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We investigate the high-temperature dynamical conductivity σ (ω) in two one-dimensional integrable quantum
lattice models: the anisotropic XXZ spin chain and the Hubbard chain. The emphasis is on the metallic regime of
both models, where besides the ballistic component, the regular part of conductivity might reveal a diffusivelike
transport. To resolve the low-frequency dynamics, we upgrade the microcanonical Lanczos method enabling
studies of finite-size systems with up to L � 32 sites for the XXZ spin model with the frequency resolution δω ∼
10−3J . Results for the XXZ chain reveal a fine structure of σ (ω) spectra, which originates from the discontinuous
variation of the stiffness, previously found at commensurate values of the anisotropy parameter �. Still, we do
not find clear evidence for a diffusive component, at least not for commensurate values of �, particularly for
� = 0.5, as well as for � → 0. Similar is the conclusion for the Hubbard model away from half-filling, where
the spectra reveal more universal behavior.

DOI: 10.1103/PhysRevB.104.115163

I. INTRODUCTION

One of the basic features of the integrable quantum many-
body lattice is the possibility of the ballistic/dissipationless
transport at finite temperatures (for a recent review see
[1]). This property, which is manifested in a finite value
of corresponding transport stiffnesses D > 0, has been well
established in the most investigated one-dimensional (1D)
integrable model, the anisotropic XXZ spin chain within the
easy-plane regime with the anisotropy � < 1, but also in the
1D Hubbard model away from half-filling. Finite stiffness
D > 0 has been resolved via the sensitivity of levels to the
imposed magnetic flux [2], using the thermodynamic Bethe
ansatz (TBA) [3–6], and with more rigorous bounds via the
Mazur inequality [7] which relate D to the overlap with local
and quasilocal conserved quantities [8–11]. The latter result
agree also with a more general approach via the generalized
hydrodynamics (GHD) [12–14]. Furthermore, results for D >

0 and ballistic transport have been confirmed in numerous nu-
merical studies of finite XXZ chains [15–26]. In spite of these
advances there remains an open question whether analytical
theories also quantitatively fix values of D, in particular its
dependence on the anisotropy � within the XXZ chain in
the high-T regime [9,14,23,25,27–29] (see the discussion in
[1]).

Much less attention has been devoted to the whole dy-
namical response, as represented by the real part of the
frequency-dependent conductivity at T > 0,

σ (ω) = 2πDδ(ω) + σreg(ω), (1)

which can be (in a metallic regime of considered models) de-
composed into the ballistic D > 0 component and the regular

(incoherent) part σreg(ω). Exact-diagonalization (ED) results
on finite-size XXZ chains [15,22], as well as on the particular
case of the Hubbard chain [16], indicate on vanishing (dc)
limit, σ 0

reg = σreg(ω → 0) → 0, consistent with the argument
based on the level crossing in integrable lattice models [30]
implying σreg(ω → 0) ∝ ω2, at least for finite-size systems.
Less conclusive are results obtained via a time-dependent
density-matrix renormalization group (tDMRG) method on a
larger system but with restricted time evolution (or equiva-
lently with limited frequency resolution), allowing for σ 0

reg >

0 [25,26]. The latter can be interpreted as coexistence of
ballistic transport and (subleading) diffusion response. This
question is challenging since some analytical approaches
[31,32], and in particular more recently the GHD approach
[33–37], generally predict besides D > 0 also σ 0

reg > 0. That
is, within the XXZ chain the GHD yields finite values of
σ 0

reg > 0 at the commensurate values �m = cos(π/m) and,
moreover, singular σreg(ω → 0) ∝ ω−α, α > 0 [36,37] be-
havior.

To comment on the dynamical transport σ (ω), at least from
the perspective of the linear response in finite-size systems
with periodic boundary conditions (PBC), we perform the
numerical calculation of high-T limit of σ̃ (ω) = T σ (ω) in
the XXZ model, scanning the whole range of anisotropies
� < 1, but also in the Hubbard chain away from half-filling.
Note that both models exhibit the finite stiffness D = T D > 0
for the considered model parameters. To resolve the low-ω
regime, we employ, besides ED for smaller systems, the up-
graded microcanonical Lanczos method (MCLM) [38] with
the high-ω resolution, i.e., for the XXZ chain of length L � 32
we reach δω ∼ 10−3J (equivalent to time evolution up to
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FIG. 1. High-T spin conductivity σ̃ (ω) = T σreg(ω) in the XXZ spin chain for the anisotropy range � � 1 (� = 0, 0.025, . . . , 1.0), as
calculated by (a) ED for L = 20 sites and (b) MCLM for L = 32 sites. Each consecutive curve is given an offset for better visibility. (c) and
(d) Heat maps of results from (a) and (b), respectively. For clarity, the latter results are normalized by a maximum of σ̃reg(ω). Guidelines on
both panels mark the positions of the low-frequency peaks obtained for L = 20.

τ ∼ 5 × 103/J). Such a resolution allows us to disentangle,
according to Eq. (1), well enough the dissipationless part from
the low-ωσ̃reg(ω).

In Fig. 1 we present one of the main results of our findings
(discussed in Sec. II C in more detail), i.e., changing the value
of anisotropy � reveals a quite complicated fine structure of
σ̃reg(ω) spectra, here presented as the result of full ED for the
L = 20 system, as well as for the L = 32 chain evaluated with
MCLM. The structure can be traced back to discontinuities
(or at least anomalies) of D found at commensurate � = �m

[1] (even in finite systems). The spectral weight related with
the discontinuities D(�m) − lim�→�m D(�) is transferred to
low-frequency peaks of σ̃reg(ω) centered at ωp ∝ |� − �m|.
Still, we do not find a clear evidence (or at least a very small
upper bound) for σ̃ 0

reg at commensurate �m = cos(π/m), in
particular for � = �3 = 0.5. In order to identify the positions
of peaks at ωp, in Figs. 1(c) and 1(d) we plot σ̃reg(ω)/σ̃max,
where σ̃max is the maximum of σ̃reg(ω). The lines mark the
positions of ωp determined from L = 20 ED data [Fig. 1(c)]
and are put also on top of L = 32 MCLM data [Fig. 1(d)].
Here the main message is that generally ωp weakly depends
on L, whereby the exceptions are the regime of � → 1, but
also at 0.1 < � < 0.5 where we notice possibly significant
reduction of ωp with L. In order to properly resolve the latter
regime � → 0, we apply also the degenerate-perturbation-
theory (DPT) method [29]. Results confirm a pronounced
peak in σ̃reg(ω ∼ ωp) with ωp ∝ � and σ̃reg(ω � ωp) ∼ ω2.
Furthermore, results for the 1D Hubbard model obtained at
generic quarter-filling n̄ = 1/2 also reveal—besides more uni-
versal structure of dynamical charge conductivity σ̃c(ω)—no
clear indication for finite diffusion component σ̃ 0

c,reg.

II. SPIN CONDUCTIVITY IN THE XXZ CHAIN

We consider in more detail a 1D anisotropic XXZ spin
model,

H = J

2

∑

i

(eiφS+
i+1S−

i + H.c.) + J�
∑

i

Sz
i+1Sz

i , (2)

on a chain with length L and with generalized PBC. Here Sα
i

with α = +,−, z represent the standard S = 1/2 operators.
We focus on the metallic regime with the anisotropy param-
eter 0 < � < 1, revealing the T > 0 dissipationless transport
with D > 0. We further evaluate only canonical systems with
zero magnetization, i.e., Sz

tot = 0. At fixed L and at PBC,
the results might depend on the phase shift φ. Since in the
following we numerically study systems L = 4L, i.e., L =
16, 20, . . . , 32, we choose φ = π/L (equivalent to anti-PBC)
in order to stay consistent with our previous studies of the
fermionic version of the model, i.e., the t-V model [15,29].
Note that considered systems at Sz

tot = 0 have an even number
of fermions. We further use h̄ = kB = 1 as well as fix J = 1
as the unit of energy.

We concentrate on high-T dynamical spin conductivity
σ̃ (ω) = T σ (ω), within the linear response theory for T � J
given by

σ̃ (ω) = π

LNst

∑

n,m

|〈n| j|m〉|2δ(ω − εm + εn), (3)

expressed here in terms of many-body (MB) eigen-
states |n〉 and eigenvalues εn, with the spin current j =
(J/2)

∑
i(ie

iφS+
i+1S−

i + H.c.), and Nst as the total number of
MB states for given L and Sz

tot. Besides Sz
tot = 0 we use also
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translational symmetry of the model [Eq. (2)] so that calcula-
tion of Eq. (3) is performed as the sum over all wave-vector-q
sectors.

A. Numerical method

For smaller systems L � 20 (for the XXZ model) we evalu-
ate Eq. (3) directly via the full ED finding all |n〉, εn. For larger
L we employ the MCLM [38,39], used in several studies of
dynamical transport in (mostly disordered) spin systems [40].
Since the aim in the present problem is to achieve besides
large L (with the Hilbert space up to Nst ∼ 108) also well
resolved spectra at ω ∼ 0, we upgrade MCLM by enabling
very high frequency resolution δω ∼ 10−3J . The calculation
steps are the following: (a) The sum over eigenstates in Eq. (3)
is replaced with the microcanonical state |�E〉 corresponding
to the energy E . The latter is obtained with ML � 1 Lanczos
steps using the operator V = (H − E )2. For larger systems,
such a procedure is not expected to converge to exact eigen-
values of H , but rather to a wave function with a small energy
dispersion σ 2

E = 〈�E |V |�E〉. By performing Lanczos proce-
dure twice and by extracting lowest eigenfunction only, we
avoid the full diagonalization of theML × ML matrix. (b) In
the second step, σ̃ (ω) is evaluated as the resolvent

σ̃ (ω) = 1

L
Im〈�E | j

i

ω + iη + E − H
j|�E〉, (4)

evaluated again with ML Lanczos steps starting with initial
wave function j|�E〉. Finally, Eq. (4) is expressed in terms
of continued fractions and is evaluated for small η. ML deter-
mines the frequency resolution as δω ∼ �E/ML, where �E is
the energy span of H for fixed L. Since for given ML we have
σE < δω ∼ η, one can directly choose desired δω by increas-
ing ML, even well beyond ML ∼ 104. To reduce statistical
error, we use besides translational symmetry (with Mq = L
different q) also additional sampling over Ms � 1 targeted
energies Eqs with a Gaussian distribution corresponding to a
high-T value of 〈H2〉 ∼ L/8 for given L. The final result is
the average σ̃ (ω) = 1/(MqMs)

∑
qs σ̃ (Eqs, ω).

In the present application to the XXZ chain, we choose
ML = 2 × 104, Ms = 4 for the L = 28 system and ML =
104, Ms = 1 for the L = 32 chain which has Nst ∼ 2 × 107

in a given symmetry sector with fixed q and Sz
tot. It is worth

noting that that our method is related to dynamical-quantum-
typicality (DQT) approach to time-dependent correlation
functions at T � 0 [24]. The latter method employs the evo-
lution in the time domain, whereby our results would imply
reaching times up to τ ∼ 2π/δω > 5 × 103/J for considered
systems.

To capture σ̃ (ω) spectra including the singular D > 0
component, it is convenient to present the integrated inten-
sity I (ω) = (2T/π )

∫ ω

0 σ (ω′)dω′. Here we note that I (ω →
0) = 2D, while the sum rule at Sz

tot = 0 gives I∞ = I (ω →
∞) = 〈 j2〉/L = (1/8)[1 + 1/(L − 1)] including a small 1/L
correction. To reveal the feasibility of the MCLM, in Fig. 2
we present the renormalized Ĩ (ω) = I (ω)/I∞ as obtained for
different sizes L = 16–32 (whereby L = 16, 20 results are ob-
tained via full ED) for three characteristic � = 0.2, 0.6, 1.0.
Results are presented in log-ω scale in order to amplify the
low-ω regime at ω > 2 × 10−3, beyond the D > 0 contribu-

FIG. 2. Integrated and normalized dynamical spin conductivity
Ĩ (ω) = I (ω)/I∞ in a log-ω scale within the XXZ spin chain for
selected � = 0.2, 0.6, 1.0, as calculated for different sizes, i.e., L =
16, 20 using full ED, and L = 24, 28, 32 using MCLM.

tion, in MCLM smeared within ω < δω. It should be stressed
that the MCLM method calculates the whole dynamical re-
sponse σ̃ (ω), so it is essential to have high δω resolution in
order to well separate the singular D > 0 (restricted to ω <

δω) contribution from the regular part σ̃reg(ω). On the other
hand, the separation of regular and singular part is facilitated
since we find for all considered (finite-size L � 32) systems
σ̃reg(ω → 0) ∼ 0. This separation is additionally tested via
comparison to the ED results, where the ballistic component
is obtained directly from diagonal matrix elements in Eq. (3).

Presented results reveal generally quite small σ̃reg(ω) at
low-ω < 0.02 for presented � � 0.6 and for all L. Still, ω

dependence is quite pronounced in the intermediate frequency
regime, depending crucially on �. On the other hand, on
approaching the isotropic case � → 1, the results in Fig. 2
confirm pronounced L dependence of the dissipationless com-
ponent I (ω → 0) = 2D. The latter is expected to vanish for
L → ∞ [41] for � = 1, while the regular part should ap-
proach the superdiffusive transport [34,42–45].

B. Commensurate anisotropies �m

Let us first focus on results for the commensurate values of
the anisotropy �m = cos(π/m) and on the possibility of the
coexistence of ballistic component D > 0 and finite diffusion,
i.e., σ̃ 0

reg > 0. Since L dependence might be important, in
Fig. 3 we present results obtained for different L = 20–32
for two specific commensurate points m = 3 (�3 = 0.5) and
m = 4 (�4 = 1/

√
2 � 0.707). The most clear case appears to

be � = 0.5, where taking into account finite smearing due
to δω, it is hard to claim finite σ̃ 0

reg > 0. Results are more
consistent with the presence of a soft gap for ω < ωg. The gap
may be roughly estimated from the change of slope of σ̃reg(ω).
In particular, for � = �3 and L = 32 such change of slope is
well visible in Fig. 3(a) at ωg � 0.08. The regular part appears
to vanish inside the gap as σ̃reg(ω < ωg) ∝ ωζ with ζ > 1 as
shown in the inset in Fig. 3. However, ωg reveals some L
dependence which could be possibly made compatible even
with its vanishing in the thermodynamic limit. At least we
can put some upper bound on σ̃ 0

reg. Given that the optical con-
ductivity increases with the frequency for 0 < ω < 0.4 and
that σ̃reg(ω > 0.15) shows no finite-size effects, we estimate
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FIG. 3. Spin conductivity σ̃ (ω) obtained for different L = 20–32
for two commensurate � = cos(π/m): (a) m = 3 (� = 0.5), where
the dotted line is the result of tDMRG [25], and (b) m = 4, � =
1/

√
2 � 0.707. Inset shows σ̃reg(ω) (using logarithmic scale) ob-

tained from ED for selected values of � together with a guideline
∼ω2.

σ̃ 0
reg < σreg(ω = 0.15) < 0.1. This bound can be compared

with the value σ̃ 0
reg ∼ 0.0685 obtained by the GHD approach

[33,36]. In Fig. 3(a) we plot also the result obtained with
tDMRG on a much bigger system [25], but with a restricted
time span τ < 35/J . The agreement for larger ω > 0.1 is
quite satisfactory indicating less relevant L dependence in this
regime. On the other hand, the deviation for ω < 0.1 is not
surprising since (referring to the authors of [25]) the spectra
for ω < 0.15 are beyond the reach of their study.

Our results for �4 are somewhat less conclusive due to
quite a pronounced low-ω peak at ω ∼ 0.1 which, however,
does not shift significantly with L (in contrast to the case � →
1 as presented in Fig. 2). We should also point out that when
speculating on possible closing of the (again soft) spectral gap
in Fig. 3(a) or 3(b) for both �m with L → ∞, this should be
done by keeping moments μn = ∫ ∞

0 ωnσ̃ (ω)dω unchanged,
since they are correctly reproduced in finite systems (as well
as in MCLM) up to to high order n = L. In any case, our
results for m = 4 should be compared with the GHD result
σ̃ 0

reg ∼ 0.14 (see Supplemental Material of Ref. [33]).

C. General structure of σ̃(ω)

To discuss the structure of σ̃ (ω) in the whole regime � <

1, we first present in Fig. 4 the evolution of I (ω) with � as
obtained via MCLM on L = 32 system with the resolution
δω ∼ 10−3. The advantage of I (ω) is that it yields direct
information on the stiffness 2D = I (ω → 0) discussed before
[1,29]). Results indicate that in the regime � � 0.5 the major
part of the I (ω) response is in the dissipationless component
D. Moreover, our results for D are in this regime quantita-
tively consistent with previous DQT analysis [23,24] and with

FIG. 4. Integrated spin conductivity I (ω) for the whole range of
� = 0.1–1.0, as obtained via MCLM on L = 32 XXZ spin chain.
For � = 1 we show also the fit for superdiffusive I (ω) ∝ ω2/3.

the DPT method for � → 0 [29], which both yield a value sig-
nificantly above the one representing the lower-bound/GHD
result [1,9,37]. For � � 0.5 the major part in I (ω) is in the
regular response and the mismatch with GHD lower bound is
less evident. It follows from Fig. 2 that ED/MCLM results
for � → 1 exhibit considerable L dependence showing up
in the apparent D > 0, but also in closing of the finite-size
gap (being ωg ∼ 0.05 for L = 32). It is, however, well visible
that for ω > ωg at � = 1 the spectra in Fig. 4 can be well
fitted with I (ω) ∝ ω2/3 implying the superdiffusive response
σ̃ (ω) ∝ ω−1/3 [34,36,37,42–45].

Beyond dissipationless D > 0 component, I (ω) in Fig. 4
reveals a quite complex evolution of σ̃reg(ω) with �, in
particular for � > 0.2 there are visible more than one in-
flexion point with d2I (ω)/dω2 = 0 corresponding to peaks
in σ̃reg(ω). Moreover, direct information on σ̃reg(ω) is pre-
sented in Fig. 1 (obtained on L = 20 via ED and L = 32
via MCLM). Note that in the latter case, at ω < δω ∼ 10−3,
the spectra are dominated by the singular (but broadened)
dissipationless component D > 0. Nevertheless, the structure
of peaks consistent with Fig. 1(a) is still visible in Fig. 1(b).
As discussed recently [29], at small � < 0.2 a single peak
at ωp ∝ � dominates σ̃reg(ω) and is analyzed in Sec. II D in
more detail.

In the intermediate regime 0.2 � � < 0.5 the structure of
σreg(ω) evolves into two peaks, i.e., the upper part still with
ωp1 ∝ � retaining most of the sum rule of σreg(ω), while the
lower peak ωp2 splits off and is expected to vanish at com-
mensurate �3 = 0.5 as ωp2 ∝ |�3 − �|. Such evolution is
consistent with the specific behavior at commensurate points,
�m = cos(π/m) [3,8,9], where also additional degeneracies
(diagonal as well as off-diagonal in Sz

tot [29,46]) exist. The lat-
ter macroscopic degeneracies of the energy spectrum should
coincide with discontinuous variation (jumps) of the stiffness
D at these particular values � = �m. At the same time, the
frequency moments μn (up to large n ∼ L) are continuous
functions of �, even close to commensurate values. The sim-
plest scenario which may capture both features is that the
missing spectral weight D(�m) − lim�→�m D(�) is trans-
ferred to narrow low-frequency peaks centered at frequencies
ωpm ∝ |�m+1 − �|. In particular, we can confirm such a sce-
nario by our detailed numerical analysis (ED for L = 20)
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FIG. 5. Detailed analysis of σ̃reg(ω) spectra in the vicinity of
(a) �4 = 1/

√
2 and (b) �2 = 0 anisotropy, as calculated for L = 20

sites by ED. The DPT result is also marked in (b).

for the vicinity of �4 = 1/
√

2, as presented in Fig. 5(a). It
clearly shows the emergence of symmetric peaks at � ∼ �4.
At the same time, also the widths of these peaks appear to
scale as δωpm ∝ |�m+1 − �|. Both these facts show qualita-
tive analogy to the situation close to � = �2 = 0, presented
in Fig. 5(b), where the development with a single peak at the
frequency ωp ∝ � can be followed much more in detail [29]
(see also more elaborate analysis and discussion in Sec. II D).
It should be, however, noted that in a finite system one can
follow a jump in D and the related emergence of peaks in
σ̃reg(ω) only provided that the particular MB states at a given
L and Sz

tot display a large degeneracy at commensurate �m.
This is indeed the case for �2 and �4 assuming the considered
here finite systems L = 4L. On the other hand, at �3 = 0.5
our systems do not reveal explicit (large) degeneracy, so the
above phenomena cannot be followed in the very vicinity of
�3, but they become more evident with the increasing system
size as in Figs. 1(b) and 1(d) for L = 32.

The above scenario should imply also for � > �3 = 0.707
further peaks emerging and leading to quite complex low-ω
structure of σ̃reg(ω) on approaching � → 1. However, results
for � > 0.8 should be taken with some reservation, since
they already reveal significant L dependence. In particular, at
� → 1 one expects the vanishing coherent part D → 0, while
the observed spectral gap ωg ∝ 1/Lζ , well visible in Fig. 1,
below quite featureless spectra is known to be a finite-size
effect [41]. This gap reflects the anomalous L dependence of
σ̃reg(ω) in the integrable XXZ chain in the insulating regime
� > 1 [21] and, in particular, the superdiffusion at � = 1
[34,42–45], discussed in connection with Fig. 4.

D. The case of small � � 0.5

Results for L = 20 and L = 32 shown in Figs. 1(c) and 1(d)
demonstrate that the position of the single peak at ωp strongly
depends on L only for � < 0.5. In this subsection we carry out
the finite-size scaling of σreg(ω → 0) in the regime of small
�. At � = 0, the current operator commutes with the Hamil-
tonian, thus σ̃ (ω) = 2πDδ(ω) and the regular part is absent.
There is also a large jump (discontinuity) of the stiffness at
� → 0 [1,29]. Similarly to other commensurate points, the
spectral weight D(0) − lim�→0 D(�) is transferred to ω > 0
for � 
= 0. The latter weight forms a peak at ωp ∝ �, see
Figs. 1 and 5(b). As a consequence, the regime of weak
interaction is unique in that the structure of σ̃ (ω) is relatively
simple.

To evaluate σ̃ (ω), we employ a recent approach which
targets the regime of � � 0.5. For details we refer to [29],
where the focus was on the stiffness D, which requires calcu-
lation of the diagonal matrix elements 〈n| j|n〉 for � 
= 0. The
eigenstates |n〉 can be obtained via the DPT starting from the
noninteracting case � = 0, with a highly degenerate energy
spectrum. The value of D obtained from the latter approach
agrees with the ED results up to the numerical precision [29].
We extend these calculations to obtain also the off-diagonal
matrix elements 〈n| j|m〉 and the corresponding σ̃reg(ω) de-
fined in Eq. (3). In Fig. 5(b) we compare the DPT and ED
results for L = 20 sites and find perfect agreement. Note,
however, that the DPT does not require any ω smoothing, i.e.,
it has full frequency resolution, and allows for full analysis of
large system sizes, i.e., up to L = 28.

Figure 6(a) shows the integrated regular part Ireg(ω) for (
arbitrarily chosen small) � = 0.1 and various system sizes L.
For convenience, the presented quantity is normalized so that
Ireg(ω → ∞) = 1. Since we apply the perturbative approach,
the very same results hold true for arbitrary � � 0.5, up to
rescaling of frequency ω → ω�/0.1. In order to estimate the
σ̃reg(ω → 0) in the L → ∞ limit, we first note the power-law
dependence of the low-ω part Ireg(ω � ωp) ∝ ωb+1 so that
σ̃reg(ω) ∝ ωb. The power-law fits are shown as straight lines in
Fig. 6(b) and the resulting exponents b are plotted in Fig. 6(d)
as a function of 1/L. The latter function shows a positive cur-
vature, thus a straight (continuous, green) line going through
the results for two largest L may serve as a lower bound
for b. These results indicate that 1 � b � 2 for L → ∞ with
the possibility of the analytic form σ̃reg(ω � ωp) ∝ ω2 [30].
Figure 6(c) shows the asymptotic behavior of 1 − Ireg(ω),
where one observes that the response decays exponentially for
ω � ωp. Finally, we estimate the L dependence of ωp, which
corresponds to the position of largest slope in Fig. 6(a), and is
shown in Fig. 6(d). For comparison we show also the median
value ωm defined as Ireg(ωm) = 0.5. Both quantities apparently
follow linear dependence in 1/L. The extrapolation (which
within DPT represents more a lower bound) of this trend
suggests that in the thermodynamic limit ωm > 0 and ωp > 0.
Since DPT results in Fig. 6(d) suggest that ωm ∼ ωp for all L,
we present in the inset of Fig. 6(a) also the rescaled quantity
Ireg(ω/ωp), which indeed appears to be quite universal for all
L. Still, this is only approximately true, since also exponent
b changes (slightly) with L, as summarized also in Figs. 6(b)
and 6(d).
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FIG. 6. (a) Integrated and normalized regular part of the opti-
cal conductivity Ireg(ω) obtained for L = 16–28 sites via the DPT
calculation for � → 0. The inset shows rescaled data Ireg(ω/ωp),
where ωp is the position of maximum. (b) The low-frequency part
of Ireg(ω � �) fitted by Ireg ∝ ωb+1 (fits are shown as dashed lines).
(c) Exponential decay of 1 − Ireg(ω). (d) Finite-size scaling of the
exponent b from (b), where the dashed line shows fits linear in 1/L
and the continuous guideline goes through results for L = 24 and
L = 28. In (d) we present also the position of peak ωp and median
ωm together with the linear fits.

III. 1D HUBBARD MODEL

Another relevant model for the possible coexistence of
ballistic and diffusive transport is the integrable 1D Hubbard
model of interacting fermions,

H = −t
∑

is

(c†
i+1,sci,s + H.c.) + U

∑

i

ni↑ni↓, (5)

again on a chain of length L with PBC, where we con-
sider states with fixed number N↑, N↓ of up- and down-spin
fermions, respectively. The properties of the model depend on
the filling (density) n̄ = (N↑ + N↓)/L and the magnetization
m̄ = (N↑ − N↓)/L. Here one can define both charge jc and
spin js currents, so we can discuss corresponding conductiv-
ities as well as stiffnesses Dc,Ds, respectively. Most recent
studies of the 1D Hubbard model focused on the half-filling
case, i.e., n̄ = 1 and m̄ = 0 [1,12,13,26], where both stiff-
nesses vanish, i.e., Dc = Ds = 0, due to the relation with the
isotropic Heisenberg model. This is not the case for n̄ 
= 1
[13], where Dc and Ds also exhibit in general a jump in the
proximity to the noninteracting limit U → 0 [29] (in analogy
to the � → 0 in the XXZ model). It should be also reminded
that the first example of the ballistic transport at T > 0 was the
Hubbard chain with one particle N↑ = 1 in a bath of fermions
corresponding to N↓ ∼ L/2 [2,16].

As in the XXZ spin chain, in the Hubbard model at U >

0 there might persist finite dc contributions σ̃c(ω → 0) >

0, σ̃s(ω → 0) > 0 [13] besides the ballistic components at
general n̄ 
= 1, m̄ 
= 0. On the other hand, the evolution with
U > 0 is expected to be more generic since, unlike the XXZ
chain, there are no anomalies associated with particular U val-
ues. We numerically investigate here only the case of charge
conductivity σ̃c(ω) at quarter-filling n̄ = 1/2 and m̄ = 0. In
Fig. 7 we present results obtained on the chain of L = 20 sites
via MCLM, presented in Fig. 7(a) as a scan through the range
of small/modest 0 < U/t � 2 and in Fig. 7(b) for selected
modest/large U/t = 1, 2, 4, 8. It should be first mentioned
that quite similar results emerge when performing ED for
L = 16, hence the L dependence appears to be weak, at least
in the accessible L range.

Apart from the dissipationless component, which in the
presented quarter-filling case takes approximately half of the
sum rule [29], the variation for small/modest U/t > 0 is quite
analogous to the � � 0 in the XXZ spin chain. For U/t � 1.5
the spectra σ̃reg(ω) are dominated by a single peak at ωp ∝ U
with a vanishing dc limit σ̃ 0

reg → 0. For larger U/t > 1.5 the
structure in Fig. 4 develops more components: (a) large-ω
contribution which directly reflects the scale ω ∼ U , and (b)
the remaining low-ω structure apparently still reveals two
not well separated peaks, where the lower one remains at
ωp1 ∼ t/2 and the upper broader one ω � 3t/2 is related
to the incoherent bandwidth. Most important for the present
study, presented results suggest vanishing σ̃reg(ω → 0) or at
least allow only for a very small upper bound of σ̃ 0

c,reg.

IV. CONCLUSIONS

In this paper we presented the numerical results for dy-
namical transport response, i.e., high-temperature T → ∞
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FIG. 7. (a) Charge conductivity σ̃c(ω) for the 1D Hubbard model
at quarter-filling n̄ = 1/2 and zero magnetization m̄ = 0, obtained
via MCLM for a chain of L = 20 sites and ML = 5 × 103 steps.
(a) The scan for the whole interaction 0 < U/t < 2 range. (b) Spectra
for selected moderate/large U/t = 1, 2, 4, 8.

conductivities σ (ω), in two integrable lattice 1D models,
i.e., the anisotropic Heisenberg XXZ model and the Hubbard
model. Since our aim was to resolve the low-ω behavior
in terms of dissipationless D component and the potential
remnant diffusive contribution σreg(ω → 0), we adapted the
MCLM approach by allowing for large systems (up to L = 32
for the XXZ and L = 20 for the Hubbard model), as well as
high frequency resolution δω/(J, t ) ∼ 10−3. Our results can
be summarized as:

(a) Concerning the comparison with previous numerical
results (nearly exclusively) on the XXZ chain, we are in agree-
ment with DQT results for the stiffness D(�) = I (ω → 0)/2
obtained for system sizes L � 30 with PBC [23,24]. Appar-
ently we also agree with the results of tDMRG method [25,26]
obtained for larger systems L � 200, e.g., presented for � =
0.5 in Fig. 3(b). Since the latter time-dependent correlations
are followed only up to times τJ ∼ 35, one cannot uniquely
extract results for ω/J < 0.15 [25], which is the essential
range for the understanding of dynamics in the metallic � < 1
regime.

(b) Besides a well established ballistic D > 0 contribution,
a regular part of dynamical spectra σ̃ (ω) are quite complex in
the XXZ model, revealing a several-peak structure at general
� 
= �m. The most controlled regime appears to be that of
small � � 0.5, where both ED and MCLM calculations at
finite � confirm a single-peak structure of σ̃ (ω) with the
position at ωp ∝ � and fast exponential-like decay for ω >

ωp. The latter is also consistent with the calculation within
the DPT method for � → 0, performed here exactly up to
system sizes of L = 28. Our results reveal σ̃reg(ω < ωp) ∝ ωb

with 1 � b � 2 and ωp > 0 for L → ∞, i.e., the absence
of a diffusive contribution and a qualitative agreement with

the argument following from the level-crossing scenario [30].
However, finite-size effects are still substantial so it is hard to
exclude that ωp = 0 for L → ∞.

(c) Quite informative are the results for commensurate
� = �m, in particular for �3 = 1/2 and somewhat less for
�4 = 1/

√
2, where Fig. 3 does not leave much room for

dc diffusion σ̃ 0
reg > 0 in our finite-size systems, although the

observed finite-size gap ωg reveals some L dependence, so
that we cannot exclude its closing for L → ∞ and possible
agreement with the GHD results for σ̃ 0

reg [33,36].
(d) The spectral evolution is most difficult to follow in

the vicinity of commensurate anisotropy � ∼ �m, which be-
comes very involved in the regime � > 0.5. Namely, each �m

appears to be a source for additional structure appearing as the
peak at ωpm ∝ |� − �m+1|. Such development can be, e.g.,
directly followed via ED and MCLM for m = 2 and m = 4,
emerging from the lifting of additional large (exponentially
increasing with L) degeneracies at �m (see Figs. 1 and 5).
Less conclusive is the case of �3 = 0.5, where large-L results
still reveal such peaks, but considered PBC systems with
L = 4L do not seem to exhibit explicitly such degeneracies.
In any case, such a scenario should effectively reappear with
increasing L, as we also confirm by comparing in Fig. 1 results
for systems with L = 20 and L = 32.

(e) It should be remarked that the emerging spectral
components for � 
= �m are also the origin for the GHD
expectation concerning a singular σ̃reg(ω) ∝ ω−α with α > 0
[36] in the vicinity of commensurate �m. To justify the latter,
besides the jump of D and of the remaining sum rule σ̃reg(ω),
an additional assumption is a power-law decay in time of
current correlation 〈 j(τ ) j〉 − 〈 j(∞) j〉. However, our finite-L
results for σ̃reg(ω) are compatible with an oscillating time evo-
lution to final 〈 j(τ → ∞) j〉 ∝ D > 0 value, which is visible
also in the tDMRG results in [25].

(f) The evolution within the 1D Hubbard model appears
somewhat simpler when considering, e.g., the regular part
of the high-T charge conductivity σ̃c,reg(ω) in the ballistic
regime away from half-filling n̄ = 1. For the particular case of
quarter-filling and zero magnetization (n̄ = 1/2, m̄ = 0), our
results reveal a single-peak structure for modest U/t < 1 with
the peak ωp ∝ U and vanishing σ̃ 0

c,reg, quite in analogy with
the � → 0 in the XXZ chain. For larger U/t > 1, a large-ω
peak splits off with ωp ∼ U while ω < 2t regime still reveals
some nontrivial two-peak structure, but again apparently with
no diffusive contribution at low-ω. The latter is consistent
with previous results for a particular case of the 1D Hubbard
model, i.e., representing a single particle in a fermionic bath
[16].

(g) The arguments and predictions for the possible co-
existence of ballistic and diffusive transport emerge within
the GHD approach, which directly implies the limit L →
∞. Since we hardly see clear evidence for σ̃ 0

reg > 0, even
in largest systems (L = 32), a minimum conclusion could
be that such a diffusion is anomalous, i.e., is not reflected
in a physically relevant mean free path λ < L. Such a case
is not excluded and can emerge also in integrable quan-
tum lattice systems. A closely related example is the high-T
diffusion in the easy-axis XXZ model at � � 1, where
D = 0 and apparent σ̃ 0

reg > 0 implies an effective λeff ∼ 1,
whereas σ̃ (ω) still exhibits anomalous ω ∝ 1/L finite-size
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effects [1,41,47]. In fact, we can confirm such anomalous L
dependence in our analysis on approaching � → 1, where we
confirm the superdiffusive dynamical scaling σ̃ (ω) ∝ ω−1/3

[34,36,37,42,44]. Such quite explicit L dependence signals the
importance of the relevant order of limits L → ∞ and t → ∞
(or ω → 0). Namely, different quantities can require differ-
ent limits, and in particular σ 0

reg (evaluated at L → ∞ first)
might not correspond to energy dissipation (heating) inside
the system, as found, e.g., for the easy-axis side � > 1 [48],
i.e., the diffusion (as, e.g., evaluated within GHD) might be
dissipationless.

(h) Finally, it should be reminded that even a weak
integrability-breaking perturbation (e.g., a single impurity in
the XXZ chain [49]) in the finite MB system with PBC turns,

e.g., the singular σ (ω) response into a Lorentzian-type normal
diffusion with a well defined characteristic λ.
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[49] O. S. Barišić, P. Prelovšek, A. Metavitsiadis, and X. Zotos,
Incoherent transport induced by a single static impurity in a
Heisenberg chain, Phys. Rev. B 80, 125118 (2009).

115163-9

https://doi.org/10.1103/PhysRevB.103.235115
https://doi.org/10.1103/PhysRevB.86.115106
https://doi.org/10.1103/PhysRevLett.103.216602
https://doi.org/10.1103/PhysRevB.83.035115
https://doi.org/10.1103/PhysRevLett.121.160603
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevB.98.220303
https://doi.org/10.1103/PhysRevB.101.224415
https://doi.org/10.1088/1742-5468/ac12c7
https://doi.org/10.1103/PhysRevB.68.235106
https://doi.org/10.1002/andp.201600362
https://doi.org/10.1103/PhysRevB.70.205129
https://doi.org/10.1103/PhysRevLett.122.210602
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevLett.123.186601
https://doi.org/10.1103/PhysRevLett.127.057201
https://doi.org/10.1016/j.nuclphysb.2015.11.023
https://doi.org/10.1103/PhysRevB.85.214409
https://doi.org/10.1103/PhysRevLett.107.126601
https://doi.org/10.1103/PhysRevB.80.125118

