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We describe a systematic procedure for determining the identity of a 2D bosonic symmetry-protected topo-
logical (SPT) phase from the properties of its edge excitations. Our approach applies to general bosonic SPT
phases with either unitary or antiunitary symmetries, and with either continuous or discrete symmetry groups,
with the only restriction being that the symmetries must be on-site. Concretely, our procedure takes a bosonic
SPT edge theory as input, and produces an element ω of the cohomology group H3(G,UT (1)). This element
ω ∈ H 3(G,UT (1)) can be interpreted as either a label for the bulk 2D SPT phase or a label for the anomaly
carried by the SPT edge theory. The basic idea behind our approach is to compute the F symbol associated with
domain walls in a symmetry-broken edge theory; this domain-wall F symbol is precisely the anomaly we wish
to compute. We demonstrate our approach with several SPT edge theories, including both lattice models and
continuum field theories.

DOI: 10.1103/PhysRevB.104.115156

I. INTRODUCTION

A gapped quantum many-body system belongs to a non-
trivial symmetry-protected topological (SPT) phase if it has
two properties: (i) the ground state is unique and short-range
entangled1 and (ii) it is not possible to adiabatically connect
the system to another system with a trivial (product-state)
ground state without breaking one or more global symme-
tries [1–6]. Famous examples of SPT phases include 2D and
3D topological insulators [7,8] and the 1D Haldane spin-1
chain [9].

The most important physical property of nontrivial SPT
phases is that these systems support robust gapless boundary
modes. These boundary modes are protected in the sense that
they cannot be gapped out without breaking one or more
global symmetries [10–15] or, in the case of 3D or higher
dimensional systems, introducing topological order on the
boundary [16–20].

A basic question is how to determine the identity of
an SPT phase from the properties of its boundary modes.
This bulk-boundary correspondence is largely understood for
noninteracting fermionic SPTs. For example, in the case of
2D time-reversal symmetric insulators, one can determine
whether the bulk phase is a trivial insulator or a topological
insulator based on whether there are an even or odd number
of Kramers pairs of edge modes. Similar formulas expressing
bulk invariants in terms of boundary modes are known for
other noninteracting fermion SPTs [7,8]. The interacting case,
however, is less understood, especially in two and higher

1A state |�〉 is short-range entangled if it can be transformed into
a product state by local unitary transformation, i.e., a unitary of
the form U = T exp(−i

∫ T
0 H (t )dt ), where H is a local Hermitian

operator.

dimensions. This paper seeks to address the interacting prob-
lem in the case of 2D bosonic SPT phases with on-site (i.e.,
nonspatial) symmetries. We ask: How can one determine the
identity of a 2D bosonic SPT phase from its (1D) edge modes?

To make this question more concrete, let us recall the con-
jectured cohomology classification of 2D bosonic SPT phases
[6]. According to this classification, there is a one-to-one
correspondence between 2D bosonic SPT phases with on-site
symmetry group G and elements of the cohomology group
H3(G,UT (1)). Our problem is thus to compute an element
ω ∈ H3(G,UT (1)) from a bosonic SPT edge theory. This el-
ement ω ∈ H3(G,UT (1)) can be interpreted as describing the
anomaly carried by the edge theory.

Significant progress on this problem has been made in
previous work. In a pioneering paper, Chen et al. [13]
showed how to compute the anomaly ω ∈ H3(G,U (1)) for
any bosonic SPT edge theory whose symmetries are repre-
sented by matrix product unitary operators. Later, in another
important advance, Else and Nayak [15] introduced a method
for computing anomalies based on the idea of spatially
restricting symmetry operators. This symmetry restriction
method applies to any SPT edge theory whose symme-
tries are local unitary transformations, i.e., of the form U =
T exp(−i

∫ T
0 H (t )dt ) for some local Hermitian operator H .

In another line of research, several authors have presented ap-
proaches for determining anomalies in SPT edge theories with
conformal symmetry, using orbifold [21–24] or orientifold
constructions [25], though it is not obvious how to extend the
latter approaches to general symmetry groups.

One limitation of the approaches introduced in
Refs. [13,15] is that they do not apply to SPT edge theories
with antiunitary symmetries except in special cases [15].
Another limitation is that they require that the symmetries
take a particular form—either a matrix product operator or
a local unitary transformation. A priori there could be edge
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theories where the symmetries cannot be written in these
forms or it may be difficult to write explicitly.

In this paper, we present an alternative approach for
computing anomalies in bosonic SPT edge theories, which
addresses these issues. Unlike previous work, our approach
applies to general bosonic SPT edge theories with both unitary
and antiunitary symmetries. Our only restriction is that the
underlying 2D symmetry must be onsite.

The basic idea behind our approach is simple. First, we
choose an edge Hamiltonian that spontaneously2 breaks all
the symmetries on the edge and opens up an energy gap. Such
a Hamiltonian has a collection of degenerate ordered ground
states related to one another by symmetry transformations.
The elementary excitations are domain walls between the
different ground states. These domain walls can be fused to-
gether to form new domain walls, much like anyon excitations
in 2D topological systems. This allows one to define an F
symbol that describes the phase difference associated with
fusing domain walls in different orders. This domain wall F
symbol is precisely the anomaly we wish to compute: We
show that F is naturally an element of H3(G,UT (1)), and
that F depends only on the edge theory and not on other
details. Some care is required to compute F , but we describe a
concrete procedure for performing this computation using the
formalism of Ref. [26]. We note that the connection between
domain-wall F symbols and anomalies was also alluded to in
Ref. [27] in the context of a Z2 SPT edge theory.

This paper is organized as follows. In Sec. II, we explain
the basic setup for our problem. Then, in Sec. III, we present
our anomaly computation procedure in the simplest case: SPT
edge theories with discrete unitary symmetry groups. We il-
lustrate our procedure with several (discrete unitary) examples
in Sec. IV. In Sec. V, we discuss the connection between our
procedure and the symmetry restriction approach of Ref. [15],
and we prove that the two approaches agree with one another
in cases where both are applicable. In Sec. VI, we consider
the general case of SPT edge theories with both unitary and
antiunitary symmetries, and we show that the same procedure
works in this case. Section VII discusses how to extend our ap-
proach to the case of continuous symmetries. Finally, we give
our conclusions in Sec. VIII. Technical details are discussed
in the Appendix.

II. SETUP

We begin by defining what we mean by anedge theory, or,
more precisely, a bosonic SPT edge theory. At an intuitive
level, a bosonic SPT edge theory is a collection of data that
describes the low-energy edge excitations of an SPT phase.
More specifically, a bosonic SPT edge theory consists of three
pieces of data:

(1) A Hilbert space H.
(2) A complete list of local operators {O} acting in H.
(3) A collection of (unitary or antiunitary) symmetry

transformations {U g : g ∈ G} acting on H.

2Alternatively, we can break the symmetry explicitly rather than
spontaneously. See Sec. VII for details.

FIG. 1. Schematic picture for our main result: We describe a
procedure that takes a 1D bosonic SPT edge theory as input and
produces as output an element ω ∈ H3(G,UT (1)). This element ω

can be interpreted as either a label for the bulk 2D SPT phase or the
anomaly carried by the edge theory.

Each of these pieces of data has a simple physical in-
terpretation: the Hilbert space H describes the subspace of
low-energy edge excitations, the list {O} describes the low-
energy projection of local operators in the original 2D system,
and the {U g} operators describe how the edge excitations
transform under the symmetry.

To qualify as a valid bosonic SPT edge theory, we require
that the above data is physically realizable as the edge of some
2D SPT Hamiltonian with on-site symmetries. That is, we
require the existence of a 2D Hamiltonian H2D that belongs
to an SPT phase with (on-site) symmetry group G and that
has the following properties:

(1) The Hilbert space H is isomorphic to the subspace of
low energy edge excitations of H2D.

(2) The operators {O} correspond to local operators of the
2D system, projected into this low energy subspace.

(3) The {U g} transformations describe how the low-energy
subspace transforms under the symmetries in G.

See Secs. IV, VI D, VII B for examples of bosonic SPT
edge theories. In general, bosonic SPT edge theories can be
described using either continuum fields or lattice degrees of
freedom and our results apply equally well to both cases.

With this background, we can now state our main result,
(summarized in Fig. 1): We describe a systematic procedure
that takes a bosonic SPT edge theory as input and that outputs
an element ω of the cohomology group H3(G,UT (1)) (see
Sec. VI A for a definition). As explained in the Introduc-
tion, the element ω ∈ H3(G,UT (1)) can be interpreted in two
equivalent ways: ω can be thought of as either a label for the
bulk 2D SPT phase or a label for the anomaly carried by the
SPT edge theory. Thus, depending on one’s point of view, our
procedure provides a systematic method for computing either
the bulk 2D SPT phase or the anomaly associated with a given
edge theory.

III. DISCRETE UNITARY SYMMETRIES

A. Outline of procedure

In this section, we outline our procedure in the case where
the symmetry group G is discrete and unitary.

We start by reviewing the definition of the cohomology
group H3(G,U (1)), since this is the group that describes
the output of our procedure in the case of discrete unitary
symmetries. The cohomology group H3(G,U (1)) consists
of equivalence classes of functions ω : G × G × G → U (1)
obeying the condition

ω(g, h, k)ω(g, hk, l )ω(h, k, l )

ω(gh, k, l )ω(g, h, kl )
= 1. (3.1)
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FIG. 2. A domain wall excitation: a state that shares the same
local expectation values as one ground state |�; g〉 to the left of some
point x, and another ground state |�; h〉 to the right of x. We label
such a domain wall by the group element g−1h.

Any function ω obeying Eq. (3.1) is called a cocycle. The
equivalence relation between different cocycles is defined as
follows: ω ≡ ω′ if ω′/ω is a coboundary, i.e.,

ω′(g, h, k)

ω(g, h, k)
= ν(gh, k)ν(g, h)

ν(g, hk)ν(h, k)
(3.2)

for some function ν : G × G → U (1). We will see that the
output of our procedure is a cocycle ω, which is uniquely
defined up to multiplication by a coboundary Eq. (3.2); in this
way, our procedure produces an element of H3(G,U (1)).

With this background, we now move on to explain our
procedure. The first step in our procedure is to choose an
(edge) Hamiltonian H that acts within the Hilbert space H.
The Hamiltonian H can be arbitrary as long as it has three
properties: (i) H is local, i.e.„ H is built out of the local
operators {O} from Sec. II, (ii) H has an energy gap, and (iii)
H breaks the G symmetry spontaneously and completely.3

An important aspect of the Hamiltonian H is that it has
multiple degenerate ground states due to the spontaneously
broken symmetry. More specifically, H has |G| degenerate,
short-range correlated ground states, which are permuted
amongst themselves by the symmetry transformations. These
ground states can be naturally labeled by group elements,
g ∈ G. To do this, we pick one of the degenerate ground states
and denote it by |�; 1〉. We then label the other states by
{|�; g〉}, where |�; g〉 is defined by

|�; g〉 = U g|�; 1〉. (3.3)

By construction, U g|�; h〉 = |�; gh〉.
Having found the ground states of H , the next step in our

procedure is to construct domain-wall excitations. We give
a precise definition of domain-wall excitations in Sec. III B
but, roughly speaking, a domain-wall excitation is a state in
H that looks like one ground state |�; g〉 to the left of some
point x, and like another ground state |�; h〉 to the right of x,
and that interpolates between the two ground states in some
arbitrary way in the vicinity of x (Fig. 2). Like the ground
states, these domain-wall excitations can be naturally labeled
by group elements: In particular, we will label a domain
wall with the above structure with the group element g−1h.
An important property of this labeling is that it is invariant
under any global symmetry transformation U k: under such
a transformation, |�; g〉 → |�; kg〉 and |�; h〉 → |�; kh〉, so
g−1h → (kg)−1(kh) = g−1h.

3Actually, such a Hamiltonian is not strictly necessary for our pro-
cedure: all we really need is a single (edge) state |�〉 that explicitly
breaks all symmetries. See Sec. VII for more details.

FIG. 3. Space-time diagram of fusion of a g and h domain wall
into a gh domain wall. The initial state consists of three different
ground states |�; 1〉, |�; g〉, |�; gh〉 in three different regions, sep-
arated by domain walls g, h. During the fusion process, the |�; g〉
region disappears and we are left only with the |�; 1〉, |�; gh〉 re-
gions separated by a gh domain wall. Reversing the arrow of time
corresponds to a splitting operation.

Like other topological defects, domain walls cannot be
created or annihilated individually. Instead, the most basic
process that one can perform on domain walls is to combine
them together in a process called fusion: If one has a g-type
domain wall located nearby and to the left of an h-type domain
wall, then one can convert this pair of domain walls into
a single gh-type domain wall by applying a local operator
acting on both domain walls. This process is shown in Fig. 3.
Alternatively, one can perform the reverse (splitting) process
and apply a local operator that turns a gh-type domain wall
into a g-type domain wall to the left of an h-type domain wall.

This ability to fuse or split domain walls allows us to
define an F symbol for these excitations. The F symbol is
usually discussed in the context of 2D anyon theories [28,29],
but it is a more general concept that can be defined for any
pointlike mobile defects. In particular, we can sensibly define
an F symbol for domain walls in 1D edge theories. The basic
idea is to consider two different physical processes in which
a domain wall of type ghk splits into three domain walls of
types g, h, k (Fig. 4). In one process, ghk splits into gh and k,
and then gh splits into g and h; in the other process, ghk splits
into g and hk and then hk splits into h and k. By construction,
the final states |1〉, |2〉 produced by these processes contain
the same domain walls, g, h, k, at the same three positions.
Therefore, the two final states |1〉, |2〉 must be the same up

FIG. 4. Space-time diagrams for two processes in which a do-
main wall ghk splits into domain walls g, h, k. The final states,
|1〉, |2〉, are equal up to the U (1) phase, F (g, h, k).
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FIG. 5. The pentagon identity: Consistency requires that the
product of the three F symbols on the upper path is equal to the
product of the two F symbols on the lower path.

to a phase. The F symbol, F (g, h, k), is the phase difference
between the two states:

|1〉 = F (g, h, k)|2〉. (3.4)

The final step in our procedure is to compute this F sym-
bol for domain-wall excitations. This F symbol defines our
cocycle ω ∈ H3(G,U (1)):

ω(g, h, k) ≡ F (g, h, k). (3.5)

To justify Eq. (3.5), we need to explain why F (g, h, k) is
an element of H3(G,U (1)). This follows from two important
properties of F which we prove in Sec. III C. The first prop-
erty is that F satisfies a nontrivial constraint, known as the
pentagon identity:

F (g, h, k)F (g, hk, l )F (h, k, l ) = F (gh, k, l )F (g, h, kl ).
(3.6)

To understand the origin of this identity, consider the five
processes shown in Fig. 5. Notice that the final states produced
by these processes, namely, {|1〉, ..., |5〉}, are all the same up
to a phase. We can compute the phase difference between
states |1〉 and |5〉 in two different ways. In the first way, we
compute the relative phases between (|1〉, |2〉), (|2〉, |3〉), and
(|3〉, |5〉) using Eq. (3.4); in the second way, we compute the
relative phases between (|1〉, |4〉) and (|4〉, |5〉). Demanding
consistency between the two calculations gives the pentagon
identity Eq. (3.6).

The second property of F is that is has an inherent ambi-
guity: it is only well-defined up to transformations of the form

F (g, h, k) → F (g, h, k)
ν(gh, k)ν(g, h)

ν(g, hk)ν(h, k)
, (3.7)

where ν(g, h) ∈ U (1). To understand where this ambiguity
comes from, it is helpful to think about the physical processes
in Fig. 4 as being implemented by a sequence of two splitting
operators applied to an initial state |ghk1〉. The key point
is that the phases of these splitting operators are arbitrary.
If we multiply the four splitting operators by four phases,
ν(gh, k), ν(g, h), ν(g, hk), ν(h, k), this changes F by exactly
the above transformation Eq. (3.7). We will call the transfor-
mations in Eq. (3.7) gauge transformations.

Comparing the above properties of F to the definition of
H3(G,U (1)), we can see that the pentagon identity Eq. (3.6) is

identical to the cocycle condition Eq. (3.1), while the ambigu-
ity Eq. (3.7) is equivalent to the equivalence relation Eq. (3.2)
on cocycles. Hence, F is naturally an element of H3(G,U (1)),
as we claimed earlier.

B. Microscopic definition of F symbol for domain walls

In this section, we give precise, operational definitions of
domain-wall states and their associated F symbols. These
definitions are essential for making our procedure a useful
calculational tool; they are also important for putting our
procedure on a firm foundation. We note that these definitions
closely parallel the microscopic definition of the anyonic F
symbol that was given in Ref. [26] in the context of anyon
theories.

To begin, let � be a distance that is much greater than the
correlation length ξ of the system. The length scale � will play
an important role in the following discussion. In particular, we
will only consider states in which domain-wall excitations are
separated by distances of at least �, and we will neglect finite
size effects of order e−�/ξ .

We define domain-wall states as follows. For each point x
on the edge, we choose a state that has the same expectation
values as |�; 1〉 for local operators {O} supported to the left
of x − � and the same expectation values as |�; g〉 for local
operators {O} to the right of x + �. We denote this state by
|gx〉. In our language, the state |gx〉 describes a single domain
wall of type g at position x. Note that the definition of |gx〉
involves an arbitrary choice of a state: we will show that our
results do not depend on this choice.

Next, for each domain-wall state |gx〉, we define a collec-
tion of symmetry partner states |gx; h〉, with h ∈ G, by

|gx; h〉 = U h|gx〉. (3.8)

By construction, |gx; h〉 has the same expectation values as
|�; h〉 for local operators supported to the left of x − � and the
same expectation values as |�; hg〉 for local operators to the
right of x + �.

We now introduce multidomain-wall states. Let x1 < x2

< ... < xn be well-separated (i.e., having a spacing of at least
�) and pick group elements g(1), g(2), ..., g(n) ∈ G. We will
use the notation |g(1)

x1
, g(2)

x2
, ...〉 to denote the multidomain-wall

state that has a domain wall of type g(i) at each location xi

and that has the same expectation values as |�; 1〉 for local
operators supported to the left of all the domain walls. More
precisely, we define |g(1)

x1
, g(2)

x2
, ...〉 to be the unique state with

the following two properties: first, for any local operator O
supported near one domain wall xi,〈

g(1)
x1

, g(2)
x2

, ...
∣∣O∣∣g(1)

x1
, g(2)

x2
, ...

〉 = 〈
g(i)

xi
; gL

∣∣O∣∣g(i)
xi

; gL
〉
, (3.9)

where gL is the product of all domain-wall types to the left
of O:

gL = g(1) · · · g(i−1). (3.10)

Second, for any operator O supported away from the domain
walls,〈

g(1)
x1

, g(2)
x2

, ...
∣∣O∣∣g(1)

x1
, g(2)

x2
, ...

〉 = 〈�; gL|O|�; gL〉, (3.11)

where gL is again the product of domain wall types to the left
of O. These two properties imply that multidomain-wall states
have a structure like that in Fig. 6.

115156-4



ANOMALIES IN BOSONIC SYMMETRY-PROTECTED … PHYSICAL REVIEW B 104, 115156 (2021)

FIG. 6. A multidomain-wall state |gx, hx′ , kx′′ 〉 consisting of a
g-type, h-type, and k-type domain wall at positions x, x′, x′′. The do-
main walls separate four regions which share the same local expecta-
tion values as the four ground states |�; 1〉, |�; g〉, |�; gh〉, |�; ghk〉.

An important corollary of Eq. (3.9), which we will need
below, is that for any operator O that is supported near a do-
main wall g at point x and is invariant under all the symmetries
(i.e., U hO(U h)−1 = O), the following identity holds:

〈..., gx, ...|O|..., gx, ...〉 = 〈gx|O|gx〉. (3.12)

Now that we have fixed our definitions of domain-wall
states, the next step is to define movement operators for these
domain walls. Given any group element g ∈ G, and any pair
of points, x, x′, we say that Mg

x′x is a movement operator if it
satisfies three conditions: (i) Mg

x′x obeys

Mg
x′x|gx〉 ∝ |gx′ 〉, (3.13)

where the proportionality constant is a U (1) phase; (ii) Mg
x′x is

invariant under all the symmetries, i.e.,

U hMg
x′x(U h)−1 = Mg

x′x, (3.14)

and (iii) Mg
x′x is local in the sense that it is supported in the

neighborhood of the interval containing x, x′.
Here, the symmetry condition Eq. (3.14) is important be-

cause it guarantees that the analog of Eq. (3.13) holds for any
(single) domain-wall state |gx; h〉:

Mg
x′x|gx; h〉 ∝ |gx′ ; h〉. (3.15)

Likewise, the locality condition is important because it
guarantees that the analog of Eq. (3.13) holds for any
multidomain-wall state of the form |..., gx, ...〉, that is,

Mg
x′x|..., gx, ...〉 ∝ |..., gx′ , ...〉, (3.16)

as long as the other domain walls in |..., gx, ...〉 are well-
separated from the interval containing x and x′. Again, the
constant of proportionality is a U (1) phase.

To derive Eq. (3.16) from Eq. (3.13), consider the ex-
pectation value of any local operator, O, supported in the
neighborhood of [x, x′] (or [x′, x] if x′ < x), in the two states
|..., gx′ , ...〉 and Mg

x′x|..., gx, ...〉. Using Eqs. (3.9) and (3.15),
we can see that O has the same expectation value in the two
states, |..., gx′ , ...〉 and Mg

x′x|..., gx, ...〉:
〈..., gx′ , ...|O|..., gx′ , ...〉

= 〈gx′ ; gL|O|gx′ ; gL〉
= 〈gx; gL|(Mg

x′x

)†
OMg

x′x|gx; gL〉
= 〈..., gx, ...|

(
Mg

x′x

)†
OMg

x′x|..., gx, ...〉. (3.17)

The two states, |..., gx′ , ...〉 and Mg
x′x|..., gx, ...〉, also share

the same expectation values for local operators supported
away from the interval [x, x′] (or [x′, x]) by virtue of the
short-ranged correlations of these states. Therefore, by the
uniqueness property of our domain-wall states, we obtain
Eq. (3.16).

FIG. 7. The two processes that are compared in the microscopic
definition of the domain-wall F symbol. Starting from an initial state
|ghk1〉, movement and splitting operators are applied sequentially to
obtain final states |1〉 and |2〉 on the left and right, respectively. States
|1〉, |2〉 are both proportional to |g0, h1, k3〉. The x axis is the position
on the edge and the t axis shows operator ordering.

In addition to the movement operators, we also define split-
ting operators for our domain walls. Fix two well-separated
points on the line, which we will call 1 and 2. For any pair of
domain walls g, h, we say that S(g, h) is a splitting operator if
it satisfies three conditions: (i) S(g, h) satisfies

S(g, h)|gh1〉 ∝ |g1, h2〉, (3.18)

where the proportionality constant is a U (1) phase, (ii) S(g, h)
is invariant under all the symmetries U k , and (iii) S(g, h) is
supported in the neighborhood of the interval [1,2].

Just as before, it can be shown that these conditions
guarantee that the splitting operators can be applied to any
multidomain-wall state of the form |..., gh1, ...〉 provided that
the other domain walls are located far from the interval,

S(g, h)|..., gh1, ...〉 ∝ |..., g1, h2, ...〉, (3.19)

where the proportionality constant is a U (1) phase. Note that,
unlike the movement operators, we only define splitting oper-
ators that act on a single interval [1,2] on the x axis.

With this setup, we are now ready to define the F symbol.
The first step is to fix some choice of domain-wall states,
|gx〉, and some choice of movement and splitting operators,
Mg

x′x, S(g, h). Next, consider the initial state |ghk1〉, i.e., the
state with a single domain wall ghk at position 1. We then
apply two different sequences of movement and splitting op-
erators to |ghk1〉, denoting the final states by |1〉 and |2〉:

|1〉 = Mh
12Mg

01S(g, h)Mk
32S(gh, k)|ghk1〉,

|2〉 = Mk
32S(h, k)Mhk

12 Mg
01S(g, hk)|ghk1〉. (3.20)

These two processes are shown in Fig. 7. By construction,
the final states |1〉, |2〉 produced by these processes both
contain domain walls g, h, k at positions 0, 1, 3, respectively.
In particular, this means that |1〉, |2〉 are the same up to a
phase. We define the F symbol, F (g, h, k), to be this phase
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difference:

F (g, h, k) = 〈2|1〉. (3.21)

C. Checking the microscopic definition

To show that our microscopic definition is correct, we
need to establish two properties of F : (i) F is well-defined
in the sense that different choices of domain wall states and
movement and splitting operators give the same F up to a
gauge transformation Eq. (3.7) and (ii) F obeys the pentagon
identity Eq. (3.6). We prove property (ii) in Appendix; the goal
of this section is to prove property (i).

As a warm-up, let us see how F transforms if we only
change the phase of the movement and splitting operators.
That is, suppose we replace

Mg
x′x → eiθx′x (g)Mg

x′x, S(g, h) → eiφ(g,h)S(g, h) (3.22)

for some real-valued θ, φ. Substituting these transformations
into Eqs. (3.20) and (3.21) gives

F (g, h, k) → F (g, h, k)
eiφ(gh,k)eiφ(g,h)eiθ12(h)

eiφ(g,hk)eiφ(h,k)eiθ12(hk)
. (3.23)

Crucially, this transformation is identical to a coboundary
transformation Eq. (3.7) with

ν(g, h) = ei[φ(g,h)+θ12(h)]. (3.24)

This is exactly what we want: different phase choices lead to
the same F , up to a coboundary, or gauge transformation.

With this warm-up, we are now ready to consider the
general case where we change the movement and splitting
operators in an arbitrary way:

Mg
x′x → M ′g

x′x, S(g, h) → S′(g, h). (3.25)

To analyze this case, we note that the definition of movement
and splitting operators implies that

M ′g
x′x|gx〉 = eiθx′x (g)Mg

x′x|gx〉,
S′(g, h)|gh1〉 = eiφ(g,h)S(g, h)|gh1〉 (3.26)

for some real valued θx′x(g) and φ(g, h). Likewise, for
multidomain-wall states,

M ′g
x′x|..., gx, ...〉 = ω1 · Mg

x′x|..., gx, ...〉, (3.27)

S′(g, h)|..., gh1, ...〉 = ω2 · S(g, h)|..., gh1, ...〉 (3.28)

for some U (1) phases ω1, ω2.
To proceed further, we need to find the relationship be-

tween the multidomain-wall phases ω1, ω2 and the single
domain-wall phases eiθx and eiφ(g,h). To do this, we multiply
the two sides of Eq. (3.27) by 〈..., gx, ...|(Mg

x′x )† and then use
property Eq. (3.12) to derive

ω1 = 〈..., gx, ...|
(
Mg

x′x

)†
M ′g

x′x|..., gx, ...〉
= 〈gx|

(
Mg

x′x

)†
M ′g

x′x|gx〉 = eiθx′x (g). (3.29)

By the same reasoning, ω2 = eiφ(g,h). We conclude that

M ′g
x′x|..., gx, ...〉 = eiθx′x (g)Mg

x′x|..., gx, ...〉,
S′(g, h)|..., gh1, ...〉 = eiφ(g,h)S(g, h)|..., gh1, ...〉. (3.30)

We are now finished: substituting the above relations
Eqs. (3.30) into Eqs. (3.20), we again see that F changes by a
gauge transformation with ν given by Eq. (3.24).

So far, we have shown that different choices of movement
and splitting operators lead to the same F , up to a gauge
transformation. Next, we need to check that different choices
of edge Hamiltonians and domain-wall states also lead to the
same F , up to a gauge transformation. To investigate this
issue, consider two choices of edge Hamiltonians, H and H ′,
with ground states {|�; g〉} and {|�; g〉′}, respectively. It seems
reasonable to assume that H and H ′ can be adiabatically
connected, i.e., there exists an interpolating Hamiltonian Hs,
with 0 � s � 1 with H0 = H and H1 = H ′ such that Hs is
local, gapped, and breaks the G symmetry spontaneously and
completely. Assuming the existence of such an interpolation,
it then follows from the quasiadiabatic continuation construc-
tion [30] that there exists a G invariant, locality preserving
unitary transformation W that connects the two sets of ground
states, that is,

{|�; g〉′} = {W |�; g〉}. (3.31)

Here, when we say W is locality preserving, we mean that
it has the following property: For any local operator O, the
operator W OW −1 is also local and is supported near O.

Comparing Eq. (3.31) with our labeling scheme Eq. (3.3),
we deduce that the two sets of ground states are related by

|�; g〉′ = WU k|�; g〉 (3.32)

for some k ∈ G.
Next, consider the implications of Eq. (3.32) for do-

main wall states. Applying WU k to a multidomain-wall
state |g(1)

x1
, g(2)

x2
, g(3)

x3
, ...〉 for H , we see that the state

WU k|g(1)
x1

, g(2)
x2

, g(3)
x3

, ...〉 is a valid multidomain-wall state for
H ′. Let us compare this state to the primed domain-wall state,
which we denote by |g(1)

x1
, g(2)

x2
, g(3)

x3
, ...〉′. There is no reason

that the two states must agree microscopically, but it is reason-
able to assume that they can be transformed into one another
by a G-invariant locality preserving unitary. Assuming this
is the case, it follows that there exists a G-invariant locality
preserving unitary V such that

∣∣g(1)
x1

, g(2)
x2

, g(3)
x3

, ...
〉′ = VU k

∣∣g(1)
x1

, g(2)
x2

, g(3)
x3

, ...
〉
. (3.33)

With Eq. (3.33), we are now in a position to compare the F
symbols for the two choices of domain-wall states. First, we
observe that we are free to choose the movement and splitting
operators for the states |g(1)

x1
, g(2)

x2
, g(3)

x3
, ...〉′ however we like,

changing F by, at most, a gauge transformation. The simplest
choice that is consistent with Eq. (3.33) is

M ′g
x′x = V Mg

x′xV
−1, S′(g, h) = V S(g, h)V −1. (3.34)

With this choice, it is clear that |1′〉 = VU k|1〉, and |2′〉 =
VU k|2〉. It follows that F ′ = 〈2′|1′〉 = 〈2|1〉 = F . Thus, we
conclude that F doesn’t depend on the choice of the edge
Hamiltonian or the choice of domain-wall states. This com-
pletes the proof of property (i) above.
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IV. EXAMPLES WITH DISCRETE UNITARY
SYMMETRIES

In this section, we present several examples illustrating
our method of calculating anomalies in bosonic SPT edge
theories.

A. Lattice edge theory for Z2 SPT phase

We start with one of the simplest nontrivial examples:
a lattice edge theory for the bosonic SPT phase with sym-
metry group G = Z2. This edge theory was introduced in
Refs. [13,14].

1. Edge theory

We begin by reviewing the structure of the edge theory. As
explained in Sec. II, an edge theory consists of three pieces
of data: (1) a Hilbert space H, (2) a set of local operators {O}
that act in H, and (3) a collection of symmetry transformations
{U g : g ∈ G} acting within H.

The Hilbert space H for the Z2 SPT edge theory
couldn’t be simpler: the Hilbert space is equivalent to a
one-dimensional spin-1/2 chain, with spins living on inte-
ger lattice sites n ∈ Z. A complete orthonomal basis for this
Hilbert space can be obtained by considering σ z eigenstates
of the form

|..., α−1, α0, α1, ...〉, αn ∈ {+,−}, (4.1)

where

σ z
n |..., α−1, α0, α1, ...〉 = αn|..., α−1, α0, α1, ...〉. (4.2)

The local operators {O} in the Z2 SPT edge theory are the
usual local operators in a spin-1/2 chain, namely, products
of Pauli spin operators {σ x

n , σ
y
n , σ z

n } acting on a collection of
nearby lattice sites.

We now move on to the symmetry transformations U g.
Denoting the symmetry group by Z2 = {1, s}, we only need
to discuss the symmetry operator U s, since U 1 = 1. Denoting
U s ≡ U for brevity, we can describe the symmetry operator U
by how it acts on the Pauli spin operators [14]:

Uσ x
j U −1 = −σ z

j−1σ
x
j σ

z
j+1,

Uσ
y
j U

−1 = σ z
j−1σ

y
j σ

z
j+1,

Uσ z
j U

−1 = −σ z
j . (4.3)

We can also write down an explicit formula for U [14]:

U = −
∏

j

i
1−σ z

j σ z
j+1

2

∏
j

σ x
j . (4.4)

Note that we will not need the above formula Eq. (4.4) to
compute the anomaly: Our approach only requires knowing
the transformation laws for local operators Eq. (4.3).

2. Calculating the anomaly

We now proceed to compute the anomaly associated
with the edge theory described above. As we explained in
Sec. III A, the first step in calculating the anomaly is to choose
a gapped (edge) Hamiltonian that breaks the Z2 symmetry

spontaneously and completely. We use an Ising Hamiltonian

H = −J
∑

i

σ z
i σ z

i+1, (4.5)

with J > 0.
To see that this Hamiltonian spontaneously breaks the sym-

metry note that σ z is odd under the symmetry Eq. (4.4) and
has a nonzero expectation value in the two degenerate ground
states |+,+, ...,+〉 and |−,−, ...,−〉. Following the notation
in Sec. III A. we denote these ground states by

|�; 1〉 = |+,+, ...,+〉, |�; s〉 = |−,−, ...,−〉. (4.6)

The next step is to define domain-wall states. Since the
symmetry group is Z2, there is only one nontrivial domain
wall state that we need to construct. Denoting this state by
|sn〉, where n is the location of the domain wall, we define

|sn〉 = |...,+,+, (+)n,−,−,−, ...〉. (4.7)

Here we use the notation (+)n to indicate that the correspond-
ing + is the state of the nth spin, so the – that follows is
the state of the (n + 1)st spin. Notice that Eq. (4.7) implies
a particular convention for labeling domain wall locations:
a domain wall is at position n if the nth and (n + 1)st spins
are antialigned. (This will also hold for the multidomain-wall
states.) Likewise, we define the trivial or no-domain wall state
|1n〉 in the obvious way:

|1n〉 = |...,+, (+)n,+, ...〉. (4.8)

Next we construct movement and splitting operators for
these domain walls. We will start by constructing the move-
ment operators. We define the movement operator between n
and n + 1 by

Ms
(n+1)n = σ+

n+1 + Uσ+
n+1U

−1 = σ+
n+1 − σ z

nσ−
n+1σ

z
n+2, (4.9)

where the second equality follows from Eq. (4.3). Let us check
that Ms

(n+1)n obeys all the required conditions, i.e., Ms
(n+1)n is

local, Z2 symmetric, and has the correct action on domain
walls. Locality and Z2 symmetry are obvious since Ms

(n+1)n
is explicitly symmetrized. As for the action on domain walls,
this is easy to verify:

Ms
(n+1)n|sn〉 = σ+

n+1|...,+,+, (+)n,−,−,−, ...〉
= |...,+,+, (+)n,+,−,−, ...〉
= |sn+1〉. (4.10)

We define the reverse movement operator in a similar fashion:

Ms
n(n+1) = (

Ms
(n+1)n

)† = σ−
n+1 − σ z

nσ+
n+1σ

z
n+2. (4.11)

As for the splitting operators, we define S(s, s) as

S(s, s) = σ−
2 + Uσ−

2 U −1 = σ−
2 − σ z

1σ+
2 σ z

3 . (4.12)

Again let us check that S(s, s) is a valid splitting operator.
Clearly, S(s, s) is local and Z2 symmetric. To see that it has
the correct action on domain walls, note that

S(s, s)|11〉 = σ−
2 |..., (+)1,+,+, ...〉

= |..., (+)1,−,+, ...〉
∝ |s1, s2〉, (4.13)
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where |s1, s2〉 denotes the state with two domain walls at
positions 1 and 2.

Moving on to the other splitting operators, we define
S(1, s) as

S(1, s) = Ms
21 = σ+

2 − σ z
1σ−

2 σ z
3 . (4.14)

Also, we define the movement operator M1
n′n and the splitting

operators S(s, 1), S(1, 1) as

M1
n′n = S(s, 1) = S(1, 1) = 1. (4.15)

(The reason we can set these operators equal to the identity
is that none of these operators are supposed to change the
location of any nontrivial domain walls, e.g., S(s, 1) is defined
by the condition S(s, 1)|s1〉 = |s1, 12〉, and similarly for the
other operators).

With these operator definitions in place, we are now ready
to calculate F (s, s, s). Using Eqs. (3.20), we have

|1〉 = Ms
12Ms

01S(s, s)Ms
32S(1, s)|s1〉. (4.16)

We now simplify this expression, working from right to left.
First, we note that

S(1, s)|s1〉 = (
σ+

2 − σ z
1σ−

2 σ z
3

)|s1〉 = σ+
2 |s1〉

since σ z
1σ−

2 σ z
3 |s1〉 = 0. Likewise,

Ms
32σ

+
2 |s1〉 = σ+

3 σ+
2 |s1〉

since the second term in Ms
32, i.e., (−σ z

2σ−
3 σ z

4 ), annihilates
σ+

2 |s1〉. Proceeding in this way, we can drop either the first or
second term in each of the movement and splitting operators.
The final result is

|1〉 = ( − σ z
1σ+

2 σ z
3

)
σ−

1 σ−
2 σ+

3 σ+
2 |s1〉

= |...,+, (−)1,+,+,−, ...〉, (4.17)

where the second equality follows from |s1〉 =
|...,+, (+)1,−,−,−, ...〉. Following the same logic, we
obtain

|2〉 = Ms
32S(s, s)M1

12Ms
01S(s, 1)|s1〉

= σ+
3

( − σ z
1σ+

2 σ z
3

)
σ−

1 |s1〉
= −|...,+, (−)1,+,+,−, ...〉. (4.18)

Comparing these two expressions, we see that |1〉 = −|2〉,
so

F (s, s, s) = 〈2|1〉 = −1. (4.19)

More generally, one can check that all other values of F are
1 for this model, i.e., F (g, h, k) = 1 for all other choices of
g, h, k ∈ {1, s}.

Having computed F , the next question is to determine
whether F corresponds to a trivial or nontrivial cocycle, i.e.,
a trivial or nontrivial element of H3(G,U (1)) = Z2. To an-
swer this question, we compute the following gauge invariant
quantity:

F (s, s, s)F (s, 1, s) = −1. (4.20)

Since this quantity is different from 1, it follows that F is
a nontrivial cocycle. We conclude that our edge theory de-
scribes the boundary of the nontrivial bosonic SPT phase with

Z2 symmetry. This conclusion is consistent with the original
microscopic derivation of this edge theory [13,14].

B. Chiral boson edge theory for Z2 SPT phase

We now present an example involving a continuum edge
theory for the Z2 bosonic SPT phase (the same SPT phase as
in the previous example). This edge theory was introduced in
Ref. [14].

1. Edge theory

We begin by reviewing the continuum Z2 SPT edge theory.
This edge theory is a chiral boson edge theory consisting of
two conjugate fields θ, φ obeying the commutation relations

[θ (x), ∂yφ(y)] = 2π iδ(x − y), (4.21)

with all other commutators vanishing.
Again, to define the edge theory, we need to specify three

pieces of data: (1) a Hilbert space H, (2) a set of local op-
erators {O} that act in H, and (3) a collection of symmetry
transformations {U g : g ∈ G} acting within H. The Hilbert
space H is the usual infinite dimensional representation of the
above algebra Eq. (4.21). The local operators {O} in this edge
theory consist of arbitrary derivatives and/or products of the
operators {e±iθ , e±iφ}.

To complete the edge theory, we need to specify the Z2

symmetry transformation, U ≡ U s, where Z2 = {1, s}. This
transformation acts as [14]

UθU −1 = θ − π,

UφU −1 = φ − π. (4.22)

We can see that this is a Z2 symmetry since the fields θ, φ are
only defined modulo 2π .

We can also write out an explicit formula for U , though we
will not need it for our computation below [14]:

U = e− i
2

∫ ∞
−∞ dy[∂yθ (y)+∂yφ(y)]. (4.23)

2. Calculating the anomaly

We now proceed to calculate the anomaly in the above edge
theory. The first step is to choose a gapped Hamiltonian that
breaks the Z2 symmetry spontaneously and completely. We
will use the Hamiltonian

H = H0 −
∫

dxV cos(2θ ), (4.24)

where H0 is the usual free boson Hamiltonian,

H0 =
∫

dx
1

4π
[vθ (∂xθ )2 + vφ (∂xφ)2],

for some velocities vθ , vφ > 0.
When V is sufficiently large, the above Hamiltonian H has

all the required properties. In that regime, the cosine term
locks θ to one of two values: θ = 0 and θ = π , spontaneously
breaking the Z2 symmetry Eq. (4.22) and opening up an
energy gap.

For simplicity, we will consider the limit V → ∞ in what
follows. In this limit, the two ground states of H are eigen-
states of eiθ (x). Following our standard labeling scheme, we
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denote these ground states by |�; 1〉 and |�; s〉, where

eiθ (x)|�; 1〉 = |�; 1〉, eiθ (x)|�; s〉 = −|�; s〉 (4.25)

for all x.
The next step is to construct domain-wall states |sx〉 that

interpolate spatially between the two ground states, |�; 1〉 and
|�; s〉. We define |sx〉 by

|sx〉 = a†
x |�; 1〉, (4.26)

where

a†
x = e− i

2

∫ ∞
x dy ∂yφ(y). (4.27)

Here a†
x is a (nonlocal) creation operator for a domain wall at

position x. To see that |sx〉 is a valid domain-wall state, note
that |sx〉 obeys

eiθ (x′ )|sx〉 = sgn(x − x′)|sx〉. (4.28)

(This follows from the fact that a†
x anticommutes with eiθ (x′ )

for x′ > x). Likewise, we define the no-domain wall state |1x〉
to be |1x〉 = |�; 1〉.

Now that we have defined domain-wall states, the next
step is to construct movement and splitting operators for these
domain walls. First, we define the movement operator Ms

x′x by

Ms
x′x = e

i
2

∫ x′
x dy ∂yφ(y). (4.29)

This is a valid movement operator because it is local and Z2

symmetric and it obeys Ms
x′x|sx〉 ∝ |sx′ 〉 since Ms

x′xa†
x ∝ a†

x′ .
Next, we define the splitting operator S(s, s) by

S(s, s) = Ms
21ei[φ(1)−θ (1− )]

= e
i
2

∫ 2
1 dy ∂yφ(y)ei[φ(1)−θ (1− )]. (4.30)

Here, θ (1−) is shorthand for θ (1 − ε), where ε is a small
positive number.

To see that this is a valid splitting operator, note that S(s, s)
is local, it is Z2 symmetric, and furthermore

S(s, s)|11〉 = e
i
2

∫ 2
1 dy ∂yφ(y)ei[φ(1)−θ (1− )]|�; 1〉

∝ e
i
2

∫ 2
1 dy ∂yφ(y)eiφ(1))|�; 1〉

∝ a†
2a†

1|�; 1〉
∝ |s1, s2〉. (4.31)

Here, the second equality follows from e−iθ (1− )|�; 1〉 =
|�; 1〉, while the third equality follows from the definition of
a†

x Eq. (4.27). Readers may wonder why we include the factor
of e−iθ (1− ) in the definition S(s, s) given that e−iθ (1− ) acts triv-
ially on |�; 1〉: the reason for including this factor of e−iθ (1− )

is that, without it, S(s, s) would be odd, not even, under the Z2

symmetry. Furthermore, the reason that we use e−iθ (1− ) rather
than, say, e−iθ (1) is that this choice will regularize some of the
commutators that we calculate below. (We could equally well
choose e−iθ (1+ ) and we would arrive at the same result.)

Moving on to the other splitting operators, we define

S(1, s) = Ms
21. (4.32)

Also, we define

M1
x′x = S(s, 1) = S(1, 1) = 1. (4.33)

With these operators in hand, we are now ready to compute
F (s, s, s). Using Eqs. (3.20), we have

|1〉 = Ms
12Ms

01Ms
21ei[φ(1)−θ (1− )]Ms

32Ms
21|s1〉,

|2〉 = Ms
32Ms

21ei[φ(1)−θ (1− )]Ms
01|s1〉. (4.34)

To compare these expressions, we need to reorder the
operators within them. We do this using the following
commutation relations, which can be derived from the Baker-
Campbell-Hausdorff formula:

ei[φ(1)−θ (1− )]Ms
x1 = (−1)�(1−x)Ms

x1ei[φ(1)−θ (1− )]

[
Ms

x′x, Ms
y′y

] = 0, (4.35)

where �(x) denotes the Heaviside step function. With these
formulas and the identity Ms

xx′ = (Ms
x′x )−1, we can rewrite |1〉

as

|1〉 = −Ms
32Ms

21ei[φ(1)−θ (1− )]Ms
01|s1〉. (4.36)

Therefore, |1〉 = −|2〉 and hence

F (s, s, s) = 〈2|1〉 = −1. (4.37)

In the same way, one can check that all other values of F are
1 for this model, i.e., F (g, h, k) = 1, for all other choices of
g, h, k ∈ {1, s}.

Comparing with the previous example, we see that the
two F ’s are identical. Therefore, just as in that example, we
conclude that F is a nontrivial cocycle and the corresponding
edge theory describes the boundary of the nontrivial Z2 SPT
phase. This result is consistent with the original derivation of
this edge theory [14].

C. SPT lattice edge theory with symmetry group G

We now generalize the example in Sec. IV A to a large class
of lattice edge theories with a finite unitary symmetry group
G. A similar class of edge theories was studied in Ref. [15]
and we will mostly follow their notation here.

1. Edge theory

As before, to define the edge theory, we need to specify
three pieces of data: (1) a Hilbert space H, (2) a set of local
operators {O} that act in H, and (3) a collection of symmetry
transformations {U g : g ∈ G} acting within H.

We begin by describing the Hilbert space H. This Hilbert
space is equivalent to a one-dimensional spin chain where
each spin can be in |G| different states. We label these states
by group elements, |g〉, g ∈ G. In this notation, the basis states
for the Hilbert space are of the form

|..., α−1, α0, α1, ...〉, αn ∈ G. (4.38)

The local operators {O} in this edge theory are the usual local
operators in a spin chain – i.e., products of single site opera-
tors acting on a collection of neighboring sites. In particular,
there are two basic types of single site operators from which
all other operators can be built. The first operator, Pg

n , is a
projection operator that projects onto states with αn = g, i.e.,

Pg
n |..., αn−1, αn, αn+1, ...〉 = δαn,g|..., αn−1, g, αn+1, ...〉

(4.39)
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The second operator, Rg
n is a unitary operator that performs

right multiplication by g on the nth spin:

Rg
n|..., αn−1, αn, αn+1, ...〉 = |..., αn−1, αng, αn+1, ...〉.

(4.40)

To complete the edge theory, we need to describe the
symmetry transformations U g. We start by writing down an
explicit formula for U g. This formula is a product of two
terms:

U g = NgX g, (4.41)

where X g acts by left multiplication by g on every site,

X g|..., α−1, α0, α1, ...〉 = |..., gα−1, gα0, gα1, ...〉, (4.42)

while Ng is a phase factor that is diagonal in the |α〉 basis:

Ng|α〉 = eiN (1) (g)[α]|α〉. (4.43)

Here we are using the abbreviation |α〉 ≡ |..., α−1, α0, α1, ...〉.
The term in the exponent, N (1)(g), is a functional of the
configuration α of the form

N (1)(g)[α] =
∑

n

�g
n(αn−1, αn, αn+1) (4.44)

for some real valued �
g
n that depends on triplets of neigh-

boring spins. We note that the above functional form is not
essential for our method—we could equally well consider
generalizations of �

g
n that act on any finite number of nearby

spins.
An alternative, and more local, way to describe the symme-

try transformations U g is to specify how these transformations
act on local operators—specifically, Ph

n and Rh
n. In this descrip-

tion, the symmetry transformation is defined by

U gPh
n (U g)−1 = Pgh

n , U gRh
n(U g)−1 = Rh

nW g,h
n , (4.45)

where W g,h
n is an unitary operator of the form

W g,h
n =

∑
a,b,c∈G

�g,h
n (a, b, c)Pa

n−1Pb
n Pc

n+1 (4.46)

and where �
g,h
n (a, b, c) is a U (1) phase. (Again, our method

does not require this particular functional form of �
g,h
n and we

could consider generalizations that act on any finite number of
nearby spins). In the calculation that follows, we only use the
latter, more local, description of the symmetry transformation
given in Eqs. (4.45) and (4.46).

2. Calculating the anomaly

The first step is to choose an edge Hamiltonian that breaks
the G symmetry spontaneously and completely. We choose

H = −J
∑

n

∑
g

Pg
n Pg

n+1. (4.47)

Note that H has a ferromagnetic interaction that favors states
in which neighboring spins are in the same state |g〉. As a
result, it is easy to see that this Hamiltonian has |G| degenerate
ground states of the form |..., g, g, g, ...〉, where g ∈ G. We will
label these states by

|�; g〉 = |..., g, g, g, ...〉. (4.48)

We now turn to the definition of the domain-wall state |gn〉.
We define |gn〉 by

|gn〉 = |..., 1, 1, (1)n, g, g, g, ...〉. (4.49)

Here the notation (1)n signifies that this 1 is the state of the
nth spin, so the g that follows is the state of the (n + 1)st spin
and so on. Similarly to Sec. IV A, the domain wall at location
n sits between sites n and n + 1.

Having defined the domain-wall states, the next step is to
construct movement and splitting operators. We define the
movement operator between n and n + 1 by

Mg
n+1,n =

∑
k∈G

U kRg−1

n+1Pg
n+1(U k )−1. (4.50)

To see that Mg
n+1,n is a valid movement operator, notice that it

is local and G symmetric by construction. Furthermore, it has
the correct action on domain-wall states:

Mg
(n+1)n|gn〉 =

∑
k∈G

U kRg−1

n+1Pg
n+1(U k )−1|..., (1)n, g, g, ...〉

= Rg−1

n+1|..., (1)n, g, g, ...〉
= |..., (1)n, 1, g, ...〉
= |gn+1〉. (4.51)

Here the second equality follows from noting that all the terms
in the sum vanish except for k = 1. Similarly, we define the
reverse movement operator by

Mg
n(n+1) = (

Mg
(n+1)n

)†
. (4.52)

Following a similar calculation to before, one can check that
this is a valid movement operator.

Moving on to splitting operators, we define S(g, h) by

S(g, h) =
∑
k∈G

U kRh−1

2 Pgh
2 (U k )−1. (4.53)

Again, S(g, h) is local and G symmetric by construction. We
now show that it has the correct action on domain-wall states:

S(g, h)|gh1〉 =
∑
k∈G

U kRh−1

2 Pgh
2 (U k )−1|..., (1)1, gh, gh, ...〉

= Rh−1

2 |..., (1)1, gh, gh, ...〉
= |..., (1)1, g, gh, ...〉
= |g1, h2〉. (4.54)

Again, the second equality follows from noting that all the
terms in the sum vanish except for k = 1.

We are now ready to calculate F (g, h, k). Using
Eqs. (3.20), we have

|1〉 = Mh
12Mg

01S(g, h)Mk
32S(gh, k)|ghk1〉

= (
U gRh

2[U g]−1
) · Rg

1 · Rh−1

2 · (
U ghRk−1

3 [U gh]−1
)

· Rk−1

2 |ghk1〉. (4.55)

Here, to derive the second equality, notice that whenever a
movement or splitting operator acts on a domain-wall state,
only one value of k gives a nonzero contribution; Eq. (4.55)
follows by keeping this one nonvanishing term for each move-
ment and splitting operator.
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To proceed further, we use the transformation law for Rh
n in

Eqs. (4.45) and (4.46) to derive

|1〉 = (
Rh

2W g,h
2

) · Rg
1 · Rh−1

2 · (
Rk−1

3 W gh,k−1

3

) · Rk−1

2 |ghk1〉
= �

g,h
2 (g, g, gh) · �

gh,k−1

3 (gh, ghk, ghk)

·|..., 1, (g)1, gh, gh, ghk, ...〉, (4.56)

where the second equality follows from |ghk1〉 =
|..., 1, (1)1, ghk, ghk, ghk, ...〉. By the same reasoning, we
have

|2〉 = Mk
32S(h, k)Mhk

12 Mg
01S(g, hk)|ghk1〉

= (
U ghRk−1

3 [U gh]−1
) · (

U gRk−1

2 [U g]−1
)

·(U gRhk
2 [U g]−1

) · Rg
1 · R(hk)−1

2 |ghk1〉
= (

Rk−1

3 W gh,k−1

3

) · (
Rh

2W g,h
2

) · Rg
1 · R(hk)−1

2 |ghk1〉
= �

gh,k−1

3 (gh, ghk, ghk) · �
g,h
2 (g, g, ghk)

·|..., 1, (g)1, gh, gh, ghk, ...〉. (4.57)

Taking the inner product between |1〉 and |2〉, we see that
the �

gh,k−1

3 (gh, ghk, ghk) factors cancel out, leaving

F (g, h, k) = 〈2|1〉 = �
g,h
2 (g, g, gh)

�
g,h
2 (g, g, ghk)

, (4.58)

where we are using the fact that �
g,h
n is a U (1) phase.

V. CONNECTION WITH SYMMETRY RESTRICTION
METHOD FOR COMPUTING ANOMALIES

As we mentioned earlier, in Ref. [15], Else and Nayak
showed how to compute anomalies in a large class of SPT
edge theories using restricted symmetry operators. It is natural
to wonder how our F -symbol-based approach is related to this
symmetry restriction approach. In this section, we derive a
connection between the two approaches by explicitly showing
that the two approaches give identical results in cases where
both methods are applicable.

A. Review of symmetry restriction method

We begin by reviewing the symmetry restriction method
[15]. This method applies to SPT edge theories with a discrete
unitary symmetry group G and with the property that the
symmetry operators {U g, g ∈ G} are local unitary transfor-
mations.4 Here, by a local unitary transformation, we mean
that U g can be generated by the time evolution of a local
Hermitian operator over a finite period of time T : U g =
T exp[−i

∫ T
0 dtH (t )].

The symmetry restriction method proceeds as follows.
Consider an edge theory of the above kind, with symmetry op-
erators U g. To compute the anomaly associated with this edge
theory, the first step is to choose a large interval I = [a, b],

4This method also applies to continuous symmetries and some
antiunitary symmetries; we focus on discrete unitary symmetries for
simplicity

and then choose a restriction of U g to I , which we will denote
by U g

I . Here, when we say that U g
I is a restriction of U g to

I , we mean U g
I has two properties: (i) U g

I is a local unitary
transformation supported in a neighborhood of I , and (ii) for
any operator O that is supported in I ,

U g
I O

(
U g

I

)−1 = U gO(U g)−1. (5.1)

Note that the existence of such a U g
I is guaranteed by the fact

that U g is a local unitary transformation, but U g
I is not unique.

Next, define an operator �I (g, h) by

�I (g, h) = U g
I U h

I

(
U gh

I

)−1
. (5.2)

By construction �I (g, h) is a local unitary transformation that
is supported near a, b—the endpoints of I . It follows that we
can factor �I (g, h) as a product

�I (g, h) = �a(g, h)�b(g, h), (5.3)

where �a(g, h) and �b(g, h) are unitary operators supported
near a and b, respectively.5

The operator �a(g, h) (or, equivalently, �b(g, h)) is the key
to computing the anomaly. In particular, Ref. [15] showed that
�a and �b obey the following operator identities:

�a(g, h)�a(gh, k)

= ω(g, h, k)U g
I �a(h, k)

(
U g

I

)−1
�a(g, hk)

×�b(g, h)�b(gh, k)

= ω−1(g, h, k)U g
I �b(h, k)

(
U g

I

)−1
�b(g, hk), (5.4)

where ω(g, h, k) ∈ H3(G,U (1)) is the anomaly carried by the
SPT edge theory. Thus, if we know �a(g, h) (or, equivalently,
�b(g, h)), we can immediately compute the anomaly by com-
paring the left- and right-hand sides of Eq. (5.4).

Putting this all together, the symmetry restriction method
involves the following steps: one first computes the restricted
symmetry operator U g

I , and then the associated operators
�I (g, h) and �a(g, h). One then computes the anomaly
ω(g, h, k) using Eq. (5.4) above.

B. F-symbol computation

We now show how to compute the F symbol for the above
class of edge theories, i.e., edge theories with a finite unitary
symmetry group G and with the property that the symmetry
operators {U g, g ∈ G} are local unitary transformations. Our
goal will be to show that F (g, h, k) = ω(g, h, k).

Consider any edge theory of the above type. To compute
the F symbol for such an edge theory, the first step is to choose
an edge Hamiltonian that breaks the symmetry spontaneously
and completely and opens up a gap. We then label the |G|
degenerate ground states by {|�; g〉} where

|�; g〉 = U g|�; 1〉. (5.5)

5Readers may notice that there is a phase ambiguity in �a(g, h),
�b(g, h), i.e., we can replace �a(g, h) → �a(g, h)ν(g, h) and
�b(g, h) → �b(G, h)ν−1(g, h), where ν(g, h) is a U (1) phase. This
ambiguity is related to the fact that the quantity ω(g, h, k) is only
well-defined up to a coboundary.
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FIG. 8. Regions of support for the operators U g
x′x and U g

x : the
operator U g

x is supported in the interval [x,Y ] shown in blue, while
U g

x′x is supported in the interval [x, x′] shown in red.

The next step is to define domain-wall states. We will do
this using restricted symmetry operators to facilitate a com-
parison with Ref. [15]. To begin, we choose a point Y that is
far to the right of the region where we will be manipulating
domain walls. This point Y can be thought of as playing a
similar role to +∞, but it will be important for our purposes
that Y is finite. Next, for every point x < Y , we choose a
unitary operator U g

x that is a restriction of U g to the interval
[x,Y ], where this restriction is defined as in Eq. (5.1) above.
In addition, we require that the U g

x are chosen so they obey
the following matching condition: for any two points x < x′,
the operators U g

x and U g
x′ have the same action except in the

neighborhood of the interval [x, x′]. Equivalently, we will
require that the operator

U g
x′x ≡ U g

x′
(
U g

x

)−1
(5.6)

is supported in a neighborhood of the interval [x, x′] (see
Fig. 8). One can show that it is always possible to choose U g

x

in this way, given our assumption that U g are local unitary
transformations.

Having defined U g
x , we now define (single) domain-wall

states |gx〉 by

|gx〉 = U g
x |�; 1〉. (5.7)

By construction, U g
x |�; 1〉 contains a type g domain wall at x

and a type g−1 domain wall at Y , so one could view U g
x |�; 1〉

as a two domain-wall state. However, we will view U g
x |�; 1〉

as a single domain-wall state. We can do this because (i) the
point Y is far away from the region of interest and (ii) the
g−1 domain wall at Y takes the same form independent of x:
for any x, x′ the two states U g

x |�; 1〉 and U g
x′ |�; 1〉 have the

same local expectation values near Y , due to our assumption
Eq. (5.6). Actually, the above definition of |gx〉 is no different
than the one given in, e.g., Eq. (4.26) where we set Y = +∞,
except that we are now calling attention to point Y because it
will be useful for proving that our formalism matches that of
Else and Nayak.

Now that we have defined domain-wall states, the next step
is to construct splitting and movement operators. To this end,
notice that the operator U g

x′x defined in Eq. (5.6) obeys

U g
x′x|gx〉 = |gx′ 〉. (5.8)

Given this observation, we can construct a movement operator
Mg

x′x by appropriately symmetrizing U g
x′x:

Mg
x′x =

∑
k∈G

U kU g
x′xPg

x′ (U k )−1, x′ > x. (5.9)

Here Pg
x′ is a projection operator that projects onto states that

share the same local expectation values as |�; g〉 in the neigh-
borhood of x′. More precisely, Pg

x′ is a Hermitian operator
that is supported in the neighborhood of x′ and that has the
property that Pg

x′ |�; h〉 = δgh|�; g〉. For the models discussed
in Sec. IV C, Pg

x′ can be defined is the same way as the operator
Pg

n Eq. (4.39). In more general systems, it may be necessary to
take the neighborhood around x′ to be of order ξ to construct
a projector Pg

x′ of this kind. In any case, we will take the
existence of this projection operator as an assumption.

To see that Mg
x′x is a valid movement operator, note that it

is local and G symmetric by construction. Furthermore, it has
the correct action on domain walls:

Mg
x′x|gx〉 = U g

x′x|gx〉 = |gx′ 〉. (5.10)

Similarly, we define the reverse movement operator by

Mg
xx′ = (

Mg
x′x

)†
, x′ > x. (5.11)

To construct splitting operators, we first define a unitary
operator �(g, h) by

�(g, h) = U g
1 U h

1

(
U gh

1

)−1
. (5.12)

By construction, �(g, h) is a local unitary operator that is
supported near 1 and Y , so we can factor �(g, h) as

�(g, h) = �1(g, h)�Y (g, h), (5.13)

where �1(g, h) and �Y (g, h) are unitary operators supported
near 1 and Y , respectively. (Note that Eqs. (5.12) and
(5.13) are essentially the same as Eqs. (5.2) and (5.3), with
I = [1,Y ]).

With this notation, we define the splitting operator S(g, h)
by

S(g, h) =
∑
k∈G

U kU g
1 U h

21

(
U g

1

)−1
�1(g, h)Pgh

2 (U k )−1. (5.14)

Again, it is easy to see that S(g, h) is G symmetric and sup-
ported in a neighborhood around [1,2]. To see that it has the
correct action on domain-wall states, note that

S(g, h)|gh1〉 = U g
1 U h

21

(
U g

1

)−1
�1(g, h)|gh1〉

= �Y (g, h)−1U g
1 U h

21

(
U g

1

)−1
�(g, h)|gh1〉

= �Y (g, h)−1U g
1 U h

2 |�; 1〉
∝ |g1, h2〉. (5.15)

Here, the last equality follows from observing that the state
�Y (g, h)−1U g

1 U h
2 |�; 1〉 has the same local expectation values

as |g1〉 near x = 1 and the same local expectation values as
U g|h2〉 near x = 2, and the same local expectation values as
U g|�; 1〉 in the region between x = 1 and x = 2. (We don’t
have to worry about the expectation values away from [1,2]
since the locality of S(g, h) guarantees that S(g, h)|gh1〉 has
the correct expectation values away from [1,2]).

Now that we have defined movement and splitting oper-
ators, we can compute the F symbol using Eqs. (3.20) and
(3.21), i.e.,

F (g, h, k) = 〈2|1〉, (5.16)
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FIG. 9. The points that are relevant to the calculation of
F (g, h, k) and ω(g, h, k): The operators that are used to calculate
F (g, h, k) are supported in a neighborhood of [0,3], whereas the
operators used to calculate ω(g, h, k) are supported in a small neigh-
borhood around the point Y , far to the right of 3. We connect the two
calculations using the identity �1(g, h) = �−1

Y (g, h)�(g, h).

where

|1〉 = Mh
12Mg

01S(g, h)Mk
32S(gh, k)|ghk1〉,

|2〉 = Mk
32S(h, k)Mhk

12 Mg
01S(g, hk)|ghk1〉. (5.17)

C. Comparing results with Else and Nayak

We now show F (g, h, k) = ω(g, h, k), where F (g, h, k) is
defined in Eq. (5.16) and ω(g, h, k) is defined in Eq. (5.4).

To prove this equality, we use the fact that �1(g, h) =
�−1

Y (g, h)�(g, h). Substituting this identity into the definition
of S(g, h) and simplifying gives

S(g, h) =
∑
k∈G

U k�−1
Y (g, h)U g

1 U h
2

(
U gh

1

)−1
Pgh

2 (U k )−1. (5.18)

The basic idea of the proof is to substitute (5.18) into (5.17)
and then simplify the resulting expressions for |1〉, |2〉. After
this substitution, we will then separate out all the �Y factors.
These �Y factors will naturally form combinations like those
in Eq. V.4, which will allow us to derive a direct connection
between the F-symbol F (g, h, k) and the cocycle ω(g, h, k)
(see Fig. 9).

Following this plan, we first simplify |1〉 as follows:

|1〉 = Mh
12Mg

01S(g, h)Mk
32S(gh, k)|ghk1〉

= Mh
12Mg

01S(g, h)Mk
32�

−1
Y (gh, k)U gh

1 U k
2

(
U ghk

1

)−1|ghk1〉
= �−1

Y (gh, k)Mh
12Mg

01S(g, h)Mk
32U

gh
1 U k

2 |�; 1〉
= �−1

Y (gh, k)Mh
12Mg

01S(g, h)U gh
1 U k

3 |�; 1〉
= [

�−1
Y (gh, k)�−1

Y (g, h)
]
Mh

12Mg
01U

g
1 U h

2 U k
3 |�; 1〉

= [
�−1

Y (gh, k)�−1
Y (g, h)

]
U g

0 U h
1 U k

3 |�; 1〉. (5.19)

Here, the second and fifth equalities follow from substituting
Eq. (5.18), while the third equality follows from the fact that
�Y (gh, k) is supported near Y and therefore commutes with
all the movement and splitting operators. Likewise, the fourth
and sixth equalities follow from the fact that [Mg

x′x,U h
y ] = 0

as long as y /∈ [x, x′], which in turn follows from the fact that
the movement operators are G symmetric.

We can simplify |2〉 in a similar manner:

|2〉 = Mk
32S(h, k)Mhk

12 Mg
01S(g, hk)|ghk1〉

= �−1
Y (g, hk)Mk

32S(h, k)Mhk
12 Mg

01U
g
1 U hk

2 |�; 1〉
= �−1

Y (g, hk)Mk
32S(h, k)U g

0 U hk
1 |�; 1〉

= �−1
Y (g, hk)Mk

32U
g
0 S(h, k)U hk

1 |�; 1〉
= [

�−1
Y (g, hk)U g

0 �−1
Y (h, k)

(
U g

0

)−1]
Mk

32U
g
0 U h

1 U k
2 |�; 1〉

= [
�−1

Y (g, hk)U g
0 �−1

Y (h, k)
(
U g

0

)−1]
U g

0 U h
1 U k

3 |�; 1〉
= [

�−1
Y (g, hk)U g

1 �−1
Y (h, k)

(
U g

1

)−1]
U g

0 U h
1 U k

3 |�; 1〉,
(5.20)

where the last line is obtained the fact that �−1
Y (h, k) is sup-

ported near Y . To make contact with Eq. (5.4), notice that the
inverse of the second equation in Eq. (5.4) with I = [1,Y ]
gives the following operator identity:

�−1
Y (gh, k)�−1

Y (g, h)

= 0 ω(g, h, k)�−1
Y (g, hk)U g

1 �−1
Y (h, k)

(
U g

1

)−1
. (5.21)

Comparing this identity with the bracketed expressions in
Eqs. (5.19) and (5.20), we conclude that

|1〉 = ω(g, h, k)|2〉 (5.22)

Hence,

F (g, h, k) = 〈2|1〉 = ω(g, h, k), (5.23)

as we wished to show.

VI. DISCRETE ANTIUNITARY SYMMETRIES

So far, we have focused on the case where the symmetry
group G is unitary. In this section, we consider the more
general case where G contains both unitary and antiunitary
symmetry transformations.

A. Cohomology group

We start by reviewing the cohomology group
H3(G,UT (1)). This group is important because it describes
the output of our procedure in the general antiunitary case.

First, we explain the meaning of UT (1). This symbol de-
notes the group U (1) with a particular G-module structure,
which is defined as follows: For any g ∈ G and ω = eiθ ∈
U (1), the action of g on ω is given by

gω =
{
ω∗ g antiunitary
ω g unitary. (6.1)

In other words, antiunitary symmetries act on U (1) by com-
plex conjugation, while unitary symmetries act trivially.

Just like the unitary case, the cohomology group
H3(G,UT (1)) consists of equivalence classes of functions ω :
G × G × G → U (1) obeying a cocycle condition. However,
the cocycle condition takes a modified form, namely,

ω(g, h, k)ω(g, hk, l )[gω(h, k, l )]

ω(gh, k, l )ω(g, h, kl )
= 1, (6.2)

where gω denotes the group action Eq. (6.1). The equivalence
relation/coboundary transformation is also modified: We say
that ω ∼ ω′ if

ω′(g, h, k)

ω(g, h, k)
= ν(gh, k)ν(g, h)

ν(g, hk)[gν(h, k)]
, (6.3)

where ν(g, h) ∈ U (1) and, again, gν denotes the group action
Eq. (6.1).
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B. Outline of procedure

The procedure for computing anomalies in the general case
is exactly the same as the unitary case. As before, the first step
is to choose an (edge) Hamiltonian H that breaks the G sym-
metry spontaneously and completely. This Hamiltonian H has
|G| ground states which we label by |�; g〉. The next step is to
define domain-wall states |gx〉 and corresponding domain-wall
movement and splitting operators, Mg

x′x and S(g, h). Again, we
use exactly the same definitions as in Sec. III B.

The last step is to compute the F symbol for the domain
walls, F (g, h, k). Again, we use the same definition as before,
namely, F (g, h, k) = 〈2|1〉, where states |1〉 and |2〉 are de-
fined as in Eqs. (3.20).

The only new element in the antiunitary case involves the
structure of the F symbol. In particular, in the general antiu-
nitary case, one can show that F obeys the modified cocycle
condition Eq. (6.2) and is well-defined up to the modified
coboundary transformation Eq. (6.3). As a result, F is natu-
rally an element of the cohomology group H3(G,UT (1)). For
a derivation of the modified cocycle condition, see Appendix;
we discuss the modified coboundary transformation in the
next subsection.

C. Checking the microscopic definition

In this section, we show that different choices of domain-
wall states or movement and splitting operators give the same
F up to the coboundary transformation Eq. (6.3). This result,
together with the derivation of the cocycle condition discussed
in Appendix, guarantees that our procedure produces a well-
defined element of H3(G,UT (1)).

A key result which we will need in our derivation is the
following identity, which generalizes Eq. (3.12). Let O be
any operator that is invariant under all the symmetries and
is supported near a domain wall g at point x. We claim
that

〈..., gx, ...|O|..., gx, ...〉 = gL〈gx|O|gx〉, (6.4)

where gL is the product of all domain walls to the left of x,
and where the expression on the right-hand side is defined by
the group action Eq. (6.1). To derive this identity, note that

〈..., gx, ...|O|..., gx, ...〉 = 〈gx; gL|O|gx; gL〉
= 〈U gL gx|O|U gL gx〉
= gL〈gx|O|gx〉. (6.5)

Here, the first equality follows from Eq. (3.9), while the sec-
ond equality follows from the definition, |gx; gL〉 = U gL |gx〉.
The third equality follows from the fact that O commutes with
U gL together with the defining property of unitary/antiunitary
operators, namely, 〈U gv|U gw〉 = g〈v|w〉.

With Eq. (6.4) in hand, we are now ready to show that F
is well-defined up to the coboundary transformation Eq. (6.3).
To start, let us see how F transforms if we change the move-
ment and splitting operators:

Mg
x′x → M ′g

x′x, S(g, h) → S′(g, h). (6.6)

Similarly to the unitary case, the definition of movement and
splitting operators implies that

M ′g
x′x|gx〉 = eiθx′x (g)Mg

x′x|gx〉,
S′(g, h)|gh1〉 = eiφ(g,h)S(g, h)|gh1〉 (6.7)

for some real valued θx′x(g) and φ(g, h). Likewise, for the
multidomain-wall states,

M ′g
x′x|..., gx, ...〉 = ω1 · Mg

x′x|..., gx, ...〉, (6.8)

S′(g, h)|..., gh1, ...〉 = ω2 · S(g, h)|..., gh1, ...〉 (6.9)

for some U (1) phases, ω1, ω2. To find the relation between
ω1, ω2 and eiθx′x (g), eiφ(g,h), we multiply both sides of Eq. (6.8)
by 〈..., gx, ...|(Mg

x′x )†, and then we apply Eq. (6.4) to derive

ω1 = 〈..., gx, ...|
(
Mg

x′x

)†
M ′g

x′x|..., gx, ...〉
= gL,x〈gx|

(
Mg

x′x

)†
M ′g

x′x|gx〉
= gL,xeiθx′x (g), (6.10)

where gL,x is the product of all domain walls to the left of x.
By the same reasoning,

ω2 = gL,1eiφ(g,h), (6.11)

where gL,1 is the product of all domain walls to the left of
point 1.

Substituting Eqs. (6.10) and (6.11) into Eqs. (6.8) and
(6.9), we derive

M ′g
x′x|..., gx, ...〉 = (gL,xeiθx′x (g) )Mg

x′x|..., gx, ...〉,
S′(g, h)|..., gh1, ...〉 = (gL,1eiφ(g,h) )S(g, h)|..., gh1, ...〉 (6.12)

Next, plugging Eqs. (6.12) into the definition of F
Eqs. (3.20) and (3.21), we obtain

F ′(g, h, k) = F (g, h, k)
eiφ(g,h)eiφ(gh,k)(geiθ12(g) )

(geiφ(h,k) )eiφ(g,hk)(geiθ12(hk) )
. (6.13)

Crucially, this transformation matches the modified cobound-
ary transformation Eq. (6.3) with

ν(g, h) = eiφ(g,h)(geiθ12(h) ). (6.14)

This is exactly what we want: Different choices of movement
and splitting operators lead to the same F , up to a modified
coboundary transformation.

To complete the argument, we also need to check that
different choices of edge Hamiltonians and domain-wall states
lead to the same F , up to a coboundary transformation. Both
properties follow by exactly the same reasoning as in the
unitary case, so we will not repeat it here.

D. Example: Chiral boson edge theory for Z2 × ZT
2 SPT phase

We now illustrate our general antiunitary procedure in
an example. The example we consider is a continuum edge
theory for a Z2 × ZT

2 bosonic SPT phase, discussed in
Ref. [31]. Here Z2 denotes a unitary symmetry and ZT

2 de-
notes an antiunitary symmetry.
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1. Edge theory

Similarly to the example discussed in Sec. IV B, the edge
theory is a chiral boson theory with two fields θ, φ obeying
the commutation relations

[θ (x), ∂yφ(y)] = 2π iδ(x − y),

with all other commutators vanishing. As in Sec. IV B, the
Hilbert space H is the usual infinite dimensional representa-
tion of the above algebra and the local operators in the edge
theory are given by arbitrary derivatives and products of the
elementary operators {e±iθ , e±iφ}.

To define the symmetry transformations, we first introduce
some notation: We denote the elements of G by {1, s, t, st},
where s is the (unitary) generator of Z2 and t is the (antiu-
nitary) generator of ZT

2 . Likewise, we denote the Z2 × ZT
2

symmetry transformations by {U 1,U s,Ut ,U st }. It suffices to
specify the action of the two generators U s,Ut . These gener-
ators act on θ, φ as follows:

U sθ (U s)−1 = θ, U sφ(U s)−1 = φ − π, (6.15)

and

Utθ (Ut )−1 = θ − π, Utφ(Ut )−1 = −φ. (6.16)

(Here, U s is unitary while Ut is antiunitary.)

2. Calculating the anomaly

To calculate the anomaly, we need to choose an edge
Hamiltonian that breaks the symmetry completely. We will
do this in a slightly roundabout way: We will first introduce
some auxiliary degrees of freedom into our edge theory. We
will then break the symmetry of this enlarged edge theory.
This approach will simplify our calculation.

To begin, consider the following chiral boson theory de-
scribed by two fields θ̄ , φ̄ obeying commutation relations

[θ̄ (x), ∂yφ̄(y)] = 2π iδ(x − y),

with all other commutators vanishing. We assume that the
symmetry acts on θ̄ , φ̄ in the following way:

U sθ̄ (U s)−1 = θ̄ , U sφ̄(U s)−1 = φ̄ − π,

Ut θ̄ (Ut )−1 = θ̄ , Ut φ̄(Ut )−1 = −φ̄. (6.17)

A crucial aspect of the θ̄ , φ̄ chiral boson theory is
that it is not anomalous—that is, it can be realized by a
one-dimensional lattice boson system with on-site Z2 × ZT

2
symmetry. One way to see this is to note that the above chiral
boson theory is the standard low-energy description of the 1D
XXZ spin chain model where the ZT

2 symmetry Ut is complex
conjugation in the σ z basis, and the Z2 symmetry U s is the Z2

subgroup of the U (1) symmetry of the XXZ model. Another
way to see that the θ̄ , φ̄ theory is not anomalous is to note
that it can be gapped without breaking any the symmetries,
for example by the Hamiltonian H = Haux − ∫

dx V cos(θ̄ ),
where Haux is defined below.

Now, since the θ̄ , φ̄ theory is not anomalous, we can add
it to our edge theory without changing anything. (Physically,
this corresponds to attaching a strictly 1D wire onto the edge
of the SPT phase of interest). After enlarging our edge theory
in this way, we then choose an edge Hamiltonian that breaks

the Z2 × ZT
2 symmetry spontaneously and completely and

opens up a gap. A Hamiltonian that does the job is

H = H0 + Haux −
∫

dx V [cos(2θ ) + cos(2φ̄)], (6.18)

where H0, Haux are the usual free boson Hamiltonians,

H0 =
∫

dx
1

4π
[vθ (∂xθ )2 + vφ (∂xφ)2],

Haux =
∫

dx
1

4π
[vθ̄ (∂x θ̄ )2 + vφ̄ (∂xφ̄)2]

for some velocities vθ , vφ, vθ̄ , vφ̄ > 0.
For V large and positive, the two cosine terms lock θ and

φ̄ to one of two values 0, π , spontaneously breaking the Z2 ×
ZT

2 symmetry Eqs. (6.15)–(6.17) and opening up an energy
gap.

We can now see the advantage of introducing the auxiliary
fields θ̄ , φ̄: These fields allow us to break the symmetry com-
pletely in a simple way. If we dropped these fields, along with
the corresponding cosine term, cos(2φ̄(x)), then the first term
V cos(2θ (x)) would only break the ZT

2 symmetry and would
leave the Z2 symmetry intact. Of course, we could also break
the symmetry completely without introducing θ̄ , φ̄, e.g., with
a Hamiltonian of the form H = H0 + ∫

dxV cos(4φ), but this
leads to a more complicated calculation.

Turning back to the calculation, we now discuss the ground
states of H . As in the example in Sec. IV B, we will take
the limit V → ∞ for simplicity. In this limit, the four ground
states of H are eigenstates of eiθ (x) and eiφ̄(x) with eigenvalues
±1. We define |�; 1〉 to be the state with eigenvalues +1:

eiθ (x)|�; 1〉 = |�; 1〉, eiφ̄(x)|�; 1〉 = |�; 1〉. (6.19)

We then define the other ground states by |�; g〉 = U g|�; 1〉,
which corresponds to the following eigenvalue assignments
[given Eqs. (6.15)–(6.17)]:

eiθ (x)|�; g〉 = ei2πλ(g)|�; g〉,
eiφ̄(x)|�; g〉 = ei2πμ(g)|�; g〉, (6.20)

where

λ(g) =
{

0 g = 1, s
1/2 g = t, st

(6.21)

and

μ(g) =
{

0 g = 1, t
1/2 g = s, st .

(6.22)

Next we define domain wall states |gx〉 by

|gx〉 = (
ag

x

)†|�; 1〉, (6.23)

where the operators (ag
x )† are defined as

(
ag

x

)† = e−i
∫ ∞

x dy (λ(g)∂yφ(y)+μ(g)∂y θ̄ (y)). (6.24)

To see that |gx〉 is a valid domain wall state, note that

eiθ (x′ )|gx〉 =
{|gx〉 x′ < x

ei2πλ(g)|gx〉 x′ > x
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and

eiφ̄(x′ )|gx〉 =
{|gx〉 x′ < x

ei2πμ(g)|gx〉 x′ > x

by the commutation relations between θ, φ and θ̄ , φ̄.
The next step is to define movement and splitting operators.

We define the movement operator Mg
x′x, for x′ > x, by

Mg
x′x =

∑
k∈G

U kX g
x′xPg

x′ (U k )−1, x′ > x (6.25)

where

X g
x′x = ei

∫ x′
x dy (λ(g)∂yφ(y)+μ(g)∂y θ̄ (y)) (6.26)

and

Pg
x′ = (1 + eiθ (x′ )e−i2πλ(g) )(1 + eiφ̄(x′ )e−i2πμ(g) )

4
. (6.27)

Here Pg
x′ should be thought of as a local ground-state projec-

tion operator, supported near x′. The defining property of this
operator is that it leaves invariant the state |�; g〉 and annihi-
lates the other ground states, that is, Pg

x′ |�; h〉 = δgh|�; g〉.
To see that Mg

x′x is a valid movement operator, note that it
is local and Z2 × ZT

2 symmetric by construction. We can also
see that it has the correct action on domain-wall states:

Mg
x′x|gx〉 = X g

x′x|gx〉 = |gx′ 〉. (6.28)

Here, the first equality follows from the observation that only
the k = 1 term in Eq. (6.25) gives a nonzero result when acting
on |gx〉, while the second equality follows from the fact that
X g

x′x(ag
x )† = (ag

x′ )†.
Likewise, we define the reverse movement operator by

Mg
xx′ = (

Mg
x′x

)†
, x′ > x. (6.29)

Moving on to splitting operators, we define S(g, h) by

S(g, h) =
∑
k∈G

U kU gX h
21(U g)−1C(g, h)Pgh

2 (U k )−1, (6.30)

where

C(g, h) = ei[p(g,h)φ(1)+q(g,h)θ̄ (1)] (6.31)

and

p(g, h) = λ(g) + λ(h) − λ(gh),

q(g, h) = μ(g) + σ (g)μ(h) − μ(gh). (6.32)

Here σ (g) = ±1 depending on whether g is unitary or antiu-
nitary, i.e., σ (g) = 1 − 4λ(g).

To see that S(g, h) is a valid splitting operator, notice that it
is local and Z2 × ZT

2 symmetric by construction. We can also
check that S(g, h) has the correct action on domain walls:

S(g, h)|gh1〉 = U gX h
21(U g)−1C(g, h)|gh1〉

∝ U g
(
ah

2

)†
(U g)−1

(
ag

1

)†|�; 1〉
∝ |g1, h2〉. (6.33)

Here, the first equality follows from the fact that only the
k = 1 term in Eq. (6.30) gives a nonzero result when acting
on |gh1〉, while the second equality follows from the def-
inition of (ag

x )†. The third equality follows by noting that

U g(ah
2)†(U g)−1(ag

1)†|�; 1〉 has the same local expectation val-
ues as |g1〉 near x = 1, and the same local expectation values
as U g|h2〉 near x = 2, and the same local expectation values
as U g|�; 1〉 between x = 1 and x = 2.

With these operators defined, we are ready to compute
F (g, h, k). From Eqs. (3.20),

|1〉 = [
U gX h

12(U g)−1
] · X g

01 · [
U gX h

21(U g)−1
]

· C(g, h) · [
U ghX k

32X k
21(U gh)−1

] · C(gh, k)|ghk1〉,
|2〉 = [

U ghX k
32X k

21(U gh)−1
] · [U gC(h, k)(U g)−1]

· [
U gX hk

12 (U g)−1
] · X g

01 · [
U gX hk

21 (U g)−1
]

· C(g, hk)|ghk1〉. (6.34)

To compare these two states, we note that all operators
in the above products commute with one another. Using this
commutativity together with the identity X α

xx′ = (X α
x′x )−1, we

can rewrite our states as

|1〉 = X g
01U

ghX k
32X k

21(U gh)−1

· C(g, h)C(gh, k)|ghk1〉,
|2〉 = X g

01U
ghX k

32X k
21(U gh)−1

· U gC(h, k)(U g)−1C(g, hk)|ghk1〉. (6.35)

Next, using the definition Eq. (6.31) and the symmetry
action, one can check that

C(g, h)C(gh, k)|ghk1〉
= ei2πμ(g)p(h,k)U gC(h, k)(U g)−1C(g, hk)|ghk1〉. (6.36)

We conclude that |1〉 = ei2πμ(g)p(h,k)|2〉 so

F (g, h, k) = 〈2|1〉 = ei2πμ(g)p(h,k). (6.37)

Having computed F , the next question is to determine
whether F is a trivial or nontrivial cocycle, i.e., a trivial or
nontrivial element of H3(G,UT (1)). To answer this question,
we compute the following two gauge invariant combinations
of F :

F (s, s, s)F (s, 1, s) = 1, χs(t, t )χs(1, t ) = −1, (6.38)

where

χg(h, k) = F (g, h, k)F (h, k, g)

F (h, g, k)
. (6.39)

Given that the second quantity is different from 1, it follows
that F is a nontrivial cocycle. (Both quantities are 1 for a
trivial cocycle). We conclude that our edge theory describes
the boundary of one of the three nontrivial SPT phases within
the H(Z2 × ZT

2 ,U (1)T ) = Z2 × Z2 classification [6], which
is consistent with the original analysis of Ref. [31].

VII. CONTINUOUS SYMMETRIES

A. Outline of procedure

So far, we have presented a procedure for computing
anomalies for SPT edge theories with a discrete symmetry
group G. We now discuss how to generalize this procedure
to edge theories with continuous symmetries.
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The main obstruction to applying our procedure in the
continuous case has to do with the definition of domain-wall
states. Recall that in the discrete case we construct domain
walls as follows: First, we choose an (edge) Hamiltonian
that breaks the symmetry spontaneously and completely and
opens up an energy gap at the edge. Such a Hamiltonian has
a collection of degenerate ground states, which we label by
|�; g〉. We then define domain-wall excitations to be states that
have the same local expectation values as one ground state,
|�; g〉, in some large interval, and the same local expectation
values as another ground state |�; h〉 in a neighboring large
interval. The problem with applying this scheme to continuous
symmetries is that it is impossible to both break a continuous
symmetry and open up an energy gap: spontaneously breaking
a continuous symmetry always leads to gapless Goldstone
modes.

The key to overcoming this problem is to recognize that
we don’t actually need a Hamiltonian with spontaneous sym-
metry breaking and an energy gap: This symmetry-breaking
Hamiltonian provides a nice physical context for thinking
about domain wall states—our main objects of interest—but it
isn’t strictly necessary for our procedure. From an operational
point of view, all that we need is a single (edge) state |�〉 with
two properties: (i) |�〉 breaks the symmetry explicitly and
completely—i.e., is not invariant under any of the symmetry
transformations and (ii) |�〉 is the unique ground state of a
gapped, local Hamiltonian. (The latter condition is important
to guarantee that |�〉 has various locality properties like short-
range correlations). Once we have such a state, we denote it
by |�〉 ≡ |�; 1〉 and then define |�; g〉 by

|�; g〉 = U g|�; 1〉. (7.1)

Having defined the |�; g〉 states, we then define our domain-
wall states and calculate F (g, h, k) exactly as before. This
modified procedure works equally well for either continuous
or discrete symmetry groups.

One subtlety that appears in the continuous symmetry
case is that SPT phases with continuous symmetry groups
are conjectured to be classified by the Borel cohomology
group H3

B(G,UT (1)) [6]. This means that if we want to in-
terpret F (g, h, k) as a label for a bulk SPT phase, we need
to show that F (g, h, k) ∈ H3

B(G,UT (1)). This amounts to
showing that (i) F (g, h, k) is a Borel measurable 3-cocycle,
and (ii) F (g, h, k) is well-defined up to multiplication by the
coboundary of a Borel measurable 2-cocycle. Neither of these
properties are obvious from our definition of F . Indeed, if we
do not impose any additional constraints on the splitting op-
erators S(g, h) and the movement operators Mg

x′x, then we can
only show weaker versions of (i) and (ii) that do not include
the Borel measurability constraints. In this paper, we will not
attempt to fill in this gap but we expect that both properties
(i) and (ii) follow naturally if the splitting operators S(g, h)
and movement operators Mg

x′x are chosen so their dependence
on g, h ∈ G is not too discontinuous; for example, it may be
enough to require that the matrix elements of S(g, h) and Mg

x′x
are piecewise continuous as a function of g and h. We will
see evidence for this conjecture in the next example: there we
will see that a reasonable choice of splitting and movement
operators leads to a Borel measurable F (g, h, k).

B. Example: chiral boson edge theory for bosonic IQH phase

We now demonstrate our approach with an example: an
edge theory for the bosonic integer quantum Hall state—a
nontrivial bosonic SPT phase with U (1) symmetry. This edge
theory was introduced in Ref. [31].

1. Edge theory

Like the examples discussed in Secs. IV B and VI D, the
edge theory we consider is a chiral boson edge theory with
two fields θ, φ obeying the commutation relations

[θ (x), ∂yφ(y)] = 2π iδ(x − y),

with all other commutators vanishing. As in the previous
examples, the local operators in the edge theory are given by
arbitrary products and derivatives of the elementary operators
{e±iθ , e±iφ} and the Hilbert space H is the usual infinite di-
mensional representation of the above algebra.

To complete the edge theory, we need to specify the U (1)
symmetry transformation. Denoting these transformations by
U α , where α ∈ [0, 2π ), the symmetry action is given by

U αθ (U α )−1 = θ − α, U αφ(U α )−1 = φ − α. (7.2)

We note that this edge theory reduces to the one discussed in
Sec. IV B if we restrict to the Z2 subgroup of U (1).

2. Calculating the anomaly

The first step in calculating the anomaly is to choose
a state |�〉 ≡ |�; 0〉6 that (i) breaks the U (1) symmetry
completely and (ii) is the unique ground state of a gapped
local Hamiltonian. To this end, we define |�; 0〉 to be the
(unique) simultaneous eigenstate of the operators eiθ (x) with
eigenvalue 1,

eiθ (x)|�; 0〉 = |�; 0〉, (7.3)

for all x. To see that |�; 0〉 has the required properties, note
that it breaks the U (1) symmetry defined in Eqs. (7.2) and,
furthermorem it is the unique ground state of the (gapped)
Hamiltonian H0 − ∫

dx V cos(θ ) in the limit V → ∞, where
H0 = ∫

dx 1
4π

[vθ (∂xθ )2 + vφ (∂xφ)2].
After choosing |�; 0〉, we then define the remaining vac-

uum states |�; α〉 to be symmetry partners of |�; 0〉:
|�; α〉 = U α|�; 0〉. (7.4)

By construction, |�; α〉 is a simultaneous eigenstate of eiθ (x)

with eigenvalue eiα:

eiθ (x)|�; α〉 = eiα|�; α〉. (7.5)

The next step is to define domain-wall states |αx〉 that
spatially interpolate between the two states, |�; 0〉 and |�; α〉.
We define

|αx〉 = (
aα

x

)†|�; 1〉, (7.6)

6We denote the identity element by 0 since we are using additive
notation.
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where (aα
x )† is defined by

(
aα

x

)† = e−i α
2π

∫ ∞
x dy ∂yφ(y). (7.7)

We can see that |αx〉 is a valid domain-wall state since

eiθ (x′ )|αx〉 =
{|αx〉 x′ < x

eiα|αx〉 x′ > x

by the commutation relations between θ and φ.
Next, we define movement and splitting operators for the

above domain walls. We define the movement operator by

Mα
x′x = ei α

2π

∫ x′
x dy ∂yφ(y). (7.8)

To see that this is a valid movement operator, note that Mα
x′x

is local and U (1) symmetric by construction. Also, Mα
x′x has

the correct action on domain walls: Mα
x′x|αx〉 ∝ |αx′ 〉 since

Mα
x′x(aα

x )† ∝ (aα
x′ )†.

Moving on to splitting operators, we define S(α, β ) by

S(α, β ) = Mβ

21C(α, β ) = ei β

2π

∫ 2
1 dy ∂yφ(y)C(α, β ), (7.9)

where C(α, β ) denotes the operator

C(α, β ) = e
i

2π
(α+β−[α+β])(φ(1)−θ (1− )). (7.10)

Here we use the symbol [x] to denote the unique number in
[0, 2π ) that is equal to x modulo 2π . Also, the notation θ (1−)
is shorthand for θ (1 − ε) where ε is a small positive number.
(It is important to carefully distinguish between θ (1−) and
θ (1+) because we will be applying this operator to a domain
wall state with a θ domain wall at x = 1.)

To see that S(α, β ) is a valid splitting operator, notice that
it is local and U (1) symmetric by construction. We can also
see that S(α, β ) has the correct action on domain walls:

S(α, β )|[α + β]1〉 = Mβ

21C(α, β )|[α + β]1〉
= Mβ

21e
i

2π
(α+β−[α+β])φ(1)|[α + β]1〉

∝ (
aβ

2

)†(
aα

1

)†|�; 1〉
∝ |α1, β2〉. (7.11)

Here, the second equality follows from the fact that
eiθ (1− )|[α + β]1〉 = |[α + β]1〉, while the third equality fol-
lows from the definition of (aα

x )†. The last equality follows
from the fact that the state (aβ

2 )†(aα
1 )†|�; 1〉 has the same

expectation values for local operators as |α1, β2〉.
With these operators defined, we are ready to compute

F (α, β, γ ). From Eqs. (3.20),

|1〉 = Mβ

12Mα
01Mβ

21C(α, β )Mγ

32Mγ

21

· C([α + β], γ )|[α + β + γ ]1〉,
|2〉 = Mγ

32Mγ

21C(β, γ )M[β+γ ]
12 Mα

01M[β+γ ]
21

· C(α, [β + γ ])|[α + β + γ ]1〉. (7.12)

To compare these two states, we will reorder the op-
erators with the following identities derived using the
Baker-Campbell-Hausdorff formula:

Mα
x′xMβ

y′y = Mβ

y′yMα
x′x,

C(β, γ )Mα
x1 = e− iα

2π
(β+γ−[β+γ ])�(1−x)Mα

x1C(β, γ ), (7.13)

where �(x) denotes the Heaviside step function. With these
formulas and the identity Mα

xx′ = (Mα
x′x )−1, we can rewrite our

states as

|1〉 = Mα
01Mγ

32Mγ

21C(α, β )C([α + β], γ )|[α + β + γ ]1〉,
|2〉 = ei�Mα

01Mγ

32Mγ

21C(β, γ )C(α, [β + γ ])|[α + β + γ ]1〉,
(7.14)

where � = − α
2π

(β + γ − [β + γ ]).
Next, using the definition Eq. (7.10), it is easy to check that

C(α, β )C([α + β], γ ) = C(β, γ )C(α, [β + γ ]). (7.15)

Substituting this identity into the above expression for |1〉, |2〉,
we see that |2〉 = ei�|1〉. We conclude that

F (α, β, γ ) = 〈2|1〉 = e
iα
2π

(β+γ−[β+γ ]). (7.16)

Note that F is a piecewise continuous function of α, β, γ

and is therefore Borel measurable. This is consistent with
our conjecture that F will always be Borel measurable for
piecewise continuous movement and splitting operators.

Having computed F , the next question is to determine
whether F is a trivial or nontrivial cocycle. To answer this
question, we compute the following gauge invariant quantity:

F (π, π, π )F (π, 0, π ) = −1. (7.17)

Since this quantity is different from 1, it follows that F is a
nontrivial cocycle. We conclude that our edge theory describes
the boundary of a nontrivial bosonic SPT phase with U (1)
symmetry. This is consistent with previous work [31].

VIII. CONCLUSION

In this paper, we have presented a general procedure for
calculating anomalies in (1D) bosonic SPT edge theories.
Our procedure takes as input a bosonic SPT edge theory and
produces as output an element ω ∈ H3(G,UT (1)) describing
the anomaly carried by the edge theory. An important feature
of our procedure is that, unlike previous approaches, it applies
to general bosonic SPT edge theories with both unitary and
antiunitary symmetries, with the only restriction being that the
underlying 2D symmetry must be on-site.

One class of SPT edge theories that we cannot analyze with
our current approach are those with spatial symmetries such
as translation or reflection symmetries [32,33]. The problem
is that, for these types of edge theories, it is impossible to
construct movement and splitting operators with the two re-
quirements that they are are local in space and also invariant
under all symmetries. A potential hint for how to overcome
this problem, at least in some cases, is the observation [32]
that SPT phases with point group symmetries are closely
connected to SPT phases with on-site symmetries in fewer
spatial dimensions. This suggests that our method might be
suitable for studying boundary theories of higher dimensional
(e.g., 3D) SPT phases with point group symmetries.

Our anomaly calculation always starts by choosing an edge
Hamiltonian that opens up a gap and breaks the symmetry
on the edge completely. However, in some edge theories, it is
possible to open up a gap by only breaking some of the sym-
metries. (A famous example is the 2D topological insulator:
in this case, the edge can be gapped by breaking time-reversal
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symmetry while preserving U (1) charge conservation symme-
try). It would be interesting to develop methods for computing
anomalies in this partial symmetry-breaking scenario. In this
case, domain walls have more structure: they can carry quan-
tum numbers under the symmetry, in addition to their fusion
properties. We expect that the anomaly is encoded in this more
complicated set of data. This problem may be related to the
decorated domain-wall construction of Ref. [34].

Another interesting direction for future work would be to
generalize our approach to (1D) fermionic SPT edge theories.
The fermionic case is especially intriguing given that there are
2D fermionic SPT phases that are beyond [35] the supercoho-
mology classification scheme [36]. Despite the complexity of
2D fermionic SPT phases, we expect that our basic approach
is still applicable, that is, given any fermionic SPT edge the-
ory, we can determine the identity of the corresponding 2D
SPT phase by breaking the symmetry and then extracting the
fusion rules and F symbol of the domain walls at the edge.
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APPENDIX: COCYCLE CONDITION

In this Appendix, we show that the domain wall F symbol
defined in Eqs. (3.20) and (3.21) is a cocycle. More specif-
ically, we show that F obeys Eq. (6.2)—the general cocycle
condition for symmetry groups containing both unitary and
antiunitary symmetries.

Our proof closely follows the derivation of the pentagon
identity for anyonic F symbols, presented in Appendix of
Ref. [26]. As in Ref. [26], the first step is to pick a nice phase
convention for the movement operators Mg

x′x. Specifically, we
choose the phases of the movement operators so

Mg
xx′M

g
x′x|gx〉 = |gx〉, Mg

x′′x′M
g
x′x|gx〉 = Mg

x′′x|gx〉. (A1)

With this phase convention, it is possible to show that our
space-time diagrams satisfy the following topological invari-
ance property: consider any process, P, composed out of a
sequence of movement and splitting operators acting on an
initial state

|i〉 = |..., gx, hx′ , kx′′ , ...〉. (A2)

For any such process, we can draw a corresponding space-
time diagram. Next, consider a second process, P′, that acts on
the same initial state, |i〉, and that leads to the same final state.
Again, we can draw a corresponding space-time diagram. The
topological invariance property says that if these two space-
time diagrams can be continuously deformed into one another
while fixing the endpoints, then the two processes produce the
same final states with the same phases. That is,

P|i〉 = P′|i〉 (A3)

FIG. 10. The five microscopic states used to prove the cocycle
condition.

The proof of the topological invariance property (A3) is iden-
tical to the one given in Appendix of Ref. [26].

With the help of the topological invariance property (A3),
we will now show that the F symbol defined in Eqs. (3.20)
and (3.21) satisfies the cocycle condition Eq. (6.2). Consider
the five processes shown in Fig. 10. Let us denote the final
states of these processes by |1〉, |2〉, |3〉, |4〉, |5〉. Notice that
these states are the same up to a phase since they describe the
same four domain walls in the same four positions. The idea
of the proof is to compute the phase difference between states
|1〉 and |5〉 in two different ways. More specifically, using the
topological invariance property Eq. (A3), we will show that

|1〉 = F (g, h, k)|2〉, |2〉 = F (g, hk, l )|3〉,
|3〉 = g(F (h, k, l ))|5〉, (A4)

and

|1〉 = F (gh, k, l )|4〉, |4〉 = F (g, h, kl )|5〉, (A5)

where the g action is defined as in Eq. (6.1). Putting this all
together gives us the desired cocycle condition:

F (g, h, k)F (g, hk, l )[gF (h, k, l )]

F (gh, k, l )F (g, h, kl )
= 1. (A6)

We now derive each of the above equations. To aid in the
discussion, we define the operators

O1(g, h, k) = Mh
12Mg

01S(g, h)Mk
32S(gh, k),

O2(g, h, k) = Mk
32S(h, k)Mhk

12 Mg
01S(g, hk). (A7)

To derive the first equation, |1〉 = F (g, h, k)|2〉, notice that
processes 1 and 2 start in the same state |ghkl1〉, and they also
contain the same sequence of movement and splitting opera-
tors starting from the beginning of the process, leading up to
the (intermediate) state |ghk1, l4〉. It is at that point that the
two processes diverge: in process 1, the operator O1(g, h, k) is
applied while in process 2, the operator O2(g, h, k) is applied.
After that, the two processes again coincide. It follows that the
phase difference between |1〉 and |2〉 comes entirely from the
difference between O1 and O2. That is,

〈2|1〉 = 〈ghk1, l4|O2(g, h, k)†O1(g, h, k)|ghk1, l4〉
= 〈ghk1|O2(g, h, k)†O1(g, h, k)|ghk1〉
= F (g, h, k), (A8)
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where the second equality follows from Eq. (6.4)—one of the
fundamental properties of multidomain-wall states.

The second equation, |2〉 = F (g, hk, l )|3〉, follows from
similar logic. In this case, we use the topological invariance
property Eq. (A3) to redraw process 2 so it is identical to pro-
cess 3 except for an F -move at the very beginning of the pro-
cess (see Fig. 20 of Ref. [26]). After this modification, the only
difference between the two processes is that in process 2 the
operator O1(g, hk, l ) is applied at the beginning, while in pro-
cess 3, the operator O2(g, hk, l ) is applied. It then follows that

〈3|2〉 = 〈ghkl1|O2(g, hk, l )†O1(g, hk, l )|ghkl1〉
= F (g, hk, l ). (A9)

The third equation, |3〉 = g(F (h, k, l ))|5〉 is the trickiest one,
and the one that distinguishes the unitary and antiunitary
cases. Again, we use the topological invariance property
to redraw process 3 so that it differs from process 5 by
a replacement O1(h, k, l ) → O2(h, k, l ) (see Fig. 21 of
Ref. [26]). Hence

〈5|3〉 = 〈g−1, hkl1|O2(h, k, l )†O1(h, k, l )|g−1, hkl1〉

= g〈hkl1|O2(h, k, l )†O1(h, k, l )|hkl1〉
= gF (g, h, k), (A10)

where the second equation follows from Eq. (6.4). Note that
the key difference between this equation and the others is that
the F move takes place to the right of the g domain wall; this
is the origin of the g action.

The other two equations, |1〉 = F (gh, k, l )|4〉 and |4〉 =
F (g, h, kl )|5〉, follow from similar reasoning. In both cases,
the relevant processes can be related by topological invariance
together with an appropriate F -move (see Figs. 22 and 23 of
Ref. [26]). We then derive the equations as before:

〈4|1〉 = 〈ghkl1|O2(gh, k, l )†O1(gh, k, l )|ghkl1〉
= F (gh, k, l )

〈5|4〉 = 〈ghkl1|O2(g, h, kl )†O1(g, h, kl )|ghkl1〉
= F (g, h, kl ). (A11)

This completes our derivation of the cocycle condition
Eq. (6.2).
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