
PHYSICAL REVIEW B 104, 115157 (2021)

Frequency dependence in GW made simple using a multipole approximation
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In the GW approximation, the screened interaction W is a nonlocal and dynamical potential that usually has
a complex frequency dependence. A full description of such a dependence is possible but often computationally
demanding. For this reason, it is still common practice to approximate W (ω) using a plasmon pole (PP) model.
Such an approach, however, may deliver an accuracy limited by its simplistic description of the frequency
dependence of the polarizability, i.e., of W . In this work, we explore a multipole approach (MPA) and develop
an effective representation of the frequency dependence of W . We show that an appropriate sampling of the
polarizability in the frequency complex plane and a multipole interpolation can lead to a level of accuracy
comparable with full-frequency methods at a much lower computational cost. Moreover, both accuracy and cost
are controllable by the number of poles used in MPA. Eventually, we validate the MPA approach in selected
prototype systems, showing that full-frequency quality results can be obtained with a limited number of poles.
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I. INTRODUCTION

In the context of condensed matter physics or quantum
chemistry, many body perturbation theory (MBPT) provides
accurate methods to study spectroscopic properties of matter
from an ab initio perspective [1–3]. The calculations of-
ten adopt the so-called GW approximation [2,4–7] for the
evaluation of the self-energy. As summarized in Sec. II, com-
mon single-step G0W0 implementations typically make use of
one-particle energies and wavefunctions from previous DFT
calculations to build the noninteracting one-particle Green’s
function G(ω) and the dynamical screened interaction poten-
tial W (ω). Next, the self-energy is evaluated via a frequency
convolution of these two quantities that give the name to
the approximation. More advanced approaches include, e.g.,
GW self-consistency treated at different levels [8–13], or
the adoption of vertex corrections [10,14–16] and cumulant
expansions [17]. A more comprehensive discussion of these
aspects can be found, e.g., in Refs. [6,7].

Since its first implementations, the GW approach has been
successfully applied to a wide range of systems [6,7] for
the description of quasiparticle (QP) energies and bands as
measured by ARPES experiments [18–22], including spectral
functions [22,23], electronic satellites [17,24,25], and QP life-
times [26,27]. Importantly, GW quasiparticle energies are also
routinely used as input for absorption spectroscopy calcula-
tions within the Bethe-Salpeter approach [1,28]. Reflecting its
wide adoption, the GW method has been implemented within
multiple numerical schemes [29], ranging from localized ba-
sis sets [15,30–32], to plane waves and pseudopotentials
or PAW [33–37], to all-electron approaches using LAPW
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[8,9,38,39], also allowing for cross validation and verification
[37,40].

Crucial to the deployment of the method, the frequency
integration in the evaluation of the GW self-energy has also
been addressed in different ways. Common implementations
of the GW method make use of the so-called plasmon-pole
approximation (PPA) [41–45] where, besides the different
technicalities, the frequency-dependency of the polarizability
is simplified through an analytical model with a single pole
(for positive frequencies, plus its anti-resonant match). The
PPA method has the computational advantage of greatly sim-
plifying the self-energy evaluation, but on the other hand its
accuracy may be compromised especially for systems display-
ing a complex frequency structure in the screened potential.
A number of alternative methods targeting a more accurate
and possibly full frequency description of the self-energy exist
[7], including: numerical evaluation of the GW frequency
integrals [33,46–49]; full frequency contour-deformation
(FF-CD) methods [9,50,51], taking advantage of the analytic
properties of G and W ; exact integration using the analytical
structure of W [31]. While these approaches are typically
accurate in terms of integration, they may turn out compu-
tationally demanding or somehow limited in accuracy by the
analytic continuation (AC) methods [7,40,52–55] required by
some of them.

In this work, we further explore the analytic properties
of the response function by using a multipole model. The
results are then used to implement a new technique, referred
here as the multipole approximation (MPA), that allows one
to obtain a simplified yet accurate description of W on the
frequency real axis and evaluate the GW self-energy in an
efficient way. The MPA technique naturally bridges from the
PPA to a full-frequency treatment of the GW self-energy. This
new approach has been implemented numerically within the
YAMBO code [34,56] and tested in different materials.
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The work is organized as follows. In Sec. II, we first sum-
marize the basic equations of the GW method and present the
main ideas of the MPA method, in Sec. III, we describe an
optimal frequency sampling strategy to reach a good accuracy
with a reduced computational cost, and finally, in Sec. IV,
we show the performance of the proposed method for three
prototype bulk materials: silicon, hBN, and rutile TiO2. In
Appendix A, we present the mathematical details of the MPA
interpolation and in Appendix B, we discuss in detail different
plasmon-pole models and their connection.

II. THEORY: FORMULATION

A. Quasiparticle energies within GW

Following Hedin’s equations [1,4], the GW approximation
for the electron-electron self-energy � is obtained by ne-
glecting vertex contributions beyond the independent-particle
level (for both � and the irreducible polarizability X0). This
leads to an expression where �GW is given in terms of a
frequency convolution of the Green’s function G with the
screened Coulomb potential W ,

�GW (ω) = i

2π

∫ +∞

−∞
dω′e−iω′ηG(ω − ω′)W (ω′), (1)

which can be seen as the first order in a perturbation expansion
involving W instead of the bare interaction v. By expressing
the independent particle irreducible polarizability X0 as

X0(ω) = − i

2π

∫ +∞

−∞
dω′G(ω + ω′)G(ω′), (2)

the screened Coulomb interaction W and the dressed polariz-
ability X can be obtained from the following Dyson equation:

X (ω) = X0(ω) + X0(ω)vX (ω),

W (ω) = ε−1(ω)v = v + vX (ω)v. (3)

In the above expressions, v is the bare Coulomb potential and
ε is the dielectric function. Importantly, the frequency depen-
dence of W comes from its correlation term Wc = W − v =
vXv, in turn leading to the correlation part of the self-energy,
�c, according to Eq. (1).

Usually, a noninteracting Green’s function G0, typically
the Green’s function of the Kohn-Sham (KS) system, is taken
as initial guess and the GW self-energy is evaluated without
performing further self-consistent iterations (one-shot G0W0).
Treating the self-energy as a first order perturbation to the
KS problem, one can then compute the quasiparticle (QP)
energies, εQP

m , either by numerically solving the exact QP
equation,

εQP
m = εKS

m + 〈
ψKS

m

∣∣�(εQP
m

)− vKS
xc

∣∣ψKS
m

〉
, (4)

or its linearized form:

εQP
m ≈ εKS

m + Zm
〈
ψKS

∣∣�(εKS
m

)− vKS
xc

∣∣ψKS
m

〉
. (5)

In the latter expression, the renormalization factor Zm is com-
puted from the first term of the Taylor expansion of the
self-energy, �:

Zm =
[

1 − 〈
ψKS

m

∣∣∂�(ω)

∂ω

∣∣∣∣
ω=εKS

m

∣∣ψKS
m

〉]−1

. (6)

In practice, in order to build the self-energy and compute
quasiparticle corrections at the G0W0 level, as a first step one
needs to construct the polarizability X0 from the knowledge
of G0 according to Eq. (2). The former is then used for the
calculation of W .

The Lehmann representation for the bare Green’s function
G0, computed using the KS states is written in a compact form
as:

G0(ω) =
NB∑
m

Pm

[
fm

ω − Em − iη
+ (1 − fm)

ω − Em + iη

]
, (7)

where |ψm〉 and Em = εKS
m are KS eigenpairs, fm their

occupations, Pm = |ψm〉〈ψm| their projectors, and the sum-
over-states is usually truncated at a maximum number of
bands NB. Eventually, the limit η → 0+ is taken. By using G0

in Eq. (2), the irreducible polarizability can be expressed as

X0(ω) =
NT∑
n

2
KS
n RKS

n

ω2 − (

KS

n

)2 , (8)

where n runs over single particle transitions, possibly trun-
cated to NT according to the number of bands included in the
calculation. Note, however, that methods avoiding the explicit
sums over empty states have been developed and made avail-
able [57–59]. In Eq. (8), RKS

n are the transition amplitudes
computed from the Kohn-Sham states, while the poles 
KS

n
are defined as


KS
n = �εKS

n − iδ, (9)

where �εKS
n � 0 and δ → 0+ is a damping parameter that

ensures the time ordering, similarly to η in the case of G0.
Here, for the sake of simplicity, we have kept all spatial

degrees of freedom implicit and have not highlighted quantum
numbers such as k and q deriving from a possible translational
symmetry of the system. In this respect, and using a plane-
wave basis set of G vectors, X0(ω) and RKS

n in Eq. (8) would
depend on the extra indexes qGG′, while the index n labels
transitions between states k, i and k − q, j.

B. Frequency integration methods in GW

In principle, the screened interaction W (ω) needs to be
computed, as the solution of Eq. (3), for all the frequencies
needed to evaluate the GW self-energy according to Eq. (1).
Nevertheless, the frequency dependence of W may be quite
complex, making the evaluation of the correlation part of
the GW self-energy not straightforward and computationally
demanding.

Early approaches [41–45] adopted the so-called plasmon-
pole model, originally proposed with explicitly real poles
neglecting any spectral broadening. The simplification of the
structure of X , and also of W according to Eq. (3), that
the model provides is called the plasmon-pole approxima-
tion (PPA) [41,60]. The PPA has mainly two variants, one
proposed by Godby and Needs (GN) [43], and the other by
Hybertsen and Louie (HL) [41] (though more parametriza-
tions and refinements exist [42], for example, the von der
Linden-Horsch [44], or Engel-Farid [45] models). The ana-
lytic continuation of the polarizability X , within the PPA is
written, for each qGG′ (suppressed in the equation) matrix
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element, as

X PP(z) = 2
PPRPP

z2 − (
PP)2
, (10)

where 
PP is defined according to Re[
PP] > 0 and
Im[
PP] = 0−. For the sake of the present work, the two
approaches are summarized and compared in Appendix B.

In a full frequency real-axis (FF-RA) approach, the polar-
izability is evaluated considering a dense frequency grid on
the real axis and the integral for the self-energy evaluation
is then computed numerically [46,47,61]. Such an approach
requires the use of a finite damping that broadens the structure
of the polarizability [47], and a large number of frequency
sampling points is typically required to converge the integral.
Other numerical integration techniques for the evaluation of
the response function or the GW self-energy make use of
quadrature rules [48,51], spectral representations of the polar-
izability [33,49], or resort to Fourier transform to imaginary
time to perform frequency convolutions [11,32,52,55].

Other procedures make use of imaginary-path axis integral
methods in order to transform the integration on the real axis
in the self-energy into an integral over an imaginary axis
[9,50,51]. A similar approach resorts to a contour deformation
(CD) defined in the first and third quadrants of the complex
plane [62], in order to obtain a convenient frequency path that
avoids all the poles of W and encompasses only the poles
of G. The integration on the real axis is then replaced by
a sum of the residues of the poles in the contour plus an
integral on the imaginary axis. This integral can be addressed
either numerically [63,64] or with the help of multipole forms
[53,54] or Padé approximants [7,40]. Taking advantage of
the time-reversal symmetry of W , it is possible to reduce the
frequency range in which W is evaluated for the self-energy
integration, either on the real or the imaginary axis [9,50,51].

Other dedicated approaches are also available. A many-
pole model for the self-energy has been developed for
the calculation of inelastic losses in x-ray spectroscopy
[65,66]. Full-frequency GW has also been reformulated as
a frequency-independent eigenvalue problem [67]. Similarly,
a spectral representation of propagators in the form of a
generalized sum-over-poles combined with an algorithmic in-
version technique has been recently developed and applied
to the homogeneous electron gas [68]. The FF-CD has been
recently used jointly with analytic-continuation techniques in
an all electrons scheme that adopts a sampling along both, the
imaginary axis and parallel to the real axis [64].

C. The multipole scheme

In this work, we develop a multipole approach to represent
W and evaluate the GW self-energy. Our multipole scheme
is based on the Lehmann representation of X [2,69–71], in
which the polarizability is written as a sum of poles. It is
important to emphasize that, contrarily to standard PPA imple-
mentations, we consider complex poles and that the computed
poles do not correspond to single-particle transitions (poles of
X0), but are rather intended to represent plasmon excitations.
Each plasmonic pole describes the envelope of a set of transi-
tions, with a finite imaginary part corresponding to the width
of the excitation.

To represent and exploit the analytic properties of the
polarizability X , we define a complex frequency z ≡ ω + i,

and write X (z) as the sum of a finite (and small) number np

of poles:

X MP(z) =
np∑
n

2
nRn

z2 − 
2
n

. (11)

As for PPA, X MP, Rn,
n also depend on the spatial indexes
qGG′. Then, we determine the parameters 
n and Rn by
interpolating the polarizability X (z) computed numerically
on a number of frequencies that is twice the number of poles
(in order to match the unknowns). This leads to a nonlinear
system of 2np equations and variables:

np∑
n=1

2
nRn

z2
j − 
2

n

= X (z j ), j = 1, . . . , 2np. (12)

The expression in Eq. (11) is at the core of the MPA approach.
In fact, once the solution of the system is known, we obtain
an analytical representation of X (z) over the whole complex
plane, suitable to evaluate �GW . Indeed, by exploiting the
Lehmann representation of the Green’s function, Eq. (7),
and making use of Eq. (11) to evaluate Wc, it is possible to
compute the correlation part of the GW self-energy as

�c(ω) =
NB∑
m

np∑
n

PmvRn

[
fm

ω − Em + 
n − iη

+ (1 − fm)

ω − Em − 
n + iη

]
. (13)

This expression generalizes the PPA solution to the case
of a multipole expansion for X (z), and bridges to an exact
full-frequency approach when the number of poles in X is
increased to convergence.

Concerning the solution of the nonlinear system in
Eq. (12), several approaches are possible. While the system
can be solved analytically for a small number of poles, in gen-
eral the exact solution can be accessed numerically either by
mapping the nonlinear problem into an equivalent system that
is linear with respect to the parameters Rn and 
n, or through
the Padé/Thiele procedure [72–74]. A detailed description
of our implementations of these approaches can be found in
Appendix A.

For the one pole case, the analytical solution of the inter-
polation with 2 complex frequencies is easily obtained:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

2 = X (z1)z2

1 − X (z2)z2
2

X (z1) − X (z2)

2
R = −(z2
1 − z2

2

) X (z1)X (z2)

X (z1) − X (z2)
.

(14)

We have also derived the analytical solution for the case of 2
and 3 poles, which are significantly more complex and not re-
ported here, but are nevertheless encoded in the YAMBO solver.

III. THEORY: SAMPLING STRATEGIES

An interpolation in the form of Eq. (11) is independent of
the chosen sampling frequencies as far as they are all different,
and the number of poles in the model, np, equals the total
number of poles of the target polarizability, NT . Nevertheless,
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in the present approach we intent to describe X (z) using a
number of poles much smaller than NT , and therefore the
representation is not unique. We then need to understand the
possible choices for the points to be used in the interpolation
of X . In the following, we discuss how a shift of the fre-
quency sampling from the real axis affects the structure of the
polarizability together with alternative sampling strategies.
Eventually we show that the sampling plays a fundamental
role in achieving a good approximation of X (z) with a reduced
number of poles.

A. The polarizability in the complex plane

According to the Lehmann representation, the poles of
the time-ordered dressed polarizability X , are distributed
above/below the real axis (at an infinitesimal distance), in an
energy range determined by the corresponding transitions. X
presents a very complex structure along the real axis, while at
increasing distance from the real axis the analytic continuation
of X becomes smoother. As discussed in Sec. II B, existing
approaches typically sample X (z) at frequencies either along
the real or the imaginary axis. As an alternative we have
studied samplings with components on both axes.

Let’s consider at first a sampling of X along a line parallel
to the real axis, but at a distance  . From the point of view of
the distance from the poles, this sampling effectively balances
the contribution of different poles, in particular those located
at large (real) frequencies. Moreover, the constant shift from
the real axis smooths out the frequency dependence of the
polarizability and can be understood as a filter effect resulting
from the convolution between the imaginary part of the
polarizability computed on the real axis, −Im[X (ω)]sgn(ω),
and the function 1/π (ω + i ) with a pole in the complex
frequency plane (z = ω + i ), which is a kind of Hilbert
transform:

X (z) = − 1

π

∫ +∞

−∞

Im[X (ω′)]sgn(ω′)
z − ω′ dω′. (15)

The larger the value of the shift,  , the smoother the function
in the convolution and the sampled polarizability X (z), and
therefore the fewer the poles required to model it, as also
depicted in Fig. 1. It is interesting to note that the FF-RA
method described in Sec. II B makes typically use of a finite
damping to obtain a similar simplification of the structure
of X . In this respect, the multipole interpolation method
presented here has the advantage that, once the parameters Rn

and 
n are obtained, it is then possible to perform a sort of
deconvolution towards the real-axis, by evaluating there the
polarizability when performing the integral of the self-energy.
This allows us to get rid of (or at least reduce) the effect of
the artificial smoothing of X (z), which is not possible in the
FF-RA scheme.

B. Analysis of one-pole solutions

Before presenting our numerical results for different sam-
pling strategies, we discuss some analytical results useful to
guide our analysis.

As shown in Appendix B 1, the two most used versions
of the PPA can be mapped into a X interpolated on two
different frequency samplings. In fact, in the Godby-Needs
(GN) scheme, the parameters of the plasmon pole model

FIG. 1. An illustration of the double parallel sampling with a
nine points semihomogeneous grid along the real axis with 2 =
1 Ha, similar to the imaginary frequency used in the GN PPM and
1 = 0.1 Ha, except for the origin of coordinates. The isolines in
the background correspond to a toy polarizability function with 200
poles on the real axis.

(PPM) are obtained by computing X (z) at z1 = 0 and z2 =
ip, being p comparable with the experimental plasma fre-
quency of the material, while the conditions imposed by the
Hybertsen-Louie (HL) scheme are shown in Appendix B 1 to
be equivalent to sampling X at z1 = 0 and z2 = ∞ (meaning
that X and X HL have the same leading order coefficient in
the 1/z2 term for z → ∞). In practice, the two methods give
slightly different results: the HL-PPM tends to overestimate
the position of the pole with respect to GN-PPM [60,75], and
GN-PPM reproduces better the polarizability with respect to
full frequency calculations [60]. Mathematically, this can be
understood by considering that the interpolation of a function
X (z) with a structure is more effective when the sampling is
done in a region of meaningful variation of the function, as
done in the GN-PPM case. It is therefore reasonable to expect
that the choice of the sampled frequency points affects the
interpolated X .

In Ref. [76], we perform a one-pole fitting, using the solu-
tion given by Eq. (14), to a test function (model polarizability)
with two poles,

X M (z) = 2
1R1

z2 − 
2
1

+ 2
2R2

z2 − 
2
2

, (16)

and compute a series expansions of the fitting parameters,

 and R, for a perturbation on the reference sampling. This
allows us to investigate the dependency of the MPA fit param-
eters on the sampling. We conclude that it is possible to write
equations for 
 and R capturing the behavior of both the GN-
and HL-PPM schemes at the same time, and going from one
to the other with a continuous function. The same analysis
also shows that a sampling close and parallel to the real axis
(see Fig. 1, orange line except for the first point) introduces
an error in 
 and R that is proportional to the distance from
the real axis, when comparing to the solution obtained when
performing a sampling on the real axis. This means that, with
X sampled parallel and close to the real axis, it is convenient
to stay as close to the real axis as possible, as in the case of
the FF-RA, where the damping needs to be sufficiently small

115157-4



FREQUENCY DEPENDENCE IN GW MADE SIMPLE … PHYSICAL REVIEW B 104, 115157 (2021)

in order to avoid the introduction of a systematic error. As
shown in Sec. III C, this is not the case when using a double
parallel sampling.

In Sec. I C of Ref. [76], we define and report the f factors
in the expansions of 
 and R, and show that the test function
behaves as a one-pole polarizability when R2/R1 → 0 (one
pole dominates) or Q2 → Q1 (the two poles tend to coalesce).
In these cases, the solutions do not depend on the sampling,
which supports the idea of obtaining a simplified description
of the polarizability with a reduced number of poles in cases
where some of the poles are close to each other or some of
the residues are much larger than others. The sensitivity of the
MPA method to the sampling will depend on the ratio of the
residues and on the distance between the poles of X . While
we have not analytically investigated more complicated test
polarizability functions or fitting models (including a larger
number of poles), we have performed numerical analyses
(e.g., a three pole function fitted on a two pole model) which
tend to confirm the findings discussed above.

C. Double parallel sampling

After testing several sampling strategies (samplings paral-
lel to the real axis, tilted with a positive or negative angle with
respect to it, etc.), our results led to the choice of a sampling
along two lines parallel to the real axis, that we will call
double parallel sampling:

sDP =
{

z1: z1
n = ωn + i1

z2: z2
n = ωn + i2,

n = 1, . . . , np, (17)

where one of the two branches is a line close to the real axis
while the other is located further away, e.g., 1 < 2. The
sampling is illustrated in Fig. 1, by the orange and green lines,
while in gray we represent the isolines of a toy polarizability
function with poles close to the real axis. From the isolines it is
possible to see that, at some distance of the real axis, individ-
ual poles that are close enough are no longer distinguishable
and contribute to a collective excitation. In a simplified view,
X sampled along the first line, in orange, preserves some of the
structure of X in the region of the poles and X sampled along
the second line, in blue, is simple enough to be described with
a small number of poles, and accounts for the overall structure
of X . The two branches should not be too close in order to
avoid numerical instabilities arising from the underdetermi-
nation of the resulting system of equations.

This sampling has proved to converge faster with respect to
the number of poles and to be less sensitive to the distance of
the first line from the real axis (1) than the others we tried.
This can be understood from the analysis of a small perturba-
tion to z1 = 0 applied to the GN-PPM sampling (at fixed z2),
i.e., to the simplest one-pole double parallel sampling. The
linear term in the perturbation of 
 and R (see Eqs. (S5) and
(S6) in Ref. [76]) cancels and the first perturbative term is
quadratic on  , at variance with perturbations on z2 where
the linear term is present (Eq. (S8) in the Ref. [76]). Moreover,
considering different sampling strategies, 
 and R change in
the same way, when passing from a real axis sampling to a
parallel or tilted sampling (z1 = 0 only in the latter), further
stressing that overall behavior is governed by z2 and that a
perturbation to z1 has negligible impact.

We still have to chose a distribution of the frequencies
along the real axis, {ωn}, that again favours the convergence
with respect to the number of poles. Differently from the
homogeneous grid used in Ref. [64], we propose a partition
that simply adds new frequency points when increasing the
number of poles, reducing in this way oscillations in the re-
sults. Here we write a semi-homogeneous partition in powers
of 2:

{ωn} :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0), np = 1
(0, 1) × ωm, np = 2(
0, 1

2 , 1
)× ωm, np = 3(

0, 1
4 , 1

2 , 1
)× ωm, np = 4(

0, 1
8 , 1

4 , 1
2 , 1

)× ωm, np = 5(
0, 1

8 , 1
4 , 1

2 , 3
4 , 1

)× ωm, np = 6(
0, 1

8 , 1
4 , 3

8 , 1
2 , 3

4 , 1
)× ωm, np = 7

. . .

, (18)

where ωm is the extreme of the interval. We choose to use
a finite value of ωm since X tends to zero for large enough
frequency values, and is enough to describe its tail. Also sup-
porting this option is the fact that the fulfillment of the f -sum
rule, the condition used in the HL-PPM that is equivalent to
taking z2 = ∞ in the GN-PPM recipe (Appendix B 1), is not
critical for obtaining an accurate description of polarizability
matrix elements within FF methods [77]. The maximum value
of ωm corresponds to the largest energy transition according
to the number of empty states included in the calculation
of X . Alternatively, one can simply use a frequency with a
sufficiently large real part so that it is located in the tail of the
polarizability and use the other sampling points to describe its
structure closer to the imaginary axis.

In practice, we use the value 2 used in the GN approach
described in Sec. B, in order to have the same sampling on
the imaginary axis when using only one pole and a straight-
forward extension along the real axis when using more poles.
Regarding 1, in case of one pole we take a null value con-
sistently with PP models, while a (small but) finite value is
considered for additional sampling points along the real axis
in order to avoid numerical noise. Based on the experience
and results obtained using the FF real axis method, and the
analytical results discussed above (Eq. (S6) in the Ref. [76]),
we increase 1 up to 0.1 Ha. This is also similar the values
proposed for molecules in Ref. [64].

D. Failure condition

Sometimes, when considering only a small number of
poles, the interpolation gives rise to poles that are either
not physical or not reasonable, posing representability prob-
lems. This is usually solved by reassigning the values of the
poles. An example is given by the treatment of the so-called
“unfulfilled modes” that plays an important role in different
PPM schemes [37]. Here we discuss the case of the GN-PPM
approach as implemented in YAMBO [34,37,43,62]. The con-
dition used to identify unfulfilled modes in the GN-PPM is the
following:

Re

[
XGG′ (q, 0)

XGG′ (q, ip)
− 1

]
< 0 → 
GN = 1 Ha, (19)
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where the position of the pole is set to 
GN = 1 Ha in case
of failure. This condition is related to the estimate of 
GN

according to Eq. (B5). For diagonal elements (G = G′), the
polarizability evaluated on the imaginary axis is real, making
the term in the square-root of Eq. (B5) also real. Unfulfilled
modes are then those for which the radicand is negative and
the resulting pole imaginary. The same condition is also used
for off-diagonal matrix elements in order to ensure that the
pole 
GN, which is anyway taken real, mainly derives from
the real part of the radicand in Eq. (B5).

Setting the pole for unfulfilled modes at 
GN = 1 Ha
usually works well for semiconductors [37], even if it may
have a (usually small) impact on the quasiparticle corrections.
However, in more complex systems the reliability of the PPA
may be compromised either by the large number of matrix
elements for which the pole is corrected or simply by the
inadequacy of such a simple model correction.

In the case of MPA, we propose a slightly different strategy.
The condition in Eq. (19), used in the PP approach, applies to
a sampling on the imaginary axis but can be generalized as:


n =
{√


2
n, Re

[

2

n

]
� 0√

−(
2
n

)∗
, Re

[

2

n

]
< 0

(20)

avoiding in this way, in case of failure, the use of a re-
placement constant value. The second line in Eq. (20), when
applied, is equivalent to exchange the real and imaginary parts
of 
n. In addition, since we consider complex poles, if needed
we also impose time ordering, i.e., while Re[
n] � 0 because
of Eq. (20), we may force Im[
n] < 0. Note this procedure is
applied to all np poles in MPA.

We now analyze the evaluation of the residues when at least
one of the poles of the multipole interpolation is modified by
the failure condition above. We start by considering a model
with a single pole, for which the residue R can be calculated
using the information of either the sampling point z1, first
equation in Eq. (B5) within the GN model, or z2 as

R = X2
(
z2

2 − 
2
)

2

. (21)

When the pole is not corrected, the computed residue is inde-
pendent of the choice between z1 and z2. However that is not
the case if the failure condition is used. In order to improve
the representation with respect to considering only one of
the given solutions depending on z1 or z2, we propose to use
Eq. (A23) to fit R. When using more than one pole, in addition
to Eq. (20) we have added an extra condition: in case a pole is
close to another or its position is out of the sampling range, its
residue is replaced by zero and the fit of Eq. (A23) is applied
only to the remaining residues.

E. Representability measures

In order to quantify the representability error of the model
with respect to the sampled points when correcting the posi-
tion of the poles with Eqs. (19) and (20), we compute the mean
number of corrected matrix elements, 〈NF 〉, and an average
relative standard deviation, 〈RSD〉. The analysis presented in
the following can be done for each q-point, if translational
symmetry is present. For one pole, the average number of

failures is simply

〈NF 〉np=1 = 1

Ng

Ng∑
g=GG′

�
(

MP

n=1,g

)
, (22)

where � is a Heaviside-like step function that verify the
condition:

�(
) =
{

0, Re[
2] � 0

1, Re[
2] < 0.
(23)

Regarding the error measurement, we use a modified version
of the relative standard deviation, also known as coefficient of
variation, that is then averaged over all the matrix elements.
Since we model all the matrix elements with the same number
of poles, the average deviation gathers, in a single estimate,
the representability error. The estimator was modified by re-
placing in the normalization factor the mean value of the
sampled values of X by their maximum value. Namely, for
each matrix element g = GG′ (within a given q block, not
labeled explicitly here), we define

Mg = max
j

|XGG′ (z j )|. (24)

This is justified by the fact that X is close to zero for a large
region of frequencies, together with its average when it is
computed with several points, which may results in an inade-
quate use of the coefficient of variation. The error estimators
then read

〈RSD〉np=1 = 1

Ng

Ng∑
g=GG′

1

Mg

√√√√ 2∑
j=1

∣∣X MP
jg − Xjg

∣∣2, (25)

〈RSD〉PPA = 1

Ng

Ng∑
g=GG′

�
(

PP

ng

)
Mg

√√√√ 2∑
j=1

∣∣X PP
jg − Xjg

∣∣2. (26)

In case of the PPA, we compute the error just for the matrix
elements that fail the condition in order to favour the compar-
ison with MPA, since there may be a deviation already due to
the fact of discarding the imaginary part of the poles in the
PPA (MPA is based on an interpolation, while PPA is not).

In the general multipole case, we define

〈NF 〉 = 1

Ng

Ng∑
g=GG′

∑np
n �

(

MP

ng

)∣∣RMP
ng

∣∣∑np
n

∣∣RMP
ng

∣∣ , (27)

〈RSD〉 = 1

Ng

Ng∑
g=GG′

1

Mg

√√√√√ 1

2np − 1

2np∑
j=1

∣∣X MP
jg − Xjg

∣∣2, (28)

where we have introduced a normalization by the residues of
each pole in the counter of the failure condition 〈NF 〉, in order
to differentiate the contribution of each pole.

IV. RESULTS: MPA PERFORMANCE

We have validated the MPA method in three different bulk
materials: Si, a prototype semiconductor, hBN with AA and
AA′ staking, and rutile TiO2, a mid-band-gap semiconductor
oxide. We compare the MPA approach described above with
PPA and FF calculations and with the existing literature. In
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TABLE I. Quasiparticle (QP) transitions computed with the lin-
earized QP Eq. (5) on top of PP, MPA and FF. In case of hBN, FF
calculations are performed using a 10 Ry cut-off for the X matrix
(results in square brackets) and then extrapolated to 25 Ry, using
the MPA results as reference. All other calculations are directly
performed with a 25 Ry cutoff.

System QP(eV) PPA MPA FF

Si �c → �v 3.28 3.30 3.30
Kc → �v 1.26 1.30 1.30

hBNAA Mc → Kv 7.35 7.47 7.46 [7.25]
Kc → Kv 7.02 7.16 7.16 [6.91]
Hc → Kv 5.33 5.50 5.50 [5.23]
Lc → Kv 5.26 5.42 5.42 [5.17]

hBNAA′ Lc → Kv 6.21 6.24 6.24 [6.20]
Kc → Kv 6.17 6.20 6.20 [6.17]
Hc → Kv 6.02 6.05 6.05 [6.01]
Mc → Kv 5.93 5.98 5.98 [5.92]

TiO2 �c → �v 3.20 3.27 3.26

particular, we compare our results for Si with Refs. [37,78],
hBN with Refs. [79,80], and TiO2 with Ref. [37].

DFT calculations were performed using the QUANTUM

ESPRESSO package [81,82]. We employed the LDA exchange-
correlation functional for Si and hBN, while GGA-PBE for
TiO2, with norm-conserving pseudopotentials in all cases. For
Si, we use a grid of 12 × 12 × 12 k-points, a kinetic energy
cutoff of 20 Ry and 300 KS states to perform sums-over-
states. In case of hBN, we used k-point meshes of 18 × 18 × 9
and 18 × 18 × 6, corresponding to AA and AA′ stacking re-
spectively, with an energy cutoff of 60 Ry and 400 KS states.

For rutile TiO2, we use a shifted k-grid of 4 × 4 × 6 k points,
a kinetic energy cutoff of 70 Ry for the wave functions, and
600 KS states.

GW calculations were performed with the YAMBO code
[34,56]. We use a standard Monte Carlo stochastic scheme
called random integration method (RIM) [34,83] to treat inte-
grals over the Brillouin zone with Coulomb divergence. The
RIM technique is used in order to accelerate convergences
with respect to the k-point mesh in case of hBN and TiO2,
but not for Si simply to illustrate that the MPA works well
independently of this choice. The size of the polarizability
matrix is set to 25, 10, and 15 Ry for Si, hBN and TiO2,
respectively. In the case of hBN, the value of 10 Ry is not
sufficient to converge quasiparticle corrections, and a more
suitable value is 25 Ry. Due to the high computational cost
of FF real-axis calculations, we decided to perform the com-
parison of PPA, MPA, and FF methods for hBN with a X
matrix cutoff of 10 Ry, while the results obtained with 25 Ry
(quasiparticle energies in the case of PPA and MPA) are given
in Table I. Regarding the self-energy evaluation, in the bare
Green function we use a damping parameter η = 0.1 eV for
all calculations.

A. The polarizability matrix

In Figs. 2, 3, and 4, we plot a set of diagonal and
off-diagonal matrix elements of the polarizability for three
different bulk materials: Si, hBN, and TiO2 rutile, respec-
tively. Each plot shows the real and imaginary parts of the
polarizability computed within MPA using a different num-
ber of poles, compared with the corresponding FF real-axis
results. The same number of poles is used for all the matrix
elements. In fact, on the one hand the multiple peak structures

FIG. 2. Selected Si X matrix elements computed within MPA with 1, 2, 3, and 8 poles and compared with the corresponding FF real-axis
results. Although the real and imaginary parts of the function are plotted using different arbitrary units, the different matrix elements can be
compared since their scale is consistent and indicated in each plot.
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FIG. 3. Selected hBN X matrix elements computed within MPA with 1, 2, 3, and 8 poles and compared with the corresponding FF real-axis
results. The same scheme from Fig. 2 is used for the units.

of X is more complex for large G-vectors, while on the other
hand their maximum amplitude, and therefore their weight
in the integration of the self-energy, decreases with G. This
means that a more simplistic description of the structure of
these elements will not affect much the computed �. For
reasons of computational convenience, besides the number of
poles, the array of sampled frequencies is also the same for all
the matrix elements. Of course, the complexity of X depends

on the material under study. In silicon, for instance, the most
important matrix elements have an almost single-peak struc-
ture that favours the use of a single pole, while for TiO2, the
first element, G = G′ = 0, already shows several peaks and a
slower decay of the maximum amplitude with respect to G.

The imaginary part of diagonal elements of X describes
the spectral properties of the polarizability, and therefore is
always negative with peaks around the real part of the poles

FIG. 4. Selected TiO2 X matrix elements computed within MPA with 1, 3, 4, and 9 poles and compared with the corresponding FF real-axis
results. The same scheme from Fig. 2 is used for the units.
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FIG. 5. (Top) 〈NF 〉, mean number of matrix elements for which
the position of the poles was corrected according to Eq. (20) for
MPA and Eq. (19) for PPA, and (bottom) 〈RSD〉, average deviation
as defined in Eq. (28), as a function of the number of poles used in
the MPA approach. Due to the high computational cost of the FF
calculations, in case of hBN the comparison is made with a non fully
converged dimension of the polarizability matrix, of 10 Ry. The plots
correspond to the AA stacking, but similar values are seen also for
the AAAA′ stacking with 10 Ry of X matrix.

and widths given by their imaginary part. A model with a
single pole describes approximately the envelop of the real
part of diagonal elements, but is unable to describe the width
of the main peak, since the small value of the imaginary part
of the pole obtained from the interpolation is translated into a
delta-like peak. The use of a complex pole is not that different
from a real one obtained by neglecting its imaginary part, as
in the PPA case. The inclusion of a second pole however, may
improve the description of the imaginary part of the diagonal
elements of X even if there are no significant improvements
in the real part. On the other hand, the off-diagonal matrix el-
ements of X show a mixture of their real and imaginary parts,
since the residues of the poles in Eq. (8) have an imaginary
part depending on their G and G′ components. Off-diagonal
matrix elements are more likely to fail the PP condition of
Eq. (19) and even a single but complex pole and the gener-
alized failure condition of Eq. (20) may lead to considerable
improvements on the description of X , as shown in the right
panels of Fig. 2.

In general the description of the polarizability improves
quickly as the number of poles increases, as demonstrated by
the representability measurements 〈NF 〉 and 〈RSD〉 plotted in
Fig. 5. Already with one pole, the error of the generalized
condition is lower than the one obtained with the PPM and

FIG. 6. Deviations of the fundamental gap calculated via the
MPA with respect to FF results as a function of number of poles
for Si, hBN and TiO2. As in Fig. 5, in case of hBN we use 10 Ry of
X matrix and plot only the results of the AA stacking.

then both 〈NF 〉 and 〈RSD〉 rapidly decrease with increasing
number of poles.

B. The GW quasiparticle correction

In Fig. 6, we report the convergence of the GW correction
to the band gap with respect to the number of poles used in the
MPA for the three systems under study. The same frequency
sampling was used in the three cases, namely a double parallel
sampling, Eq. (17) with the grid given by Eq. (18) along the
real axis and shifts 1 = 0.1 Ha and 2 = 1 Ha. For TiO2,
which has a more structured polarizability, the quasiparticle
corrections are more sensitive to the sampling. With a single
pole model using different values of 2 the results can differ
by as much as ∼100 meV. In the multipole case the difference
decreases to 6 meV when comparing results obtained with
2 = 0.5 and 1.0 Ha. Even if we expect the highest value to
lead to a slightly simpler X , the convergence is reached with
the same number of poles in both cases.

Interestingly, the same convergence behavior is found for
the three systems: between 8 and 11 poles the quasiparticle
corrections differ by less than 1 meV from the FF results. The
number of poles needed to obtain convergence is much more
homogeneous than the number of frequencies in FF real axis
calculations (300 for Si, 400 for hBN, and 1500 for TiO2),
since the shifts  in the double parallel sampling determine
the structure of the polarizability and therefore the number of
poles required to model it.

We report our final QP results in Table I. In the case
of hBN, the difference between the PPA and FF-RA values
changes with respect to the size of the polarizability matrix. At
10 Ry we found similar differences for stacking AA and AA′

with a maximum value of 0.10 eV. At 25 Ry the difference
increases up to a maximum value of 0.17 eV for the stacking
AA and decreases up to a maximum value of 0.05 eV for the
stacking AA′, the plasmon-pole approximation being more
accurate in the AA′ configuration.
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FIG. 7. Frequency dependence of the Si valence (v) and con-
duction (c) real part of the self-energy (top) and spectral function
(bottom) of the quasiparticles involved in the fundamental gap com-
puted with PPA, MPA, and FF.

C. Self-energy and spectral function

The present MPA method targets the dynamical depen-
dence of the dressed polarizability, in turn directly related
to W , in order to perform the frequency integral in the
self-energy and finally to compute the quasiparticle correc-
tions to the independent particle states. For this purpose,
we need a good description of �(ω) in a frequency region
around the solution of the quasiparticle equation, Eq. (4).
However, the description of the self-energy in a larger range
of frequencies is interesting by itself, since �(ω) contains,
besides the quasiparticle energies, information about many-
body features like satellites and quasiparticle lifetimes. These
properties are computed by solving the corresponding Dyson
equation for the Green function, G = G0 + G0�G. Through
Eq. (13), the MPA method provides a description for the
frequency dependence of the self-energy, that we assess in this
section.

In Fig. 7, we compare the Si self-energy (top) and spec-
tral function (bottom), obtained as the imaginary part of the
dressed Green’s function, Im[G], computed within PPA, MPA,
and FF-RA. The self-energy presents a typical two-pole struc-
ture [52,53] corresponding to the contributions of the empty
and occupied states. The picture can be better understood

taking Eq. (13) into account: occupied states contribute to the
self-energy at energies around the value −
 plus their own
KS energies (negative), different from the empty states that
contribute at +
 plus a positive term from the KS energies
further separating the two contributions of the main plasmon
at ±
.

The PPA gives a good description of the tail of the main
peaks, especially including the region around the solution
of the quasiparticle equation, and the overall behavior of �.
However, intrinsic representability problems appear due to the
inability of PPA in describing the imaginary part of W . The
result is a very noisy �, particularly around its peaks, giving
rise to noisy satellite peaks in the spectral function. In con-
trast, the MPA self-energy (computed with eight poles, i.e., the
number required to obtained converged quasiparticle energies)
reproduces quite well the FF-RA results in the whole energy
range. In fact, there is a reversal on the level of complexity of
the polarizability with respect to the self-energy: X is smooth
when computed within PPA, and very structured in FF-RA
and MPA, whereas � is very spiky within PPA and smooth
for FF-RA and MPA.

This result can be understood by analyzing the effect of the
Dyson equation for W , Eq. (3), on the polarizability matrix
elements XGG′ (q, ω). At the independent particle level, X0

presents a large number of peaks described by Eq. (8). When
applying the Dyson equation, the poles from different matrix
elements of X0 are combined, resulting in a dressed polar-
izability X with broader peaks corresponding to plasmonic
excitations, as shown in Figs. 2–4. Thanks to this feature, it
is possible to use few (complex) poles in the MPA modeling
(then approximated with 1 real pole in PPA) of each matrix
element XGG′ (q, ω). However, there is a further pole superpo-
sition of the matrix elements in the integral of the self-energy
[Eq. (13)], whose accurate description in a full frequency
range needs a proper modeling of the imaginary part of X .
This superposition in PPA is partially remedied by the finite
η damping of the Green function, while the presence of finite
imaginary parts in the MPA poles naturally improves the PPA
description. In silicon, the proximity of the several electronic
states and the number of additional low-intensity plasmon-
excitation result in a noisy behavior of the PPA self-energy
around the main peaks. In contrast, the FF and MPA methods
properly describe the superposition of all the excitations, and
the resulting �(ω) function is smooth.

This picture may be different for less screened systems
like, e.g., molecules [40,84], where the energy levels are
scattered, the plasmonic excitations are far apart, and the
plasmon-pole model may lead to a self-energy that presents
a simpler structure than a FF treatment. On the other hand,
the nonexistence of a gap in metallic systems may lead
to a self-energy with a single main peak [85] also noisy
within PPA. However, the special cases of metals with small
plasmon energies or strongly correlated materials are particu-
larly challenging for simple models like the PPA, since the
quasiparticle solutions lie in a zone of multiple plasmonic
excitations, as shown in Ref. [86] for SrVO3. The applica-
bility of the PPA on such systems has been discussed in
the literature [5,47] and the advantages in using the MPA
method for a metallic case are the subjects of a future
work.
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V. CONCLUSIONS

In this paper, we have introduced and developed a
multipole approximation (MPA) to represent the reducible
polarizability and to evaluate the correlation self-energy in the
GW method. The MPA method can be seen as a generalization
of the commonly used plasmon-pole approximation (PPA),
while increasing the number of poles in the description of X it
tends to the exact, full frequency solution. Therefore MPA nat-
urally bridges from PPA to FF GW , with controllable accuracy
and computational cost. We have provided numerical methods
to compute the MPA parameters and investigated in detail the
effect of different frequency samplings on the procedure. In
doing so, we have also discussed two common formulations of
the PPA (Godby-Needs and Hybertsen-Louie PPM’s) showing
how they can be seen in a unified frame. Eventually, the MPA
method has been validated and benchmarked on selected bulk
semiconductors (Si, hBN, rutile TiO2), showing systematic
improvement over the PPA, and numerical agreement with FF
GW already with about 10 poles.

The present MPA approach, in the few poles regime, con-
siderably improves the quasiparticle energies with respect to
PPA without a significant increase in the computational cost.
When considering more poles, around 10 for the systems
studied here, its computational cost is comparable to AC ap-
proaches. In this regime, we have shown that MPA reaches an
accuracy comparable with standard FF contour deformation
methods [7,40], significantly more demanding. Moreover, we
believe MPA presents several advantages with respect to this
method. In the contour deformation approach, the number
of frequencies used in the evaluation of W increases with
the distance of the state from the Fermi level due to the
increasing number of poles of G entering in the contour [64],
whereas within MPA all the quasiparticles have the same
computational cost. Another advantage of MPA relies on its
analytic form, which allows one to solve analytically the fre-
quency integral of the self-energy that has also a multipole
form. Moreover, the frequency structure of the polarizability
is meaningful and permits the analysis of the plasmonic inter-
actions. The MPA technique applies irrespectively of the basis
set, and can also be straightforwardly extended beyond G0W0,
e.g., to quasiparticle self-consistent GW approaches [8,9].

Overall, our findings show that the multipole approach can
be used to obtain a simple and effective representation of re-
sponse functions. We illustrated how to analyze simple types
of sampling in order to understand and design good recipes.
We show that the MPA with optimal sampling strategies in
the complex plane can lead to a level of accuracy comparable
with full-frequency methods at much lower costs, not only for
the quasiparticle energies, but also for the whole energy range
relevant for the self-energy.
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APPENDIX A: MPA INTERPOLATION

1. Linear solver

The nonlinearity of the system of equations in Eq. (12) de-
pends only on inverse factors involving the variables 
n, since
the system is otherwise linear in Rn. It is possible to separate
these two behaviours by following the procedure described
below. We start by splitting the sampled points {z j, X (z j )} in
two sets, for example,

s1: j = 1, . . . , np,

s2: j = np + 1, . . . , 2np. (A1)

The first set defines a matrix A1 and vector x1 as follows:

A1mn = 2
n

z2
m − 
2

n

,

x1m = X (zm), n, m = 1, . . . , np (A2)

such that we can write a linear system for the vector r =
(R1, R2, . . . , Rnp ):

A1r = x1. (A3)

We can do the same with the other half of the data, by defining
the matrix A2 and the vector x2 as

A2mn = 2
n

z2
np+m − 
2

n

,

x2m = X (znp+m), n, m = 1, . . . , np (A4)

leading to

A2r = x2. (A5)

Either Eq. (A3) or (A5) can be used to compute the residues
if the positions of the poles are known. Furthermore, from
these two equations it is possible to obtain a complete set of
np equations for 
n:

r = (A1)−1x1 = (A2)−1x2. (A6)

Here we explore in depth this idea using a different formula-
tion that maps the problem into an equivalent linear system
that can be easily solved with standard linear algebra tools.

Within the multipole model, X (z) can be written in the
form of a particular Padé approximant, i.e., as a fraction of
two polynomials N (z2) and D(z2) of degree np − 1 and np,
respectively:

X (z) = Nnp−1(z2)

Dnp (z2)

= a1 + a2z2 + · · · + anpz
2(np−1)

b1 + b2z2 + · · · + bnpz
2(np−1) + z2np

, (A7)
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where the factorization of Dnp(z2) gives the position of all the
poles:

Dnp (z2) =
np∏

n=1

(
z2 − 
2

n

)
. (A8)

On the other hand, the coefficients an in the numerator
involve combinations of poles and residues. From the point
of view of the system of equations, we are changing the un-
known variables {Rn,
n} into {an, bn}. If we consider a vector
constructed from the progression of powers of z: Z(z) =
(1, z2, . . . , z2(np−1)), and vectors a and b constructed from the
coefficients of N (z2) and D(z2): a = (a1, a2, . . . , anp ) and b =
(b1, b2, . . . , bnp ), we can write Eq. (A7) in a more compact
way and then make it linear with respect to the new variables:

X (z) = Z(z) · a
Z(z) · b + z2np

. (A9)

X (z)z2np + X (z) Z(z) · b = Z(z) · a. (A10)

By using the first set of points of Eq. (A1), we can define
the following vector and matrices:

v1 =

⎡
⎢⎢⎢⎢⎣

X (z1)z2np

1

X (z2)z2np

2
...

X (znp )znp
2np

⎤
⎥⎥⎥⎥⎦, (A11)

Z1 =

⎡
⎢⎢⎢⎢⎣

1 z2
1 . . . z

2(np−1)
1

1 z2
2 . . . z

2(np−1)
2

...
...

...

1 z2
np

. . . z
2(np−1)
np

⎤
⎥⎥⎥⎥⎦, (A12)

M1 =

⎡
⎢⎢⎢⎢⎣

X (z1) X (z1)z2
1 . . . X (z1)z2(np−1)

1

X (z2) X (z2)z2
2 . . . X (z2)z2(np−1)

2
...

...
...

X (znp ) X (znp )z2
np

. . . X (znp )z2(np−1)
np

⎤
⎥⎥⎥⎥⎦.

(A13)

Z1 is known as a square Vandermonde matrix [87] and is
always invertible as far as all the sampling points are different
[88]. Then we can write Eq. (A10) in matrix form:

v1 + M1b = Z1a, (A14)

while an analog equation is obtained with the second set of
points:

v2 + M2b = Z2a. (A15)

By combining Eqs. (A14) and (A15) to remove vector a we
obtain a linear system for b:

Mb = v, (A16)

M = Z1
−1M1 − Z2

−1M2,

v = −Z1
−1v1 + Z2

−1v2. (A17)

In terms of the number of matrix inversions to be performed,
Eqs. (A16) and (A17) can be recast into the following more

practical form:[
Z2Z1

−1M1 − M2
]
b = −Z2Z1

−1v1 + v2. (A18)

Before we proceed, in order to the reduce numerical in-
stabilities of the algorithm, it is convenient to carry out a
normalization

z j = y jzmax,

zmax = max(|zn|), n = 1, . . . , np, (A19)

where, i.e., zmax is the largest frequency modulus in the sam-
pling set involved with the matrix we need to invert, Z1.

The proposed normalization balances the large differences
among the matrix elements that emerge when increasing the
number of poles, due to the range of the sampling and the
increasing powers. Rescaled unknowns can then be defined as

a′
n = an(zmax)n−1

b′
n = bn(zmax)n−1

. (A20)

Likewise, we also define the Y1,2 and M′
1,2 matrices similarly

to Z1,2 and M1,2, Eqs. (A12) and (A13) respectively, by using
yn instead of zn. Eventually, Eqs. (A16)-(A17) can be rewritten
as a linear system for b′:

[Y2Y1
−1M′

1 − M′
2]b′ = −Y2Y1

−1v1 + v2. (A21)

Once we have computed b′, and in turn b via Eq. (A20),
we need to obtain the poles 
n, which are the variables with
physical meaning and those required in the evaluation of the
self-energy integral. As mentioned above, this is equivalent to
find the zeros of the polynomial Dnp (z2) in Eq. (A8), and a
powerful method to perform this task is the diagonalization of
the corresponding companion matrix:

C =

⎡
⎢⎢⎢⎢⎣

0 0 . . . 0 −b1

1 0 . . . 0 −b2

0 1 . . . 0 −b3
...

...
. . .

...
...

0 0 . . . 1 −bnp

⎤
⎥⎥⎥⎥⎦. (A22)

The eigenvalues of C correspond to the squares of the position
of the poles, 
2

n.
As mentioned before, in case all the poles are different,

the residues may be computed with either Eq. (A3) or (A5).
Alternatively we can use all the 2np points to fit Rn with a
linear least squares method:

min
r

||Ar − x||, (A23)

where, for each n = 1, . . . , np and j = 1, . . . , 2np, one has

A jn = 2
n

z2
j − 
2

n

, x j = X (z j ). (A24)

A similar least-square approach was also recently adopted
in the definition of the sum-over-poles approach [68], and
applied to the case of the homogeneous electron gas.

2. Padé/Thiele solver

An alternative way to the method described above consists
in solving at the same time both polynomials N and D in the
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Padé interpolant in Eq. (A7) by means of the Thiele’s interpo-
lation formula, witch expresses the interpolant as a continued
fraction of the reciprocal differences [72]. The number of
required steps corresponds to the number of points to be
interpolated, that is 2np in our case:

N (z2)

D(z2)
= c1

1+
c2
(
z2 − z2

1

)
1+ · · ·

c2np

(
z2 − z2

2np−1

)
1 + (

z2 − z2
2np−1

)
g2np (z)

,

(A25)

where the coefficients cs and functions gs(z) are given by the
following recursion relations:

cs = gs(zs), (A26)

gs(z) =
⎧⎨
⎩

X (zs), s = 1

gs−1(zs−1) − gs−1(z)

(z − zs−1)gs−1(z)
, s � 2

, (A27)

where index s = 1, . . . , 2np represents both the iteration step
and the index of the corresponding point in the given set. The
polynomials N (z2) and D(z2) and their coefficients can then
be computed recursively. Notice that in Thiele’s relation the
definition of each polynomial differs from the one in Eq. (A7)
by a multiplicative constant that, however, does not affect the
zeros of the polynomials, and moreover cancels out in the
fraction.

As in the case of the linear solver, with Thiele’s procedure
we are interested in computing only the monomial coefficients
of the denominator, since we can always obtain the residues
by means of Eqs. (A3) or (A23). The recipe [72] for the
polynomial in the denominator is:

Ds(z) =
{

1, s = 0, 1
Ds−1(z) − cs(z − zs−1)Ds−2(z), s � 2 . (A28)

The desired polynomial of degree np is obtained in the last
step, s = 2np. Notice that in this notation the index s does not
reflect anymore the degree of the polynomial. In each iteration
the degree of the polynomial Ds(z) is (s − 1)/2 for odd inte-
gers and s/2 for even numbers. We can write a vector of the
coefficients of the final polynomial, d = (d1, . . . , dnp, dnp+1).
It has an extra dimension comparing to vector b in Eq. (A10)
due to the multiplicative constant mentioned before that goes
to the higher order monomial of D in Eq. (A7). The recursion
of the polynomial in Eq. (A28) can be easily translated into a
recursion of the vector d:

ds =
{

(1, 0, . . . , 0), s = 0, 1
ds

i = ds−1
i + cszsd

s−2
i+1 − cszs−1ds−2

i , s � 2,

(A29)

where the second term of the sum in the rhs of Eq. (A29) is
computed just for i = 1, . . . , np, while the other two include
also the last dimension, i = np + 1.

The recursion of the cs coefficients can also be recast
in vectorial form, by considering in each iteration, s, a 2np

dimensional vector, c:

cs :

⎧⎪⎪⎨
⎪⎪⎩

(X (z1), . . . , X (z2np )), s = 1

cs
j = cs−1

j−1 − cs−1
j

(z j − z j−1)cs−1
j

, s � 2
, (A30)

where now the iterations are represented by index s in the
upper position, and the vector coordinates and point identifiers
are represented by index j in the lower position. Notice how-
ever that only one particular component of vector cs enters in
Eq. (A29) at each iteration, i.e., cs ≡ cs

s, other components are
worth only to update the vector. Once computed d, the relation
with the coefficient of vector b is as simple as bn = dn/dn+1,
that recovers the unitary coefficient accompanying the higher
order monomial of the polynomial. The position of the poles
can then be computed with the companion matrix, Eq. (A22),
likewise in the case of the linear solver.

APPENDIX B: PLASMON POLE MODELS

As stated in Sec. II B, there are several flavours of the
plasmon-pole model (PPM), that are compared for instance
in Refs. [60,89], but two of them are more commonly used,
one due to Hybertsen and Louie [41] (HL), and the other
due to Godby and Needs [50] (GN). In the Hybertsen and
Louie (HL) approach, two physical constraints are imposed:
(1) compliance with the Kramers-Kronig relations in the limit
of small frequencies, and (2) compliance with the f -sum rule.
The Kramers-Kronig relations for X HL provide

X HL(0) = 2

π
P
∫ ∞

0
dω ω−1Im[X HL(ω)]

= 2

π
P
∫ ∞

0
dω ω−1Im[X (ω)] = X (0), (B1)

whereas the f -sum rule is enforced by the condition:

2

π

∫ ∞

0
dω ω Im[X HL(ω)] = 2

π

∫ ∞

0
dω ω Im[X (ω)] = S,

(B2)

where X is the computed dressed polarizability. In the above
equation, the result of the integral (S) can be expressed in
terms of some of the components of the electronic density and
Coulomb interaction. On a plane-wave basis, it reads

SGG′ (q) = − ω2
p

v(q + G)

ρ(G − G′)
ρ(0)

(q + G) · (q + G′)
|q + G|2

= ρ(G − G′) [(q + G) · (q + G′)], (B3)

where ρ is the electronic density and the plasma frequency,
ωp, is computed as ωp = √

4πρ(0).
In the Godby and Needs (GN) approach, the polarizability

is evaluated at two different frequencies located along the
imaginary axis of the frequency plane: z = 0 and z = ip, be-
ing p comparable with the plasma frequency of the material.

(RGN,
GN) :

{
X GN(0) = X (0)

X GN(ip) = X (ip)
. (B4)

Other versions of the PPA are based on the above recipes
aiming at improving the description of the off-diagonal matrix
elements of the polarizability [44,45,90]. We will now take a
closer look at the GN and HL approaches, from the point of
view of the multipole approximation.
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1. Connecting the GN- and HL-PPM schemes

The idea of interpolating the two parameters (RPP,
PP)
of the plasmon-pole model starting from X evaluated at two
different frequencies, used by the GN-PPM, is very flexible,
and multiple sampling options can be adopted. Nevertheless,
using different pairs of sampling frequencies typically leads
to different parametrization of the resulting PPM. With this
in mind, we search for the pair of frequency points to be
used in Eq. (14) that would correspond to the conditions
imposed by the HL scheme. The equations for the GN-PPM
are

X (0) = −2RGN


GN
,


GN = p Re

[
X (ip)

X (0) − X (ip)

] 1
2

, (B5)

while those for the HL-PPM are

X (0) = −2RHL


HL
, 2
HLRHL = S. (B6)

We note that Eq. (B1) in the HL formulation, connected to the
Kramers-Kronig relation, implies the first condition (equality
of X and X HL at ω = 0) imposed in the GN recipe, Eq. (B4),
as also evident in comparing Eqs. (B6) and (B5).

If we consider the exact polarizability X , written in the
Lehmann representation similar to the multipole model given

in Eq. (11), but with all the NT addends and with Im[
n] →
0−, and solve the integral in the f -sum rule, we get

2

π

∫ ∞

0
dω ω Im[X (ω)] = 2

∑
n


nRn. (B7)

Then, the condition imposed by HL in the plasmon-pole
model is

2
HLRHL = 2
∑

n


nRn. (B8)

This relation imposes the equality of the 1/z2 coefficient
(leading order) of the asymptotic behavior of the polarizabil-
ities, making explicit the known fact that sum rules describe
properties at infinity [91]:

lim
ω→∞ X HL(ω)/X (ω) = 1. (B9)

This means that in the long frequency range, ω � max
n

|
n|,
X behaves as a one-pole function with the exact same
asymptotic decay of X HL. Thus we can think of the HL rep-
resentation as a limiting case of GN-PPM recipe when the
second frequency goes to infinity:

(RHL,
HL) :

{
X HL(0) = X (0)
X HL(∞) = X (∞)

, (B10)

where the evaluation of the infinite frequency in the second
equation is taken as the limit of the X HL/X ratio, according to
Eq. (B9).
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