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We describe a systematic method to construct models of Chern insulators whose Berry curvature and the
quantum volume form coincide and are flat over the Brillouin zone; such models are known to be suitable
for hosting fractional Chern insulators. The bands of Chern insulator models where the Berry curvature and
the quantum volume form coincide, and are nowhere vanishing, are known to induce the structure of a Kähler
manifold in momentum space, and thus we are naturally led to define Kähler bands to be Chern bands satisfying
such properties. We show how to construct a geometrically flat Kähler band with Chern number equal to minus
the total number of bands in the system, using the idea of Kähler quantization and properties of Bergman kernel
asymptotics. We show that, with our construction, the geometrical properties become flatter as the total number of
bands in the system is increased; we also show the no-go theorem that it is not possible to construct geometrically
perfectly flat Kähler bands with a finite number of bands. We give an explicit realization of this construction in
terms of theta functions and numerically confirm how the constructed Kähler bands become geometrically flat
as we increase the number of bands. We also show the effect of truncating hoppings at a finite length, which will
generally result in deviation from a perfect Kähler band but does not seem to seriously affect the flatness of the
geometrical properties.
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I. INTRODUCTION

Chern insulators are prototypical lattice models of topo-
logical insulators [1,2]. Without interparticle interactions,
fermionic Chern insulators exhibit the integer quantum Hall
effect, where the Hall conductivity is proportional to the first
Chern number of the occupied bands. Including appropriate
interactions, Chern insulators with certain filling factors are
expected to become fractional Chern insulators, which ex-
hibit the fractional quantum Hall effect [3–9]. To theoretically
study fractional Chern insulators on lattices, a natural guiding
principle is to explore possible analogies from the existing
studies of fractional quantum Hall states in the continuum.
A challenge here is to find analogies between the Landau
level physics in the continuum and the eigenstates of Chern
insulators on lattices. In previous works, it has been noticed
that when the geometrical properties of noninteracting Chern
insulators fulfill certain conditions, we can draw good analo-
gies between Chern insulators on lattices and the fractional
quantum Hall states in the continuum [10,11]. In particular, it
is desirable to have bands whose Berry curvature F12(k) and
the quantum metric gi j (k) as a function of quasimomentum
k in the Brillouin zone satisfy the equality

√
det(g(k)) =

|F12(k)/2|. When this condition is met, the Bloch states of a
Chern band become analogous to the lowest Landau levels in
the continuum, from which we can expect stable construction
of fractional Chern insulators. This condition is related to the
possibility to choose Bloch states as holomorphic functions on
momentum space. Earlier works have proposed to construct

Chern insulators with such properties using variational states
involving elliptic functions [10,11].

The condition of
√

det(g(k)) = |F12(k)/2| together with
det(g(k)) > 0 is equivalent to momentum space being a Käh-
ler manifold with the quantum metric as the Kähler metric
and the Berry curvature (up to a constant) as the Kähler
form [10–13]; in this paper we define Kähler bands to be
energy bands fulfilling these conditions. Here we propose a
systematic method to construct a sequence of Kähler bands,
labeled by the total number of bands in the system, with
asymptotically flat geometry, that is,

√
det(g(k)) = |F12(k)/2|

is asymptotically constant over the Brillouin zone. We note
that Kähler bands with flat energy dispersion have been dis-
cussed under the name of (near-)ideal flatbands in the recent
works of Refs. [14,15], in which the flatness of geometry is
not imposed.

In our method, once we fix an auxiliary Hermitian holo-
morphic line bundle on the Brillouin zone, L → BZ2, with
its curvature satisfying certain conditions, we can construct
Kähler bands from an orthogonal basis of the vector space
of (global) holomorphic sections of the tensor-product line
bundle L⊗p → BZ2. The total number of bands of the con-
structed model equals the opposite of the Chern number of
the constructed Kähler band which, in turn, is equal to −pC,
where C, with C > 0, is the Chern number of L → BZ2. The
Kähler band approaches flat geometry in the limit of large
p, which is guaranteed from a known mathematical theorem
on the Bergman kernel asymptotics [16]. Notably, in order to
obtain flat Kähler bands, we do not need to determine any
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parameter in a variational manner. Our method, being exact
in the infinite total number of bands limit, yields asymptoti-
cally geometrically flat bands with a high Chern number. This
should be contrasted to typical studies of fractional Chern
insulators which focus on bands with low Chern number, in
particular, with Chern number equal to 1 due to the analogy
with lowest Landau level physics. More recent studies [17] are
focusing on fractional Chern insulators in bands with higher
Chern numbers as they have been recently realized experi-
mentally [18] and they can exhibit richer physical phenomena.
We confirm the validity of our method by explicitly con-
structing a model using theta functions. Although our model
generally contains long-range hoppings in real space to an
arbitrary distance, we also numerically show that truncating
the hopping at a reasonable length would not seriously affect
the resulting geometry of the model.

Below, in Sec. II, we first introduce the basic terminology
of band geometry and describe how to introduce a complex
structure in momentum space. In Sec. III, we then review
arguments on how Chern bands with certain geometrical prop-
erties are preferred to obtain fractional Chern insulators. In
Sec. IV, we discuss the general expressions of Kähler (and
quasi-Kähler) bands as holomorphic maps from the Brillouin
zone to complex projective spaces. Section V discusses a
systematic construction of flat Kähler bands, which forms the
central result of our paper. In Sec. VI, we provide an explicit
construction of Kähler bands based on our method, including
numerical calculations. Finally, we present the conclusions in
Sec. VII. Some detailed derivations are given in Appendix,
including a proof that it is not possible to construct a perfectly
flat Kähler band with a finite number of bands.

II. BAND GEOMETRY AND COMPLEX STRUCTURE

We first summarize basic terminology of band geometry
and how it can give rise to a complex structure on the Brillouin
zone. The geometry of the Bloch states of a single isolated
band is characterized by a map P : BZ2 → CPn−1, where
BZ2 is the two-dimensional Brillouin zone and CPn−1 is the
(n − 1)-dimensional complex projective space; physically n
corresponds to the total number of bands. The map P induces a
metric on the Brillouin zone ds2 = ∑

i, j gi j (k)dkidk j , where
k ∈ BZ2, called the quantum metric, through the pullback of
the standard Fubini-Study metric on CPn−1 [19,20]. Simi-
larly, from the pullback of the Fubini-Study symplectic form
on CPn−1, we obtain a symplectic two-form ω = −iF/2 on
momentum space, whose only nonzero component is ω12 =
−ω21. The two-form F is called the Berry curvature, whose
integral gives the first Chern number of the band

∫
BZ2 iF/2π ∈

Z. Generally, an inequality between the determinant of the
quantum metric, det(g) = g11g22 − g2

12, and the Berry curva-
ture holds:

√
det(g(k)) � |F12(k)|/2 as first noticed by Roy

[21]. Since
√

det(g)dk1 ∧ dk2, if det(g) �= 0 everywhere, pro-
vides the natural volume form based on the quantum metric
and the standard orientation of the Brillouin zone, we call
this quantity the quantum volume form in this paper. We note,
however, that although the quantum volume form is always
nonnegative, it can generally be zero in certain points (re-
gions) of the Brillouin zone, so it is not a volume form in
the strict mathematical sense. From the quantum metric, it is

sometimes possible to introduce a complex structure on the
Brillouin zone which we proceed to describe.

First, we assume that the map P is an immersion, in
which case, as we show, a complex structure can always be
defined on the entire Brillouin zone. Since P is an immer-
sion, the metric is everywhere nondegenerate on the Brillouin
zone, namely det(g(k)) �= 0 for any k ∈ BZ2. In this case the
quantum metric is a Riemannian metric defined everywhere
on the Brillouin zone. For a given point on the Brillouin
zone, k ∈ BZ2, it is known that there exists a system of
coordinates (u, v) in a neighborhood of k which satisfies
ds2 = ∑

i j gi jdkidk j = ρ(du2 + dv2), where ρ is a positive
function. Such coordinates (u, v) are called isothermal coor-
dinates, and by defining z = u + iv, where (u, v) are taken
consistent with the standard orientation on the Brillouin zone,
we can introduce the complex coordinate z on a neighbor-
hood of k. Such complex coordinates defined around different
points on the Brillouin zone can be patched together to give a
complex atlas of the Brillouin zone, giving the Brillouin zone
the structure of a complex manifold of complex dimension
one, namely a Riemann surface. We note that for a given
metric on the Brillouin zone and a choice of orientation, the
choice of the local complex coordinate is unique up to local
orientation preserving conformal transformations, i.e., up to
local bi-holomorphisms—this ensures that the local coordi-
nates patch together nicely in a holomorphic manner, and
also it tells us that the complex structure on the Brillouin
zone is uniquely determined by the quantum metric. Since
the complex projective space CPn−1 is also a complex man-
ifold, the map P can now be considered as a map between
complex manifolds. As shown in Refs. [12,13], when P is a
holomorphic immersion, momentum space is a Kähler man-
ifold with the quantum metric as the Kähler metric and the
symplectic two form ω = −iF/2 as the Kähler form. We thus
define Kähler bands to be bands with P being a holomor-
phic immersion, with respect to the complex structure on the
Brillouin zone defined above. For Kähler bands, the equality√

det(g(k)) = |F12(k)|/2 holds [11–13]. A primary objective
of this paper is to find flat Kähler bands, which are Kähler
bands whose geometrical properties, i.e., the quantum metric,
the symplectic form (which equals the quantum volume form)
and the complex structure, are flat, i.e., their components in
the (periodic) coordinates (k1, k2) are constant.

We stress that the word flat in the present work refers to
the situation where the geometric structures of interest are
constant with respect to the (k1, k2) coordinates,1 and does
not refer to flatness of the energy dispersion unless explicitly
stated. We also want to stress that geometric flatness does not
mean vanishing Berry curvature, i.e., it does not mean that the
Berry connection is a flat connection; rather the Berry curva-
ture takes a constant nonzero value over the Brillouin zone.

1In a coordinate free description, the periodic (k1, k2) coordinates
give rise to two independent globally defined vector fields over the
Brillouin zone X1 = ∂/∂k1 and X2 = ∂/∂k2. Then, what we mean by
flatness of a Kähler structure over the Brillouin zone is that the Lie
derivatives, with respect to these vector fields, of the symplectic form
ω, the complex structure j and the metric g, denoted by, respectively,
LXi ω, LXi j and LXi g, i = 1, 2, vanish identically.
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Next, we consider the situation where the map P is not an
immersion, in which case existence of the complex structure
on the entire Brillouin zone is not always guaranteed. When P
is not an immersion, there are certain points on the Brillouin
zone where det(g(k)) = 0. Let us denote the (closed) set of
points on the Brillouin zone where det(g(k)) = 0 by S = {k ∈
BZ2| det(g(k)) = 0}. If BZ2\S, namely the set of points where
det(g(k)) �= 0, has more than one connected component, with
each component necessarily separated by a loop, it is not pos-
sible to define a complex structure throughout the Brillouin
zone. We note that since the Berry curvature can change sign
from one connected component to the other, the choice of
local orientations in each connected component, based on the
sign of the Berry curvature (more precisely using the pullback
under P of the Fubini-Study symplectic form as a volume
form), cannot in general be made globally consistent over
the whole Brillouin zone—something that would necessarily
happen if the map was holomorphic or antiholomorphic (a
standard argument for this is presented Sec. IV). Over each
connected component of BZ2\S, we can find local complex
coordinate systems consistent with the quantum metric by
finding a local complex coordinate in sufficiently small open
neighbourhoods of each point on BZ2\S as in the first case
and patching them together. Whether or not the complex
coordinates defined in this way on BZ2\S belong to some
complex atlas on the entire Brillouin zone and, hence, come
from a globally defined complex structure, depends on spe-
cific situations. If the map P : BZ2 → CPn−1 is known to be
holomorphic a priori with respect to some complex structure
j, then we know that we can extend the complex structure on
BZ2\S as determined from the quantum metric to be defined
on the entire BZ2 since the former will just be the restriction
of j to BZ2\S. We define quasi-Kähler bands to be bands
where P is not an immersion but we can define the complex
structure on the entire Brillouin zone and thus P is represented
by a holomorphic function. Also for the quasi-Kähler bands,
the equality

√
det(g(k)) = |F12(k)|/2 holds throughout the

Brillouin zone. Note that since zeros of holomorphic functions
are isolated, if P is holomorphic (and nonconstant) then S,
which is determined by the simultaneous vanishing of the first
derivatives of the local holomorphic functions determining P
locally—hence determined by zeros of (non-constant) holo-
morphic functions—, will consist of a collection of isolated
points in the Brillouin zone and, due to compactness, this
collection will necessarily be finite.

The quantum metric g(k) is physically related to localiza-
tion of states [22–24], and it is experimentally observable.
Recent experiments have reported measurements of the quan-
tum metric in various setups of synthetic quantum matter
[25,26]. The complex structure, which as we saw is deter-
mined from the quantum metric, in turn, is related to the
anisotropy in localization of the insulating state where the
entire band is occupied by fermions [27].

III. BACKGROUND ON FRACTIONAL CHERN
INSULATORS AND BAND GEOMETRY

Following Ref. [11], we now recall some notions on frac-
tional Chern insulators and the role of band geometry on their
stability.

Consider the Hamiltonian for an isotropic free electron
gas in two-dimensions in the presence of an external uniform
magnetic field:

H = 1

2m

∑
i

(pi − eAi )
2 +

∑
i< j

V (ri − r j ),

where m is the effective mass, eA = (1/2)(−y, x) is the elec-
tromagnetic gauge field in the symmetric gauge and we have
set the magnetic length �2

B = 1/eB = 1. This is the canonical
model for the fractional quantum Hall effect. Assume filling
fraction ν < 1 and assume that the cyclotron frequency, i.e.,
the Landau level gap, is much larger than the scale of interac-
tions, and, hence, an effective description based on projection
onto the lowest Landau level (LLL) subspace is valid. The
single-body electron problem can be written as

H0 = ωc(b†b + 1/2),

where ωc = eB/m is the cyclotron frequency, b = (−i∂z −
iz/2)/

√
2 = (−i/

√
2)∇∂/∂z is the Cauchy-Riemann opera-

tor determined by the covariant derivative ∇ = d − i(xdy −
ydx)/2 = d + (zdz − zdz)/4, where d is the exterior deriva-
tive, and the isotropic flat complex structure determined by
the complex coordinate z = x + iy in the plane. The LLL
wave functions are then square-integrable holomorphic func-
tions, with respect to an appropriate inner product [28],
which can also be understood as holomorphic sections of
the electromagnetic gauge bundle L = R2 × C → R2 which
is equipped with the connection ∇ = d + A, A = −iA� =
−i(xdy − ydx)/2, where � is the musical isomorphism send-
ing vector fields to 1-forms. There is another oscillator algebra
associated with the single-particle problem, namely,

a = −i(∂z + z/2)/
√

2,

which commutes with the one determined by b. Because of
this, if |ψ〉 is in the LLL so is a†|ψ〉. One can then build all
the states in the LLL from the vacuum of the a’s within the
LLL, which is the state that satisfies a|
0〉 = b|
0〉 = 0. This
state is most simply the Gaussian 
0(z) ∼ e−|z|2/4. Laugh-
lin’s many-body trial wave functions may now be elegantly
expressed in terms of the a’s (one for each particle):


Laughlin =
∏
i< j

(a†
i − a†

j )
1/ν
⊗N

0 ,

where N is the number of particles and n = 1/ν is odd (to sat-
isfy Fermi statistics). The choice of the guiding-center basis
((a†)m/

√
m!)
0 ∼ zme−|z|2/4, eigenstates of Lz, makes perfect

sense in the isotropic case. However, when the effective mass
is anisotropic this choice is not appropriate. The anisotropy
is related to a choice of a complex structure in the plane,
independent of the kinetic energy and the interacting potential
(which is assumed to be isotropic), which enters as a vari-
ational degree of freedom determining the geometry of the
ground state wave function.

For Chern insulators, one is forced to abandon isotropy
in order to be able to have a fractional quantum Hall fluid
on the lattice. While Bloch bands, labeled by k ∈ BZ2, seem
to have a different structure from the wave functions in the
LLL, one can still define an analogous guiding-center basis
on the lattice. The way to do this is to define the FQHE
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states in terms of a basis of eigenstates of a small anisotropic
confining potential which is projected to the flat Chern band
[10]. Namely, one makes the observation that while the an-
gular momentum does not directly translate to the lattice,
there is an equivalent description of the associated eigen-
states, 
m = ((a†)m/

√
m!)
0 ∼ zme−|z|2/4, as eigenstates of

a parabolic confinement potential V (r) = (λ/2)r2 = (λ/2)z̄z
projected to the LLL,

(PLLLV (r)PLLL )
n = λ

2
(n + 1)
n, n ∈ N,

where λ is a small real constant – the latter having a
well-defined lattice version. Indeed, we can swiftly adapt
this construction to fractional Chern insulators by taking an
anisotropic confinement potential on the lattice:

V (r) = 1
2λ ηi jx

ix j,

where η = (ηi j ) is a unimodular Galilean metric which is to
be interpreted as a variational degree of freedom and where
we assume the Einstein summation convention for repeated
indices. Since under the Zak transform [29] the position oper-
ators get mapped to x j = i∂/∂k j , j = 1, 2, it follows that the
projection onto a Chern band, described by a rank 1 smooth
projector P(k), yields

V (k) ≡ P(k) ◦ V (r) ◦ P(k)

= −1

2
λ ηi jP(k) ◦ ∂

∂ki
◦ ∂

∂k j
◦ P(k),

where ◦ means operator composition. Expanding the deriva-
tives, one finds

V (k) = −λ

2
ηi j∇ ∂

∂ki
∇ ∂

∂k j
+ λ

2
ηi jgi j (k), (1)

where ∇ = P ◦ d ◦ P and gi j (k) are, respectively, the Berry
connection and the components of the quantum metric of the
band under consideration. The metric η identifies a flat com-
plex structure on BZ2, described by a (multivalued) complex
coordinate z = k1 + τk2, through the formula

ηi jdkidk j = η11|dk1 + τdk2|2 = η11|dz|2, τ ∈ H, (2)

where ηi j are the matrix elements of the inverse matrix η−1.
Here H is the upper half of the complex plane, and thus
Im(τ ) > 0. We can then write

ηi j∇i∇ j = 2η11(∇z∇z + ∇z∇z )

= 2η11(2∇z∇z − [∇z,∇z])

= 4η11∇z∇z − 2η11Fzz

and, equivalently,

ηi j∇i∇ j = 2η11(∇z∇z + ∇z∇z )

= 2η11(2∇z∇z − [∇z,∇z])

= 4η11∇z∇z + 2η11Fzz,

where F = Fzzdz ∧ dz̄ = (τ − τ )Fzzdk1 ∧ dk2 = F12dk1 ∧
dk2 is the Berry curvature, so that we have the following two
equivalent expressions for V (k)

V (k) = −2λη11∇z∇z + λ

(
iη11

2τ2
F12 + 1

2
ηi jgi j

)
(3)

and

V (k) = −2λη11∇z∇z + λ

(
− iη11

2τ2
F12 + 1

2
ηi jgi j

)
. (4)

We remark that the first term in Eq. (3) is minimized for
holomorphic sections of the complex line bundle L → BZ2

whose fiber at k is the image of P(k), i.e., Bloch wave
functions |uk〉 living in the Chern band [P(k)|uk〉 = |uk〉] and
satisfying

∇z|uk〉 = 0.

The vector space of (global) solutions of the above equation
is denoted H0(BZ2, L). If the Chern number C of L is positive
then the above equation has C linearly independent solutions
by the Riemann-Roch theorem. If the Chern number of L is
negative, then, the above equation has no (global) solutions
and we have to turn to Eq. (4), in which the first term is min-
imized by antiholomorphic sections of L, i.e., those sections
satisfying

∇z|uk〉 = 0,

which will have |C| linearly independent solutions as it cor-
responds to Bloch wave functions on the Chern band, i.e.,
sections of L, which satisfy the constraint that they are holo-
morphic with respect to the opposite complex structure on the
Brillouin zone.

The second term in Eqs. (3) and (4) vanishes when

∓iF12 = η11τ2ηi jgi j =
√

det(η−1)ηi jgi j = ηi jgi j,

where the last equality follows from unimodularity of η.
This identity holds when the triple of structures (g,−iF/2 =
ω,± jτ ) satisfies ω(·,± jτ ·) = g, so that

gi j (k) = f (k)ηi j,

for some non-negative smooth function f (k), and

ηi jgi j = 2 f (k),

and also

∓ iF12

2
=

√
det(g) = f (k).

We note that, for any Chern insulator, an inequality
√

det(g) �
|F12/2| holds [21], which follows from the Cauchy-Schwarz
inequality; the saturation of the inequality is related to the
Bloch states being holomorphic or antiholomorphic as de-
scribed in Refs. [12,13]. We thus see that vanishing of the
expectation value of V (k) is equivalent to the condition that
we can choose local Bloch states that are holomorphic or
antiholomorphic functions (depending on whether the sign of
the first Chern number is negative or positive, respectively).

The guiding-center orbitals of the Chern band are then de-
fined to be a basis of the Hilbert space of Bloch wave functions
on the Chern band, i.e., sections of L [a Hilbert subspace of
the total single-particle Hilbert space of the system defined by
those Bloch states |uk〉 which satisfy P(k)|uk〉 = |uk〉 for all
k ∈ BZ2] composed of eigenvectors of the confining potential
V (k), with η variationally chosen to optimize the dispersive
second term of Eqs. (3) and (4) (see Refs. [10,11]). Observe
that if the band is Kähler with respect to some flat Kähler
structure with complex structure jτ (− jτ ), then the second
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term in Eq. (3) (Eq. (3)) is naturally minimized and the con-
formal factor f (k) appearing above is simply a constant.

The challenge of obtaining a microscopic description of
fractional quantum Hall states associated with fractionally
filled Chern bands reduces, according to [10], to determin-
ing the deformed guiding-center orbitals, above defined as
eigenstates of V (k), upon placing a fractional quantum Hall
liquid on the lattice. Given an appropriate η, any fractional
Chern insulator can in principle be captured by Laughlin-like
many-body trial ground states, constructed from the single-
body eigenstates of Eq. (1).

The discussion above refers to the choice of “guiding-
center” bases in the conventional fractional quantum Hall
effect and in fractional Chern insulators. In the latter case,
to ensure the stability with respect to interactions one further
needs that the Berry curvature is uniform [21,30] to ensure
that the resulting projected density algebra is isomorphic to
the W∞ algebra found in the ordinary FQHE. For τ = i, it is
not just isomorphic but exactly the same algebra.

The construction in the present manuscript, see Sec. V,
provides asymptotically flat Kähler bands and, hence, it pro-
vides a way to obtain optimal Chern bands for hosting
fractional Chern insulators, for arbitrary anisotropy as de-
scribed by the modular parameter τ ∈ H. The fact that our
formalism allows for arbitrary anisotropy τ , allows to account
for scenarios in which, due to symmetry reasons, it will be
more favourable to form a fractional Hall fluid on the lattice
if the geometry of the Chern band is anisotropic. Intuitively,
this should be the case for lattices that are not conformal to
the square lattice.

IV. GENERAL EXPRESSIONS FOR (QUASI-)Kähler BANDS
FROM HOLOMORPHIC MAPS FROM BZ2 TO CPn−1

We now explain how Kähler and quasi-Kähler bands can
be generally expressed as holomorphic maps from BZ2 to
CPn−1, using meromorphic functions on complex tori. We
first consider the case where n = 2, which are two-band mod-
els and thus one can only construct quasi-Kähler bands. We
then extend the argument to n � 2 and present a general
expression for a map BZ2 → CPn−1, which any Kähler and
quasi-Kähler band should obey.

For two-band models a quasi-Kähler band is determined by
a holomorphic map P : BZ2 → CP1, or equivalently, because
we can identify CP1 ∼= C ∪ {∞} (Riemann sphere), by a
meromorphic function over a torus equipped with the structure
of a complex manifold. Holomorphic maps, unlike smooth
maps, are very “rigid,” something that is ultimately related to
the fact that holomorphic functions are Taylor series expand-
able everywhere. In the following, for illustration purposes,
we describe meromorphic functions over a complex torus and
we will see how they are parametrized by their zeros and
poles. For simplicity, we equip the Brillouin zone BZ2 with
the 2π (Z + iZ)-periodic complex coordinate z = k1 + ik2,
making it a complex torus. We note that generalization to a
general case of z = k1 + τk2 with τ ∈ H is straightforward,
as we will see below. Observe that we are using coordinates
(k1, k2) such that the action of the reciprocal lattice by trans-
lations is given by shifts by integer multiples of 2π on each

coordinate. Let

θ (z, τ = i) := θ (z) =
∑
n∈Z

e−πn2+2π inz,

be the associated theta function.
Observe that

θ (z + m) = θ (z), for m ∈ Z,

and

θ (z + mi) =
∑
n∈Z

e−πn2+2π inz−2πmn

=
∑
n∈Z

e−π (n+m)2+2π i(n+m)z+πm2−2π imz

= eπm2−2π imzθ (z), for all m ∈ Z.

The θ function has a unique simple zero at 1/2 + i/2
mod Z + iZ [31]. We define the translated theta functions by

θ (x)(z) = θ (z − (1/2 + i/2) − x), x ∈ C,

which has zeros at x + Z + iZ. A holomorphic map R :
BZ2 → CP1, i.e., a meromorphic function on BZ2, can be
constructed by taking products and ratios of the translated
theta functions

R(z) =
∏

i θ
(xi )

(
z

2π

)∏
j θ

(y j )
(

z
2π

) (5)

for a set of complex numbers x1, x2, . . . , xN and y1, y2, . . . , yN

satisfying the condition

N∑
i=1

xi −
N∑

j=1

y j ∈ Z. (6)

One can explicitly confirm that R(z + 2π i) = R(z) holds if
and only if the condition Eq. (6) is satisfied. Note that in
Eq. (5) we performed a rescaling on the z variable to ensure
the correct periodicity properties under translations by recip-
rocal lattice vectors.

Actually, every meromorphic function on the complex
torus C/Z2 is, up to a multiplicative constant, of this form
(see, for instance, Proposition 2.7 and Lemma 3.14 of [31]).

For a given holomorphic map R : BZ2 → CP1, we can
construct a two-band momentum-space Hamiltonian H (k) =
−εn(k) · σ , where ε is a positive constant, σ = (σ1, σ2, σ3)
are the Pauli matrices and n is a map n : BZ2 → S2 ⊂ R3 with

n(z) = 1

1 + |R(z)|2 (2Re(R(z)), 2Im(R(z)), 1 − |R(z)|2).

The eigenvalues of the Hamiltonian are ±ε, and thus flat over
the Brillouin zone, and the eigenvectors are, up to normal-
ization, (−R(z), 1) and (1, R(z)). Therefore the lower band
of this Hamiltonian is described by the map f : BZ2 → CP1

given by

f : BZ2 →CP1; z �→ f (z)=
[∏

j

θ (y j )
( z

2π

)
:
∏

i

θ (xi )
( z

2π

)]
,

in homogeneous coordinates. The lowest band of this Hamil-
tonian is, by construction, quasi-Kähler with respect to the
flat complex structure determined by τ = i. We note that,
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since this is a two-band Hamiltonian, there must be points
in the Brillouin zone where det(g) = 0 due to Theorem 3 of
Ref. [13]. That means that the Berry curvature will be always
non-negative. The reason is that, given that R : BZ2 → CP1

is holomorphic, it will necessarily be orientation preserving at
every point. This follows from the fact that, locally, R is de-
scribed by a holomorphic map z �→ w(z), where z = k1 + ik2

is the holomorphic coordinate on the Brillouin zone and w is
a holomorphic coordinate on the sphere. The orientations on

both manifolds are locally determined by the 2-forms dk1 ∧
dk2 = i

2 dz ∧ dz̄ and i
2 dw ∧ dw̄, respectively. The pullback

of i
2 dw ∧ dw̄ then reads i

2 | ∂w
∂z |2dz ∧ dz̄. Since | ∂w

∂z |2 � 0, it
follows that the map will be orientation preserving on each
point where the derivative does not vanish, i.e., away from the
points where the map is not an immersion or, equivalently,
det(g) = 0.

We can generalize the above construction of a holomorphic
map to the case of CPn−1 by

f : BZ2 → CPn−1; z �→
[

c1

∏
i1

θ
(x1

i1
)
( z

2π

)
: c2

∏
i2

θ
(x2

i2
)
( z

2π

)
: · · · :cn

∏
in

θ (xn
in )

( z

2π

)]
,

where c1, . . . , cn ∈ C, with at least one of the ci’s different
from zero, 1 � i j � N , for all j = 1, . . . , n, and

N∑
j=1

xi
j − xk

j ∈ Z, for all i < k. (7)

To see that this is completely general, note that to have a gen-
eral well-defined holomorphic map f : BZ2 → CPn−1; z �→
[ f1(z) : · · · : fn(z)] we need a collection of functions fi : C →
C depending holomorphically in z and which satisfy

fi(z + G) = eG(z) fi(z), for all i ∈ {1, . . . , n}, (8)

where G = G1 + iG2 represents a reciprocal lattice vector and
eG(z) is a holomorphic multiplier which is the same for all
functions. This is the case because the projective space does
not care about the overall scale of the vector. The equation
above tells us that the fi(z)’s define n sections of a holomor-
phic line bundle over the complex torus. Note, however that
we can write

[ f1(z) : · · · : fn(z)] =
[

1 :
f2(z)

f1(z)
: · · · :

fn(z)

f1(z)

]
= [1 : R1(z) : · · · : Rn(z)], (9)

where the Ri(z)’s are now meromorphic functions over the
complex torus. Since any meromorphic function over the com-
plex torus can be written, up to a multiplicative constant, as a
ratio of theta functions we understand that the prescription is
general.

Thus, any Kähler and quasi-Kähler band, having a flat
complex structure defined by τ = i, can be written in this
form, and can be expressed by appropriately choosing the
values of c1, . . . , cn and xi

j to satisfy Eq. (7). The discussion
above is easily generalized to a complex torus C/(Z ⊕ τZ),
for some τ ∈ H, by replacing θ (z) = θ (z, τ = i) with

θ (z, τ ) =
∑
n∈Z

eiπτn2+2π inz, (10)

where now z = k1 + τk2. In fact, since any torus with the
structure of a complex manifold, i.e., a Riemann surface of
genus 1, is biholomorphic to a complex torus C/(Z ⊕ τZ),
for some τ ∈ H, see Proposition 5.2 of [31], it follows that any
Kähler and quasi-Kähler band, after composing the map with

a suitable map giving the biholomorphism, can be described
in this way.2

Because of the number of free parameters at hand, tuning
these parameters to obtain the desired (quasi-)Kähler band is
generally a nontrivial task. As discussed in Sec. III, in the
context of the fractional Chern insulators, one is interested in
finding bands with the quantum metric and the Berry curva-
ture which are as uniform as possible over the Brillouin zone.
One approach taken by Lee et al. [11] was to set an ansatz
wave function in terms of the Weierstrass zeta functions,
instead of the theta functions, and to flatten the geometrical
properties by tuning a collection of variational parameters.
In the next section, we present an alternative approach, for
which one needs to determine only an auxiliary Hermitian
holomorphic line bundle, for a fixed value of the modular
parameter τ , and total number of bands. After the explicit
construction of the holomorphic line bundle for a given τ ,
which is made possible using the theory of theta functions,
the only parameter in our approach becomes the number of
total bands. Despite the simplicity of our approach, we show
that, in an appropriate asymptotic limit of large total number
of bands, our method gives rise to the desired flat quantum
metric and Berry curvature, satisfying |F12|/2 = √

det(g). Our
approach is inspired by the one by Kovrizhin et al. [32], in

2To be precise, it means that if we equip the Brillouin zone with
the structure of a complex manifold, denoted (BZ2, j), with j being
the complex structure, there exists a biholomorphism (i.e., an iso-
morphism of complex manifolds) ϕ : (BZ2, j) → C/(Z ⊕ τZ) such
that dϕ ◦ j = jτ ◦ dϕ, with jτ the uniform flat complex structure
associated with τ ∈ H. Note that, since ϕ is in particular a dif-
feomorphism, we also have j ◦ dϕ−1 = dϕ−1 ◦ jτ . This means that
if P : (BZ2, j) → CPn−1 is a holomorphic map, meaning dP ◦ j =
JFS ◦ dP, where JFS is the Fubini-Study complex structure, then,
P̃ = P ◦ ϕ−1 : C/(Z ⊕ τZ) → CPn−1 is holomorphic with respect
to the flat complex structure jτ defined by τ ∈ H, i.e.,

dP̃ ◦ jτ = dP ◦ dϕ−1 ◦ jτ = dP ◦ j ◦ dϕ−1

= JFS ◦ dP ◦ dϕ−1 = JFS ◦ dP̃,

where we used the chain rule for differentials dP̃ = d (P ◦ ϕ−1) =
dP ◦ dϕ−1. Now the projector P̃ will have a description in terms
of meromorphic functions on a complex torus parametrized by a
complex coordinate z = k1 + τk2 as described in the main text.
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which skyrmion lattices with desired properties were con-
structed using theta functions.

V. THE BERGMAN KERNEL PRESCRIPTION

We want to build a holomorphic map f : BZ2 → CPn−1,
for some n > 1, which induces a flat geometrical structure
over the Brillouin zone BZ2. We first show that Kähler bands
which are geometrically flat are solely determined by the
modular parameter τ and the first Chern number −C, with
C > 0 (the minus sign coming from the relation between our
convention of the Berry curvature and the pullback of the
Fubini-Study form, as we will see more explicitly below).
Flat Kähler bands are characterized by a compatible triple,
(ω, jτ , g), where each of the structures is uniform over the
Brillouin zone. Let us denote the modular parameter of the
system by τ , which means that the complex variable z =
k1 + τk2 gives a complex coordinate on the Brillouin zone sat-
isfying ds2 = ∑

i, j gi jdkidk j = g11|dz|2. From this relation,
we can deduce τ = (g12 + i

√
det g)/g11. The almost complex

structure jτ satisfies jτ (∂z ) = i∂z and jτ (∂z̄ ) = −i∂z̄, from
which we can deduce

jτ = 1

Im(τ )

(−Re(τ ) −|τ |2
1 Re(τ )

)
= 1√

det(g)

(−g12 −g22

g11 g12

)
(11)

in the basis of ∂/∂k1 and ∂/∂k2. Since gi j = ∑
k ωik ( jτ )k

j
from the compatibility of the Kähler structure, we can then
show ω = √

det(g)dk1 ∧ dk2. On the other hand, the negative
of the Chern number of the Kähler band is C = ∫

BZ2 ω/π =
4π

√
det(g). Therefore, for a given value of the modular pa-

rameter τ and of the Chern number −C, the flat Kähler
structure we want to obtain is

ω =
√

det(g)dk1 ∧ dk2 = C
4π

dk1 ∧ dk2 = C
4π

1

τ̄ − τ
dz ∧ dz,

jτ = 1

Im(τ )

(−Re(τ ) −|τ |2
1 Re(τ )

)
, g = C

4π Im(τ )
|dz|2,

(12)

which is the Kähler structure that we want the map f to induce
on BZ2 (up to a constant scaling on ω and g). Hence, the
triple (ω, jτ , g) associated with a Kähler band is completely
determined by τ and −C, as claimed. We note the symplectic
form ω can be written in terms of a positive function h∗ as
ω = −(i/2)∂∂̄ ln h∗, where

h∗ = exp

( C
4π

i

τ − τ
(z − z)2

)
= exp

(
− C

2π
Im(τ )k2

2

)
,

(13)

and ∂ = dz ∂
∂z ∧ ·, ∂ = dz ∂

∂z ∧ · are the Dolbeault operators.
With this function h∗, the Kähler potential K , satisfying ω =
i∂∂̄K , can be written as

K = −1

2
ln h∗ = C

4π
Im(τ )k2

2 or h∗ = e−2K . (14)

In order to build the map f , we are inspired by the idea of
the Kähler quantization. The theory of geometric quantization
[33,34] gives us a prescription to quantize a Kähler mani-
fold (BZ2, ω, J, g) provided the symplectic form ω satisfies

the quantization condition, namely that ω/2π represents an
integer cohomology class – [ω/2π ] ∈ H2(BZ2;Z) or, equiv-
alently, that

∫
BZ2 ω is 2π times an integer. If this is the

case, then −iω represents the 1st Chern class of a Hermi-
tian holomorphic line bundle L → BZ2 equipped with the
Chern connection [i.e., the unique connection whose (0,1)
part coincides with the Cauchy-Riemann operator of L]. Once
we are given the data L → BZ2, known as the pre-quantum
line bundle, then, the Kähler quantization of BZ2 is de-
fined as the space H0(BZ2, L) ⊂ �(BZ2, L) (equipped with
the L2-norm and completed with respect to it) consisting of
(square-integrable) global holomorphic sections of L. From
the physics point of view, this prescription appears natu-
rally in the physics of fermions, in two spatial dimensions,
in the presence of an external uniform magnetic field, i.e.,
in the quantum Hall effect, where the lowest Landau level
is precisely described by H0(M, L) where M is the surface
corresponding to the physical sample [35]. For example, if
M = R2, and L = R2 × C with magnetic field represented by
the Faraday 2-form F = −idx ∧ dy we recover the space of
(square-integrable) holomorphic functions on the plane with
measure e−|z|2/4d2x. The difference here, is that M is not the
real space physical sample, but rather the quasi-momentum
space. This geometric quantization procedure appears also
naturally in the discussion of Sec. III, where the confining
potential V (k) isolates H0(BZ2, L), where L → BZ2 is the
line bundle associated to the Chern band. There, the complex
structure over BZ2 was singled out by the variational flat
metric η, much like here we will fix it a priori below. Finally,
for the construction below, it will be convenient and, in fact,
crucial to take not H0(BZ2, L) but rather H0(BZ2, L⊗p), for
some integer p > 0, which, as we will soon see, determines
the total number of bands in the system.

We are now in condition to build the map f : BZ2 →
CPn−1. For that, let us consider an auxiliary Hermitian
holomorphic line bundle L → BZ2, which, at this point, is ar-
bitrary besides having nontrivial Chern number C > 0, which
is also known as the degree of L (note that this auxiliary holo-
morphic line bundle L will have positive Chern number C > 0,
unlike the resulting Kähler band which will have negative
Chern number −pC). Note that the fact that L is a holomorphic
line bundle means that its transition functions are holomorphic
with respect to the complex structure specified by τ in the
Brillouin zone. More specifically, they will depend holomor-
phically on the complex variable z = k1 + τk2. The fact that
L is Hermitian means that it comes equipped with a Hermitian
metric on the fibers, which on a given (holomorphic) gauge is
represented by positive function h > 0. The Chern connection
on L has the property that, in the local holomorphic gauges,
the local gauge field and the associated curvature are given by,
respectively,

A = ∂ ln h and F = −∂∂ ln h, (15)

where h is the representative of the Hermitian metric in this
gauge. Observe how the (0,1) part of A vanishes, and hence
a local holomorphic gauge is holomorphic with respect to
the connection ∇, i.e., it is annhihilated by the covariant
derivative ∇ ∂

∂ z̄
. This is the local form of the defining prop-

erty of the Chern connection, namely, that it is the unique
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connection whose (0,1) part coincides with the Cauchy-
Riemann operator of L (see Sec. 6 of Ref. [36] and Sec. 4
of Ref. [37], in particular, Proposition (4.9)).

Borrowing the ideas from the Kähler quantization, we
choose the line bundle L so that the Hermitian metric h
coincides with the positive function h∗ defined in Eq. (13),
which is related to the Kähler potential of the flat Kähler band
we want to achieve. Taking h = h∗, the curvature of the line
bundle is

F = −∂∂̄ ln h = −2iω = −i
C

2π
dk1 ∧ dk2. (16)

A line bundle L with such curvature F will have first Chern
number

∫
BZ2

iF

2π
= C. (17)

Now suppose for a moment that such Hermitian holomor-
phic L exists and we have built it. An explicit construction,
where, without loss of generality, C = 1, will be given be-
low in Sec. VI. We now take p copies of the line bundle
L, where the number n in CPn−1 is related to the Chern
number through n = pC. The fact that dim H0(BZ2, L⊗p) =
deg(L⊗p) = pC = n follows from the celebrated Riemann-
Roch theorem [31,38]. We collect a basis of H0(BZ2, L⊗p),
and call them {s j}pC

j=1. We take the map f : BZ2 → CPn−1

given by

f : BZ2 → Cn−1; z �→ [a1(z) : · · · : apC (z)],

with a j (z) being the holomorphic components of s j , j =
1, . . . , pC, in a holomorphic gauge s [in which gauge the (0,1)
part of the holomorphic gauge field representing the Chern
connection, which is compatible with the Hermitian metric
defined by the pth power of h, hp, vanishes]. Note that the a j’s
will satisfy appropriate boundary conditions so as to define
sections of L⊗p, more precisely, the section s j as determined
by s j = sa j will be periodic, but s and a j will satisfy

s(k + G) = s(k)(eG(z))−1 and a j (z + G1 + τG2) = eG(z)a j (z), for all j = 1, . . . , pC, (18)

for a given system of holomorphic multipliers {eG(z)}, where G = (G1, G2) is an arbitrary element of the reciprocal lattice; i.e.,
a collection of functions {eG(z)}, labeled by the reciprocal lattice, depending holomorphically in z and that satisfy

eG+G′ (z) = eG′ (z + G1 + τG2)eG(z), (19)

where G = (G1, G2) and G′ = (G′
1, G′

2) are arbitrary reciprocal lattice vectors written in the (k1, k2) coordinates. The holomor-
phic multipliers are enough to reconstruct L⊗p completely [39]. The transformation rules of Eq. (18) ensure that the map to the
projective space is well-defined (provided s1, . . . , spC do not vanish simultaneously) because, for all z,

[a1(z + G1 + τG2) : · · · : apC (z + G1 + τG2)] = [eG(z)a1(z) : · · · : eG(z)apC (z)] = [a1(z) : · · · : apC (z)], (20)

since the equivalence class does not care about an overall
scale. Furthermore the map f is holomorphic in z, by con-
struction. The pullback of the Fubini-Study symplectic form
under f is

f ∗ωFS = i

2
∂∂ ln

(∑
j

|a j (z)|2
)

.

Furthermore

pω − f ∗ωFS = − i

2
∂∂ ln hp − i

2
∂∂ ln

(∑
j

|a j |2
)

= − i

2
∂∂ ln B,

with B being the (diagonal) of the so-called Bergman
kernel [16]:

B =
∑

j

hp|a j |2 =
∑

j

hp(s j, s j ), (21)

provided {s j}pC
j=1 form an orthonormal basis with respect to the

L2-inner product induced by h and ω on �(BZ2, L⊗p), i.e.,

〈si, s j〉L2 =
∫

BZ2
hp(si, s j ) ω

= C
4π

∫
d2k e− pCτ2

2π
k2

2 ai(z)a j (z) = δi j . (22)

In Eqs. (21) and (22), hp(si, s j ) = hpaia j denotes the eval-
uation of the Hermitian metric hp on the sections si and s j

determined by the functions ai and a j – it is, therefore, a
periodic function. For large p, it is known that there is an
asymptotic expansion assuming the form [16]

B = p + A1 p0 + A2 p−1 + · · · + Ak p1−k + . . . ,

where the Ai’s are smooth functions. In particular, as p be-
comes large, we see that f ∗ωFS goes to pω, meaning that the
symplectic structure, and consequently, by compatibility, the
Kähler structure, becomes flat.

From a general consideration, one can show that it is not
possible to construct a Kähler band which is geometrically
completely flat, that is, f ∗ωFS is a constant over the entire
Brillouin zone, with a model with a finite number of bands.
We prove this no-go theorem in Appendix C. Allowing an
infinite number of bands, it is possible to construct bands
which are geometrically completely flat; Landau levels are
such examples.

We note that the diagonal of the Bergman kernel also
appears, in real space rather than in momentum space, in the
context of the lowest Landau level over a Riemann surface
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as the particle density for the associated many-particle integer
Hall effect state [35] and it has been previously approached
through path integrals in Ref. [40].

VI. EXPLICIT CONSTRUCTION

We now provide an explicit construction of geometrically
nearly flat Kähler bands along the prescription described in
the previous section. For this purpose, we first need to specify
the auxiliary Hermitian holomorphic line bundle L → BZ2,
whose curvature satisfies Eq. (16). A line bundle over BZ2 is
uniquely characterized by specifying a system of holomorphic
multipliers, Eq. (18). We define the line bundle L to have the
holomorphic multipliers, denoted {eL

G(z)}, by

eL
G=(2πm,2πn)(z) = e−iπτn2−2π in( z

2π ),

where G is in the reciprocal lattice, so that m, n ∈ Z. Observe
that for a gauge field A to be consistent with the above system
of holomorphic multipliers and to define a connection on L, it
must satisfy

A(k + G) − A(k) = −(
eL

G

)−1
deL

G = −d ln eL
G, (23)

for all G in the reciprocal lattice, because the holomorphic
multipliers define the holomorphic transition functions of the
line bundle L. We note that the (1,0) form

A = 2π ik2dz = ∂ ln h = ∂ ln exp

(
1

4π

i

τ − τ
(z − z)2

)
(24)

does satisfy this property and is, indeed, a sensible gauge field
for the bundle L. It is also clear that the prescribed gauges
are holomorphic since A is a (1,0)-form. Furthermore, from
Eq. (24), we can read off a Hermitian metric [for which A
is representing the Chern connection] as described by the

positive function h = e
1

4π
i

τ−τ
(z−z)2 = e− Im(τ )k2

2
2π . The associated

curvature is

F = −∂∂ ln h = 2π idk2 ∧ dz = −2π idk1 ∧ dk2, (25)

thus, Eq. (16), with deg(L) = C = ∫
BZ2 idA/2π = 1, is satis-

fied by L equipped with this connection.
The holomorphic multipliers for L⊗p are simply the pth

power of those of L, namely,

eL⊗p

2π (m,n)(z)

= (
eL

2π (m,n)(z)
)p = e−π iτ pn2−inpz, for m, n ∈ Z. (26)

The holomorphic sections of such line bundle L⊗p can be
explicitly given by theta functions as we proceed to describe
below.

For τ ∈ H, we define the theta function with characteristics
a and b by

ϑ

[
a
b

]
(z, τ ) =

∑
n∈Z

eiτπ (n+a)2+2π i(n+a)(z+b), for a, b ∈ R.

This function satisfies

ϑ

[
a
b

]
(z+m+ni, τ )=e−iπτn2−2π inz+2π i(am−bn)ϑ

[
a
b

]
(z, τ ),

for m, n ∈ Z. The relation to the standard theta function

θ (z, τ ) =
∑
n∈Z

eπ in2τ+2π inz

is

ϑ

[
a
b

]
(z, τ ) = eπ ia2τ+2π ia(z+b)θ (z + aτ + b, τ ).

The functions

a j (z) = ϑ

[ j
p
0

](
p

z

2π
, pτ

)
(27)

= eπ iτ j2

p +i jz
θ
(

p
z

2π
+ jτ, pτ

)
, j = 0, . . . , p − 1, (28)

define a basis of holomorphic sections {s j}p−1
j=0 of a line bundle

L⊗p → BZ2. The proof that these functions do satisfy the
periodicity required by the holomorphic multipliers is given
in Appendix A. We note that, in real space, the same theta
functions with characteristics arise when looking at the lowest
Landau level over the torus, see Refs. [35,41].

A natural gauge field consistent with this system of mul-
tipliers of L⊗p is simply pA, with A as in Eq. (24). It
immediately follows that the associated curvature is pF =
−ip(dk1 ∧ dk2)/(2π ) and that the first Chern number of L⊗p

is p.
Furthermore, we can show that (see Ref. [35] for an analo-

gous formula)

〈si, s j〉L2 = 1

(2π )2

∫
BZ2

e−p
k2
2

2π aia jdk1 ∧ dk2

=
√

i

p(τ − τ )
δi j,

hence, the map we want is induced by the vector

z �→ (a0(z), . . . , ap−1(z)),

for large p, namely,

fp : BZ2 → CPp−1; z �→ [a0(z) : · · · : ap−1(z)],

or, in terms of orthogonal rank 1 projectors, a smooth map
z �→ Pp(z) with

〈i|Pp(z)| j〉 = ai(z)a j (z)∑
k |ak (z)|2 ,

with |i〉, i = 0, . . . , p − 1, the canonical basis of Cp. Observe
that, since θ (z, τ ) has zeros in 1

2 (1 + τ ) + Z + τZ, it follows
that aj , or equivalently, s j has zeros at positions

2π

p

(
1

2
+ r

)
+ 2π

(
1

2
− j

p

)
τ + 2πZ + 2πτZ, r = 0, . . . , p − 1, (29)
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for j = 0, . . . , p − 1. Thus the sections do not vanish simul-
taneously and the map fp is well-defined. For large enough
p (actually for p > 2), the band is Kähler. In the large p
limit the band is Kähler and actually the Kähler structure is
asymptotically flat ( f ∗

p ωFS, jτ , f ∗
p gFS) ∼ (pω, jτ , p g). Hav-

ing built an approximately flat Kähler band (for finite p) one
can always build a tight-binding model with a flat dispersion
by declaring the momentum-space Hamiltonian to be H (k) =
Ip − 2Pp(k), k ∈ BZ2 and then inverse Fourier transforming
it to obtain the model in the lattice, namely, H (ri, r j ) =∫

BZ2
d2k

(2π )2 eik·(ri−r j )H (k) with p orbitals/internal degrees of
freedom per site. We can always build a tight-binding model
with a flat dispersion with this prescription, but it will always
have long-range hoppings provided its Chern number is non-
trivial [42]. We can make the tight-binding model strictly local
by truncating the hoppings. This truncation procedure will,
however, always violate (even if weakly) the flat structures. In
particular, we will see that the resulting Chern bands will not,
in general, be Kähler bands.

A. Numerical results

We now perform numerical simulation of the constructed
model. We consider the isotropic case τ = i, and also
anisotropic cases τ = eiπ/3 and τ = 2eiπ/7, and show how
the Berry curvature and the quantum volume form flat-
ten for large p. By construction, our model is Kähler and
thus

√
det(g(k)) = |F12(k)|/2 = ω12(k) always holds, where

ω12dk1 ∧ dk2 = (−i/2)F12dk1 ∧ dk2 is the pullback of the
Fubini-Study symplectic form, and we have also numerically
confirmed this equality. In Figs. 1(a), 1(b), and 1(c), we plot
4πωxy(k), for p = 2, 4, 6, and for τ = i, eiπ/3, and 2eiπ/7,
respectively. We see that already for p = 6, 4πωxy(k) reaches
the flat value of 4πω = 4π

√
det(g)dk1 ∧ dk2 = p dk1 ∧ dk2

very well.
Our model of the Kähler band is constructed in momen-

tum space. When interpreted as a real-space lattice model, it
contains long-range hoppings at any length. We now consider
the effect of truncating the hopping to obtain short-range
models. We consider how our momentum space model can be
translated into a square lattice model in real space, and analyze
the consequence of truncation of hopping on the geometrical
structure in momentum space.

The real-space tight-binding model associated to H (k) =
Ip − 2Pp(k) is

H (ri, r j ) =
∫

BZ2

d2k

(2π )2
H (k)eik·(ri−r j ), (30)

where ri, r j ∈ Z2 label the positions on the lattice. The trun-
cation of the hoppings can be done by taking the function
fR(r) = fR(x1, x2) defined by

fR(x1, x2) =
{

1, if − �R� � xi � �R�, i = 1, 2,

0, otherwise. , (31)

for some R and considering the truncated real space Hamil-
tonian HR(ri, r j ) = H (ri, r j ) f (ri − r j ). It is convenient, to
simplify notation, to write BR for the set of translations of the
lattice r with fR(r) = 1. Note that fR(r) is just the indicator
function of the set BR. Since under Fourier transformation the

FIG. 1. Plot of 4πω12, where ω12 the only independent compo-
nent of the pullback f ∗

p ωFS, as a function of the quasimomentum
k ∈ BZ2, for p = 2 (orange), p = 4 (blue), p = 6 (green), for various
anisotropies τ . We have numerically confirmed that 4π

√
det(g), rep-

resenting the quantum volume form, takes the same value as 4πω12

for all the cases shown here.

product becomes a convolution and the Fourier coefficients of
fR(r) are, evidently,

f̃R(k) =
∑
r∈BR

e−ik·r, (32)

we finally arrive at the truncated Hamiltonian

HR(k) =
∫

BZ2

dk′

(2π )2
H (k − k′) f̃R(k′)

=
∫

BZ2

dk′

(2π )2

∑
r∈BR

H (k − k′)e−ik′ ·r. (33)
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FIG. 2. The geometrical structure, 4π
√

det(g) and 4πω12, of truncated models as a function of k ∈ BZ2, for p = 6. In the top panel, R = 1
is compared to the long-range case R = ∞; in the middle panel, R = 2 is compared to the R = ∞ case, and in the bottom panel R = 3 is
compared to R = ∞. On the left column we present the variation of the geometric quantities along the whole of BZ2 and on the right column,
for clarity, we present the variation along the cut at k2 = 0. On the right column, the markers represent the data points and the lines are there
for a clear visualization of the data.

Note that, as R → ∞, we approach the original Hamiltonian
we started with, because f̃R(k) approaches the Dirac delta
distribution on the Brillouin zone (2π )2δ2(k). Now observe
that a Riemann sum for the above expression is provided by

1

N1N2

∑
n∈ZN1 ×ZN2

∑
r∈BR

H (k − k′
n)e−ik′

n·r, (34)

with k′
n = (2πn1/N1, 2πn2/N2) with n = (n1, n2) ∈ ZN1 ×

ZN2 , where ZN denote the integers modulo N . Provided R <

min(N1, N2), the above expression corresponds to the tight-
binding model one would get by truncating the one in the
finite system with N1 and N2 sites in the x1 and x2 directions,
respectively, with periodic boundary conditions. In the limit
when N1, N2 are large, the above expression is a good approx-
imation for the Bloch Hamiltonian obtained by truncating the
tight-binding model in Z2.

In our simulation, we take a square lattice with N1 = N2 =
50 sites and periodic boundary conditions on the x1 and x2

directions, we fix τ = i and we take p = 6, and consider how
the quantum geometry of the lowest energy band of the Hamil-
tonian is affected as we truncate the allowed hoppings by
shrinking R. In Fig. 2, we present the numerically calculated√

det(g) and ω12 for R = 1, R = 2, and R = 3, corresponding
to allowing up to first, second, and third nearest neighbor
hoppings, respectively, and compared them to the R = ∞
long-range case, where there is no truncation. Additionally, in
Fig. 3, we present the relative fluctuations of

√
det(g) and ω12

with respect to the flat value p/4π (with p = 6), for R = 1, 2,
3, and R = ∞, along the submanifold defined by k2 = 0. We
can see that when truncating the hopping at R = 3, namely,
including up to third-nearest-neighbor hoppings, the geomet-
rical structure is already almost identical to the long-range
case of R = ∞. When R = 1 and 2, we can see the effect of
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FIG. 3. The relative fluctuations, for p = 6, of ω12 and
√

det(g)
as measured from the flat value p/4π , as a function of k1 along the
cut k2 = 0. The markers represent the data points and the lines are
there for a clear visualization of the data.

truncation more clearly. The effect of truncation is twofold.
The first effect is that

√
det(g) and ω12 are no longer equal,

implying the breaking of holomorphicity of the Chern bands.
However, the difference between

√
det(g) and ω12 is not so

large even for the case of nearest-neighbor model of R = 1;
in our simulation the difference is around one percent as one
can read off from Fig. 2. The second effect is that the flatness
of the geometrical quantities,

√
det(g) and ω12, will change.

What we have numerically observed is that the geometrical
quantities will not become more dispersive, and sometimes
they can become even flatter when truncating the hopping.
We note that, even when R = 1 and 2, the Chern number,
− ∫

BZ2 ω/π = −6, is the same as R = ∞, and thus the bands
are adiabatically connected to the ideal Kähler band. We have
also numerically checked the cases with smaller p, such as
p = 3 or 4, and the overall behavior remains the same. We
note that p = 2 is special; the band cannot be Kähler because
of the constraints that det(g(k)) = 0 should hold somewhere
in the Brillouin zone, and thus bands cannot be made geomet-
rically flat.

VII. CONCLUSIONS

In this manuscript, we described a systematic method to
obtain Kähler bands, whose metric and curvature satisfies the
equality

√
det(g(k)) = |F12(k)|/2, become flat in momentum

space as the total number of bands is increased. We also
showed that it is not possible to obtain a perfectly flat Kähler
band with a finite number of total bands. We provided an
explicit construction of our method using theta functions,
and we have numerically observed that we can achieve fairly

flat Kähler bands with a reasonably small number of total
bands. We have also shown that truncating the lattice model
to include only local hoppings will not affect the flatness of
the bands, but does make the band deviate from the perfect
Kähler bands, leading to

√
det(g(k)) � |F12(k)|/2.

The Bergman kernel prescription can be applied to the
more general case in which one replaces the flat Kähler
structure (ω, g, jτ ) in Eq. (12) by some arbitrary Kähler
structure (ω′, g′, j′). In that case, the resulting map fp, built
from an orthonormal basis of holomorphic sections of the
pth tensor power of an auxiliary Hermitian holomorphic
(with respect to the new complex structure j′) line bundle
L′ satisfying the quantization condition −∂∂ ln h′ = −2iω′,
will also yield, asymptotically in p, the compatible triple
( f ∗

p ωFS, j′, f ∗
p gFS) ∼ (pω′, j′, pg′). This prescription would

then allow us to engineer Kähler bands with a prescribed
profile of Berry curvature and quantum metric which may be
potentially interesting for engineering of Chern bands with
desired properties. Such generalizations of our method will
be discussed in more detail in future works.

Upon submission of this work, we became aware of a
related no-go theorem which was very recently presented in
Ref. [43]. They showed that it is impossible to have a flat
Kähler band coming from a lattice system with a finite number
of lattice sites per unit cell (hence with a finite total number
of bands), which agrees with our no-go theorem.
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APPENDIX A: ADDITIONAL PROPERTIES
OF THETA FUNCTIONS

We had

a j (z) = ϑ

[ j
p

0

](
p

z

2π
, pτ

)
= eπ iτ j2

p +i jz
θ

(
p

z

2π
+ jτ, pτ

)
, j = 0, . . . , p − 1,

We can then write

a j (z) = eπ iτ j2

p +i jz
∑
n∈Z

eπ iτ pn2+2π in( pz
2π

+ jτ )

We have, for m, n ∈ Z,

aj (z + 2πm + 2πnτ )

= eπ iτ j2

p +i j(z+2πm+2πnτ )
θ

(
p

z

2π
+ pm + τ pn + jτ, pτ

)
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= eπ iτ j2

p +i j(z+2πm+2πnτ )−π iτ pn2−2π in
(

p z
2π

+ jτ
)
θ

(
p

z

2π
+ jτ, pi

)
= e−π iτ pn2−inpz−2π in jτ+2π i jnτ+2π i jma j (z)

= e−π iτ pn2−inpza j (z),

which agrees with the system of holomorphic multipliers,
{eG(z)}, for the holomorphic line bundle L⊗p,

e2π (m,n)(z) = e−π iτ pn2−inpz, for m, n ∈ Z. (A1)

The associated gauge field is given by

Ap = pA = ipk2
dz

2π
= ∂ ln exp

(
−p

τ2k2
2

2π

)
= −i

2

∂

∂k2

[
ln exp

(
−p

τ2k2
2

2π

)]
dz,

where p = deg(L⊗p) is the first Chern number of L⊗p.

APPENDIX B: FORMULAE FOR PERFORMING
NUMERICS

Let |
(k)〉 be the unit vector in Cp defined by

|
(k)〉 = (a0(z), . . . , ap−1(z))√∑
j |a j (z)|2

, (B1)

with the a j’s defined by Eq. (28), z = k1 + τk2, and k ∈ BZ2.
The discussion below allows us to numerically evaluate the
quantum metric and the Berry curvature in terms of |
(k)〉.
Additionally, we will also use the formulas below to com-
pute the quantum metric and the Berry curvature for the case
when |
(k)〉 is not defined by the above formula but rather
defined as the lowest energy eigenstate of the short-range
tight-binding model specified by the truncation of the Bloch
Hamiltonian H (k) = Ip − 2Pp(k), denoted HR(k) and defined
in Eq. (33).

To compute the quantum metric, we used the fidelity be-
tween neighboring states

|〈
(k)|
(k + εv)〉| = 1 − 1
2 g(v, v)ε2 + · · · ,

where v = (v1, v2) defines a tangent vector
∑

i vi
∂

∂ki
∈ TkBZ2

and ε is a small number.
To compute the Berry curvature, we used the fact that for

a given path k(t ), (0 � t � 1), we have, for large N ,

N−1∏
i=0

〈



(
k
(

i + 1

N

))∣∣∣
(
k
( i

N

))〉
≈exp

(
−

∫ 1

0
A

(
dk
dt

)
dt

)
,

In particular, if we take a loop that is a boundary of a surface
� ⊂ BZ2, we have

N−1∏
i=0

〈



(
k
(

i + 1

N

))∣∣∣∣
(
k
(

i

N

))〉
≈ exp

(
−

∫
�

F

)
.

We can take � to be an infinitesimal rectangle with vertices
k1 ≡ k5 = k, k2 = k + ε1x̂1, k3 = k + ε1x̂1 + ε2x̂2 and k4 =
k + ε2x̂2 in an orientation consistent with that of the standard
one in BZ2, for small ε1 and ε2. Here x̂1 = (1, 0) and x̂2 =

(0, 1). This then gives

−iIm ln

[
4∏

i=1

〈
(ki+1)|
(ki )〉
]

≈ F12(k)ε1ε2.

Using this notation, we also see that

− ln[|〈
(k2)|
(k1)〉|2] ≈ g11(k)ε2
1,

− ln[|〈
(k4)|
(k1)〉|2] ≈ g22(k)ε2
2,

− ln[|〈
(k3)|
(k1)〉|2] ≈ g11(k)ε2
1 + 2g12(k)ε1ε2

+ g22(k)ε2
2 .

This justifies why we have to take the imaginary part in the
previous equation:

− Re ln

[
4∏

i=1

〈
(ki+1)|
(ki )〉
]

≈ 1

2
g11(k)ε2

1 + 1

2
g22(k + ε1x̂1)ε2

2 + 1

2
g11(k + ε2x̂2)ε2

1

+ 1

2
g22(k)ε2

2

≈ g11(k)ε2
1 + g22(k)ε2

2 .

Hence
4∏

i=1

〈
(ki+1)|
(ki)〉

≈ exp
[ − (

g11(k)ε2
1 + g22(k)ε2

2

) − F12(k)ε1ε2
]
.

APPENDIX C: NO-GO THEOREM: IMPOSSIBILITY
OF HAVING NONTRIVIAL FLAT KäHLER BANDS

FOR FINITE TOTAL NUMBER OF BANDS

Suppose we are given a Kähler band described by a holo-
morphic map f : BZ2 → CPn−1; z �→ [Z1(z) : · · · : Zn(z)],
with n the number of bands, where the map is holomorphic
with respect to a flat complex structure determined by τ =
τ1 + iτ2 ∈ H and complex coordinate z = k1 + τk2. Note that
the orthogonal projector P(k) describing the band associated
to f is simply

P(k) =
n∑

i, j=1

Zi(z)Zj (z)∑n
k=1 |Zk (z)|2 |i〉〈 j|,

where |i〉, i = 1, . . . , n, is the canonical basis of Cn describing
the internal degrees of freedom.

We want to show that f ∗ωFS cannot be uniform in the
Brillouin zone. We want to compare the compatible tripe
( f ∗ωFS, jτ , f ∗gFS) and the flat anisotropic one given by

ω =
√

det(g)dk1 ∧ dk2 = C
4π

dk1 ∧ dk2 = C
4π

1

τ̄ − τ
dz ∧ dz,

J =
[
− τ1

τ2
−|τ |2

τ2

1
τ2

τ1
τ2

]
,

g = C
4π

( −2i

τ − τ

)
|dz|2,
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where

C =
∫

BZ2

f ∗ωFS

π
> 0.

We have C > 0 because the map f is Kähler by assumption.
Observe that ω = (−i/2)∂∂ ln h, for h = e− C

2π
τ2k2

2 . For the
comparison we take the difference,

ω − f ∗ωFS = − i

2
∂∂ ln F, (C1)

where

F = |C(z)|2
n∑

j=1

e− C
2π

τ2k2
2 |Zj (z)|2, (C2)

for some C(z) holomorphic (not periodic function), defines
a smooth function on BZ2. From the point of view of the
formula of Eq. (C1), the C(z) may seem arbitrary, however, by
the ∂∂ lemma (Corollary 3.2.10 of Ref. [38]), it can be chosen
so that F is indeed a globally defined smooth function, be-
cause ω and f ∗ωFS lie in the same de Rham cohomology class
(because they integrate to the same value πC). As pointed
out in Ref. [11], the uniformity of Berry curvature amounts
to finding a map such that the Kähler potential for f ∗ωFS

is Laplacian free. They also point out in the Appendix that,
in their prescription, they would need an infinite number of
parameters. Here we will go a bit further, and show that for
finite total number of bands n it is impossible to have a flat
Kähler band. Since if the symplectic form is flat so will be
the quantum metric by compatibility, it is enough to consider
the flatness of the former. Note that the functions bj (z) =
|C(z)|2|Zj (z)|2, j = 1, . . . , n, must transform, under lattice
translations, in a complementary way to e− C

2π
τ2k2

2 . They must
also transform in a way which is independent of j, because
for the map f to be well defined, Zj (z + 2πm + 2πnτ )/Zj (z)
must be independent of j, for all m, n ∈ Z. Put differently, the
quantities C(z)Zj (z), j = 1, . . . , n, must transform as holo-
morphic sections of L⊗C , where L is the basic line bundle
as defined in Sec. VI. In particular, it means that C(z)Zj (z),
j = 1, . . . , n, can be written as linear combinations of a ba-
sis of H0(BZ2, L⊗C ) whose dimension is, by Riemann-Roch,
dim H0(BZ2, L⊗C ) = C. Making the replacements p ↔ C in
the formulas of Sec. VI, we can then write, using the basis of
theta functions,

C(z)Zj (z) =
C−1∑
l=0

Al
jϑ

[ l
C
0

](
C z

2π
, Cτ

)
=

C−1∑
l=0

Al
jal (z),

where Al
j are complex numbers. Thus,

F =
n∑

j=1

C−1∑
l,l ′=0

e− C
2π

τ2k2
2 Al

jA
l ′
j al (z)al ′ (z). (C3)

We remark that the fact that there are C independent holomor-
phic sections (dim H0(BZ2, L⊗C ) = C) shows that for n > C
the matrix A = [Al

j]1� j�n,0�l�C is singular. This means that, at
most, there are only C × C linearly independent coefficients.
Thus, without loss of generality, we may assume that the sum
on j goes only up until C. The requirement for uniformity of
f ∗ωFS is now seen to be equivalent to F being a constant. We

can even determine what that constant must be, because

1

(2π )2

∫
BZ2

F (z)dk1 ∧ dk2 =
n∑

j=1

C−1∑
l,l ′=0

Al
jA

l ′
j 〈sl , sl ′ 〉L2

=
n∑

j=1

C−1∑
l,l ′=0

Al
jA

l ′
j δll ′

√
i

C(τ − τ̄ )

=
n∑

j=1

C−1∑
l=0

∣∣Al
j

∣∣2

√
i

C(τ − τ̄ )
.

The quantity al (z)al ′ (z) can be written as

al (z)al ′ (z)

=
( ∑

m,n∈Z
ei πτ

C (l+mC)2− iπτ
C (l ′+nC)2+izm−iz̄n)C

)
eizl−izl ′ .

The dependence eizl−izl ′ , which gives a factor eik1(l−l ′ ), is the
only k1 dependence on the whole of e− C

2π
τ2k2

2 al (z)al ′ (z) and,
together with the fact that al is C-periodic, i.e., al = al+C ,
and

∫
eik1(l−l ′ )dk2 = 2πδll ′ , justifies why 〈sl , sl ′ 〉L2 ∝ δll ′ . Fur-

thermore, this same dependence implies that if F were to be
constant, the sum over 0 � l, l ′ � C − 1 must be restricted
to the diagonal l = l ′, otherwise there will be independent
oscillatory terms in k1 which will not allow for a constant F .
Hence, we have reduced F to be of the form

F =
n∑

j=1

C−1∑
l=0

e− C
2π

τ2k2
2
∣∣Al

j

∣∣2∣∣al (z)
∣∣2

=
C−1∑
l=0

e− C
2π

τ2k2
2 |Al |2|al (z)|2, (C4)

where we defined |Al |2 = ∑n
j=1 |Al

j |2 for the sake of simplic-
ity. We will now show that F cannot be constant, by showing
that the integral over k1 defines a nonconstant function. Note∫ 2π

0

dk1

2π
F (k1, k2) =

C−1∑
l=0

|Al |2
∫ 2π

0

dk1

2π
e− C

2π
τ2k2

2 |al (z)|2.

We then first compute∫ 2π

0

dk1

2π
e− C

2π
τ2k2

2 |al (z)|2

=
∫ 2π

0

dk1

2π
e− C

2π
τ2k2

2

×
∑

m,n∈Z
ei πτ

C (l+mC)2− iπτ
C (l+nC)2+iz(l+mC)−iz̄(l+nC)

= e− C
2π

τ2k2
2

∑
m∈Z

ei πτ
C (l+mC)2− iπτ

C (l+mC)2+i(z−z̄)(l+mC)

= e− C
2π

τ2k2
2

∑
m∈Z

e− 2πτ2
C (l+mC)2−2τ2k2(l+mC)

=
∑
m∈Z

e− Cτ2
2π

(k2+ 2π
C (l+mC))2

.
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Thus we conclude that∫ 2π

0

dk1

2π
F (k1, k2) =

C−1∑
l=0

|Al |2
∑
m∈Z

e− Cτ2
2π

(k2+ 2π
C (l+mC))2

, (C5)

which is a sum of Gaussians centered at the points 2π
C l +

2πm, with l = 0, . . . , C − 1 and m ∈ Z (ensuring periodicity

in k2). Provided the Al ’s are nontrivial, which needs to happen
for the map f to be well-defined (there are further constraints
on the Al ’s as for the map to be well-defined the Zj’s cannot
vanish or have poles simultaneously, but this is not relevant
for the proof), this sum cannot be made constant in the case C
is finite and the result is, thus, proved: there are no flat Kähler
bands for finite total number of bands.
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