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Broadening and sharpening of the Drude peak through antiferromagnetic fluctuations
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Antiferromagnetic or charge density wave fluctuations couple with light through the recently discovered π -
ton contribution to the optical conductivity, and quite generically constitute the dominant vertex corrections in
low-dimensional correlated electron systems. Here we study the arguably simplest version of these π -tons based
on the semianalytical random phase approximation (RPA) ladder in the transversal particle-hole channel. The
vertex corrections to the optical conductivity are calculated directly for real frequencies. We validate that the
RPA qualitatively reproduces the π -ton vertex corrections to the Drude peak in the Hubbard model. Depending
on the temperature we find vertex corrections to broaden or sharpen the Drude peak.
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I. INTRODUCTION

The optical conductivity is one of the primary information
sources for the electron dynamics in solids. However, there
is no momentum resolution, and the interpretation of optical
spectra is further bedeviled by the fact that it cannot always
be interpreted in a simple one-particle picture. Exciting the
solid by light leaves the number of electrons unchanged so
that in a simple one-particle picture one excites a particle from
an occupied to an unoccupied state, depositing the photon
energy. This is the “bubble” electron-hole contribution to the
optical conductivity (see left Feynman diagram in Fig. 1). In
case of a metal it leads to the Drude peak with a maximum
around zero frequency (ω = 0) in the real part of the optical
conductivity σ (ω) and a broadening given by the scattering
rate τ−1:

σ (ω) = Re

(
σ0

1 − iωτ

)
= σ0

1 + ω2τ 2
. (1)

Drude [1,2] derived Eq. (1) with the DC conductivity given by
σ0 = n2τ/m∗ [n: electron density; m: (effective) mass; e: ele-
mentary (electron) charge] in 1900 even prior to the invention
of quantum mechanics which, as shown by Sommerfeld [3],
does not alter Eq. (1) for free electrons.

Aside from band-structure effects such as additional inter-
band transitions and momentum-dependent (group) velocities
(or dipole matrix elements) γ in the solid, there are many-
body corrections to the Drude-Sommerfeld model due to the
interaction of the excited electron and hole with each other
and the rest of the solid. In terms of Feynman diagrams, these
are known as vertex corrections to the bare bubble contribu-
tion of an independent (quasi)electron and (quasi)hole, as the
vertex F in the second Feynman diagram of Fig. 1 comprises
all kinds of such interactions.
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These many-body vertex corrections can give rise to shifts
and additional peaks in the optical conductivity. Arguably
most prominent is the exciton [4,5]. The importance of vertex
corrections for the DC conductivity has also been recognized
early on for metals with low density of electrons, where umk-
lapp scattering is suppressed at low temperature because of a
small Fermi surface [6–9].

An exciton can simply be understood as the binding of the
electron and hole through their attractive Coulomb interaction
in a semiconductor. For strongly correlated electron systems
such as transition metal oxides, it is known that the dominant
vertex contributions are often antiferromagnetic (AFM) or
charge density wave (CDW) fluctuations which have a wave
vector k = (π, π, . . .) [10,11]. Since (optical) light can only
excite an electron and hole with a total momentum q = 0,
such fluctuations can, in contrast to the exciton or ferromag-
netic fluctuations, not directly couple to the electron-hole pair.

As was discovered in Ref. [12], a more complicated
process involving at least two (quasi)electrons and two
(quasi)holes is necessary. The arguably easiest way to un-
derstand these vertex corrections to the optical conductivity,
coined π -tons [12], is the random phase approximation (RPA)
visualized in Fig. 2. There are two particle-hole pairs coupled
to the incoming and outgoing light, glued together by AFM
and CDW fluctuations in the so-called transversal particle-
hole channel. While earlier, pioneering studies [6,13–21]
reported vertex corrections to the optical conductivity, the
importance of π -ton contributions was only realized recently
and generically occurs in various models of correlated elec-
trons [12,22,23]. These papers used quite involved numerical
techniques such as the parquet approximation [24–27] or
the parquet dynamical vertex approximation [28,29],1 which
include also many contributions beyond the RPA in the

1The numerical bottleneck is in particular the memory consumption
of a general vertex depending on three frequencies and three mo-
menta, which might be mitigated in the future by an efficient sparse
parametrization thereof [60–64].
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FIG. 1. Diagrammatic representation of the current-current cor-
relation function χ directly related to the optical conductivity
through Eq. (3) below, where we also introduce the indices. The
diagram on the left denotes the “bubble” contribution with one
electron and one hole described by Green’s functions G propagating
backwards and forward (in a time representation); the one on the
right represents the vertex F corrections which includes all Feyn-
man diagrams connecting the upper and lower Green function line
through interactions.

transversal particle-hole channel and require a cumbersome
and error-prone analytical continuation from Matsubara to
real frequencies.

In this paper, we hence use a simplified approach and study
the RPA π -ton contribution of Fig. 2 directly for real frequen-
cies with a simple metallic Green’s function. We show that
the optical conductivity with these π -ton vertex corrections
included is still described qualitatively by the Drude peak
in the metallic phase of the Hubbard model. While weak
localization vertex corrections [30] which originate from a
particle-particle ladder for disordered systems are known to
broaden the Drude peak, we find that π -ton contributions,
depending on the temperature, either broaden or sharpen the
Drude peak compared to the expected width from the single-
particle scattering time determined by the self-energy. Similar
temperature-dependent broadening and sharpening is also
brought by π -ton contributions in parquet dynamical vertex
approximation (parquet D�A) which we show for comparison
as well.

Using a simplified, almost toy-model setup for calculating
the ladder vertex corrections in the ph channel has several
advantages: (i) We analyze only a selected class of diagrams

FIG. 2. Diagrammatic representation of the π -ton contribution to
the optical conductivity. The RPA ladder in the transversal particle-
hole (ph) channel shown in (a) generates AFM and CDW fluctuations
and contributes to the optical conductivity or current-current correla-
tion function shown in (b) at the momenta k − k′ = (π, π, . . .) and
q = 0.

built with a featureless Green’s function which allows us to
recognize what changes these diagrams imply for the optical
conductivity, which without vertex corrections is featureless
and described by a Drude peak. (ii) The RPA-ladder vertex
has a simplified structure in frequency and momenta, which
makes the calculation numerically less demanding and also
feasible directly on the real frequency axis with sufficient
momentum resolution. (iii) The parameters of the calculation,
i.e., the one-particle scattering rate, temperature, effective in-
teraction, can be changed independently and used as knobs to
turn for identifying what has the biggest effect on the vertex
corrections.

The paper is organized as follows: In Sec. II we introduce
the model and describe in detail the calculation scheme for the
vertex corrections to the optical conductivity on the real fre-
quency axis, which requires to properly account for altogether
five branch cuts; a detailed derivation is given in Appendix
A. In Secs. III A and III B we present the numerical results of
the optical conductivity with two types of vertex corrections:
RPA and Ornstein-Zernike form. For numerical details of the
computations, see Appendix B. In the final part, Sec. III C, we
compare the results obtained with those of the parquet D�A
method. We summarize the results in Sec. IV. The main part
is supplemented further by the Ornstein-Zernike analysis at
high temperatures in Appendix C; an overview of possible
RPA-ladder diagrams in Appendix D; the Schwinger-Dyson
equation in Appendix E for recalculating the self-energy with
results thus obtained shown in Appendix F.

II. MODEL AND METHOD

We consider the single-orbital Hubbard model

H =
∑
i jσ

ti jc
†
jσ ciσ + U

∑
i

ni↑ni↓, (2)

with ciσ (c†
iσ ) denoting the fermionic annihilation (creation)

operator at site i with spin σ ; ni = c†
iσ ciσ is the particle-

number operator. The two terms of the Hamiltonian are the
onsite Coulomb interaction U and the one-particle hopping
amplitudes ti j from site i to site j. We consider a square
lattice with nearest-neighbor hopping only and the dispersion
relation is thus given by εk = −2 t [cos(kx ) + cos(ky)], with
−t being the hopping amplitude between nearest neighbors.
In the following we set the t ≡ 1 as the energy unit, kB ≡ 1
for the unit of temperature, and the lattice constant is a ≡ 1.
The frequency unit is set equal to the energy unit by setting
h̄ = 1. Since we are interested in the regime with strong an-
tiferromagnetic correlations, we consider the half-filled case
with an average of n = 1 electrons per site.

A. Optical conductivity

We are interested in the real part of the optical conductivity

σ (ω) = P
Im

(
χ

q=0
j j,ω

)
ω

− πδ(ω)

[
Re

(
χ

q=0
j j,ω

) − e2nq=0

m

]
, (3)

where χ
q
j j,ω is the current-current correlation function.

The (purely static) diamagnetic part πδ(ω)[Re(χq=0
j j,ω ) −

q2nq=0

m ] vanishes because U(1) gauge invariance implies for
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longitudinal electrical fields a perfect cancellation between
the paramagnetic current-current correlation-function at ω =
0 and diamagnetic term [31, Chap. 7.3.3].

The current-current correlation function can be diagram-
matically represented in the following way (for a derivation
see, e.g., Ref. [20]):

χ
q
j j,ω = − 2

β

∑
k

γ kq
α γ k(−q)

α Gk+qGk

− 2

β2

∑
kk′

γ kq
α γ k′(−q)

α GkGk+qFkk′qGk′Gk′+q

≡ χbub + χvert. (4)

Here, we use the combined frequency and momentum in-
dices k = (k, ν) with fermionic Matsubara frequency ν and
q = (q, ω) with bosonic Matsubara frequency ω; β = 1/T is
the inverse temperature and we implicitly assume a factor of
1/N in front of every momentum sum, N being the number
of lattice sites or k points. We also set the electron charge
e ≡ 1, thus avoiding a global prefactor e2/(h̄2a3) in our di-
mensionless units. The vertex of the electron-light interaction
γ

kq
α is for q = 0 given in the Peierls approximation [32] by

γ
kq=0
α = ∂εk

∂kα
≡ γ k

α , with α = x, y denoting the direction in
space. In general χ

q
j j,ω depends also on α, but since we are

interested in the square lattice, the results do not depend on
whether we choose α = x or α = y and drop the index α.

The first term in Eq. (4) is often denoted as “bubble” dia-
gram χbub (see Fig. 1) and contains only the Green’s functions
Gk . The second term is the vertex corrections χvert with Fkk′q
being the full two-particle vertex in the density channel [29].

B. Calculation of the optical conductivity with vertex
corrections on the real frequency axis

In the following we will derive analytical expressions for
the vertex corrections to the optical conductivity directly for
real frequencies, assuming a simplified form of the vertex. To
this aim we will transform the Matsubara frequency sums in
Eq. (4) into real frequency integrals by contour integration.

For the bubble diagram this has been done before (see, e.g.,
Ref. [33] and the calculation in Appendix A) and yields

χR
bub(ω, q = 0)

= −2
∑

k

[
γ k

α

]2
∫ +∞

−∞
dν ηF (ν)Ak

ν

[
GR k

ν+ω + GA k
ν−ω

]
, (5)

where ηF (ν) is the Fermi distribution function, GR k
ν

(GA k
ν ) is the retarded (advanced) Green’s function, and

Ak
ν = − 1

π
ImGR k

ν is the spectral function.
In order to analogously calculate the vertex corrections

on the real axis one needs to know the vertex itself for real
frequencies. This is generally not the case, but since we want
to specifically address the π -ton contributions, we assume a
simplified form of the full vertex

Fkk′q ≡ Fk−k′ , (6)

which only depends on the total frequency momentum k − k′
in the ph channel (this is precisely the form of the RPA ladder
vertex in Fig. 2).

In this way the complex structure of F is the same as that
of a physical susceptibility (transformed into the ph channel).
This implies that F k

z is analytic in the whole complex plane
except for Imz = 0 where it has a branch cut. The analytical
continuation from the upper (lower) complex half-plane gives
then a retarded (advanced) vertex F R (F A) on the real axis.
The RPA vertex (depicted in Fig. 2) as well as the Ornstein-
Zernike form we will use later fulfills this assumption. For
any vertex that fulfills Eq. (6) the vertex contributions to
the current-current correlation function in Eq. (4) can be ex-
pressed as

χR
vert(ω, q = 0)

= 2
∑
kk′

γ k
α γ k′

α

(
ζ kk′

1 (ω) + ζ kk′
2p3(ω)

)
, (7)

where the two terms arising due to five branch cuts in the com-
plex plane (see Appendix A for a figure and full derivation) are
given by

ζ1(ω)R kk′ = −1

4π2

∫∫
R2

dν dν ′ηF (ν) ηB(ν ′)
[
F R k−k′

−ν ′ − F A k−k′
−ν ′

][
GR k

ν+ωGR k′
ν+ν ′+ω + GA k

ν−ωGA k′
ν+ν ′−ω

]
×[

GR k
ν GR k′

ν ′+ν − GA k
ν GA k′

ν ′+ν

]
, (8a)

ζ2p3(ω)R kk′ = i

2π

∫∫
R2

dν dν ′ ηF (ν) ηF (ν ′)Ak′
ν ′
[[

GR k
ν+ωGR k′

ν ′+ω + GA k
ν−ωGA k′

ν ′−ω

][
GR k

ν F R k−k′
ν−ν ′ − GA k

ν F A k−k′
ν−ν ′

]
+ (−2π i)Ak

ν

[
GR k′

ν ′+ωGA k
ν−ωF A k−k′

ν−ν ′−ω + GA k′
ν ′−ωGR k

ν+ωF R k−k′
ν−ν ′+ω

]]
. (8b)

It is advantageous to perform the real frequency integrals
in Eqs. (7) and (8) instead of the Matsubara sums in Eq. (4).
One would otherwise have to transform the optical conduc-
tivity into real frequencies by means of a (numerical) analytic
continuation. While there are several methods for this purpose
[34–38], very fine features in the resulting real frequency
spectrum tend to be blurred by all of them, especially, in the
presence of noise and box effects. In the worst case (e.g., when
applied to data with correlated noise without proper treatment

of the covariance matrix [34,39]) it can lead to unphysical
artifacts in the real frequency spectrum. Our approach avoids
these problems altogether.

C. RPA ladder in the ph channel

In the parquet D�A calculations of Ref. [12] the dominant
contributions to the vertex corrections for the square-lattice
Hubbard model were identified as coming from the transversal

115153-3



PAUL WORM et al. PHYSICAL REVIEW B 104, 115153 (2021)

particle-hole channel, usually denoted as ph. A general dia-
gram in this category can be very complicated, but it can be
represented as a ladder in terms of the irreducible vertex in
this channel �ph, which includes all kind of diagrams (fully
irreducible and insertions from the other channels). These
diagrams are the same diagrams that make the magnetic sus-
ceptibility diverge in RPA and single-shot ladder D�A [40],
only the building block �ph is different; also the dynamical
mean field theory (DMFT) susceptibility is calculated from
such a ladder (in the particle-hole channel) [41,42]. To quali-
tatively understand their effect on the optical conductivity, we
consider here only the simplest form of the ladder diagram,
namely, the RPA series with �ph = −U in the dominating
magnetic channel. The contribution of these diagrams to the
vertex F in the ph channel [illustrated in Fig. 2(a)] is given by

F RPA
ph,k−k′ = U 2χ0

k−k′

1 − U χ0
k−k′

= U 2χRPA
q=k−k′ , (9)

with χ0
q = − 1

β

∑
k GkGk+q (for the discussion of all RPA-

ladder contributions to F in the ph and ph channels see
Appendix D). The same RPA series, only without the U 2

prefactor, constitutes the RPA susceptibility χRPA
q . Since this

susceptibility diverges for q = (π, π ) at a finite temperature
in the square-lattice Hubbard model, the results we obtain
cannot be treated quantitatively or even compared to parquet
D�A calculations for the same value of U . The full frequency
and momentum-dependent irreducible vertex �ph is replaced
here with a constant value of −U . This makes U an effec-
tive parameter that we choose to be lower than the “bare”
interaction (which we denote with U0 in the following) due to
screening effects, originating from other scattering channels,
that are not included in the RPA approach. In the following we
will choose the (temperature-independent) value of U such
that in the temperature range considered we will be close to
the AFM phase transition.

In Fig. 2(b) we illustrate how the ph RPA-ladder diagrams
contribute to the optical conductivity. It is important to note
that if one considers the ladder in the longitudinal particle-
hole channel, only F RPA

q could contribute. This contribution is
first of all restricted to q = 0 because of the restriction on the
incoming light momentum and, second, it will vanish because
if the vertex is not dependent on k and k′: the γ k

α vertices are
antisymmetric in k and k′ and will thus cause the contribution
to vanish. This is also the reason why the first order in U
vanishes and is disregarded in Eq. (9). Building the ladder
in the ph channel allows for contributions from all momenta
k − k′ since k and k′ are summed over. In particular, it allows
for contributions from k − k′ = (π, π ), where the ladder be-
comes very large. With the k − k′ dependence of the vertex,
the contribution is also not nullified by the antisymmetry
of γ k

α .

D. Effective vertex in the vicinity of the antiferromagnetic phase

Close to the AFM phase transition, when fluctuations
become critical, the susceptibility can be approximated
by the universal Ornstein-Zernike (or Hertz-Millis-Moriya)

++ + ...+ ...
σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

++ + ...+ ...
σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

FIG. 3. Upper panel: diagrams representing the ladder of
electron-phonon interactions. Lower panel: diagrams representing ph
ladders of multiple π -ton contributions. Please note that for electron-
electron interaction diagrams that π -ton diagrams are composed of,
each closed loop corresponds to an additional minus sign, contrary
to diagrams representing scattering on phonons, which all come with
the same sign.

correlation function [43–46] of the following form:

χOZ
q,ω = Ã

ξ−2 + (q − Q)2 + λ|ω| , (10)

where in case of AFM fluctuations Q = (π, π ) and ξ is the
magnetic correlation length, Ã and λ are further parameters,
and ω is the bosonic Matsubara frequency. Upon approaching
the phase transition one can extract the correlation length ξ

(as well as the two other parameters) by fitting the expression
(10) to the susceptibility. The fit parameters will in general be
functions of both temperature T and interaction U .

In analogy to the RPA approximation of the vertex, where
we assumed F RPA

ph,k−k′ = U 2χRPA
k−k′ , we can make a step further

and assume an Ornstein-Zernike form of the vertex:

F OZ
k−k′,ν−ν ′ = A

ξ−2 + (k − k′ − Q)2 + λ|ν − ν ′| , (11)

with A = U 2Ã. This expression also allows for direct analytic
continuation since it is dependent only on one Matsubara
frequency (difference) ν − ν ′. The analytically continued ex-
pression is as follows:

F R/A
k−k′,ν−ν ′ = A

ξ−2 + (k − k′ − Q)2 ∓ iλ(ν − ν ′)
, (12)

where ν, ν ′ are now real frequencies.

E. Relation to vertex corrections coming from electron-phonon
scattering

The diagrams in π -ton contributions to optical conductiv-
ity, as illustrated in Fig. 2, can also be interpreted in terms
of the exchange of an effective boson. In this sense they are
similar to electron-phonon scattering [47] illustrated in the
upper panel of Fig. 3. In the case of scattering on (acoustic)
phonons it is necessary to take into account the entire ladder
of electron-phonon scatterings to obtain the dominant vertex
correction [48]. In the case of π -tons we can also construct
such ladder of multiple boson exchanges (as illustrated in the
lower panel of Fig. 3). However, as we have learned from
Ref. [12], it is the first term of this ladder that gives the
dominant contribution, and in this work we take only this term
in our calculations. The second term in the lower panel of
Fig. 3, as well as all further terms, belong to the ph-reducible
channel, which was shown to give almost no contribution in
the parquet approach of Ref. [12]. This is confirmed by the
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FIG. 4. Upper panel: spectral function for (a) T = 0.5 and
(b) T = 0.1 from p-D�A with U0 = 4 (solid line) and a model with
constant self-energy −i�0 (dashed line). Lower panel: intensity plot
of the momentum-resolved spectral function along a path in the
Brillouin zone obtained with p-D�A self-energy (left) and constant
self-energy −i�0 (right) for T = 0.1.

authors of Ref. [49], who also considered a “double π -ton,”
which is exactly the second term of Fig. 3 (lower panel). The
reason likely lies in the differences between the properties of
electron-phonon vs electron-electron scattering: (i) there is a
sign change connected with the number of fermionic loops,
electron-phonon ladders have no additional closed loops, con-
trary to purely electronic diagrams, where we add a closed
loop (and therefore an additional minus sign) with every new
rung of the ph ladder; (ii) the ladder of phonons connects only
electrons with the same spin, whereas for π -tons the spins
alternate; (iii) last but not least, multiple π -tons are connected
by two Green’s function lines that are offset by a momentum
q = 0 and not by the strong nesting vector q = (π, π ) in the
ph ladders.

F. Approximate form of the self-energy

The derived formalism for calculating optical conductivity
on the real axis is valid for any Green’s function that is known
on the real frequency axis. Expressed through the self-energy
�k

ν , the retarded/advanced (R/A) Green’s functions are given
by

GR/A k
ν = 1

ν − εk − �
R/A k
ν ± i0+ . (13)

The self-energy must then be known on the real frequency
axis as well. Since in this work we are specifically interested
in the effect of vertex corrections on the Drude peak we take
a simple, frequency- and momentum-independent form:

�R/A k
ν = ∓i�0. (14)

In Fig. 4 we show the local and nonlocal spectral function
Ak

ν = − 1
π

ImGR k
ν from a parquet D�A (p-D�A) calculation of

Ref. [12] (at the interaction value of U0 = 4) analytically con-
tinued to real frequencies with the maximum entropy method.
In the two top plots we show the local spectral function Aν

from p-D�A for two different temperatures, together with Aν

obtained from the model with the constant self-energy (14),

which gives a Lorentzian of width � for Aν . The difference
is mainly visible in the following: (i) The absence of largely
broadened waterfall-like structures at |ω| � 2.5 in Fig. 4 in
case for the constant self-energy. These are precursors of the
Hubbard bands and of little relevance for the low-frequency
Drude peak which we focus on. (ii) A temperature depen-
dence of the quasiparticle peak. In order to account for this
temperature dependence, we use in the following a temper-
ature dependent �(T ) which we obtain from a T 2 fit to the
p-D�A data (for details of this fit see Appendix B 2). This is
motivated by the known T 2 dependence of the Fermi-liquid
scattering rate. In our fit the T 2 dependence is accompanied
by an additional temperature-independent offset.

III. RESULTS

The focus of our calculations is on the vertex corrections to
the Drude peak that are generated by π -ton contributions. As
already discussed, the simplest such contribution is the RPA
ladder in the ph channel shown in Fig. 2. In the following we
will show results for the real part of the optical conductivity
σ (ω) = Imχ j j (ω)/ω calculated directly on the real axis using
Eq. (7) with a simplified two-particle vertex: either the RPA
ladder of Eq. (9) or the Ornstein-Zernike form (11). The
Green’s function is of the form (13) with a Fermi-liquid-
like temperature dependence of the scattering rate �0(T ) ∼
T 2, however, with a constant offset. Specifically, we use
�0(T ) = 0.1547 + 1.637 T 2, which we obtained from a T 2

fit to p-D�A (see Appendix B 2).2 This featureless form of
the Green’s function corresponds to the metallic phase of the
Hubbard model3 and gives per construction a Drude peak in
the bubble part of the optical conductivity. Additional features
in the bubble part, coming from frequency dependence of the
self-energy (see, e.g., Ref. [50]), are neglected since we focus
on the effect of vertex corrections on the two-particle level
exclusively. In Appendix F we show that our conclusions are
not changed if we assume a frequency-dependent self-energy.

In the final subsection we also qualitatively compare the
vertex corrections originating from the RPA ladder with con-
stant self-energy with those from the ph channel of the fully
fledged p-D�A calculation.

A. Vertex corrections originating from RPA ladders in the
transversal particle-hole channel

In Fig. 5 we show the effect of the RPA-ladder vertex
corrections on the Drude peak for two different temperatures.
The bubble contribution to the optical conductivity σbub is

2The value of the interaction in p-D�A is U0 = 4, whereas here we
use different values of U = 1.7–1.9. The reason is that the RPA series
is a good approximation only for much smaller interaction values,
and it grossly overestimates the AFM fluctuations. To represent in
our approximate approach the intermediate coupling regime of U0 =
4, where π -tons were observed, we hence need to use an effective
value of U < 4 in the RPA ladder, as it is done, e.g., in the TPSC
approach [65].

3The fit we use will no longer be valid for the low-temperature
regime T � 0.05, where we expect the pseudogap behavior in the
Hubbard model [66,67].
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FIG. 5. Optical conductivity σ (ω) at two different temperatures
with (σfull) and without (σbub) vertex corrections from RPA the ladder
in the ph channel. The effective interaction in the RPA ladder is U =
1.9.

a Drude peak per construction since we used a simplified
Green’s function with a constant imaginary part of the self-
energy, depending only on temperature: �R k

ν (T ) = −i�0(T ).
Our first observation is that including the vertex corrections
does not change the overall shape of the peak and the full
optical conductivity σfull = σbub + σvert can still be fitted by
a (Lorentzian) Drude peak. Both for the bubble as well as for
the full vertex-corrected conductivity the Drude peak becomes
sharper with decreasing temperature, as to be expected for a
metal. Surprisingly, however, it depends on the temperature,
whether the vertex corrections broaden the Drude peak (T =
1
8 , upper panel of Fig. 5) or sharpen it (T = 1

18 , lower panel
of Fig. 5). The vertex corrections are relatively small and their
magnitude depends on the value of the effective interaction U
used in the RPA ladder (for the results presented in Fig. 5,
U = 1.9). We observe, however, similar behavior for other
values of U .

In Fig. 6 we analyze the temperature dependence in more
detail. In the left column we show the full optical conductivity
σfull = σbub + σvert with RPA-ladder vertex corrections for dif-
ferent temperatures and two values of the effective interaction
U = 1.7 and 1.9. These values of the effective interaction U
were chosen such that we are close to the divergence of the
RPA ladder, which indicates the AFM phase transition. This
happens with our choice of �0 for U = 1.9 at Tc = 1

19 and for
U = 1.7 at Tc < 1

60 . The optical conductivity has the form of
a Drude peak for all temperatures that we studied and the peak
is broadened with increasing temperature. The latter is mainly

due to the monotonic temperature dependence of the bubble
contribution σbub, shown in the right column of Fig. 6. Indeed,
that is exactly as to be expected for a Fermi-liquid-like metal.
The RPA-ladder vertex corrections σvert (plotted in the middle
column of Fig. 6) show, however, a strongly nonmonotonic
behavior. They broaden the Drude peak in the intermediate
temperature regime (e.g., yellowish colors in Fig. 6 bottom),
but lead to its sharpening for high temperatures (reddish col-
ors in Fig. 6) and in particular for low temperatures (bluish
colors). The latter is achieved by a vertex correction σvert (ω)
that is positive at the lowest frequencies and negative around
ω ∼ 0.3 (Fig. 6 top), respectively, ω ∼ 0.2 (Fig. 6 bottom).

For larger frequencies around ω ∼ 1 the vertex corrections
are always positive, independent of temperature. Together
with the broadening and sharpening, this implies that in this
region there are corrections to the Lorentzian shape of the
Drude peak. However, in this frequency region there will also
be further contributions to the optical conductivity such as
interband transitions (in multiband systems), transitions to
Hubbard bands, and our assumption of a constant self-energy
is no longer justified since the Fermi liquid also implies a term
Im�R k

ν ∼ −ν2, i.e., an increase of the one-particle scattering
rate with frequency [50]. Anyhow, except for this feature
which is difficult to entangle from other effects and to observe
in experiment, the RPA-ladder vertex corrections do not alter
the Lorentzian form of the Drude peak, which is an important
result by itself, besides of the nonmonotonous temperature
dependence of the broadening or sharpening.

This broadening and sharpening of the Drude peak is better
illustrated in Fig. 7 (top panel) where we plot the difference
between the full width of the peak 1/τfull and the width
of the Drude peak from the bubble contribution 1/τ0 as a
function of temperature. Note that the Drude width 1/τ0 of
the numerically calculated bubble contribution agrees, as it
should for a Fermi-liquid-like metal, with the one-particle
scattering rate �0(T ) taken as input for the self-energy, i.e.,
1/τ0 = 2�0.4 We clearly see three temperature regimes: (i)
For T � 1

2 the vertex corrections slightly sharpen the Drude
peak (decrease its width, 1

τfull
− 1

τ0
< 0) and the optical con-

ductivity at ω = 0 is slightly increased (lower panel of Fig. 7)
by the vertex corrections. This is also in agreement with an ex-
act diagonalization study of vertex corrections beyond DMFT
in Refs. [21,51] which was restricted to the high-temperature
regime. (ii) In an intermediate-temperature regime, whose
limits depend on the interaction value U , the Drude peak is
broadened by vertex corrections and the ω = 0 value (DC
conductivity) is decreased. (iii) For the lowest temperatures
we could reach, the vertex corrections sharpen the Drude
peak and DC conductivity is increased. All effects become
stronger and the intermediate-temperature regime (ii) is en-
hanced when increasing the effective interaction U , which
enhances the AFM fluctuations.

In order to assess how important the temperature de-
pendence of the scattering rate �0 is for the temperature
dependence of the vertex corrections, we perform a tempera-
ture scan with a fixed �0 = 0.18 for all Green’s function lines

4This relation holds for higher temperatures only approximately.
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FIG. 6. Full optical conductivity σfull (left) including the vertex corrections in the RPA ladder σvert (middle) and the bare particle-hole bubble
σbub (right) at two different effective interactions U = 1.7 (top) and U = 1.9 (bottom) and various temperatures T (color coded according to
the bar on the right with a step size between the different temperatures ∼1/T = β).

[including the ones in the RPA ladder in Eq. (9)]. That is, the
temperature dependence enters solely via the Fermi and Bose
distribution functions both in the bubble, Eq. (5), and in the

U = 1.7
U = 1.8
U = 1.9

FIG. 7. Top: difference between the width of the Drude peak
including vertex corrections (1/τfull) and the width of the Drude
peak using the bubble contribution only (1/τ0 = 2�0) as a function
of temperature (on a scale linear in 1/T = β) for three different
values of U . Bottom: vertex contribution σvert (ω = 0) to the DC
conductivity as a function of temperature for the same U values.

vertex part, Eq. (7).5 In Fig. 8 we show the resulting RPA-
ladder optical conductivity and its bubble and vertex parts for
different temperatures at fixed �0. The nonmonotonic behav-
ior of the vertex corrections„ including all three temperature
regimes (i)–(iii), is still present as a function of temperature.
We thus see that while the temperature dependence of �0

is quantitatively important, it is not needed for the correct
qualitative behavior.

In Fig. 9 we present the value of the π -ton RPA vertex
contribution to the DC conductivity σvert(ω = 0) for differ-
ent (inverse) temperatures and scattering rates �0 treated as
independent parameters. The green dashed line corresponds
to the fit �0(T ) = 0.1547 + 1.637 T 2 obtained from p-D�A
data as used in Figs. 5–7. The black line denotes the sign
change of σvert(ω = 0), which corresponds to the boundary
between broadening (negative values, blue) and sharpening
(positive values, red) of the Drude peak. Note that, as in Fig. 7,
negative σvert(ω = 0) corresponds to an increase of the two-
particle scattering rate 1/τfull, whereas positive σvert(ω = 0),
to a decrease of 1/τfull due to vertex corrections.

As is already clear from Fig. 8, keeping a constant
scattering rate �0 and increasing temperature, we go from
sharpening to broadening and again to sharpening at high
temperature, crossing the black line twice. In Fig. 9 this
corresponds to moving along the green dashed line where we
also cross the black line twice, which is due to the specific
(quadratic with an offset) temperature dependence of �0,

5For clarity: the temperature enters in the RPA-ladder expression
for the vertex, Eq. (9), through the Fermi distribution function present
in χ0.
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FIG. 8. Optical conductivity σfull (left) including RPA vertex corrections in the transversal particle-hole channel, shown for different
temperatures while keeping the self-energy �R = −i�0 = −0.18i constant; U = 1.8. In the middle and right columns the respective
summands σvert and σbub are shown.

obtained from the p-D�A fit. For large values of �0 we do not
see any sign changes in σvert(ω = 0) any more. We also cannot
achieve the double sign change by changing �0 at constant
temperature. For the RPA vertex, the temperature dependence
of the vertex corrections to the two-particle scattering rate
1/τfull (broadening and sharpening) is thus closely related to
the temperature dependence of the one-particle scattering rate
�0.

The conclusion from Fig. 9 is that low temperatures and
a large one-particle scattering �0 lead to a narrowing of the
Drude peak [positive (red) σvert(ω = 0)]. That we have two
crossovers from narrowing to broadening and back again orig-
inates from the specific temperature dependence of �0.

In this work we focus on two-particle vertex corrections to
a featureless bubble contribution σbub. Including consistently
vertex corrections on both one- and two-particle levels is a
formidable task and was already done within the numerically

FIG. 9. RPA vertex contribution to the DC conductivity
σvert (ω = 0), color coded, as a function of inverse temperature 1/T
and the one-particle scattering rate �0 treated as independent param-
eters, for U = 1.9. Dashed green line: �0(T ) = 0.1547 + 1.637 T 2

as used in Figs. 5–7. Thick black line: boundary between positive
and negative values of σvert (ω = 0). Black box: parameter point of
Fig. 11. Black circle and magenta triangle: parameter points dis-
cussed further in Appendix C.

cumbersome parquet approach in Ref. [12]. However, in or-
der to at least briefly assess how our results would change
if we also introduced the same vertex corrections in the
calculation of one-particle scattering rate, we computed the
optical conductivity including these vertex corrections also in
the one-particle Green’s functions in Eq. (3). Note that self-
energy (scattering) rate and vertex corrections are related by
the Schwinger-Dyson equation (see Appendix E). The results
are presented in Appendix F and they show that the overall
behavior of the vertex corrections is not changed; we also
see temperature-dependent broadening and sharpening of a
slightly modified Drude peak (see Figs. 24 and 25).

B. Effective vertex given by the Ornstein-Zernike form

In order to assess if the RPA-ladder effects are still present
if we use a different form of the vertex that resembles the
magnetic susceptibility, we have calculated vertex corrections
with an Ornstein-Zernike (OZ) vertex of Eq. (11). The tem-
perature dependence of the free parameters A, λ and the
correlation length ξ was obtained by fitting the RPA vertex
with the OZ form (11). The details of the fits including the
temperature dependencies of OZ parameters are presented in
Appendix B 3.

In Fig. 10 we show the optical conductivity obtained from
the OZ vertex (11). Here, we use for the two-particle and
two-hole Green’s functions connecting the OZ vertex in the ph
channel to the incoming and outgoing light exactly the same
simple frequency-independent scattering rate (self-energy)
�0(T ) as in the RPA (where this Green’s function was ad-
ditionally employed for calculating the vertex itself). That is,
when changing temperature, we change the Green’s function
lines in the bare bubble and the four Green’s function outer
lines in the vertex diagram (cf. Fig. 1), but the vertex itself
is not diagrammatically built from Green’s function lines. Its
temperature dependence enters only via the OZ parameters.
The most important parameter is the AFM correlation length
ξ which is strongly temperature dependent as the inset of
Fig. 10 shows; the two other parameters can be found in
Appendix B 3. Knowing this dependence (here from fitting
to the RPA vertex), we can translate temperature to AFM
correlation length. This way we can look at the sign and shape
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FIG. 10. Optical conductivity σfull (left) now with the Ornstein-Zernike vertex corrections in the transversal particle-hole channel, shown
for different temperature-dependent correlation lengths ξ (T ) (color coded on a logarithmic scale as in the bar on the right-hand side). In the
middle and right columns the respective summands σvert and σbub are shown. Inset: ξ (T ) as fitted to the RPA vertex at U = 1.9.

of vertex corrections to the optical conductivity as a function
of ξ in Fig. 10.

Even with a simplified OZ form of the vertex, we see the
same effect (now driven by changing ξ ). The Drude peak is
sharpened for large correlation lengths (corresponding to low
temperatures) and broadened for smaller ξ ’s. We did not reach
the high-temperature regime since we restricted the plot to
ξ � 1 (i.e., T � 0.25), so the other sharpening regime at high
T is not present in the plot.

The form of the effective OZ vertex allows us to use the
OZ parameters as additional knobs that we can turn inde-
pendently of U or T , for helping us understand the origin
of the nonmonotonic temperature dependence of the vertex
corrections. In Fig. 11 we do exactly this: in each panel we
change one of the three relevant parameters (correlation length
ξ , temperature T , and one-particle broadening �0) and keep
the others as well as A and λ of the OZ vertex fixed. The
parameters were chosen so that we move away from the point
with T = 0.1 and �0 = 0.17, denoted with a black square in
Fig. 9. Note that since we use a fixed OZ vertex here, changing
�0 or T does not correspond to moving along lines in Fig. 9,
where the vertex was from RPA.

In Fig. 11 (left panel) we see that changing ξ , which
is the key parameter for the temperature-dependent en-
hancement of the antiferromagnetic correlations at (π, π ),
changes the vertex corrections from a dampening in the
intermediate-temperature range (ii) to the sharpening in the
low-temperature range (iii). A comparison with Fig. 10 (mid-
dle panel), however, also shows already that other factors must
be at work as well.

The two other parameters, i.e., T in Fig. 11 (middle panel)
and �0 (right panel), only enter in the four Green’s function
lines connecting the (now fixed) OZ vertex with the incoming
and outgoing light. These parameters change the frequency
range (ν − ν ′) over which vertex contributions are included.
The temperature T yields also an important contribution to the
broadening in the intermediate-temperature regime (ii) and a
sharpening at low temperatures (iii); whereas �0 is less rele-
vant at low temperature where it hardly changes, but important
for the sharpening in the high-temperature regime (i). Please
also note the isosbestic point [52] around ω ∼ 0.1. In terms
of the frequency integrals (8) around the branch cuts, ζ2p3

always yields a positive vertex correction and ζ1 a negative
one (except for very high temperature, when it can become

0 1 2
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0 dependence

FIG. 11. Vertex corrections to the optical conductivity σvert changing the correlation lengths ξ (left), the temperature T (middle), and the
single-particle broadening �0 (right) in the OZ calculation, while keeping the other parameters fixed at T = 1

10 , �0 = 0.17 (these parameters
correspond to the black square in Fig. 9). For the middle plot ξ = 5.0, λ = 1.3, and A = 1.6 are fixed; for the other two ξ = 3.18, λ = 0.93,
and A = 1.6.
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FIG. 12. Comparison of the vertex corrections in the ph channel. Left: analytic continuation of the p-D�A results of Ref. [12] for the
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temperatures (see legend box). The lowest temperature shown is different for the RPA-ladder vertex since it diverges at T = 1

20 .

positive), but depending on ξ , T , and �0, the total balance is
changing sign.

An analogous parameter scan as done in Fig. 11 for pa-
rameters close the low-temperature regime in Fig. 9 (black
square), was done for a high temperature in the vicinity of
two values of �0 (points denoted by black circle and ma-
genta triangle in Fig. 9). A detailed analysis is presented in
Appendix C. The overall conclusion is that in case of the OZ
vertex used in the high-temperature regime, the vertex cor-
rections lead to sharpening [increased value of σvert(ω = 0)]
only at large values of �0 or when setting the correlation
length very small (see Fig. 17). This was not the case for the
RPA vertex. We note that for high temperatures the correlation
length description of the system provided by the OZ vertex is
no longer valid and the RPA and OZ vertices differ more.

C. Relation to the parquet D�A results

The π -ton contributions to optical conductivity, as de-
scribed in Ref. [12], are not directly identifiable with ladder
diagrams only. In fact, without insertions from other channels,
the ph-ladder diagrams would eventually diverge at (π, π )
when lowering the temperature in the systems with strong
AFM/CDW fluctuations. These diagrams, though, even if
dampened by other contributions, provide the dominant part
of the ph channel. It is, however, not obvious if the simplest
approach, where the ladder is built only with a constant effec-
tive U as the interaction vertex, can describe the same physics
as the full p-D�A calculation.

In Fig. 12 we show a qualitative comparison between the
p-D�A vertex corrections (at U0 = 4) and the RPA-ladder
ones (at two values of the effective interaction U = 1.8 and
1.9) in a range of temperatures. Even though the Green’s
functions were simplified in the RPA ladders, the qualita-
tive behavior with temperature in both approaches is similar:
a sharpening at the lowest temperature and broadening in
the higher-temperature regime. We show here only the low-
frequency range since for higher frequencies there are effects
coming from the (precursors of the) Hubbard bands that
are absent in the calculation with the constant self-energy.
Another important difference between the p-D�A and RPA
results is the analytic continuation: it had to be done nu-
merically in p-D�A, whereas in RPA we derived and used
expressions in real frequencies.

IV. CONCLUSION

Motivated by the work on π -ton contributions to the op-
tical conductivity [12] and the importance of the AFM and
CDW fluctuations for vertex corrections in strongly correlated
electron systems, we have studied in this paper their influence
on the Drude peak in a simplified semianalytical calculation.
To this end, we have employed the RPA ladder for studying
one vertex correction that is especially effective and indeed
the diagrammatic archetype for strong AFM or CDW fluctua-
tions. In order to couple this ladder which becomes large for
a wave vector (π, π ) to light with q = 0, we need to build
the ladder in the transversal particle-hole channel. Here, two
particle-hole pairs are created by the incoming and outgoing
light, respectively. For one pair, particle and hole carry the
momentum k and for the other k′. This allows the coupling to
AFM and CDW fluctuations at k′ − k = (π, π ). While anti-
ferromagnetic fluctuations are quintessential for the Hubbard
model, in other parameter regimes and for other lattices, e.g.,
superconducting or ferrmognetic fluctuations may dominate
and with this other channels may become important.

In the context of high-temperature superconductivity a
classification of vertex corrections into Maki [53]-Thompson
[54] and Aslamazov-Larkin (AL) [55] type is sometimes
employed, also in the context of the optical, Hall and Ra-
man conductivity [8,19,20,56,57]. The π -ton or transversal
particle-hole channel is a different classification: diagrams of
both the MT and AL classes6 contribute to the π -tons in the
ph ladder.

By using a simplified vertex we have made it possible to
calculate the optical conductivity with vertex corrections on
the real frequency axis7 and we derived the necessary analyti-
cal expressions for this purpose. These expressions are general
and can be used for arbitrary Green’s function known on the

6The second order in U diagram of the RPA ladder is of AL, the
others are of MT type; there is no first-order diagram.

7For the functional renormalization group [68], which is related
to the parquet through its multiloop extensions [69,70] a simplified
quasiparticle description directly on the real axis has been recently
proposed [71]. For a p-D�A additionally a local vertex for real
frequencies is needed, which one might obtain, e.g., through matrix
product states [72].
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real axis and a vertex that has the same frequency structure in
the complex plane as a physical susceptibility. In this way we
avoid the uncertainty that is sometimes present in the analytic
continuation of numerical data obtained on the Matsubara axis
and have sufficient momentum resolution. This allows us to
study changes reliably also for small vertex corrections and to
understand whether the simplest RPA-ladder diagrams in the
ph channel are sufficient to explain the numerical results of
Ref. [12].

As for the validity of our calculations, we can only expect
an RPA-based approach to be at least qualitatively reliable
at weak coupling in the metallic phase. By construction, our
approach is further limited to the parameter regimes, where
the ph contributions are indeed dominant, i.e., when AFM or
CDW fluctuations are prevalent.8 As was shown in Ref. [12],
for the considered parameter range the ph channel is indeed
the dominant vertex correction to the optical conductivity;
the second largest is from the pp channel; the ph channel is
large at q = (π, π ) but its overall contribution to the optical
conductivity with q = 0 is weak.

We first of all find that the RPA-ladder π -ton contributions
do not alter the overall Lorentzian shape of the Drude peak
in the low-frequency regime, at least in the weak coupling
domain of RPA. The width of the Drude peak for a given tem-
perature is, however, modified by the ladder π -tons: the peak
is sharpened at low and high temperatures, but broadened for
intermediate temperatures. That there are two such crossovers
eventually originates from the temperature dependence of the
single-particle scattering rate �0 which has a larger curvature
than the crossover from broadening at high T and low �0 to
sharpening at low T and high �0 in Fig. 9. The sharpening
at high temperatures through vertex corrections has been ob-
served also in Ref. [21]. For slightly higher frequencies, where
the Drude peak has only a Lorentzian tail we see some addi-
tional feature coming from vertex corrections, that are positive
at all temperatures. This frequency range though is not very
well represented by the approximate constant self-energy that
we used and a closer look in this regime goes beyond our
simplified study.

For a half-empirical calculation of π -ton vertex corrections
one could use the magnetic susceptibility, as was suggested
already in the Supplemental Material to Ref. [12]. Here we
have shown in a model calculation that one can replace the
RPA ladder by a universal Ornstein-Zernike form. The afore-
mentioned sharpening-broadening-sharpening upon lowering
temperature originates from both the enhancement of the
vertex around (π, π ) due to an increase of the correlation
length ξ and the reduction of its relevant frequency window.
The latter is because the two π -ton particle-hole excitations
coupled to the incoming and outgoing light must be closer
and closer to the Fermi energy with decreasing temperature in
the low-frequency range of the optical spectrum.

The final question that we have tried to answer in this work
is whether the simplest ladder diagrams in the ph channel
are enough to at least qualitatively address the π -tons in the

8Please note that within the RPA approach using an effective in-
teraction is necessary, and hence we cannot reliably treat different
channels on an equal footing.

2D Hubbard model. For the low-frequency part of the optical
conductivity, the answer seems to be positive since the main
effect, a nonmonotonic temperature dependence resulting in
broadening or sharpening of the Drude peak by the π -ton
contributions is analogous in p-D�A and in the RPA-ladder
approach.

Note added. Recently, we became aware of an independent
calculation of π -ton contributions to optical conductivity us-
ing RPA [49] with a different physics focus, mainly on the 1D
Hubbard model, and some differences in the implementation.
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APPENDIX A: DERIVATION OF THE REAL FREQUENCY
OPTICAL CONDUCTIVITY WITH VERTEX

CORRECTIONS

In this Appendix we provide an explicit derivation of the
real frequency expressions used for the numerical calculation
of the current-current correlation function χ j j , the full one as
well as its constituents, the bare bubble and vertex correction.
The real part of the optical conductivity is then given by eval-
uating the expression σ (ω) = Imχ j j (ω, q = 0)/ω. To make
the notation clearer we use in the following a different nota-
tion for Matsubara frequencies: i.e., we denote the imaginary
fermionic frequencies by iνn = iπT (2n + 1) and the bosonic
by iωn = i2πT n (with n ∈ Z). The real frequencies are ν or
ω. We also keep the general bosonic momentum q dependence
of the current-current correlation function and skip the j j
subscript in the following.

1. Bubble contribution

To make the notation and assumptions clear we repeat a
derivation of Eq. (5) for the bare bubble contribution on the
real frequency axis. Without vertex corrections the expression
of interest is in Matsubara frequencies

χbub(iωn, q) = −2
∑

k

γ kq
α γ k(−q)

α

1

β

∑
iνn

Gk+q
iνn+iωn

Gk
iνn

≡ 2
∑

k

γ kq
α γ k(−q)

α χ
kq
0 (iωn), (A1)

where the sign originates from the fermionic loop rule and the
factor 2 is due to the spin. The Matsubara sums in Eq. (A1) can
be translated into a real frequency integral by using the fact
that the fermionic Matsubara frequencies are located at the
poles of the Fermi-Dirac distribution ηF (z) = 1

eβz+1 and that
Gk(z) is analytical everywhere except for the real axis (where
it has a branch cut). For Imz > 0 (<0) the Green’s function
Gk(z) is the analytic continuation of the retarded (advanced)
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Green’s function GR k
ω (GA k

ω ). This leads to

χ
k,q
0 (iωn) = −1

β

∑
iνn

Gk+q
iνn+iωn

Gk
iνn

= 1

2π i

∑
C

∮
C

dz ηF (z) Gk+q
z+iωn

Gk
z , (A2)

where the contours C encircle all the singularities of ηF (z). By
Cauchy’s theorem the contours can be deformed arbitrarily,
unless they encounter a region of ambiguous analyticity. For
the above expression these regions are located at Imz = 0 and
at Imz = −iωn. After stretching the contours in such a ways
that they cover the whole complex plane, except for stripes
of infinitesimal height at Imz = 0 and at Imz = −iωn, it can
be shown that the stripes give the only nonzero contribution.
The arcs of (infinite radius) that close the contour do not give
a contribution because the integrand is decaying faster than
1/|z|. One can therefore rewrite Eq. (A2) as

χ
k,q
0 (iωn) = 1

2π i

∫ +∞

−∞
dν ηF (ν)

[
Gk+q

ν+iωn

(
Gk

ν+i0+ − Gk
ν−i0+

)
+ Gk

ν−iωn

(
Gk+q

ν+i0+ − Gk+q
ν−i0+

)]
. (A3)

Here, we used that ηF (ν + iωn) = ηF (ν) and ηF (ν) = ηF (ν +
i0+). We also assumed that iωn �= 0, which may be referred to
as the dynamic limit. Using that the analytical continuation
of the Green’s function from above and below the branch cut
gives Gk

ν±i0+ = GR/A k
ν (which are in equilibrium related to one

another by complex conjugation) and denoting the spectral
function as Ak

ν = −1
π

Im GR k
ν = 1

π
Im GA k

ν = −1
2π i (G

R k
ν − GA k

ν )
we get

χ
k,q
0 (iωn) = −

∫ +∞

−∞
dν ηF (ν)

[
Gk+q

ν+iωn
Ak

ν + Gk
ν−iωn

Ak+q
ν

]
.

(A4)

After transforming all Matsubara sums into integrals over real
frequencies the remaining analytical continuation amounts to
a simple substitution iωn → ω + i0+:

χ
R k,q
0 (ω) = −

∫ +∞

−∞
dν ηF (ν)

[
GR k+q

ν+ω Ak
ν + GA k

ν−ωAk+q
ν

]
.

(A5)
Inserting Eq. (A5) into Eq. (A1) for q = 0 leads to Eq. (5).

2. Vertex corrections

In this section we derive Eq. (8), starting again from the
expression in Matsubara frequencies, but now for the vertex
corrections:

χvert(iωn, q) = − 2
∑
kk′

γ kq
α γ k′(−q)

α

≡Ck,k′ ,q (iωn )︷ ︸︸ ︷
1

β

∑
iνn

Gk
iνn

Gk+q
iνn+iωn

1

β

∑
iν ′

n

F k−k′
iνn−iν ′

n
Gk′

iν ′
n

Gk′+q
iν ′

n+iωn︸ ︷︷ ︸
≡Ck,k′ ,q (iνn,iωn )

. (A6)

The analytic continuation of Eq. (A6) follows the same proce-
dure as for the bubble contribution. We again assume iωn �= 0
(dynamic limit). The order in which the Matsubara sums are
evaluated does not matter. Here we present the evaluation of
the iν ′

n sum first [Ck,k′,q(iνn, iωn) in (A6)]. The complex struc-
ture of the single frequency vertex must be the same as that of
a physical magnetic susceptibility, i.e., F k

z is analytical in the
whole complex plane except for Imz = 0 where it has a branch
cut.9 The RPA bubble (9) as well as the Ornstein-Zernike
susceptibility (10) fulfill this assumption. Since branch cuts
appear in both the Green’s function G and the one-frequency
vertex F , when the imaginary part of the frequency argument
vanishes, there are three branch cuts when we analytically
continue the argument of the Matsubara sum iν ′

n → z into the
whole complex plane (cf. Fig. 13):

z =
⎧⎨
⎩

ν ′ + iνn (i),
ν ′ (ii),
ν ′ − iωn (iii).

(A7)

The first one, (i), in Eq. (A7), originates from the vertex

F k−k′
iνn−z

z→ν ′+iνn∓i0+= F R/A k−k′
−ν ′ in Eq. (A6), which has a branch

cut between retarded and advanced vertex at z = ν ′ + iνn

9As explained in Sec. II B.

FIG. 13. The three branch cuts for the analytical continuation
(iν ′

n → z) of the first Matsubara sum in Eq. (A6). The red cross marks
the Matsubara frequency iνn = iνn′ which has to be excluded from
the sum and treated separately. The ζi’s combine the line integral
above and below the branch cut of two contour integrals (the arches
of the contour integral vanish). In case of ζ0 the contour integral is
around the single Matsubara frequency iν ′ = iν.
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or Imz = +iνn. Branch cuts (A7) (ii) and (iii) are from the two Green’s functions Gk′
z and Gk′+q

z+iωn
, respectively. Special care has

to be taken additionally since the first branch cut in Eq. (A7) is on top of a pole. Thus, the point νn = ν ′
n has to be explicitly

excluded from the second Matsubara sum and treated separately:

Ck,k′,q(iνn, iωn) = 1

β

∑
ν ′

n

F k−k′
iνn−iν ′

n
Gk′

iνn
Gk′+q

iν ′
n+iωn

= 1

β
F k−k′

iνn−iν ′
n

Gk′
iν ′

n
Gk′+q

iν ′
n+iωn

∣∣∣∣
ν ′

n=νn

+ 1

β

∑
ν ′

n �=νn

F k−k′
iνn−iν ′

n
Gk′

iν ′
n

Gk′+q
iν ′

n+iωn

= 1

β
F k−k′

0 Gk′
iνn

Gk′+q
iνn+iωn

− 1

2π i

∑
C

∮
C

dz ηF (z) F k−k′
iνn−z Gk′

z Gk′+q
z+iωn

. (A8)

Here, we introduced F q
iωn=0 ≡ F q

0 . The contours C enclose all Matsubara frequencies of the ν ′
n − sum except for νn = ν ′

n and are
visualized in Fig. 13 as well.

Again the arches (of infinite radius) do not contribute to the integral because the integrand decays faster than 1/|z|. The only
remaining contributions come from the three stripes ζi in Fig. 13 (leftward and rightward integral with infinitely small separation
in-between), mathematically given by

Ck,k′,q(iνn, iωn) = F k−k′
0

β
Gk′

iνn
Gk′+q

iνn+iωn
(= ζ0)+

∫ +∞

−∞
dν ′ −1

2π i
Gk′

ν ′+iνn
Gk′+q

ν ′+iνn+iωn

(
ηB(ν ′−i0+) F R k−k′

−ν ′ −F A k−k′
−ν ′ ηB(ν ′ + i0+)

)
(=ζ1)

+
∫ +∞

−∞
dν ′ηF (ν ′)Ak′

ν ′ G
k′+q
ν ′+iωn

F k−k′
iνn−ν ′ (= ζ2) +

∫ +∞

−∞
dν ′ηF (ν ′)Ak′+q

ν ′ Gk′
ν ′−iωn

F k−k′
iνn+iωn−ν ′ .(= ζ3) (A9)

For the second term (ζ1) we used ηF (ν ′ + iνn ± i0+) = −ηB(ν ′ ± i0+). For the singularity of the Bose-Einstein function nB(x) =
1

eβx−1 on can use a variation of the Plemelj-Sokhotskii theorem [58] that given a well-behaved (holomorphic) function g(x) reads
as ∫ ∞

−∞
dx g(x) nB(x − x0 ± i0+) = P

∫ ∞

−∞
dx g(x) nB(x − x0) ∓ i

π

β

∫ ∞

−∞
dx δ(x − x0) g(x). (A10)

The ζ1 term can be split up into two parts, where the contributions due to the delta distribution cancel exactly the ζ0 term10:

ζ1 =
∫ +∞

−∞
dν ′ −1

2π i
Gk′

ν ′+iνn
Gk′+q

ν ′+iνn+iωn

(
ηB(ν ′ − i0+)F R k−k′

−ν ′ − F A k−k′
−ν ′ ηB(ν ′ + i0+)

)
= −1

2π i
P

∫ +∞

−∞
dν ′ Gk′

ν ′+iνn
Gk′+q

ν ′+iνn+iωn
ηB(ν ′)

(
F R k−k′

−ν ′ − F A k−k′
−ν ′

) − 1

2
Gk′

iνn
Gk′+q

iνn+iωn

(
F R k−k′

0 + F A k−k′
0

)
=

∫ +∞

−∞
dν ′ −1

2π i
Gk′

ν ′+iνn
Gk′+q

ν ′+iνn+iωn
ηB(ν ′)

(
F R k−k′

−ν ′ − F A k−k′
−ν ′

) − ζ0. (A11)

In the last line of Eq. (A11) we used that F R k−k′
0 = F A k−k′

0 = F k−k′
0 and that the singularity of nB(ν ′) gets regularized by

(F R k−k′
−ν ′ − F A k−k′

−ν ′ ). The Cauchy-principle value P can therefore be replaced by a normal integral. Inserting Eq. (A9) into
Eq. (A6) and reordering in such a way that all terms containing iνn are together leads to

Ck,k′,q(iωn) = − 1

2π i

∫ ∞

−∞
dν ′ηB(ν ′)

(
F R k−k′

−ν ′ − F A k−k′
−ν ′

)
ζ̄

k,k′,q
1 (iωn, ν

′) +
∫ ∞

−∞
dν ′ηF (ν ′) Ak′

ν ′ Gk′+q
ν ′+iωn

ζ̄
k,k′,q
2 (iωn, ν

′)

+
∫ ∞

−∞
dν ′ηF (ν ′) Ak′+q

ν ′ Gk′+q
ν ′+iωn

ζ̄
k,k′,q
3 (iωn, ν

′), (A12)

ζ̄1(iωn, ν
′) = 1

β

∑
νn

Gk
iνn

Gk′
iνn+ν ′ Gk+q

iνn+iωn
Gk′+q

iνn+ν ′+iωn

= −1

2π i

∑
C

∮
C

dz ηF (z) Gk
z Gk′

z+ν ′ Gk+q
z+iωn

Gk′+q
z+ν ′+iωn

= −1

2π i

∫ ∞

−∞
dν ηF (ν)

(
GR k

ν GR k′
ν+ν ′ − GA k

ν GA k′
ν+ν ′

)
Gk+q

ν+iωn
Gk′+q

ν+ν ′+iωn

+ −1

2π i

∫ ∞

−∞
dν ηF (ν) Gk

ν−iωn
Gk′

ν+ν ′−iωn

(
GR k+q

ν GR k′+q
ν+ν ′ − GA k+q

ν GA k′+q
ν+ν ′

)
,

10We present here the solution for F q
iωn→z→0 = F q

iωn=0. While this is true for the systems considered here (RPA, Ornstein-Zernike) it is not
correct for some special cases (e.g., nonergodic systems [73–75]). The general procedure does, however, not change. The only difference being
that the ζ0 term does no longer cancel. Instead, one gets the ζ0 as an additional contribution, but with (F q

iωn=0 − F q
iωn→z→0 ) instead of F q

0 .
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ζ̄2(iωn, ν
′) = 1

β

∑
νn

Gk
iνn

Gk+q
iνn+iωn

F k−k′
iνn−ν ′

= −1

2π i

∑
C

∮
C

dz ηF (z) Gk
z Gk+q

z+iωn
F k−k′

z−ν ′

= −1

2π i

∫ ∞

−∞
dν ηF (ν)

(
GR k

ν F R k−k′
ν−ν ′ − GA k

ν F A k−k′
ν−ν ′

)
Gk+q

ν+iωn
+

∫ ∞

−∞
dν ηF (ν)Gk

ν−iωn
F k−k′

ν−ν ′−iωn
Ak+q

ν ,

ζ̄3(iωn, ν
′) = 1

β

∑
νn

Gk
iνn

Gk+q
iνn+iωn

F k−k′
iνn−ν ′+iωn

= −1

2π i

∑
C

∮
C

dz ηF (z) Gk
z Gk+q

z+iωn
F k−k′

z−ν ′+iωn

=
∫ ∞

−∞
dν ηF (ν) Ak

ν Gk+q
ν+iωn

F k−k′
ν−ν ′+iωn

+ −1

2π i

∫ ∞

−∞
dν ηF (ν) Gk

ν−iωn

(
GR k+q

ν F R k−k′
ν−ν ′ − GA k+q

ν F A k−k′
ν−ν ′

)
. (A13)

In Eq. (A13) we further need to transform the Matusbara sums over the first index νn in Eq. (A6) into contour integrals
enclosing all poles of the Fermi-Dirac distribution function ηF (z). All terms have branch cuts at two additional lines regarding
the analytically continued first summation index νn → z, namely, at

z =
{
ν,

ν − iωn.
(A14)

Altogether we hence need to account for five branch cuts, when we analytically continue the Matsubara frequency sums νn and
ν ′

n to real frequency integrations.
Inserting Eq. (A13) into Eq. (A9) and performing the last analytical continuation of the external frequency by substituting

iωn → ω + i0+ gives

χR
vert(ω, q) = 2

∑
kk′

γ kq
α γ k′(−q)

α CR k,k′,q(ω), (A15)

with

CR k,k′,q(ω) = ζ
R kk′q
1 (ω) + ζ

R kk′q
2 (ω) + ζ

R kk′q
3 (ω), (A16)

and

ζ
R k,k′q
1 (ω) = −1

(2π )2

∫ ∞

−∞
dν ′ηB(ν ′)

(
F R k−k′

−ν ′ − F A k−k′
−ν ′

) ∫ ∞

−∞
dν ηF (ν)

[(
GR k

ν GR k′
ν+ν ′ − GA k

ν GA k′
ν+ν ′

)
GR k+q

ν+ω GR k′+q
ν+ν ′+ω

+GA k
ν−ω GA k′

ν+ν ′−ω

(
GR k+q

ν GR k′+q
ν+ν ′ − GA k+q

ν GA k′+q
ν+ν ′

)]
, (A17a)

ζ
R kk′q
2 (ω) =

∫ ∞

−∞
dν ′ηF (ν ′) Ak′

ν ′ GR k′+q
ν ′+ω

∫ ∞

−∞
dν ηF (ν)

[ −1

2π i

(
GR k

ν F R k−k′
ν−ν ′ − GA k

ν F A k−k′
ν−ν ′

)
GR k+q

ν+ω + GA k
ν−ω F A k−k′

ν−ν ′−ω Ak+q
ν

]
,

(A17b)

ζ
R kk′q
3 (ω) =

∫ ∞

−∞
dν ′ηF (ν ′) GA k′

ν ′−ω Ak′+q
ν ′

∫ ∞

−∞
dν ηF (ν)

[
Ak

ν GR k+q
ν+ω F R k−k′

ν−ν ′+ω + −1

2π i
GA k

ν−ω

(
GR k+q

ν F R k−k′
ν−ν ′ − GA k+q

ν F A k−k′
ν−ν ′

)]
.

(A17c)

For the long-wavelength limit (q = 0) Eq. (A16) may also be written as

χR
vert(ω, q = 0) = −2

∑
kk′

γ k
α γ k′

α

(
ζ kk′

1 (ω) + ζ kk′
2p3(ω)

)
, (A18)

ζ1(ω)R kk′ = −1

4π2

∫∫
R2

dν dν ′ηF (ν) ηB(ν ′)
[
F R k−k′

−ν ′ − F A k−k′
−ν ′

][
GR k

ν+ωGR k′
ν+ν ′+ω + GA k

ν−ωGA k′
ν+ν ′−ω

][
GR k

ν GR k′
ν ′+ν − GA k

ν GA k′
ν ′+ν

]
,

(A19a)

ζ2p3(ω)R kk′ = i

2π

∫∫
R2

dν dν ′ηF (ν) ηF (ν ′)Ak′
ν ′
[[

GR k
ν+ωGR k′

ν ′+ω + GA k
ν−ωGA k′

ν ′−ω

][
GR k

ν F R k−k′
ν−ν ′ − GA k

ν F A k−k′
ν−ν ′

]
+(−2π i)Ak

ν

[
GR k′

ν ′+ωGA k
ν−ωF A k−k′

ν−ν ′−ω + GA k′
ν ′−ωGR k

ν+ωF R k−k′
ν−ν ′+ω

]]
. (A19b)

In Eq. (A19b) we combined ζ
R k,k′,q=0
2 plus ζ

R k,k′,q=0
3 into the sum ζ R k,k′

2p3 so that each individual term fulfills the symmetry
ζi(−ω)∗ = ζi(ω) for i ∈ {1, 2p3}.
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FIG. 14. Left: σbub from Ref. [12] (solid line) and Drude fit (dashed). Right: �0 = 1
2τ

obtained from the Drude peak fit (blue circles)
at various temperatures and the fitted temperature dependence �0(T ) = 0.1547 + 1.637 T 2 (black line). The parquet D�A calculations in
Ref. [12] were done with a interaction value of U0 = 4.

APPENDIX B: COMPUTATIONAL DETAILS

1. k and ω grid sizes

For all calculations presented we used the k grid of at
least 30 × 30 points. The numeric frequency integration was
done using trapezoidal rule with at least 751 points within the
frequency range of ω ∈ [−45, 45].

2. Drude fit to pD�A bubble

In order to obtain the temperature-dependent scattering rate
�0(T ), we used a χ2 fit of the Drude form σ (ω) = σ0

1+ω2τ 2 ≡
σ0

1+ω2/(2�0 )2 to the analytically continued bubble contribution
of the p-D�A optical conductivity obtained in Ref. [12] for
different temperatures and the bare interaction value of U0 =

4. Both the Drude fit as well as the original p-D�A bubble
contribution are shown in the left panel of Fig. 14 for different
temperatures. The extracted temperature dependence together
with a T 2 fit is shown in the right panel of Fig. 14.

3. Fit of the Ornstein-Zernike vertex to the RPA-ladder vertex

We extract the parameters of the Ornstein-Zernike vertex
of Eq. (11): A, ξ , λ through a χ2 fit to the real part of the
RPA-ladder vertex (9). All three parameters are, however, not
extracted simultaneously. First A and ξ are obtained by fitting
to the value at ω = 0. Then, keeping A and ξ constant, λ is
obtained by a χ2 fit to the ω dependence. A comparison of the
fitted OZ vertex to the RPA vertex is shown in Fig. 15.

-20 -10 0 10 20
-0.5

0

0.5

1

1.5
T = 0.5

RPA
OZ-fit

-20 -10 0 10 20

0

2

4

T = 0.2

RPA
OZ-fit

T = 0.5

RPA
OZ-fit

T = 0.2

RPA
OZ-fit

FIG. 15. Real part of the Ornstein-Zernike vertex (red) fitted to an RPA-ladder vertex (blue) for two different temperatures. Left: T = 0.5;
right: T = 0.2, and U = 1.9 for the RPA-ladder. Top row: as a function of ω for a fixed q = (π, π ), yielding λ. Bottom row: as a function of
kx for ky = π and ω = 0, determining ξ and A.
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FIG. 16. Temperature dependence of the Ornstein-Zernike parameters (symbols) ξ (left), λ (middle), and A (right), together with the fit
functions for the temperature dependence (solid lines; as described in the text). Three different values of U = 1.7, 1.8, 1.9 are used to extract
the OZ parameters from the RPA ladders (blue circles, red triangles, purple squares).

Figure 16 in turn displays the extracted parameters of the
Ornstein-Zernike vertex as a function of temperature (sym-
bols). The solid lines represent a fitted temperature behavior
of the form aOZ + bOZ(1/T )COZ , except for fitting ξ at U =
1.9, where an exponential fit of the form aOZ

T + bOZe
COZ

T had
to be employed to account for the strong increase ξ at low
temperatures [see purple line in Fig. 17 (left)]. The respective
fit parameters aOZ, bOZ, COZ are given in Table I.

APPENDIX C: ORNSTEIN-ZERNIKE VERTEX
CORRECTIONS TO THE OPTICAL CONDUCTIVITY FOR

HIGH TEMPERATURE

In the high-temperature regime we see a transition between
broadening of the Drude peak and its sharpening when the
temperature is increased in case we use the RPA vertex. This
is illustrated in Fig. 9, where for high temperatures or large
�0 the vertex corrections are positive. We choose now two
points on the green line, with 1/T = 3.3 and �0 = 0.3 (black
circle in Fig. 9) and with 1/T = 2.5 and �0 = 0.42 (magenta
triangle in Fig. 9) and perform an OZ fit to the RPA vertex for
each of them. With the obtained OZ parameters, we calculate
the vertex corrections with the OZ vertex instead of the RPA
vertex. The results for the two different ways of calculating
σvert, i.e. directly from the RPA vertex or alternatively from
OZ vertex with parameters fitted on RPA, are shown in the
leftmost plot in Fig. 17. Solid lines denote the RPA vertex
corrections that change sign when we move from the black
circle (black in Fig. 17) to the magenta triangle (magenta).
Dashed lines denote the OZ results for these points. We do not
see a sign change for the OZ vertex, although its parameters
were fitted to the RPA vertex. We neither see a sharpening of
the Drude peak at high temperature with thus fitted OZ vertex.

TABLE I. Parameters extracted from fitting the temperature de-
pendence of the three Ornstein-Zernike parameters; see text for the
fit function and note the different fit function for ξ at U = 1.9.

aOZ bOZ COZ

U 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9

A 0.63 0.53 0.41 10.6 11.7 13.0 −1.15 −1.08 −1.03
ξ −0.19 0.26 0.30 0.36 0.11 1e-3 0.83 1.33 0.51
λ 0.53 0.46 0.38 10.9 10.7 10.6 −1.39 −1.37 −1.29

In order to check if it is at all possible to obtain positive
vertex corrections with the OZ vertex, we choose the black
circle of Fig. 9 as a starting point and change the temperature,
correlation length ξ and �0 treating them as independent
parameters, as was done in Fig. 11 for a lower temperature.
We show in Fig. 17 only the value of σvert(ω = 0) as a func-
tion 1/T , �0, and ξ , with other parameters kept fixed (left
middle, right middle, and rightmost plot, respectively). With
lowering the temperature we enter the sharpening regime with
the OZ vertex as well, even if we keep the correlation length
fixed. Staying at higher temperature (1/T = 3.3), however,
we get positive values of σvert(ω = 0) only at �0 � 1 or with a
very small correlation length ξ < 0.3. In the small correlation
length or large scattering rate regime, the vertex corrections
become positive at high temperature even with the OZ form
of the vertex.

Let us note, however, that at high temperature the correla-
tion length description of the system is not any more adequate,
which also explains the differences between OZ and RPA
results. The correlation between next neighbors still changes
with the correlation length if it is somewhat below 1. As a
matter of course, in this regime the description by means
of a correlation length is not accurate any more, as also the
quite substantial deviation from the Ornstein-Zernike form for
T = 0.5 in Fig. 15 (left) shows.

APPENDIX D: RPA LADDERS IN ph AND ph CHANNELS

Motivated by the results of Ref. [12], we state in Sec. IV
that the dominant contribution to the vertex correction to
optical conductivity comes from an RPA-type ladder in the
ph channel. Here we discuss all possible contributions from
ladder-type diagrams in the ph and ph channels and explain
why RPA-type ladders other than in the magnetic ph channel
are not important.

Assuming SU(2) spin symmetry, the vertex entering Eq. (4)
is the full two-particle vertex Fd in the density spin channel
[20], which (in the notation of Ref. [29]) is defined as

Fd = F↑↑↑↑ + F↑↑↓↓ ≡ F↑↑ + F↑↓, (D1)

where we used a shortened notation of ↑↑ for ↑↑↑↑ and ↑↓
for ↑↑↓↓. The remaining independent spin combination is
↑↓↓↑, which we denote by ↑↓. For completeness we also
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FIG. 17. Left: Vertex corrections calculated directly with the RPA vertex (solid lines) and from OZ vertex with fitted parameters to the
RPA (dashed lines) for parameters of the the black circle (black lines) and magenta triangle (magenta lines) in Fig. 9. The other three plots
show σ|(ω = 0) obtained with the OZ vertex with only one parameter changed: 1/T (middle left), �0 (middle right), and ξ (right), all other
parameters are kept constant. The starting point was the black circle in Fig. 9, which corresponds to 1/T = 3.3, �0 = 0.3, ξ = 0.77. To
improve visibility, positive values are marked as red, negative ones as blue.

introduce the magnetic spin channel

Fm = F↑↑↑↑ − F↑↑↓↓ ≡ F↑↑ − F↑↓. (D2)

Using the parquet decomposition [29] allows for unam-
biguous classification in terms of two-particle reducibility (see
Fig. 18)

F = � + �ph + �ph + �pp, (D3)

with � denoting the set of fully irreducible diagrams (dia-
grams that are not reducible in ph, nor ph, nor pp channels).

All RPA-like ladders are by construction reducible in one
of the three channels. Each channel contains three ladders, one
for each of the three spin combinations (↑↑, ↑↓, ↑↓). For the
ph and ph channels these are given by

�
RPA,kk′q
↑↑,ph = U 2χ

q
0

1 − U 2
(
χ

q
0

)2 , (D4a)

�
RPA,kk′q
↑↓,ph = −U 3

(
χ

q
0

)2

1 − U 2
(
χ

q
0

)2 , (D4b)

�
RPA,kk′q
↑↓,ph

= U 2χ
q
0

1 − Uχ
q
0

, (D4c)

�
RPA,kk′q
↑↑,ph

= −U 2χ k−k′
0

1 − U 2
(
χ k−k′

0

)2 , (D4d)

�
RPA,kk′q
↑↓,ph

= −U 2χ k−k′
0

1 − Uχ k−k′
0

, (D4e)

�
RPA,kk′q
↑↓,ph

= U 3
(
χ k−k′

0

)2

1 − U 2
(
χ k−k′

0

)2 , (D4f)

with χ
q
0 = − 1

βN

∑
k GkGk+q. The first two diagrams of those

RPA-like ladders are also displayed in Fig. 19 (in the ph
channel) and Fig. 20 (in the ph channel). Note that they have
a reduced frequency-momentum dependence and depend only
either on q (ph channel) or on k − k′ (ph channel).

If we restrict ourselves only to such RPA-like ladders and
assume the pp channel to be small as observed in Ref. [12],
the vertex in Eq. (D1) can be written as

F kk′q
d = U + �

RPA,kk′q
d,ph + �

RPA,kk′q
d,ph

. (D5)

Using the so-called crossing symmetry that connects the
ph and ph channels (see, e.g., Ref. [29])

�
kk′q
d,ph

= − 1
2�

(k′+q)k′(k−k′ )
d,ph − 3

2�
(k′+q)k′(k−k′ )
m,ph , (D6)

one can rewrite Eq. (D5) in order to express everything in the
ph channel only

F kk′q
d = U + �

RPA,q
d,ph − 1

2�
RPA,(k−k′ )
d,ph − 3

2�
RPA,(k−k′ )
m,ph , (D7)

where we omitted in �’s the first two (fermionic) frequency-
momentum arguments because in the RPA-ladder approxima-
tion in the ph channel they depend only on the third, bosonic,

F

k

k + q

k′

k′ + q

= Λ + Φph + Φph +
Φpp

FIG. 18. Visual representation of the parquet decomposition in Eq. (D3). The full vertex F consists of diagrams that are two-particle
reducible in ph, ph, or pp channel (�ph, �ph, �pp) and diagrams that are not two-particle reducible (fully irreducible, �).
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FIG. 19. RPA-like ladders in the ph channel.

argument [see Eq. (D4)]. Note that such constructed vertex
F obeys the crossing symmetry, as opposed to a single RPA
ladder in the ph channel.

The first two contributions to F in Eq. (D7) do not give any
vertex correction to the optical (q = 0) conductivity for a one-
band model. This is because γ k

α is antisymmetric in k, while

ΦRPA
↑↑,ph

=

↑ ↑

↓

↑ ↑

↓ +

↑

↑

↑

↑

↑ ↑

↓ ↓

↓ ↓

+ ...

ΦRPA
↑↓,ph

=
↑

↑
↑

↓

↓
↓ +

↑

↑
↑
↑

↓

↓
↓
↓ + ...

ΦRPA
↑↓,ph

=

↑ ↑
↓ ↓
↑ ↑

↓↓

+

↓

↑

↓

↑
↓ ↓
↑ ↑
↓ ↓
↑ ↑

+ ...

FIG. 20. RPA-like ladders in the ph channel.

Gk is symmetric and therefore any vertex F that depends only
on q but not on k, k′ will give zero when inserted in Eq. (4).

For the remaining part (− 1
2�

RPA,(k−k′ )
d,ph − 3

2�
RPA,(k−k′ )
m,ph ) in

Eq. (D7) we can assume that the magnetic channel will dom-
inate because �

RPA,(k−k′ )
d,ph = U

1+Uχ k−k′
0

− U and �
RPA,(k−k′ )
m,ph =

U − U
1−Uχ k−k′

0

and U > 0, χ k−k′
0 > 0. In Fig. 21 we show

a comparison of vertex contributions from the density and
magnetic channels. The density channel contribution is in-
deed much smaller, even though we take the same value of
the effective U in this calculation. In fact, taking a different
value of the effective interaction in the density channel (less
screened than in the magnetic channel) would make the contri-
bution even smaller. Considering only the dominant magnetic
channel, which corresponds to the (↑↓, ph) diagram as drawn
in Fig. 2, Sec. II C, allows us also avoiding the problem of
choosing appropriate effective U d/m [20], leaving only one
effective (magnetic) U value that we treat as a free parameter
in our model calculation.

APPENDIX E: SCHWINGER-DYSON EQUATION IN REAL
FREQUENCIES FOR A VERTEX DEPENDING

ON ONE FREQUENCY

The Schwinger-Dyson equation connects the two-particle
vertex F to the one-particle self-energy � and reads as for the
Hubbard Hamiltonian [29]

�k = Un

2
− U

1

β2N2

∑
k′q

F kk′q
↑↓ Gk′Gk′+qGk+q. (E1)

The first term in Eq. (E1) is the Hartree term, which is not im-
portant for the following discussion and will hence be omitted
for simplicity.

To be specific, we will proceed with the RPA-like ladder
approximation of the vertex, as presented in Appendix C, but
the final equation can be used for any vertex that depends on
only one frequency [F̃ q in Eq. (E4)]. In RPA we will omit the
contribution from the pp channel and take only the ph and ph
ladders in the Schwinger-Dyson equation. Note that while the
contribution of ph ladder to the optical conductivity can be
neglected, as discussed in Appendix D, this is not the case for
the contribution to the self-energy (as neither the restriction to
q = 0 nor the antisymmetry of the γ k

α enters). Including both
ph and ph ladders in F yields

F kk′q
↑↓ = U + �

RPA,kk′q
↑↓,ph + �

RPA,kk′q
↑↓,ph

= U + �
RPA,kk′q
↑↓,ph − �

RPA,k(k+q)(k′−k)
↑↓,ph

≡ U + �
RPA,q
↑↓,ph − �RPA,k′−k

↑↓,ph
, (E2)

where we used the crossing symmetry [29] �
RPA,kk′q
↑↓,ph

=
−�

RPA,(k′+q)k′(k−k′ )
↑↓,ph

= −�
RPA,k(k+q)(k′−k)
↑↓,ph

in the second line
and in the notation of the third line we omitted the first two
fermionic variables since the ph ladder depends only on the
last, bosonic variable, as shown in Eq. (D4).
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FIG. 21. Left: vertex corrections obtained by using both the magnetic as well as the density RPA-like ladder as vertex [Eq. (D7)]. Right:
vertex corrections stemming from the density-type ladder only. The contribution from the density ladder is small compared to the magnetic
ladder. As parameters we use U = 1.9 and a constant in frequency but temperature-dependent scattering rate �(T ) as described in the main
text.

In this approximation Eq. (E1) can be rewritten as

�k = −U0
1

β2N2

∑
qk′

(
U + �

RPA,q
↑↓,ph − �RPA,k′−k

↑↓,ph

)
× Gk+qGk′Gk′+q. (E3)

From now on we will explicitly distinguish between the bare
interaction value, which we now denote with U0, and the
effective (screened) U that we take as the RPA vertex.

Equation (E3) can be further simplified by using again
χ

q
0 = − 1

βN

∑
k GkGk+q and employing a variable change

k′′ = k + q and q′ = k′ − k for the third term:

�k = U0
1

βN

∑
q

(
U + �

RPA,q
↑↓,ph − �

RPA,q
↑↓,ph

)
Gk+qχ

q
0

≡ U0
1

βN

∑
q

F̃ qGk+qχ
q
0 . (E4)

The real frequency version of Eq. (E4) can be obtained follow-
ing along the same lines as in Appendix A. Branch cuts are at

z = ω and ω − iνn. Rewriting the Matsubara sum in terms of
integrals yields

�R k
ν = U0

i

2π

∑
q

∫ ∞

−∞
dω

[ − 2iπηF(ω)F̃ A q
ω χ

A q
0,ω Ak+ q

ω+ν

+ ηB(ω)GR k+q
ν+ω

(
F̃ R q

ω χ
R q
0,ω − F̃ A q

ω χ
A q
0,ω

)]
. (E5)

The above expression can be used for calculating the self-
energy for a general F̃ q, provided the reduced frequency
dependence.

In Fig. 22 we show the real and imaginary parts of the
self-energy as a function of frequency ω for two points in
the Brillouin zone, for several temperatures, as obtained from
Eq. (E5) with the RPA vertex as in Eq. (E4). The input self-
energy to calculate the RPA vertex as well as the one-particle
Green’s functions was the constant but temperature-dependent
self-energy we used in the main text (see Sec. II F), with
�0(T ) = 0.1547 + 1.637 T 2. We performed here only a one-
shot calculation. Further improvement could be achieved
(albeit at a significant numerical cost) by using, e.g., the
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FIG. 22. Real (upper row) and imaginary (lower row) parts of the self-energy obtained using the Schwinger-Dyson equation (E5) as a
function of ω for two points in the Brillouin zone. Different colors denote different temperatures. The bare interaction value in the Schwinger-
Dyson equation was taken as U0 = 4 and the effective interaction for the vertex as U = 1.8.
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FIG. 23. Real and imaginary parts of the (retarded) self-energy obtained using the Schwinger-Dyson equation (E5) (upper row) and Green’s
function (lower row) at ω = 0, as a function of kx and ky for T = 0.2 and 0.1. The bare interaction value was taken as U0 = 4 and the effective
interaction for the vertex as U = 1.8.

two-particle self-consistent approach as in Ref. [20]. We used
here the bare interaction value of U0 = 4, which corresponds
to the value from the parquet D�A calculation of Ref. [12]
(as the bare U0 enters the Schwinger-Dyson equation) and the
effective interaction U = 1.8 in the RPA ladders (as beyond
RPA-ladder contributions reduce the magnetic fluctuations).

The self-energy in Fig. 22 shows the typical Fermi-liquid
behavior with a linear ω dependence for the real part of the
self-energy and a quadratic behavior for the imaginary part.11

On top of this quadratic ω dependence, there is a finite ω = 0
scattering rate that is suppressed upon decreasing tempera-
ture. This low-energy scattering is more pronounced for the
antinodal point k = (π, 0), as one can also see in momentum
dependence of the self-energy at the Fermi level (ω = 0)
shown in Fig. 23. Despite this momentum differentiation there
is no sign for the formation of a pseudogap, which would be

11Particular strong scattering at the van Hove singularity will be cut
off by the finite scattering rate of the the starting self-energy.

signaled by a 1/ω pole in the real part of the self-energy.
Please note that, while showing a reasonable Fermi-liquid
frequency dependence, this RPA recalculated self-energy can-
not be considered (in the frequency range relevant for the
Drude peak) to be superior to the constant �(ω) = −i�0(T )
fitted to the more precise numerical parquet data. Indeed, due
to antiferromagnetic fluctuations the low-frequency scattering
rate will not vanish but after a plateau increase again at low
temperatures [59]. In the next Appendix, we will see that
the difference between the fitted constant self-energy and the
RPA recalculated self-energy in any case does not alter our
conclusions.

APPENDIX F: EFFECT OF RPA-LADDER VERTEX
CORRECTIONS TO SELF-ENERGY ON THE OPTICAL

CONDUCTIVITY

Throughout the main paper we used a model, featureless,
self-energy as described in Sec. II F. This approach does not
capture the interplay between vertex corrections to one- and
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FIG. 24. Full optical conductivity σfull (left), the vertex corrections in the RPA ladder σvert (middle), and the bare particle-hole bubble σbub

(right) at effective interaction U = 1.8 and various temperatures T . This figure is the same as Fig. 6, but the one-particle Green’s function was
calculated with a one-shot vertex correction obtained as described in the text.
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two-particle quantities. It is, however, not feasible to apply a
fully one- and two-particle consistent approach as, e.g., the
parquet approach of Ref. [12] does, and to keep the same
momentum resolution or do calculations on the real frequency
axis. In the following we only try to assess if and how in-
cluding the frequency dependence and self-consistency effects
for the self-energy alters our conclusions of the main text. To
this aim we use the self-energy with a vertex correction from
Eq. (E5) in the calculation of the optical conductivity. We
make only a one-shot correction, which means the self-energy
from Eq. (E5) is used only in the bubble contribution and
in the outer lines in Eq. (3), but the vertex entering Eq. (7)
is calculated with Green’s functions for which we use the
constant scattering rate as described in the main text. This way
the vertex used in Eqs. (E5) and (7) is the same.

The results are shown in Fig. 24, which is constructed
analogously to Fig. 6. We also see the three temperature
regimes: (i) a sharpening for high temperatures; (ii) broad-
ening in the intermediate regime; (iii) and again sharpening
in the low-temperature regime. Quantitatively, now both the
bubble contribution as well as the vertex corrections are larger
at ω = 0 at low temperatures, which is caused by the reduced
scattering rate around ω = 0 (compared to the constant we
took in the model Green’s function in the main text) as can be
seen in the imaginary part of the self-energy in Fig. 22. The
qualitative behavior in the lowest frequency regime is, how-
ever, unchanged. In particular, the lowest frequency regime of
both the full optical conductivity and the bubble contribution
can still be well fitted with a Drude peak. For intermediate
frequencies ω ≈ 0.3, we see a different behavior already in
the bubble contribution. Also, the vertex corrections do not
become negative in this frequency regime as it was visible
in Fig. 6 for a frequency-independent self-energy. These dif-
ferences come from the strong frequency dependence of the
self-energy for the intermediate frequency range (cf. Fig. 22).

In Fig. 25 we present, in analogy to Fig. 7, the dif-
ference between the width of the Drude peak fitted to
full optical conductivity 1/τfull and fitted to only the bub-
ble contribution 1/τbub. Also, the vertex corrections to the
DC conductivity are shown. We again see the sharpening-
broadening-sharpening behavior with temperature. Overall
the corrections to σvert(ω = 0) are larger as already seen in
Fig. 24. The corrections to the width of the Drude peak, on the

FIG. 25. Top: difference between the width of the Drude peak
including vertex corrections (1/τfull) and the width of the Drude peak
using the bubble contribution only (1/τ0) as a function of temperature
(on a scale linear in 1/T = β) for U = 1.8. Bottom: vertex contribu-
tion σvert (ω = 0) to the DC conductivity as a function of temperature
for the same parameters. The figure is the same as Fig. 7 but the
bubble contribution and the external Green’s functions in the vertex
corrections were calculated with the self-energy from Appendix E as
described in the text.

other hand, are smaller than the ones in the case of constant
self-energy (cf. Fig. 7).

We could alternatively do a different calculation and also
use the vertex-corrected self-energy to obtain an updated RPA
vertex and then calculate the vertex correction with Eq. (7).
The outer and inner Green’s function lines in the calculation
of optical conductivity from Eq. (3) would then be the same
(where by “inner lines” are the Green’s functions used to
calculate the RPA vertex). We have done so but this additional
self-energy feedback to the vertex has only minor influence on
the vertex corrections to optical conductivity and is hence not
shown here.
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[51] A. Vranić, J. Vučičević, J. Kokalj, J. Skolimowski, R. Žitko, J.
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