) in the case at hand (for β → ∞, they would be
specified by the sign of v). Correspondingly, we expect three
transition lines: one line separates the two ordered phases
(starting at β = ∞, v = 0) and two lines separate the ordered

0 0.5 1
Rξ

1

1.2

1.4

1.6

1.8

2

U L=12
L=16
L=24
L=32
L=48
XY

0 0.5 1
Rξ

0

0.5

1

Fω(Rξ)

Nc=3, Nf =2, v=0

FIG. 3. Plot of U versus Rξ for Nc = 3, Nf = 2, γ = 0, and
v = 0. The continuous line represents the universal curve F (Rξ )
for the XY universality class (the explicit expression is reported in
Ref. [34]; it is valid in the range [0, 1.1] with an error of at most
0.5%). The inset shows [U − F (Rξ )]Lω versus Rξ , using the XY
correction-to-scaling exponent ω = 0.789. Data show a reasonable
scaling behavior as predicted by Eq. (46).

phases from the disordered one. The order-disorder transitions
for v > 0 may be continuous, and associated with the stable
fixed point of the corresponding LGW theory [46,52]. On the
other hand, first-order transitions are expected for v < 0 since
there is no corresponding stable fixed point. We do not expect
the γ = ∞ phases to be stable with respect to the gauge
perturbation (this can be proved using the ε expansion for the
simpler case v = 0), and thus the γ = ∞ transitions should
only give rise to crossover effects.

0 0.25 0.5 0.75 1
Rξ

1

1.25

1.5

1.75

2

U
L=8
L=12
L=20
XY

0 0.5 1
Rξ

0

0.5

1

1.5

Fω(Rξ)

Nc=3, Nf =2, β=6.0

FIG. 4. Plot of U versus Rξ for Nc = 3, Nf = 2, γ = 0, and
β = 6.0. The inset shows [U − F (Rξ )]Lω versus Rξ , using the XY
value ω = 0.789, confirming the expected behavior (46). Note also
that the data reported in the inset appear to collapse onto a curve
which differs from that reported in the inset of Fig. 3 only by a
multiplicative factor, in agreement with Eq. (46).
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E
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150 v=0.995, L=10

Nc=3, Nf =2, β=7.5

0 0.5 1 1.5 2
Rξ

2

4

6

8

U

L=6
L=8
L=10

Nc=3, Nf =2, β=7.5

FIG. 5. Top: histogram of the total energy E for Nc = 3, Nf =
2, β = 7.5, v = 0.995, and L = 10. Bottom: Binder parameter U
versus Rξ . Data clearly indicate that the transition is of first order.

VIII. RESULTS FOR Nc = 2 AND Nf = 4

We now present a study of the phase diagram for Nf = 4
and Nc = 2. In this case, since Nf > N2

c − 1, according to
the arguments of Sec. IV, different Higgs phases character-
ized by different gauge-symmetry patterns are possible. For
β → ∞, they correspond to the behavior of the system for
v < 0 and v > 0, and thus we will refer to the two phases as
the negative-v and positive-v phases, respectively, although,
this characterization will not hold for finite β. For finite β the
two phases are divided by a transition line that ends at v = 0,
β = ∞ and which is expected to be of first order as it is the
boundary of two different ordered phases.

The structure of the negative-v Higgs phase has been dis-
cussed in Sec. IV A. The global-symmetry-breaking pattern is
O(4) → O(3) ⊕ Z2 and the gauge-symmetry-breaking pattern
is SU(2) → U(1). Since the remnant gauge-invariance group
of the Higgs phase is U(1) and a U(1) gauge theory never
undergoes phase transitions, we expect the gauge coupling
to be irrelevant: we have a single negative-v Higgs phase,
irrespective of the value of γ . As discussed in Sec. IV A,

v

β

SU(2)→U(1)
Higgs phase

disordered
phase

SU(2)→ Z2

Higgs phase

γ = 0

FIG. 6. Sketch of the phase diagram for Nc = 2, Nf = 4, and
γ = 0, as inferred from the numerical results. Thick lines denote
first-order transitions, while the thin line corresponds to continu-
ous transitions. The shaded point is a first-order multicritical point
(satisfying 1.6 < βmc < 2.5); the filled black point that separates
first-order from continuous transitions occurs at v = v∗ with 6 <

v∗ < 12.

the transition line separating the negative-v Higgs phase from
the disordered phase is expected to be described by the RP3

model, which can only undergo first-order transitions.
The structure of the positive-v Higgs phase is more in-

teresting. Indeed, the gauge-symmetry-breaking pattern is
SU(2) → Z2, i.e., the Higgs phase is only invariant under the
center of the gauge group. Since Z2 gauge theories have a
finite-temperature transition, we expect γ to be relevant, as
discussed in Sec. VI D. Therefore, we may have two differ-
ent positive-v Higgs phases, which differ for the behavior
of the topological modes associated with the gauge-group
center [9,10]. The global-symmetry-breaking pattern of the
positive-v Higgs phase is O(4) → O(3). This would suggest
that the continuous transitions between one of the positive-v
Higgs phases and the disordered phase belong to the O(4) vec-
tor universality class, provided that gauge modes are irrelevant
at the transition.

In Fig. 6 we report a sketch of the phase diagram for γ = 0.
As already observed for Nc = 3 and Nf = 2, the negative-v
phase extends in the positive-v region for intermediate values
of β. The transitions between the two low-temperature phases
and between the negative-v and the disordered phases are of
first order, as expected. The nature of the transition between
the positive-v and the disordered phase depends instead on
v. At least for v � 6, the transition line is of first order. On
the other hand, for large v, the transitions become apparently
continuous.

To understand the role played by the parameter γ for
v > 0, we focus on the phase diagram for a specific positive
value of v, as a function of κ = βγ and β. In particular, we
consider the relatively large value v = 24. For this value, at
γ = 0, there is a continuous transition between the positive-v
Higgs phase and the disorderd phase. A sketch of the phase
diagram is reported in Fig. 7. It is characterized by three
phases, a small-β disordered phase, and two large-β Higgs
phases, which are distinguished by the behavior of gauge-
group center modes. These phases are separated by three
transition lines: (i) a disordered-Higgs transition line for small
κ , which appears to be continuous; (ii) a disordered-Higgs
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κ = βγ

β

Z2
gauge

1st order

continuous

SU(2)→ Z2

Higgs phase
Z2 confined

SU(2)→ Z2

Higgs phase
Z2 deconfined

disordered
phase

v = 24

FIG. 7. A sketch of the β-κ phase diagram for the model with
Nc = 2, Nf = 4 for v = 24. The Z2 gauge transition line starts at
κc ≈ 0.761, β = ∞. The multicritical point, where the three transi-
tion lines meet, satisfies 1 < κ < 2.

transition line for large κ , which is of first order; (iii) a contin-
uous Z2 gauge (Ising) transition line, which separates the two
low-temperature Higgs phases.

A. The case γ = 0

To verify that the line that separates the negative-v Higgs
phase from the disordered phase is of first order, we have stud-
ied the model for v = 0. A transition is observed for β ≈ 1.63.
Since the Binder parameter U , reported as a function of Rξ in
Fig. 8, has a maximum that increases rapidly with the size
of the lattice, we conclude that the transition is of first order.
To verify that transitions along the line that separates the two
Higgs phases are of first order, we have performed simula-
tions at fixed β = 2.5. We observe a transition for v ≈ 2.7.
On both sides of the transition, the Binder parameter U is
approximately 1, as expected, while it increases rapidly for
v ≈ 2.7. The transition is of first order as also confirmed by
the behavior of the specific heat CV , that appears to diverge
roughly as the volume L3 (see Fig. 9).

0 0.5 1
Rξ

1

1.5

2

2.5

3

3.5

U

L=8
L=10
L=12

Nc=2, Nf =4, v=0

FIG. 8. Plot of U versus Rξ for Nc = 2, Nf = 4, γ = 0, and
v = 0. The rapid increase of the maximum of U indicates that the
transition is of first order.

2.25 2.5 2.75 3
v

0

50

100

150

C
V

L=6
L=8
L=10

Nc=2, Nf =4, β=2.5

FIG. 9. The specific heat, defined in Eq. (10), versus v, for Nc =
2, Nf = 4, γ = 0, and β = 2.5, The data provide evidence of a first-
order transition for v ≈ 2.7.

We now focus on the transition line separating the dis-
ordered phase from the positive-v Higgs phase, performing
simulations at fixed v (we consider v = 6, 12, 24, and 48).
For v = 6, we have studied the behavior of the system for
0 � β � 3.4, identifying a single transition for βc ≈ 2.04.
This guarantees us that the transition point belongs to the
positive-v transition line. The transition appears to be of first
order. Indeed, the Binder parameter U has a maximum that
increases with increasing lattice size (see Fig. 10). As already
mentioned, this behavior provides an early indication for a
first-order transition. Indeed, at a continuous transition the
maximum of U does not increase.

The results for v = 12 (up to L = 48), v = 24 (up to L =
32), and v = 48 (up to L = 24) are consistent with continu-
ous transitions (see Figs. 11 and 12), located at βc ≈ 1.860,
βc ≈ 1.710, and βc ≈ 1.618, respectively. Fits of Rξ allow us
to estimate ν ≈ 0.7 in all cases, which is quite different from
the effective exponent ν = 1/d ≈ 0.33 expected at first-order

0 0.25 0.5
Rξ

1

1.2

1.4

1.6

1.8

2

U

L=8
L=12
L=16
L=20

Nc=2, Nf =4, v=6.0

FIG. 10. Plot of U versus Rξ for Nc = 2, Nf = 4, γ = 0, and v =
6. The increase of the maximum of U may be considered as an early
indication of a first-order phase transition.
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0 0.2 0.4
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O(4)
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FIG. 11. Data for Nc = 2, Nf = 4, γ = 0 and the values v = 12.
For comparison, we also report the spin-2 universal curve computed
in the O(4) vector model [60].

transitions. These results confirm the phase diagram reported
in Fig. 6: The positive-v transition line is of first order from
the multicritical point, where the three transition lines meet,
up to a tricritical point v∗ (with 6 � v∗ � 12), and continuous
for v > v∗.

As mentioned in Sec. IV B, along the transition line divid-
ing the disordered phase from the positive-v Higgs phase, the
global-symmetry-breaking pattern is O(4) → O(3), which is
the one characterizing the vector O(4) universality class. One
would thus expect O(4) transitions for all v > v∗. Fits of Rξ

give ν ≈ 0.7 (with somewhat large errors), which is consistent
with the O(4) value ν = 0.750(2) [35,61–63]. However, the
scaling curves of the Binder parameter U versus Rξ are signif-
icantly different from the O(4) one (see Figs. 11 and 12). O(4)
behavior is apparently possible only if there are slowly decay-
ing and nonmonotonic scaling corrections. Alternatively, it is
possible that the transitions belong to a new universality class.
However, one should still explain the significant differences
in the behavior of U versus Rξ for v = 12 and for v = 24, 48
(compare Figs. 11 and 12). Scaling nonuniversal corrections
or crossover effects due to the nearby tricritical point may
be invoked as possible reasons. In this scenario, the O(4)
fixed point would be unstable, and it would only give rise to
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1
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1.4
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L=16
L=20
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L=16
L=24
L=32
O(4)

Nc=2, Nf =4, γ=0

v=48

v=24

FIG. 12. Data for Nc = 2, Nf = 4, γ = 0, and the values v = 24
and 48. For comparison, we also report the spin-2 universal curve
computed in the O(4) vector model [60].

crossover phenomena, that apparently become less important
as v increases. The available simulations do not allow us to
clarify this point. Simulations on significantly larger lattices
are clearly required.

B. The case γ > 0

We have also performed a numerical study of the model
for γ > 0, focusing on the region v > 0, where gauge-center
modes can give rise to finite-γ transitions. We have fixed
v = 24, obtaining the phase diagram reported in Fig. 7. We
parametrize the phase diagram in terms of κ ≡ βγ instead
of γ since this is the natural variable that appears in the Z2

gauge model obtained for large values of β [see Eq. (39)].
To identify the nature of the disorder-Higgs transitions, we
have performed simulations keeping κ fixed and varying β.
Since the Z2 gauge transition line ends at κc = 0.761, β = ∞,
we expect the multicritical point to have κmc of order 1, and
therefore we have considered κ = 1, 2, 3. Finally, we have
performed a simulation keeping β fixed (β = 1.7) and varying
κ , to determine the position of the Z2 gauge transition line and
the corresponding universality class.

For κ = 1, there is a clear evidence of a continuous transi-
tion at βc ≈ 1.615 (correspondingly γ ≈ 0.62). The transition
appears to be analogous to that observed for γ = κ = 0 at
a similar value of β (βc ≈ 1.710). In Fig. 13 we report U
versus Rξ for κ = 0 and 1. Data are consistent with a single
asymptotic curve, suggesting that the two transitions belong to
the same universality class. Differences are small, of the same
order of the differences observed for the largest v results for
γ = 0, and can be interpreted as scaling corrections.

For κ = 2 and 3 we observe instead strong first-order tran-
sitions. For example, the energy distributions are bimodal for
κ = 2, βc ≈ 1.29 and for κ = 3, βc ≈ 1.07 (correspondingly
γ ≈ 1.55 and γ ≈ 2.79) already for lattices sizes L = 6, 8
(see Fig. 14). The latent heat �h is quite large. It decreases
with increasing κ , varying from �h ≈ 0.7 at κ = 2 to �h ≈
0.5 at κ = 3. This decrease is also confirmed by results for
κ = 5: for L = 8 the energy distribution is broad (therefore it
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FIG. 13. Data of U versus Rξ for Nc = 2, Nf = 4, v = 24, and
two values of κ , κ = 0 and 1.
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FIG. 14. Energy histograms for v = 24, κ = 2 (top), and κ = 3
(bottom), for L = 8. They clearly show the double-peak structure
characterizing first-order transitions. The difference of the energies
of the two maxima provides the latent heat: �h ≈ 0.7 for κ = 2, and
�h ≈ 0.5 for κ = 3.

is consistent with a first-order transition) but it does not yet
show two peaks. We have also performed some simulations
for κ = γ = ∞, i.e., of the scalar model with global O(4) ⊗
O(3) symmetry, to determine the critical behavior of the end
point of the finite-κ transition line. MC data for relatively
small lattices, up to L = 18 (not shown), are compatible with
a continuous transition (larger lattices are, however, needed to
confirm this behavior), indicating that �h → 0 as κ → ∞.

The above-reported results show that the nature of the
transition changes significantly with increasing κ . While a
continuous transition occurs for κ � 1, for κ � 2 transitions
are of first order, decreasing their strength with increasing
κ . A natural hypothesis is that this abrupt change is due
to the different nature of the Higgs phase: For κ = 1 the
low-temperature phase is characterized by confined Z2 gauge
excitations, while for κ � 2 the Z2 gauge modes are decon-
fined. This requires the existence of the Z2 gauge transition
line and implies that, in the sketch reported in Fig. 7, the
multicritical point lies in the region 1 < κmc < 2.

We performed simulations to identify the Z2 gauge transi-
tion line. We fixed β = 1.7 (which is slightly larger than the
critical point βc = 1.615 for κ = 1) and varied κ between κ =
1 and 2. To determine the Z2 gauge transition we monitored
thermodynamic quantities since the transition is not character-
ized by a local order parameter. We considered cumulants of
the gauge part HG of the Hamiltonian, focusing on the second
and third cumulants. The second cumulant per unit volume
behaves as the specific heat CV ∼ c Lα/ν + Creg, where Creg is
the regular contribution. Using the accurate estimates of the
3D Ising critical exponents [64–69], and in particular [67]
ν = 0.62 997 1(4), we obtain α/ν = 2/ν − 3 = 0.174 75(2).
The divergence is very mild and scaling corrections (due to
the regular background) decay only as L−0.17, so that FSS
analyses of this quantity are not useful for accurate checks
of the Ising behavior. A more promising quantity is the third
cumulant of HG,

H3G = − 1

γ 3
〈(HG − 〈HG〉)3〉. (47)

It behaves as H3G ∼ L3/ν = L4.76, with scaling corrections
that decay as L−ω ∼ L−0.8, therefore significantly faster than
in the second-cumulant case. We will use the third cumulant
to verify the Ising nature of the transition, checking that the
data of L−3/νH3G asymptotically collapse onto a universal
scaling function with a peculiar oscillating shape [29], when
they are plotted against (κ − κc)L1/ν , where κc is the critical
point at β = 1.7. This is nicely confirmed by Fig. 15. We
have, therefore, a robust evidence of an Ising transition at
κc ≈ 1.265 (correspondingly, γc = κc/β ≈ 0.744).

These results provide evidence for the existence of a
finite-β Z2 transition line, starting at κc ≈ 0.761, β = ∞,
consistently with the sketch reported in Fig. 7. Moreover,
they suggest that the multicritical point lies in the region 1 �
κm � 2, explaining the different behavior observed for κ = 1
and 2,3.

IX. CONCLUSIONS

We have investigated the phase diagram and the transi-
tions separating the different phases of a class of 3D lattice
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FIG. 15. Estimates of H3GL−3/νI for v = 24, β = 1.7, Nc = 2,
and Nf = 4, using the Ising exponent νI = 0.629 971. The top panel
reports H3GL−3/νI versus κ , while the bottom panel reports L−3/νI H3G

versus L1/νI (κ − κc ), with κc = 1.265. The plots provide evidence of
an Ising transition at β = 1.7 and κc ≈ 1.265.

non-Abelian SU(Nc) gauge models with Nf (Nf > 1) degen-
erate scalar fields in the adjoint SU(Nc) representation, using
the Wilson formulation of lattice gauge theories [see Eq. (2)].
These models are also relevant phenomenologically, in par-
ticular the model with Nc = 2 and Nf = 4 has been recently
proposed to describe optimal doping criticality in cuprate
high-Tc superconductors [9,10].

We discuss the role played by the scalar quartic po-
tential and by the gauge-group representation of the scalar
fields, which are crucial to determine the structure of the
low-temperature Higgs phases and the nature of the phase
transitions. For this purpose we have performed a detailed
analysis of the minima of the scalar-field potential. As dis-
cussed in Sec. IV, such an analysis shows the emergence of
two qualitatively different phase diagrams, depending on the
number of colors Nc and of flavors Nf . For small values of Nf

satisfying Nf � N2
c − 1 and for any Nc, a Higgs phase exists

for negative values of v, while for positive values of v [v is the
parameter entering the scalar potential (5)], there is a single
disordered phase for any temperature up to T = 0. For any

Nf and Nc satisfying Nf > N2
c − 1, instead, two different low-

temperature Higgs phases exist, with transitions characterized
by different global- and gauge-symmetry-breaking patterns.
In particular, for Nc = 2, we have a low-temperature Higgs
phase characterized by the gauge-symmetry-breaking pattern
SU(2) → U(1) (this phase is observed when v is negative),
and a second low-temperature Higgs phase characterized by
SU(2) → Z2 (this occurs for positive v).

The phase diagram of the model can also be influenced by
the properties of the gauge modes, depending on the residual
gauge symmetry present in the ordered Higgs phase. The
phase diagram for Nf � N2

c − 1 is not expected to depend on
the gauge modes, as the residual gauge-symmetry group in the
Higgs phase is continuous, and therefore no finite-temperature
transitions associated with these gauge variables are possi-
ble in three dimensions. Thus, the phase diagram should not
depend on the gauge coupling γ . Differences should occur
only for γ = ∞. Analogously, for Nf > N2

c − 1, the negative-
v Higgs phase should not depend on γ , given the large
residual gauge symmetry characterizing its low-temperature
Higgs phase. On the other hand, in the positive-v Higgs phase
present for Nf > N2

c − 1, configurations are only invariant
under gauge-group center transformations. Since ZNc gauge
theories undergo finite-temperature transitions, there are two
different Higgs phases, characterized by the same gauge-
symmetry-breaking pattern SU(Nc) → ZNc , but differing in
the topological behavior of the ZNc gauge modes, as sketched
in Fig. 7 for Nc = 2 and Nf = 4.

We have presented numerical studies of two representative
models: the case Nc = 3, Nf = 2, to verify the general sce-
nario for models satisfying Nf � N2

c − 1, and the case Nc =
2, Nf = 4, which shows the more complex phase diagram
predicted for models satisfying Nf > N2

c − 1, and which is
also relevant for cuprate superconductors. In both cases, the
general predictions for the Higgs phases and for the nature of
the transition lines are verified.

Although our results confirm the general picture, there are
still some issues that call for further investigations. For Nf =
4 and Nc = 2, we have evidence of continuous transitions
for small values of γ and large positive values of v, whose
characterization is not clear (we have not been able to assign
these transitions to a known universality class). A second issue
is the behavior for large values of γ and of v. We have ob-
served first-order transitions, whose latent heat decreases with
increasing γ . It would be interesting to investigate the nature
of the end point of the transition line at γ = ∞: numerical
simulations on small lattices are consistent with a contin-
uous transition, but larger lattices are needed to settle the
question.

An intriguing possibility is that the continuous transitions
observed when Nf > N2

c − 1, v > 0, and small values of γ

are associated with the fixed point found in the analysis of
the one-loop ε-expansion RG flow (see Sec. V). The O(ε)
fixed point in Eq. (43) is stable only if Nf > N∗ ≈ 210 close
to four dimensions. However, it is conceivable that the critical
number N∗ is drastically smaller in three dimensions, so small
to include Nf = 4. One might find this possibility unplausible;
however, we should note that this is what happens in the
Abelian-Higgs U(1) field theory. A leading-order ε-expansion
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computation [13], analogous to the one reported in Sec. V,
predicts the existence of a stable fixed point for Nf > N∗

f ≈
183. However, if higher-order corrections are included [70],
a significantly smaller estimate of the 3D critical value is
obtained. A numerical MC study in three dimensions finds
N∗

f = 7(2) [20], confirming that the one-loop estimate is of no
quantitative relevance. We believe that further work is called
for to test this possibility and to achieve a full understanding
of the actual behavior of the model for positive values of the
coupling v.

Since the model with Nc = 2 and Nf = 4 is expected to
describe the critical behavior of hole-doped cuprate super-
conductors at optimal doping [9,10], a complete assessment
of the existence (and, eventually, a characterization) of the
unconventional continuous transition discussed in Sec. VIII
is indeed important, both from the theoretical and from the
phenomenological point of view. A promising strategy in this
direction may consist in studying the model for v = +∞. This
model is significantly simpler since the scalar field variables
take the form given in Eq. (21), and simulations faster, as there
is no need to take the potential into account in the update and
more powerful MC algorithms can be used. This should allow
us to perform a more effective numerical study of the phase
diagram in the β-γ plane.
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APPENDIX: MONTE CARLO SIMULATIONS

We performed MC simulations on cubic lattices with peri-
odic boundary conditions. The gauge link variables Ux,μ were
updated using a standard Metropolis algorithm [71]. The new
link variable was chosen close to the old one, in order to guar-
antee an acceptance rate of approximately 30%. The scalar
fields were updated using two different Metropolis updates,
again tuning the proposal to obtain an acceptance rate of 30%.
The first move performs a rotation in flavor space, while the
second one rotates the color components of a single flavor.
This update procedure is the same already used in [31], to
which we refer for some more implementation details. For the
largest sizes simulated, the typical statistics are of the order of
106–107 (Nc = 3, Nf = 2) and of 107–108 (Nc = 2, Nf = 4)
lattice sweeps of both scalar and gauge variables. To take into
account autocorrelations and determine the correct statistical
errors, we used a standard blocking and jackknife procedure.
Our maximum blocking sizes were of the order of 104–105

(Nc = 3, Nf = 2) and 105–106 (Nc = 2, Nf = 4).
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