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Twisted transition metal dichalcogenide (TMD) homobilayers have recently emerged as a powerful platform
for studying correlated insulating states. In the strongly correlated limit, we construct an effective spin Hamil-
tonian on a honeycomb lattice that includes the Heisenberg interaction and nonsymmetric interactions such as
a Dzyaloshinskii-Moriya interaction and a Kane-Mele coupling for the Mott-insulating phase at half-filling. For
the twisted TMD homobilayers, the spin-orbit coupling in the Hubbard model, which is expected to induce the
antisymmetric exchange couplings in the effective spin Hamiltonian, is a highly tunable and experimentally
accessible quantity that can be tuned by an applied electric field. In this study, we investigate classical and
quantum phase diagrams of the effective spin Hamiltonian using analytical and numerical methods. We show that
the model exhibits a rich classical phase diagram including an antiferromagnetic (AFM) phase, a planar spiral
ordered phase with high classical degeneracy, a z-AFM phase, a noncoplanar phase, a noncollinear phase, and a
120◦-AFM phase. In the quantum treatment, we calculate low-energy magnon excitation spectrum, ground-state
energy, and static spin structure factor using linear spin-wave theory and density matrix renormalization group
methods to compose the quantum phase diagram of the effective spin Hamiltonian. Beyond the Heisenberg
interaction, we find that the existence of these antisymmetric couplings is responsible for the quantum spin
liquid, z-AFM, noncoplanar, and 120◦ phases. Twisted TMD homobilayers, therefore, offer rich platforms for
realizing rich phases of matter such as quantum spin liquid, noncoplanar, and 120◦, resulting from the spin-orbit
coupling.
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I. INTRODUCTION

Correlated quantum spin states, described by the term
quantum spin liquid, are an exotic state of matter treating
key features such as long-range entanglement, intrinsic topo-
logical order, and fractional quasiparticle excitations [1–7] in
spin systems wherein interacting spins refuse to order even at
absolute zero temperature.

Long-distance entanglement in the ground state of such
systems leads to the emergence of excitations that carry frac-
tional quantum numbers. These fractionalized excitations are
non-Abelian Majorana states that support the quantum spin
liquids (QSLs) as desirable practical quasiparticles in the field
of quantum information and topological quantum computa-
tion [8–10].

Aside from the fascinating physics of QSLs, according
to the resonating valence bond (RVB) theory of Anderson,
QSLs are the parent state for high-temperature unconventional
superconductors [11]. A variety of quantum materials are pro-
posed to host this nontrivial collective phase due to extreme
quantum fluctuations where frustration induces a macroscop-
ically degenerate ground state at the classical level.

It should be noted that QSLs originating from geometrical
frustration in triangular, kagome, and pyrochlore lattices or
quantum spin models with frustration can generate a macro-
scopic ground-state degeneracy resulting in strong quantum

*zare@qut.ac.ir

fluctuations. These frustration-driven spin configurations be-
have as liquid and do not exhibit long-range magnetic order
even at absolute zero of temperature.

The promising QSL candidates can be classified into two
categories: (i) geometrically frustrated materials including
layered compounds of the two-dimensional systems such as
organic salts [12–16] and YbMgGaO4 [17–23] with an un-
derlying triangular lattice, and material herbertsmithite an
underlying kagome lattice [24–32]; (ii) honeycomb lattice
Kitaev materials in which bond-dependent exchange interac-
tions between spins induce strong quantum fluctuations and
frustrate magnetic.

Kitaev QSLs may exist in spin-orbit coupled Mott insu-
lators due to the interplay between spin-orbit coupling and
threefold-rotational symmetry of a honeycomb lattice giving
rise to the bond-dependent Ising-type interactions (Kitaev-
type exchange interaction) between nearest neighbors [33].
It is worth noting that these Kitaev materials with dominant
bond-dependent interactions exhibit a long-range magnetic
order at low temperatures due to additional spin-exchange
interactions [34–36].

Currently, the search for Kitaev QSLs has been focused
on heavy 4d and 5d transition metal compounds with par-
tially filled d orbitals such as H3LiIr2O6 [37–40], Na2IrO3,
α-Li2IrO3, and α-RuCl3 [34,35,41] due to small ordering
temperature and uncommon magnetic excitation spectrum ex-
perimentally observed [41–47].

Physics of the Kitaev materials under application of
external factors such as strain [42,48–52] and magnetic
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field [47,53–56] is especially interesting owing to tuning ex-
change interactions and suppressing of long-range magnetic
order. Twisted bilayer systems are van der Waals heterostruc-
tures of semiconductors or semimetals [57–60], which have
attracted tremendous attention both from fundamental and
applied research point of view in physics [61–71].

Recent experimental observations on magic-angle twisted
bilayer graphene have revealed a dissipationless electron
current, wherein the electron density can be tuned by a
gate voltage [72,73]. Theoretical analysis shows the exis-
tence of nearly flat bands in the magic-angle twisted bilayer
graphene that can be completely isolated from the rest of the
spectrum [63].

The Mott-insulator behavior for the twisted-bilayer
graphene is experimentally demonstrated for filling 1

4 or
3
4 at low temperatures [72]. Inducing the charge carri-
ers in the twisted-bilayer graphene via the gate voltage
produces an unconventional superconducting phase at low
temperatures [73–78]. These facts indicate the possibility
for engineering interesting strong correlation physics in the
twisted bilayer graphene by tuning the band dispersion.

Apart from the twisted bilayer graphene, theoretical stud-
ies show that the twisted bilayers of group-VI transition
metal dichalcogenides (TMDs) are a promising platform to
realize the flat bands at small twist angles for both hetero-
bilayers [76,79] and homobilayers [80,81]. In contrast to the
twisted bilayer graphene in which the flat bands appear only
within a narrow window (±0.1◦) around twist angle 1.1◦, in
TMDs the flat bands occur in a larger range of twist angles in
the twisted TMDs.

Most recently, the experimental discovery of correlated in-
sulating states and superconductivity in heterobilayers [82,83]
and homobilayers [84,85] TMDs promotes them to promis-
ing playground to realize intriguing correlated quantum
phases [76,80]. The aim of this research is to present ana-
lytical and numerical investigations on the zero-temperature
magnetic phase diagram of the TMD homobilayers in the
strong correlation limit. To this end, we pay special attention
to the large-spin limit and study the effect of quantum correc-
tions on the classical phase diagram.

II. MODEL HAMILTONIAN

Twisted homobilayers between binary van der Walls semi-
conducting TMDs form a moiré superlattice for small twist
angles (θ ) near 0◦ and 180◦ [80]. Here, we consider a homobi-
layer with a small twist angle close to 0◦ (θ > 0). A schematic
representation of this moiré pattern is depicted in Fig. 1(a).

The moiré superlattice is obtained by a slight counterclock-
wise rotation of the top layer around the z axis with respect to
the bottom layer. As shown in Fig. 1(a), in each moiré unit cell
of this AA stacking, there are three types of high-symmetry
points: RX

M , RM
X and RM

M , where X and M indicate chalcogen
and transition metal atoms, respectively. Here, we define Rα

β

at which the α atoms in the top layer are vertically aligned
with the β atoms in the bottom layer.

Recently, two experimental studies report signatures
of nearly flat bands with narrow bandwidths in twisted
WSe2/WSe2 homobilayers [84,85]. Theoretical studies illus-
trate that these isolated flat moiré bands can be described by
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FIG. 1. (a) Schematic representation of twisted TMD homobi-
layers with a small twist angle θ wherein the high-symmetry sites
are marked by dashed circles. (b) The effective lattice model which
results from RX

M and RM
X as effective sites form the real-space hon-

eycomb lattice with two basis vectors a and b. (c) The first Brillouin
zone and the high-symmetry points of two-dimensional honeycomb
lattice (d) Moiré band structure and (e) DOS of the twisted TMD
homobilayer obtained by using the effective tight-binding model in
Eq. (1) where the hopping integral parameters are chosen as t1 ≈
0.29 meV and t2 ≈ 0.06 meV [80].

effective tight-binding models on triangular or honeycomb
lattices depending on the electron density distribution in real
space [80,86]. This finding shows a good agreement with the
interesting experimental observations [84,85].

The one orbital tight-binding model on the triangular lat-
tice is proposed in the case where large electron densities are
located around the RM

M sites. While the effective honeycomb
lattice model can be considered in the case where the real-
space distribution of the electron density is concentrated close
to the RX

M/RM
X positions [Fig. 1(b)].

Here, we focus on the corresponding tight-binding model
of the moiré honeycomb lattice by including two topological
flat bands which show good consistency with the moiré bands
obtained by using a low-energy continuum model [80,86].
Two topological moiré valence bands with opposite Chern
numbers in TMD homobilayers with very small twist an-
gles can be described with a generalized Kane-Mele (KM)
model [87] with an extra effective gauge potential due to
the momentum shift between the twisted layers [80,88] as
follows:

Hk = t1

∑
〈i j〉,α

c†
i,αc j,α + t2

∑
〈〈i j〉〉,α

e
2π i
3 νi j c†

i,αc j,α, (1)

where c†
i,α (ciα) stands for the creation (annihilation) operator

of an electron with spin α (α =↑,↓) on site i. The first term
represents the nearest-neighbor hopping with amplitude t1
associated with interlayer hopping of the twisted homobilayer
between orbitals concentrated near RX

M/RM
X positions. The

second term captures intralayer bond-dependent hopping with
νi j = (d̂1×d̂2)z, in which the unit vectors d̂1 and d̂2 connect-
ing the next-nearest neighbors on the honeycomb lattice.
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The complex second-nearest-neighbor hopping term can
effectively induce a spin-dependent hopping integral, which
causes the tight-binding model to contain effective spin-orbit
couplings. In other words, the moiré superlattices in van
der Waals heterostructures are a benchmark for studying and
controlling of the spin-orbit coupling due to spin-valley lock-
ing [63,89,90].

In Figs. 1(d) and 1(e), we show the two valence bands and
density of state (DOS) have been obtained from the effective
model in Eq. (1), with the tight-binding parameters as t1 ≈
0.29 meV and t2 ≈ 0.06 meV, respectively. The van Hove
singularities in the density of states originate from saddle
points in the dispersion which give rise to an enhancement
of interaction effects.

Therefore, many-body effects for electrons in the flat bands
are remarkably increased since the kinetic energy is strongly
decreased under the suppressed bandwidth condition in the
moiré bands. It should be emphasized that the two flat bands
with extremely small bandwidth (W < 1) exhibit relatively re-
markable band dispersions by increasing the twist angle [88].
The ratio of interaction strength to bandwidth, U/W , of the
moiŕe homobilayers is well modified through varying the
twist angle and using a three-dimensional dielectric environ-
ment [72,86,88,91].

Wu et al. have shown that these moiŕe homobilayers with
integer numbers of holes per moiŕe unit cell can be a two-
dimensional platform for studying exotic insulator phases
such as ferromagnetic insulating state, quantum spin Hall in-
sulator, antiferromagnetic insulator, and fractional topological
insulators [80].

Here, in order to study the interaction effects on the twisted
TMD homobilayer by a small angle, we only consider onsite
repulsive interaction as follows:

HU = U
∑

i

ni↑ni↓, (2)

where niα = c†
iαciα is a number operator and U is the strength

of the onsite Coulomb interaction. Thus, the Hamiltonian for
describing the interacting electrons in moiŕe homobilayers,
H = Hk + HU , is a generalized Kane-Mele-Hubbard model.

For these systems with the isolated flat bands, the interac-
tion strength can be much larger than the hopping integrals
t1 and t2 in Eq. (1). In the twisted TMD homobilayers, the
onsite Coulomb interaction strength is at least one order of
magnitude greater than the hopping parameters for the small
twist angles between layers [80,86,88].

Due to the suppression of charge fluctuations in the limit
of the strong onsite Coulomb repulsion, we try to obtain
the effective spin Hamiltonian using second- order pertur-
bation theory. The perturbation to second order in t1/U
(t2/U ), we find an effective spin Hamiltonian for the half-
filling case including the Kane-Mele Heisenberg [92,93] and
Dzyaloshinskii-Moriya (DM) terms as follows:

H =
∑
〈i j〉

J1Si · S j +
∑
〈〈i j〉〉

[
J2Si · S j − g2

(
Sx

i Sx
j + Sy

i Sy
j − Sz

i Sz
j

)

− Dνi j (Si × S j )z
]
, (3)

where the first two terms are isotropic exchange interactions
between nearest- and next-nearest neighbors with amplitudes

of J1 = 4t2
1 /U and J2 = t2

2 /U , respectively. In addition, the
XXZ and antisymmetric DM exchanges between the next-
nearest neighbors originate from the spin-dependent hopping
integral with the magnitudes of g2 = 3J2 and D = 2

√
3J2.

It clearly shows that the KM exchange interaction favors
in-plane ferromagnetic order and supports antiferromagnetic
order in the z direction. Since the DM exchange interaction
is suppressed when spins are in the same direction, this in-
teraction favors a noncollinear (NCL) magnetic phase, which
may lead to the stability of the triplet-pairing correlation in the
twisted TMD homobilayers.

III. CLASSICAL PHASE DIAGRAM

A. Luttinger-Tisza method

To obtain the classical phase diagram of the generic model
Hamiltonian as given in Eq. (3), we first use the Luttinger-
Tisza (LT) approximation [94,95]. Here, instead of using the
constraint of fixed spin length at each site, we apply the weak
constraint ∑

i

|Si|2 = NS2, (4)

where N is the total number of lattice points.
Performing Fourier transform on Eq. (3) and diagonal-

izing of its matrix representation gives the stable magnetic
configurations for the different constant couplings, as will
be discussed in more detail below. A honeycomb lattice
with two sites per unit cell, ν ∈ {1, 2}, can be considered
as two interpenetrating triangular Bravais lattices with prim-
itive translational vectors a = x̂ and b = −1/2x̂ + √

3/2 ŷ
[Fig. 1(b)]. The Fourier transforms of the spins on each of
the sublattices ν are defined by

Sν
ρ (ri ) = 1√

N/2

∑
k

Sν
k,ρeik·ri , (5)

where ρ ∈ {x, y, z} corresponds to the component of the spin
vector and N/2 is the number of primitive cells. The summa-
tion

∑
k is taken on the first Brillouin zone (FBZ) [Fig. 1(c)].

Rewriting the effective spin Hamiltonian [Eq. (3)] in terms
of Sν

k,ρ results in

H =
∑

k

∑
α,β∈{ν}

S̃αT
−kJ

αβ

k S̃β

k , (6)

in which S̃β

k = (Sβ

k,x Sβ

k,y Sβ

k,z )
T
. Moreover, J αβ

k is a 6×6 ma-
trix whose elements are obtained from the FT of the exchange
interaction terms. It has the form of

Jk =
(

ξk γk
γ ∗

k ξ ∗
k

)
, (7)

where

ξk =
⎛
⎝Bk Fk 0
F∗

k Bk 0
0 0 Ck

⎞
⎠, γk =

⎛
⎝Ak 0 0

0 Ak 0
0 0 Ak

⎞
⎠, (8)

the elements of matrices ξk and γk are given by

Ak = J1{ 1 + exp(ikb) + exp[i(ka + kb)]},
Bq = 2(J2 − g2)[cos ka + cos kb + cos(ka + kb)],
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Cq = 2(J2 + g2)[cos ka + cos kb + cos(ka + kb)],

Fk = −2iD[sin ka + sin kb + sin(ka + kb)] (9)

with ka = k · a and kb = k · b. Obviously, the interaction ma-
trix Jk is Hermitian and has real eigenvalues. The normalized
eigenmodes of Jk generate a 6×6 unitary matrix. Within this
orthonormal basis, Eq. (6) can be written as

H =
∑

k

6∑
μ=1

λ
μ

k

∣∣S′μ
k

∣∣2
(10)

in which λ
μ

k represents the μth eigenvalue of Jk and the
corresponding eigenvector satisfies the relation

Jkw
μ

k = λ
μ

k w
μ

k . (11)

Furthermore, S′μ
k is known as spin structure factor, which is

defined by

S′μ
k = w

μ

k S̃k. (12)

Within the LT method, to obtain the magnetic ground state of
the Hamiltonian (3), we need to find a global minimum λ0.

Using the weak constraint in Fourier space, the classical
energy [Eq. (10)] can be reexpressed as

H = Nλ0 +
∑

k

∑
μ �=0

(
λ

μ

k − λ0
)∣∣S′μ

k

∣∣2
. (13)

To minimize this classical energy, the second term in Eq. (13)
should be equal to zero because (λμ

k − λ0) > 0. For this pur-
pose, the coefficients S′μ

k with μ �= 0 must be eliminated so
that these generic conditions allow us to realize the possible
ground-state spin configurations. Here, for the sake of sim-
plicity we assume J1 = 1. Zero-temperature phase diagram
in the g2-J2 plane for the special case with D = 0 includes
three distinct phases [92]: (i) Planar commensurate Néel-type
antiferromagnetic state (xy-AFM) for (J2−g2) < 1

6 . This spin
configuration is originated from the KM term reducing the O3

spin symmetry to an O2 symmetry. (ii) Classical spiral (SP)
spin liquid for (J2−g2) > 1

6 , in which g2 < 1
6 , indeed hosts

a massive ground-state degeneracy with any wave vector Q∗
within the FBZ satisfying the relation

cos

(
Q∗

x

2

)
cos

(√
3

2
Q∗

y

)
+ 1

2
cos(Q∗

x ) = 1

16(J2− g2)2
− 3

4
.

(14)

For 1
6 < (J2 − g2) < 1

2 and (J2 − g2) > 1
2 , these wave vectors

form contours in the momentum space around the center
point (�) and vertices (K and K′) points of FBZ, respectively
(Fig. 2).

Moreover, the phase shift between the two spins in the
same cell for (J2 − g2) > 1

6 is entirely defined by

cos ϕ∗ = 2(J2 − g2)[1 + cos(Q∗
b ) + cos(Q∗

a + Q∗
b )],

sin ϕ∗ = 2(J2 − g2)[sin(Q∗
b ) + sin(Q∗

a + Q∗
b )], (15)

in which Q∗
a = Q∗ · a and Q∗

b = Q∗ · b. (iii) Collinear-z AFM
(z-AFM) state with commensurate wave vector corresponding
to three inequivalent M points in which the spins aligned
along the z direction without any spin canting. It is worth

k
y
/
π

kx/π

J2 − g2 = 0.0
J2 − g2 = 0.3
J2 − g2 = 0.5
J2 − g2 = 0.8
J2 − g2 = ∞

FIG. 2. Degenerate manifolds of spin spirals in momentum space
for different value of J2 − g2. The outer black hexagonal denotes the
first Brillouin zone.

mentioning that the spin configuration related to this state is
of stripy or zigzag form with threefold degeneracy.

It should be noted that valley splitting in magnon spec-
trum of transition metal tricalcogenides, such as MnPS3 and
MnPSe3, originated from the z-AFM order on the honeycomb
lattice [96,97]. There are more details for the possible mag-
netic phases of the special case D = 0 in our previous paper
in Ref. [92].

We proceed to study the classical zero-temperature ground
state of the generic equation in the plane of J2 and D for
various values of g2 using the LT method. First, we examine
the case g2 = 0. The J2 dependence of the ordering wave
vector for given D = 0.1 is shown in Fig. 3(a). For this special
case, an AFM phase with Q = � = (0, 0) appears for J2 < 1

6 .
To minimize the classical energy, we find that the minimum

energy solutions for 1
6 < J2 < 0.8 corresponds to an incom-

mensurate wave vector selected along the � − K directions in
the FBZ. We note that the sixfold degeneracy of this planar
spiral phase is originated from the π/6 rotation symmetry.

The classical honeycomb lattice forms 120◦ order
for J2 > 0.8 described by Q = K = (4π/3, 0) or K′ =
(2π/3, 2π/

√
3) for which the two sublattices are completely

decoupled. The ordering wave vectors related to the AFM
order and 120◦ order are smoothly connected to the planar

0 0.2 0.4 0.6 0.8 1

-3

0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

(Q
x
,Q

y
)

J2

1200SP

(a)
Qx

Qy

A
F
M

4π/3

0

−d
2
E

g
/d

J
2
2

E
g

J2

Eg

−d2Eg

dJ2
2

(b)

1200N
C

P
SP

A
F
M

FIG. 3. (a) The J2 dependence of the ordering vector obtained in
the LT analysis for D = 0.1 and g2 = 0. (b) Classical ground-state
energy Eg (dashed line) and its second derivative −d2Eg/dJ2

2 (solid
line) as a function of J2 which computed by the LT approach, for
given D = 0.1 and g2 = 0.05.
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FIG. 4. Classical phase diagrams obtained from the LT method
in the plane of J2 and D for the various values of the KM term: (a)
g2= 0, (b) g2= 0.05, (c) g2= 0.1, and (d) g2= 0.3.

spiral phase, thus, the transition between them is of second
order. The complete ground-state phase diagram in the plane
of J2 − D for given g2 = 0 is shown in Fig. 4(a). For small
values of J2, the AFM ordering is stable up to D 
 0.4.

On further enhancing frustration, i.e., for J2 > 1
6 , we find

that the system makes a transition to the planar spiral order
with the sixfold degeneracy, which remains stable in the limit
of D < 0.2. For large values of D, the AFM and planar spiral
states become 120◦ order with the wave vector K or K′.

Next, we will extend these results by considering some
nonzero values of g2. Let us examine the case of g2 = 0.05.
Taking into account the ground-state energy per site Eg and its
second derivative −d2Eg/dJ2

2, we can determine the classical
phase boundaries. Figure 3(b) shows the J2 dependence of Eg

and −d2Eg/dJ2
2, which is calculated by the LT method, for

given D = 0.1 and g2 = 0.05. Here, the second derivative of
the ground-state energy exhibits three anomalies with increas-
ing J2. Therefore, we expect three possible points where the
character of the magnetic phases changes.

In Figs. 4(b)–4(d), we report the evolution of the classical
phase diagram with an increase in the strength of the KM in-
teraction. It clearly shows that the KM term favors the stability
of an xy-AFM order rather than the AFM phase.

As mentioned earlier, the KM exchange term reduces the
O3 symmetry of the Heisenberg model to the O2 symmetry
which causes the spins all to lie in the xy plane. Moreover,
it is found that the stability area of the planar spiral phase
in the plane of J2 − D begins to decrease with enhancing
g2 and the planar spiral order is destroyed in favor of an
incommensurate noncoplanar (NCP) configuration with high
classical degeneracy. It should be noted that at larger g2 the
planar spiral state is highly unstable and only survives stable
for g2 � 0.1 in a narrow region about J2 ≈ 0.3, as indicated
in Figs. 4(b) and 4(c). For the NCP phase with similar physics

to the spiral spin liquid, the spins are oriented out of the xy
plane.

One immediate insight is afforded which the interplay of
the DM interaction and KM coupling plays a key role in
favoring the NCP states over the planar spiral. We have iden-
tified the stabilization of the NCP magnetic phases with wave
vectors Q∗ satisfying Eqs. (14) and (15) only by replacing the
J2 − g2 with the J2 + g2.

Within the LT method, our findings indicate that the DM
exchange interaction tends to destabilize the z-AFM ordering,
which we have found for the Kane-Mele Heisenberg model
[the special case of Eq. (3) with D = 0] in our previous
work [92], in favor of the NCP phase.

In the next subsection, we introduce a variational optimiza-
tion (VO) method that studies the ground state of the generic
model Hamiltonian [Eq. (3)]. The VO method attempts to find
the classical ground state by enforcing the constraint of fixed
spin length at each site i,

Si · Si = S2, (16)

which is termed the strong constraint. For each wave vector Q,
we can rewrite the fixed spin-length constraint on every site in
terms of Sk,

∑
k

Sk · SQ−k = NS2δQG, (17)

where G denotes a reciprocal lattice vector.
It is known that the spin vectors are real, thus we find the

relation on the Sk as

Sk
∗ = S−k. (18)

Within the LT method, we consider minimization of the clas-
sical energy in Eq. (10), under the relaxed constraint [Eq. (4)]
in the momentum space

∑
k

|Sk|2 = NS2, (19)

the minimum energy solution would be the true physical
ground state when it satisfies all local constraints [Eq. (17)],
i.e., Q = G.

Indeed, for the spin configurations in which spins are
ordered at an incommensurate wave vector Q, the local con-
straints [Eq. (17)] are not necessarily satisfied, then the LT
method failed to give the physical ground state [98]. Next,
we therefore explore such cases in more detail by performing
numerical optimization.

B. Variational optimization method

To numerically validate the classical phase diagrams,
T = 0 limit, obtained with the LT method, here we use the
variational optimization approach. The remarkable point in
this method is to parametrize the spin vectors in terms of the
variational parameters as wave vector, polar, and azimuthal
angles so that the local length constraint of the unit spin size
in each site is fulfilled. Therefore, there would be an ability to
search the NCP magnetic ground state in detail.
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To parametrize the spin vectors on the two sublattices of
the honeycomb lattice as

Sν (ri ) = sin
(
θν

i

)[
x̂ cos

(
ϕν

i

) + ŷ sin
(
ϕν

i

)] + ẑ cos
(
θν

i

)
, (20)

in which

ϕ1
i = Q · ri, θ1

i = Q′ · ri + γ ,

ϕ2
i = Q · ri + ϕ, θ2

i = Q′ · ri + η. (21)

We have computed the general variational energy of the
magnetic phases with commensurate and incommensurate
wave vectors by substituting the spin components defined by
Eq. (20) in the effective spin Hamiltonian [Eq. (3)] (for more
detail, see Appendix A).

There may well be the reason why the classical energy
of the incommensurate ones, Eq. (A2), is independent of the
DM interaction. The main reason can be attributed to the
fact that the contribution of the DM term to the energy is as
D

∑
〈〈i j〉〉 νi j cos[Q′ · (ri + r j ) + 2δ], with Q′ an incommen-

surate wave vector. Thus, Q′ · (ri + r j ) �= 2nπ concludes that
this summation for these magnetic phases should vanish.

To obtain the ground-state phase diagram of the effective
spin Hamiltonian in Eq. (3) for each set of couplings, the
classical energies should be minimized with respect to the
variational parameters Qx, Qy, Q′

x, Q′
y, ϕ, γ , and η. For

the purpose of this work, we numerically minimize the varia-
tional energy functions (A1) and (A2) by using the simulated
annealing scheme from the Mathematica optimization pack-
age [99] to determine various magnetic configurations.

The global classical phase diagrams of the ground state of
the spin Hamiltonian (3) for the different values of the KM
term are indicated in Fig. 5. For the special case of g2 = 0,
the ground-state phase diagram includes four distinct phases
[Fig. 5(a)]: two commensurate phases (labeled as AFM and
120◦-AFM) and two incommensurate orders (called spiral
and NCL). Within this notation, two distinct commensurate
states may also exist: (i) AFM described by Q and Q′ = �

with a phase difference π , (ii) 120◦-AFM phase has in- and
normal-to-plane spin components with different wave vec-
tors in reciprocal space characterized with Q = K or K′ and
Q′ = �, respectively. Note that the spins on the two sublat-
tices are totally decoupled with an arbitrary phase shift. In
addition, the phase diagram includes a wide region of the
two incommensurate phases: (iii) planar spiral order with high
classical degeneracy in terms of xy wave vectors satisfying
Eq. (14), and a phase shift ϕ∗ between the two spins within
each unit cell defined by the relation (15). These classically
degenerate solutions form manifolds around � for 1

6 < J2 < 1
2

and closed contours around K and K′ for J2 > 1
2 as shown in

Fig. 2. (iv) In the case of noncollinear state, the in-plane and
out-of-plane spin components have different wave vectors in
the momentum space. The in-plane spin component has two
Fourier components with the incommensurate wave vectors
Q = ±( π

3 ,−π ), while its z component has Fourier momenta
of the wave vector Q′ = M. In this phase, one sublattice forms
a conical spiral phase, while the spins on the other sublattice
are aligned along the z direction [Fig. 6(a)]. This phase in-
cludes double conical spiral with conical angle θc around the
z or −z directions, as depicted in Fig. 6(b). It should be noted
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FIG. 5. Classical ground-state phase diagram obtained from the
VO method in the plane of J2 and D for some values of the KM term:
(a) g2 = 0, (b) g2 = 0.05, (c) g2 = 0.1, and (d) g2 = 0.3. Real-space
ordering for some spin configurations in (e) the Néel antiferromag-
netic, (f) the spiral state, (g) the z-AFM ordered phase (filled and
open circles indicate the spins aligned along the z and −z directions,
respectively), and (h) the 120◦-AFM phase.

that the conical angle is strongly dependent on the exchange
coupling parameters.

At first sight, it is evident that the out-of-plane ordering
has a spin configuration similar to the z-AFM corresponds
to the wave vector Q′ = M. Our results show that a subtle
interplay between the antiferromagnetic Heisenberg and KM
exchange interactions plays a decisive role in the stabilization
of the NCL state. By increasing the strength of the KM term,
the classical spiral spin-liquid phase for the small values of
D is divided between three phases: the spiral, the z-AFM,
and the NCP [Fig. 5(b)]: (i) The spiral is highly degenerate
as previously found in the case of g2 = 0. The classically
degenerate solutions correspond to an infinite set of wave
vectors Q satisfy Eq. (14). (ii) The stability of the z-AFM
magnetic order in the phase diagram has been attributed to
the existence of the KM term, g2 �= 0, in Eq. (3) [92]. (iii)
The incommensurate NCP phase, which is highly degenerate
in terms of both Q and Q′ (the two ordering wave vectors
are inequivalent, Q �= Q′). The fact distinguishes our NCP
spin configuration from the planar spiral order, which has two
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c

(a) (b)

z

y
z

x

FIG. 6. (a) The real-space spin configuration of the noncollinear
phase. (b) The double conical spiral, with the conical angle θc and
along the z direction, of a single sublattice plotted in the same origin.

order parameters, one associated with a planar spiral, and the
other with incommensurate ordering along the z direction.

Here, we report evidence for the stability of the NCP phase
on the non-Bravais lattice due to the interplay of the KM and
DM couplings. On the other hand, it should be emphasized
that the new magnetic commensurate states (xy-AFM and
z-AFM) that emerge in the ground-state phase diagram are
due to the g2 term that breaks the global O3 spin-rotation
symmetry down to the O2 spin-rotation symmetry around the
z axis.

As it is clear in Figs. 5(b)–5(d), the stability region asso-
ciated with these two commensurate states begins to extend
by enhancing the strength of g2. In contrast, we find that the
stability regions of the planar spiral- and 120◦-AFM mag-
netic phases narrowing by increasing g2. Therefore, these
two phases remain stable only for the small values of the g2

[Figs. 5(b) and 5(c)].
Consequently, the obtained classical phase diagrams ad-

dress that the DM interaction, allowed by the complex
hopping integrals in the second-neighbor coupling [86,100],
stabilizes an in-plane spin configuration such as the classical
spiral spin-liquid phase, and magnetic configurations with an
out-of-plane spin component as AFM, 120◦-AFM, and NCL
phases in the twisted homobilayer systems at half-filling.

Now, we consider how the addition of the KM term mod-
ifies the obtained results. In what follows, we will study the
effects of quantum fluctuations on the stability of the classical
ground states of the model (3) using a theoretical method such
as linear spin-wave theory (LSW), and the density renormal-
ization group (DMRG) is a numerical method.

IV. INSTABILITY OF MAGNON SPECTRA

Here, we will investigate the stability regions of the
classical ground-state magnetic structures in contrast to the
quantum fluctuations by calculating the excitation spectrum
using linear spin wave. In this method, instead of working in
the laboratory frame {x, y, z} on each lattice site, we switch to
the local frame {x̃, ỹ, z̃} where the z̃ axis is aligned along the

spin’s quantization direction on that site for a given classical
magnetic order.

Using the rotation matrix R̂ to rotate the spin vector in
the laboratory reference frame at the site i to the local one
as follows:

Sν (ri ) = R̂iS̃ν (ri ). (22)

In the locally rotated coordinates, the spin vectors obtained by
a two-stage process as R̂ = R̂ϕ · R̂θ . Here, R̂ϕ (R̂θ ) represents
the rotation in the xy (xz) plane around the z (y) axis by angle
ϕ (θ ). Rotation matrix in the xy plane by the azimuthal angle
ϕ is given by

R̂ϕ =
⎛
⎝cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

⎞
⎠ (23)

and the rotation matrix in the xz plane by the polar angle θ

takes the form

R̂θ =
⎛
⎝ sin θ 0 cos θ

0 1 0
− cos θ 0 sin θ

⎞
⎠. (24)

Thus, the rotation transformation between the two reference
frames is characterized by

R̂ν
i =

⎛
⎝sin θν

i cos ϕν
i − sin ϕν

i cos θν
i cos ϕν

i

sin θν
i sin ϕν

i cos ϕν
i cos θν

i sin ϕν
i

− cos θν
i 0 sin θν

i

⎞
⎠. (25)

Now we can reexpress the spin Hamiltonian [Eq. (3)] in
terms of the new spin components as follows:

H =
∑

i j

∑
α,β∈{ν}

SαT
i J αβ

i j Sα
j =

∑
i j

∑
α,β∈{ν}

S̃αT
i J̃ αβ

i j S̃α
j (26)

in which the exchange matrix in the rotated frame is defined
as J̃ αβ

i j = R̂iJ
αβ

i j R̂ j .
We proceed to perform the well-known Holstein-Primakoff

(HP) transformation on the rotated spin Hamiltonian
[Eq. (26)] to obtain the magnon spectrum. Here, we use an
LSW theory that rewrites the rotated spin model [Eq. (26)]
in terms of the HP boson operators. In this case, it can be
turned into H = Ecl + H0 + H1 + H2 + · · · . The first term
represents the classical energy of the spin configurations. In
the following, we only keep the quadratic terms in bosonic
operators, i.e., the harmonic order of the spin-wave theory.
This means that we try to find the classical lattice vibrations
and therefore to quantize the spin model [Eq. (26)] as har-
monic oscillations in the LSW theory. By diagonalizing the
harmonic term using Bogoliubov transformation, one can ob-
tain the magnon spectrum and first quantum corrections to the
zero-point energy related to the classical spin configurations.

For a given classical magnetic structure, one can consider
its stability boundaries as a function of the exchange coupling
parameters using the magnon spectra. Notice that the appear-
ance of soft modes for a magnon branch in one or at a set of
wave vectors may result in imaginary spectrum. This feature
is well known as magnon instability allowing us to identify a
magnetic phase transition.

Moreover, we can obtain more information regarding the
nature of phase transition and the existence of intermediate
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phases that could not been verified within classical calcula-
tions [101,102]. The overlap of the magnon stability regions
of the adjacent magnetic phases illustrates the existence of
the first transition between them. Note that if the magnon
instability threshold takes place before the obtained classical
boundaries, this result indicates that the phase transition oc-
curs via an intermediate phase.

A. Coplanar phases

Here, we start to investigate the magnon stability regions
of the in-plane magnetic orders. The ordering vector related

to different states determines the number of sublattices within
a magnetic unit cell. For the in-plane spin configurations, the
rotation matrix can be obtained by fixing θν

i = 0. As a result,
the spin components are reexpressed in the local frame as
follows:

Sν
i,x = cos ϕν

i S̃ν
i,z − sin ϕν

i S̃ν
i,y,

Sν
i,y = sin ϕν

i S̃ν
i,z + cos ϕν

i S̃ν
i,y, Sν

i,z = −S̃ν
i,x, (27)

in which ϕν
i = Q · ri + φν

i .
After this rotation, the spin model [Eq. (3)] turns into

H = J1

∑
〈i j〉

cos(Q · δ1 − φ)
[
S̃1

i,yS̃2
j,y + S̃1

i,zS̃
2
j,z

] + sin(Q · δ1 − φ)
[
S̃1

i,yS̃2
j,y − S̃1

i,zS̃
2
j,z

] + S̃1
i,xS̃2

j,x

+
∑
〈〈i j〉〉

(J2 − g2) cos(Q · δ2)
[
S̃1

i,yS̃1
j,y + S̃1

i,zS̃
1
j,z

] + (J2 + g2)S̃1
i,xS̃1

j,x + (1 ↔ 2)

−
∑
〈〈i j〉〉

Dνi j sin(Q · δ2)
[
S̃1

i,yS̃1
j,y + S̃1

i,zS̃
1
j,z

] − Dνi j cos(Q · δ2)
[
S̃1

i,yS̃1
j,z − S̃1

i,zS̃
1
j,y

] + (1 ↔ 2). (28)

Under the LSW approximation, we can quantize the spin op-
erators in Eq. (28) in terms of HP boson operators as follows:

S̃1
i,z = S − a†

i ai, S̃1†
i =

√
2Sai, S̃1−

i =
√

2Sa†
i ,

S̃2
i,z = −S + b†

i bi, S̃2†
i =

√
2Sb†

i , S̃2−
i =

√
2Sbi. (29)

After performing FT, the LSW Hamiltonian in momentum
space can be written as H2 = 2S

∑
k ψ

†
kJkψk with ψk =

(a†
k, b†

k, a−k, b−k ). The 4×4 matrix Jk takes the form

Jk =
(
J ′

k J ′′
k

J ′′†
k J ′

k

)
, (30)

in which the 2×2 matrices J ′
k and J ′′

k are given by

J ′
k =

(
A+

k Bk

B∗
k A−

k

)
, J ′′

k =
(

C+
k Dk

D∗
k C−

k

)
, (31)

with the expressions for the matrices elements given in
Appendix B.

To study the magnon instability boundaries of differ-
ent magnetic structures in Fig. 5, it is necessary to obtain
the magnon spectra by diagonalization of the quadratic
Hamiltonian (H2) by means of a standard Bogoliubov trans-
formation [103].

For the state with AFM order, with Q = � and φν
i = 0, the

smallest positive magnon branch has been plotted in Fig. 7
for given D = 0.1 and some chosen values of the coupling
constants J2 and g2 along high-symmetry directions in the
FBZ. The linear behavior of the magnon spectra close to the
� point for the typical values of J2 away from the instability
boundary demonstrates the appearance of Goldstone modes
due to spontaneously broken O2 rotational symmetry.

On further enhancing J2, the magnon spectra in the vicinity
of the � point exhibit a quadratic form. This result indicates
that the soft modes are located around the symmetric point �

inside the FBZ leading to the instability of the AFM order. It
should be emphasized that the magnon instability boundary

for the AFM phase in going to the classical spin liquid co-
incides with its classical boundary, and this result indicates a
second-order phase transition between them.

However, our results illustrate that the magnon instability
boundary for both the AFM/120◦-AFM and AFM/NCL is far
beyond the classical one; then, the first-order phase transition
can be realized between these magnetic phases [101].

As already discussed, the classical ground-state energy as-
sociated with the spiral state [Eq. (A2)] is minimized with the
choice of the ordering vectors on the manifolds in Fig. 2. For
this case with high classical degeneracy, we find no indication
of quantum order by disorder using the LSW calculation. In
contrast to the obtained results for the Kane-Mele Heisenberg
model [92], no magnetic state with an ordering vector from
the degenerate manifolds can be stabilized in the presence of
the quantum fluctuations.

In the next section (in Sec. V), we will numerically study
the quantum nature of the classical spiral spin liquid in more
detail.

FIG. 7. The obtained magnon spectra, along high-symmetry di-
rections in the FBZ, via a LSW calculation in going from the AFM
state to the spiral one for given D = 0.1. The curves from top to
bottom are associated with some values of (a) J2 = 0, 0.1, 0.165,
(b) J2 = 0, 0.1, 0.215, respectively. The lower curve indicates the
magnon instability boundary of the AFM phase.
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B. z-AFM phase

For the z-AFM phase, the ordering vector is one of the
M points of the FBZ. The magnetic unit cell of this state
includes four spins, two in the ẑ direction and two in the op-
posite direction [Fig. 5(g)]. It clearly shows that the primitive
transnational vectors of this magnetic order are 2a and b [92].

To study the magnon instability of the z-AFM state with or-
dering vector Q = M = (π, π/

√
3) and the phase difference

π within each unit cell, we define the HP transformations at
the LSW approximation as follows:

Sz
i,ζ = S − a†

i,ζ ai,ζ , Sz
i,ζ = −S + a†

i,ζ ai,ζ , S†
i,ζ =

√
2Sai,ζ ,

S†
i,ζ =

√
2Sa†

i,ζ , S−
i =

√
2Sa†

i,ζ , S−
i,ζ =

√
2Sai,ζ

ζ = 1, 4, ζ = 2, 3. (32)

To use these transformations, the quadratic Hamiltonian in
momentum space is given by

H2 = S
∑
k>0

ψ
†
kJk�k, (33)

with ψ
†
k = (a†

1k, a†
2k, a†

3k, a†
4k, a1−k, a2−k, a3−k, a4−k ) and the

8×8 matrix Jk that is given by

Jk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X+
k 0 0 J1 0 Fk Gk 0
0 X+

k J1 0 F−k 0 0 Lk

0 J1 X−
k 0 G∗

k 0 0 F∗
k

J1 0 0 X−
k 0 L∗

k F∗
−k 0

0 F∗
−k Gk 0 X−

k 0 0 J1

F∗
k 0 0 Lk 0 X−

k J1 0
G∗

k 0 0 F−k 0 J1 X+
k 0

0 L∗
k Fk 0 J1 0 0 X+

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(34)

whose elements are written in Appendix B.
Here, we explore the magnon instability of the z-AFM

phase in going to its neighbor phases. While not shown, the
magnon spectra in the bulk phase of the z-AFM ordering
are fully gaped owing to the spin-rotational symmetry break-
ing [92]. Magnon instability for the z-AFM state in going to its
neighbor phases occurs at the incommensurate wave vectors
along the � − M in the FBZ, as depicted in Fig. 8.

Note that the magnon instability boundary of the z-AFM
phase in going to the NCL and NCP phases is far beyond its
classical boundaries, resulting in a first-order transition.

While in the LSW approximation, the border region of
the z-AFM phase with the classical spiral coincides with the
result shown in Fig. 5. Thus, this fact supports a second-order
phase transition between them in the presence of the quantum
fluctuations. We know that the ordering vector according to
the classical energy minimization determines the spin configu-
ration for the chosen set of the coupling constants and dictates
the number of sublattices within each magnetic unit cell.

In our spin-wave analysis, we shall neglect the magnon
stability of the 120◦-AFM and NCL phases which have large
magnetic unit cells. This assumption is reasonable by the
fact that these large magnetic unit cells are destabilized by
quantum fluctuations and therefore are expected to completely

FIG. 8. The obtained magnon spectra, along high-symmetry di-
rections in the FBZ, via a LSW calculation for some values of J2 and
g2 in the border regions of the z-AFM state with its neighbor phases
for g2 = 0.05.

disappear in the small values of S, which we are mainly
interested in.

For the NCP phase with both incommensurate in-plane and
out-of-plane ordering vectors, the elements of the exchange
matrix J αβ

i j are site dependent and thus the LSW Hamiltonian
[Eq. (26)] cannot be diagonalized using FT [92].

Therefore, it is required to use a numerical method to figure
out the stability of these classical magnetic phases in contrast
with the quantum fluctuations. This is the subject of the next
section (in Sec. V) that will utilize the DMRG method for this
end.

V. QUANTUM PHASE DIAGRAM

To identify the zero-temperature phases of the quantum
S = 1

2 case of the model [Eq. (3)], here we perform numerical
studies for small systems based on matrix product using the
open-source ALPS libraries [104]. For the purpose of this work,
we use honeycomb lattices under both periodic and twisted
boundary conditions [105], containing 2×L×W lattice sites.
We use clusters with L and W honeycomb unit cells along the
a and a + b directions, respectively (Fig. 1).

Here, we take a cluster with 2×3×6 sites, which has the
full symmetry of the classical magnetic orders, thus allowing
us to study the collinear, 120◦, and NCP phases. To remove the
finite-size effects, we study the order parameters for several
cluster sizes up to N = 2×5×5. In addition, the truncation
error is decreased to 10−5J1 or smaller by keeping 1000
density matrix eigenstates in the renormalization procedure
and performing 10 sweeps. This method may help us to gain
further insight into the states with large magnetic unit cells
and to realize a stable realm of the QSL behavior in the twisted
TMDs where quantum fluctuations play a prominent role.

In order to construct a quantum phase diagram of the
Hamiltonian [Eq. (3)], we compute the ground-state en-
ergy per site Eg, its second derivative with respect to J2,
−d2Eg/dJ2

2 , and the static spin structure factor defined as
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FIG. 9. The ground state energy per site Eg (dashed line), and the
second derivative of Eg with respect to J2, −d2Eg/dJ2

2 , (solid line) as
a function of J2, for given D = 0.1 and g2 = 0.

follows:

S(k) = N−1
∑

i j

〈0|(Si · S j )|0〉e−ik·(ri−r j ), (35)

where N is the number of sites and ri is the lattice vector at site
i. Here, |0〉 represents the ground-state wave function. They
are frequently utilized as probes for the characterization of
the phase transitions in a variety of models.

Figure 9 shows the ground-state energy per site Eg and the
second derivative of Eg as a function of J2, which is obtained
by the DMRG method, for given D = 0.1 and g2 = 0.

As mentioned earlier, in analogy to their classical coun-
terparts, the phase transitions are signaled by three singular
behaviors in −d2Eg/dJ2

2 . In this section, we discriminate be-
tween the phases on either side of anomaly points using the
static spin structure factor S(k). Close to J2 ≈ 0.22, the sys-
tem undergoes a continuous phase transition from the AFM
phase to the QSL phase.

As shown in Fig. 10(a), the AFM Bragg peak appears
only at the � point for J2 < 0.22, while for the QSL phase
(0.22 < J2 < 0.38), the spin structure factor is not necessarily
in the form of Bragg peaks, and the absence of any peak in
the reciprocal space confirms the QSL state [Fig. 10(b)]. The
other anomaly point at J2 ≈ 0.38 comes from the separation
of the QSL state and the stripy phase. For 0.38 < J2 < 0.75,
an antiferromagnetic phase with a four-site magnetic unit cell
(stripy) is stabilized with Bragg peaks at M point as shown in
Fig. 10(c).

To investigate in detail the stripy phase, we show the static
structure factor for three spin components Sρ (k) in Fig. 11(a).
It is indicated that the Sρ (k) main peaks for the stripy phase
are of the same magnitude at the M point. With an increase
in J2 up to J2 ≈ 0.75, the intensity of S(k) increases at K
point which represents a tendency toward the 120◦ order
[Fig. 10(d)].

Fixing g2 = 0, there are four different phases in the plane
of J2 and D [Fig. 12(a)]: a AFM phase, a spin-liquid phase, a
stripy-type antiferromagnetic phase (stripy), and a 120◦ phase.
Here, we reveal the intriguing role played by the DM interac-

FIG. 10. Zero-temperature DMRG static magnetic structure fac-
tor S(k), with D = 0.1 and g2 = 0 for (a) the AFM phase (J2 = 0.1),
(b) the QSL phase (J2 = 0.3), (c) the stripy phase (J2 = 0.6), and
(d) the 120◦ (J2 = 0.9).

tion for the stability of the 120◦ phase. The unique aspect of
this phase diagram is the stability of the 120◦ in a rather large
extent region in the J2 − D parameter space induced by the
quantum fluctuations.

Finally, let us examine the case of g2 �= 0. With an increase
in g2 up to g2 = 0.05 for given D = 0.1, phase changes from
AFM to xy-AFM for J2 < 0.28 in which in-plane spin-spin
correlation has a finite value only at the � point, while 〈Sz

i Sz
j〉

is a very short range (not shown).
We next examine the frustrated case of J2 = 0.35. Since no

Bragg peaks exist in the FBZ, similar to the case of g2 = 0,
it can be used to deduce lack of ordering (not shown). As a
result, the twisted homobilayer TMDs have been suggested as
a possible QSL material with a frustrated honeycomb lattice
containing DM magnetic interaction.

With further increasing J2 up to J2 ≈ 0.4, the system un-
dergoes a quantum phase transition from the QSL phase to
the z-AFM phase with the magnetic Bragg peak located at the

S

Stripy Canted Stripyz-AFM

x( ), Sy( ) Sz( )

FIG. 11. A comparison of scaled static magnetic structure factor
for three spin components Sx,y,z(k) in the momentum space for (a) the
stripy phase, (b) the z-AFM phase, and (c) the canted stripy phase,
which are characterized by a peak of S(k) locating at the M point.
The dashed and solid arrows represent the in-plane (x and y) and
out-of-plane (z) components of S(k), respectively.
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FIG. 12. Quantum ground-state phase diagram obtained from
the DMRG method in the plane of J2 − D for some values of the
KM term: (a) g2 = 0, (b) g2 = 0.05, (c) g2 = 0.1, and (d) g2 = 0.3.
Real-space ordering for some spin configurations in (e) the Néel
antiferromagnetic, (f) the stripy state, (g) the z-AFM ordered phase,
and (h) the 120◦ phase.

M point of the FBZ in which the x and y components S(k) are
very small compared to the Sz(k) one [Fig. 11(b)].

We then tune the next-nearest interaction J2 for the range of
0.8 < J2 < 1. For these couplings, we identify that the Bragg
peaks appear at incommensurate points in which both in-plane
and out-of-plane components of the spin-spin correlation have
finite values (not shown). Here, one observes an increase
in the magnetic Bragg intensity of the in-plane components
Sx,y(k) in going from the z-AFM state to the NCP phase with
further increasing J2.

In total, this analysis shows that an infinitesimal KM cou-
pling is already sufficient to generate the z-AFM and NCP
phases, whereas the stripy phase is significantly suppressed
as illustrated in Fig. 12(b). However, for the small values of
D (D < 0.03) in the phase diagram, a canted stripy phase

with the Bragg peak at the M is observed (not shown), in
which in-plane and out-of-plane components of the static spin
structure factor are of different magnitudes [Fig. 11(c)]. In ad-
dition, in a good agreement with the classical phase diagram,
the numerical results from the DMRG method illustrate that
the QSL phase is destabilized with an increase in g2 up to
g2 ≈ 0.1 [Figs. 12(c) and 12(d)].

VI. CONCLUSIONS

In our studies, inspired by the recent developments of the
twisted bilayer materials, we constructed an effective spin
Hamiltonian model [Eq. (3)] on a honeycomb lattice for the
twisted homobilayer TMDs in the strongly correlated limit.
In the classical spin system, we obtained the ground state
of the generic model Hamiltonian using the LT and VO
methods.

For the spin Hamiltonian [Eq. (3)], in the context of
classical calculations, we find that the second-neighbor DM
coupling plays a crucial role in the stability of the magnetic
phases which have large magnetic unit cells and extends the
stability region of the spiral spin liquid in comparison to the
J1-J2 Heisenberg model [92,106]. Meanwhile, the quantum
effects on the stability of the classical magnetic phases were
examined using the LSW and DMRG methods. To evaluate
the effects of the quantum fluctuations on the ordered phases,
we investigate the magnon stability using the LSW method.
Our findings indicate that the classical phase boundaries were
predicted to survive in contrast with the quantum fluctuations.
However, for the state with high classical degeneracy, we
found no indication of quantum order by disorder which can
lift the degeneracy and induce a gap for these states due to the
quantum zero-point fluctuations.

In the quantum system, our numerical results show that
there exist four distinct phases involving AFM, QSL, stripy,
and 120◦ in the absence of the KM term g2 = 0: A region of
the quantum spin liquid separates the AFM phase from the
stripy phase for the finite values of D up to D ≈ 0.4, while the
120◦ order can be stabilized by the DM interaction for all the
values of J2 with increasing D.

The main effect of g2 is to reduce the frustration interaction
for when it goes from a vanishing value to a finite one. As a
result, the QSL phase, which is an extremely unusual mag-
netic state with highly correlated spins, vanishes for the value
g2 about g2 ≈ 0.1. With increasing g2, we make the quantum
phase diagram of the effective model [Eq. (3)], whose phase
diagrams are established. There are a xy-AFM phase, a z-
AFM phase, a NCP phase, and a 120◦ phase.

Finally, let us comment on the material trend in the twisted
TMD bilayers. The emergence of the strong correlation ef-
fect in the twisted materials can be provided by fine tuning
to a magic twist angle where the low-energy bands become
weakly dispersive. Therefore, these twisted van der Walls
systems [80,88,107] can be used for the realization of the
Kane-Mele-Hubbard model for studying correlated insulating
states, unconventional superconductors, fractional quantum
Hall states, and quantum spin liquids.
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APPENDIX A: FUNCTIONS DEFINING THE CLASSICAL ENERGIES

To substitute the parametrization of the spin by Eq. (20) into Eq. (3), the classical variational energy per spin for the states
with commensurate wave vector (Q′

C) find a general form as follows:

EC (Q, Q′, ϕ, γ , η) = J1

2

∑
δ1

[cos(Q · δ1 − ϕ) sin(Q′ · δ1 + γ ) sin η + cos(Q · δ1 + ϕ) cos η]

+ (J2 − g2)

4

∑
δ2

cos(Q · δ2)[2 cos(Q′ · δ2) − cos(Q′ · δ2 + 2γ ) − cos(Q′ · δ2 + 2η)]

+ (J2 + g2)

4

∑
δ2

[2 cos(Q′ · δ2) + cos(Q′ · δ2 + 2γ ) + cos(Q′ · δ2 + 2η)]

− D

2

∑
δ2

νi j[sin(Q′ · δ2 + γ ) sin(γ ) − sin(Q′ · δ2 + η) sin(η)], (A1)

while for the states with incommensurate wave vector (Q′
IC), the variational energy reads as

EIC (Q, Q′, ϕ, γ , η) = J1

4

∑
δ1

[cos(Q · δ1 − ϕ) + 1] cos(Q′ · δ1 + γ − η)

+ (J2 − g2)

2

∑
δ2

cos(Q · δ2) cos(Q′ · δ2) + (J2 + g2)

2

∑
δ2

cos(Q′ · δ2), (A2)

where δ1 = 0, b, a + b and δ2 = a, b, a + b are the unit-cell position vectors of the nearest- and next-nearest neighbors of a
given lattice point, respectively.

APPENDIX B: MATRIX ELEMENTS OF THE LSW HAMILTONIAN

The LSW Hamiltonian matrix elements related to in-plane magnetic structures in Eq. (31) read as

A±
k = J1

2

∑
δ1

cos(Q · δ1 − ϕ) − (J2 − g2)
∑
δ2

cos(Q · δ2) + 1

2

∑
δ2

[J2 + g2 + (J2 − g2) cos(Q · δ2)] cos(k · δ2)

± D

2
[sin Qa cos ka + sin Qb cos kb − sin(Qa + Qb) cos(ka + kb)] ∓ D[sin Qa + sin Qb − sin(Qa + Qb)],

Bk = J1

2

∑
δ1

[1 − cos(Q · δ1 − ϕ)]e−ik·δ1 ,

C±
k = 1

2

∑
δ2

[J2 + g2 − (J2 − g2) cos(Q · δ2)] cos(k · δ2) ± D

2
[sin Qa cos ka + sin Qb cos kb − sin(Qa + Qb) cos(ka + kb)],

Dk = J1

2

∑
δ1

[1 + cos(Q · δ1 − ϕ)]e−ik·δ1 . (B1)

The explicit expressions of the Hamiltonian elements matrix associated with the z-AFM in Eq. (34) are given by

X±
k = J1 + 2(J2 + g2) + 2(J2 − g2) cos kb ± 2D sin kb,

Fk = (J2 − g2)(1 + e−ika + eikb + e−i(ka+kb) ) + iD(1 + e−ika − eikb − e−i(ka+kb) ),

Gk = J1(e−ika + e−i(ka+kb) ), Lk = J1(1 + e−ikb ). (B2)
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