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We investigate two holes in the t2g levels of a square-lattice Mott insulator with strong spin-orbit coupling.
Exact diagonalization of a spin-orbital model, with arbitrary spin-orbit coupling and crystal field (valid for strong
onsite interactions) is complemented by an effective triplon model (valid for strong spin-orbit coupling) and by
a semiclassical Monte Carlo variant of the model. We provide the magnetic phase diagram depending on crystal
field and spin-orbit coupling, which largely agrees for the semiclassical Monte Carlo and quantum models, as
well as excitation spectra characterizing the various phases.
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I. INTRODUCTION

The interplay between spin-orbit coupling (SOC) and cor-
related electrons as a driving force of physical properties in
transition metal compounds has gathered significant interest
in the last decade [1,2]. The manifold of competing interac-
tions in these materials has led to a plethora of interesting
properties like topological Mott insulators, superconductivity,
and spin liquids [3].

Focus was first on materials with one hole in the t2g man-
ifold and strong SOC in addition to sizable correlations, as
realized in 4d and 5d states. SOC couples spin S = 1

2 and
orbital L = 1 degrees of freedom to a total angular moment
J = 1

2 , so that the model in the end can be described by
an effective half-filled model. In addition to similarities to
high-TC cuprates and the potential realization [4] of the ex-
actly solvable Kitaev model [5] in a honeycomb lattice, which
have stimulated extensive research on these compounds [6,7],
potential applications in spintronics have been proposed more
recently [8].

Interest was then extended to other fillings [9,10]. In this
paper we will focus on the Mott-insulating state for two holes.
For dominant SOC (as possibly in Ir), the system is in the j-j
limit and the ground state is thus likely a nonmagnetic ground
state [11,12] given by two holes filling the j = 1

2 states. For
weaker SOC, e.g., in ruthenates, L-S coupling is more appro-
priate, where SOC couples L = 1 and S = 1 to J = 0, again
leading to a nonmagnetic ground state for a single ion [13].
However, energy scales are here rather different with a much
smaller splitting between the singlet and triplet states. When
going from an isolated ion to a compound with a lattice, com-
peting processes can overcome the splitting. Superexchange
mixes in states from the J = 1 level, which can lead to a
magnetic ground state.

This phenomenon is also known as excitonic or Van Vleck
magnetism [14], and has for instance been proposed to pro-
vide a route to a bosonic Kitaev-Heisenberg model [15,16]

and to explain magnetic excitations of Ca2RuO4 [17]. In one
dimension, density-matrix renormalization group has been
applied to a spin-orbit coupled and correlated t2g model
with two holes, and antiferromagnetic (AFM) order has been
found [18,19] both for intermediate correlations (of a more
“standard” excitonic type with intersite pairs) and for strong
correlations (of the “onsite” type discussed in [14]). Similarly,
dynamical mean-field theory has yielded excitonic antiferro-
magnetism in a two-dimensional model [20].

A material which has been a focal point of discussions in
this context is Ca2RuO4. In neutron scattering experiments an
in-plane AFM ordering has been measured below the Néel
temperature TN ≈ 110 K and neutron-scattering spectra can
only be explained by taking into account substantial SOC
[21–24]. Accordingly, excitonic magnetism, where the mag-
netic moment arises from admixture of J = 1 component
into the ionic J = 0 state, has been argued to describe this
compound [17,21]. However, a strong crystal field (CF), fa-
voring doubly occupied xy orbitals, is also clearly present in
Ca2RuO4 and complicates the analysis because it would favor
a description in terms of a spin-one system. This is backed by
a structural phase transition accompanying the metal-insulator
transition. SOC would in this picture be only a correction
affecting excitations [24,25].

In a previous publication, some of us have used the varia-
tional cluster approach (VCA) based on ab initio parameters to
show that excitonic antiferromagnetism can coexist with sub-
stantial CF’s and that Ca2RuO4 falls into this regime [26,27]
of orbitally polarized excitonic antiferromagnetism. In this
paper, we study the competition of CF � and SOC λ in t4

2g
systems in more depth and for a wider parameter space. We
investigate an effective spin-orbit model obtained in second-
order perturbation theory, as also used for Ca2RuO4 [26].
This extends the comparison of CF and SOC acting on the
itinerant regime (without magnetic ordering) [10] to magnetic
Mott insulators. Our work is also complementary to a very
recent study using the Hartree-Fock approach to investigate
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the dependence of magnetic ordering on SOC, CF, and tilting
of octahedra, which focused on patterns with smaller unit cells
of one or two Ca ions [28]. We obtain �-λ phase diagrams us-
ing both Monte Carlo (MC) simulations for the semiclassical
MC limit of the model and exact diagonalization (ED) for the
quantum system and provide excitation spectra for the various
magnetic phases.

As expected [26], stripy magnetism is found when both
SOC and CF are weak, and checkerboard order (as seen in
Ca2RuO4) takes over when either becomes strong enough
to sufficiently lift orbital degeneracy. For negative CF, i.e.,
disfavoring doubly occupied xy orbitals, we find an addi-
tional intermediate phase with rather complex magnetic order.
Overall, we find the agreement between the semiclassical MC
and quantum models to be quite good, with phase boundaries
between the magnetic phases only moderately different. Sim-
ilarly, the transition to a paramagnetic (PM) state at strong
SOC in the full quantum-mechanical model is compared to an
effective triplon model [14], valid at strong SOC, and found
to agree. Finally, we present the dynamic spin structure factor
of the spin-orbital model to discuss signatures of the various
magnetic phases accessible to neutron scattering experiments.

In Sec. II, we introduce models, i.e., the full spin-orbital
superexchange model as well as the triplon model valid for
strong SOC, and methods. In Sec. III A, we first go over the
limiting cases of the spin-orbital system at dominant CF, the
triplon scenario, discuss the intricate interplay of spin and
orbital order for small CF and SOC, and finally give the phase
diagram for intermediate values in Sec. III B. The phase dia-
gram is compared to results of semiclassical MC calculations
for the same model in Sec. III C. Section III D presents the
dynamic-spin-structure-factor data corresponding to neutron
scattering experiments for the various phases. Finally, Sec. IV
gives a summary and a short discussion of the results found in
this paper, and Sec. V contains conclusions and outlook.

II. MODEL AND METHODS

A. Spin-orbit model

Ca2RuO4 has a d4 configuration, meaning that four elec-
trons reside in three t2g orbitals, from now on referred to as xy,
zx, and yz orbital. Other materials with such a configuration
are, e.g., Os4+, Rh5+, Ir5+ compounds [29]. The kinetic part
of this Hamiltonian can be written as

Hkin =
3∑

m=1

∑
〈i, j〉m

∑
α,σ

(tα,mc†
i,α,σ c j,α,σ + H.c.), (1)

where m are the three different bond types introduced in Fig. 1
and tα,m is the hopping amplitude depending on the orbital
flavor α and the bond type m. Table I gives the amplitudes for
all possible tα,m for a square-lattice geometry. c†

i,α,σ (ci,α,σ ) is
creating (annihilating) an electron in orbital α at site i with
spin σ . The possible hopping paths for Ca2RuO4 [26,30] are
shown in Fig. 1. On nearest-neighbor bonds (NN) only two
orbitals are active (e.g., xy and zx for x bonds), while for
next-nearest-neighbor bonds (NNN) only the xy orbital has
a nonzero hopping amplitude (see Table I).

1

1
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xyxy

xy

yz

yz

zxz

zxzx

yz
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3
22

FIG. 1. Possible hopping processes in Ca2RuO4 (based on [26]).
The xy orbital can hop in x (bond 1) and y direction (bond 2) and has
a nonzero hopping amplitude for next-nearest neighbors (bond 3).
The zx and yz orbitals can hop only on bonds 1 and 2, respectively.

The onsite interaction has the form of a Kanamori Hamil-
tonian [31]

Hint = U
∑
i,α

niα↑niα↓ + U ′ ∑
i,σ

∑
α<β

niασ niβ −σ

+ (U ′ − JH )
∑
i,σ

∑
α<β

niασ niβσ

− JH

∑
i,α �=β

(c†
iα↑ciα↓c†

iβ↓ciβ↑ − c†
iα↑c†

iα↓ciβ↓ciβ↑), (2)

with intraorbital Hubbard interaction U , interorbital U ′ =
U − 2JH , and Hund’s coupling JH .

Since the computational cost to treat a Hamiltonian con-
sisting of Eqs. (1) and (2) with ED is very high, we only
consider a low-energy sector of the Hilbert space. We focus
here on the Mott insulating regime with large U and JH . The
low-energy sector is then given by states where each site con-
tains exactly four electrons (two holes), as large U suppresses
charge fluctuations. Large Hund’s rule coupling JH moreover

TABLE I. Possible hopping parameters tα,m from Eqs. (1) and
(4)–(6) as well as their amplitudes for a square-lattice geometry. The
parameter m here indicates the bond type introduced in Fig. 1 while
α are the t2g orbitals.

tα,m Amplitude

txy,1 txy

txy,2 txy

txy,3 tNNN

tzx,1 tzx

tzx,2 0
tzx,3 0
tyz,1 0
tyz,2 tyz

tyz,3 0
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ensures that exactly one orbital per site is doubly occupied and
that the electrons in the remaining two half-filled orbitals form
a total spin S = 1. This means we have three different orbital
configurations and a S = 1 spin state, leading to a subspace
of nine states. The orbital configurations are labeled with the
orbital which is doubly occupied from here on. It turns out
(see [4]) that this orbital degree of freedom can be mapped to
an effective angular momentum with

Lx = Lyz = −i(|xy〉 〈zx| − |zx〉 〈xy|),
Ly = Lxz = −i(|yz〉 〈xy| − |xy〉 〈yz|),
Lz = Lxy = −i(|zx〉 〈yz| − |yz〉 〈zx|), (3)

where the notation Lα with an orbital index α is introduced
to make the expression of Eqs. (4)–(6) more straightforward.
This can easily be translated into the x, y, and z components
of the angular momentum L.

The effective spin-orbital Hamiltonian is then obtained
by treating the hopping term in second-order perturba-
tion theory. This gives a Kugel-Khomskii–type Hamiltonian
[32,33], where only virtual hopping processes of the form
d4d4 → d5d3 → d4d4 take place. The effective spin-orbital
superexchange Hamiltonian includes both orbital as well as
spin-orbital interactions. Similar Hamiltonians have been de-
rived in the same manner [34–36]. Spin-orbital superexchange
terms that preserve orbital occupations (OP) of the two sites
are

HOP =
3∑

m=1

∑
〈i, j〉m

∑
α �=β

[
t2
β,m

U + JH

U (U + 2JH )

× (SiS j − 1)
(
1 − L2

α

)
i

(
1 − L2

α

)
j

+
(

t2
γ �=(α,β ),m

(U + JH )

U (U + 2JH )
−

(
t2
α,m + t2

β,m

)
JH

U (U − 3JH )

)

× (SiS j − 1)
(
1 − L2

α

)
i

(
1 − L2

β

)
j

]
. (4)

Here we used the aforementioned mapping from orbitals to
effective angular momentum L. Having two orbitals of the
same flavor means only the electrons in the other two orbitals
are allowed to perform a virtual hopping [Fig. 2(a)], while for
different flavors each orbital can be involved in such a hopping
process [Fig. 2(b)].

Furthermore, there are spin-orbital couplings that change
orbital configurations (OF). These can be separated into so
called “pair-flip” [Fig. 2(c)] processes where two orbitals of
the same flavor flip their flavor to another one and “swap”
processes [Fig. 2(d)] where two orbitals of different flavor
exchange their flavor:

HOF =
3∑

m=1

∑
〈i, j〉m

∑
α �=β

[
−tα,mtβ,m

JH

U (U + 2JH )

× (SiS j − 1)(LβLα )i(LβLα ) j

+
(

tα,mtβ,m
(U − JH )

U (U − 3JH )

)

× (SiS j + 1)(LβLα )i(LαLβ ) j

]
. (5)

Hint

Hkin
(a)

(b)

(c)

(d)

FIG. 2. Displayed are the different possible hopping processes
from (5) and (4). In (a) and (b) virtual hoppings where the orbital
configuration is preserved are shown. In (a) the double occupancy
is at the same orbital, while in (b) the double occupancy resides
at different orbitals. (c), (d) Display second-order hoppings where
the orbital configurations change. In the “pair-flip” process (c) the
change arises due to the last term in the Kanamori Hamiltonian
(2), which can “flip” an onsite double occupation, denoted by the
red arrow. The “swap” process (d) arises due to a different orbital
hopping back then forth.

Finally, additional orbital terms affect sites i and j with differ-
ent orbital occupation:

HL·L =
3∑

m=1

∑
〈i, j〉m

∑
α �=β

[
tα,mtβ,m

2JH

U (U − 3JH )

× (LβLα )i(LαLβ ) j

− (
t2
α,m + t2

β,m

) 1

(U − 3JH )

× (
1 − L2

α

)
i

(
1 − L2

β

)
j

]
. (6)

The full superexchange interaction of two sites can be sum-
marized as

H = HOF + HOP + HL·L. (7)

Using the symmetry-allowed hoppings on a square lattice up
to second neighbors (see Fig. 1 and Table I), one obtains
the effective spin-orbital model that can, e.g., be applied to
Ca2RuO4 [26].

In addition to these intersite interactions we also include
SOC λ and the CF splitting �. The orthorhombic distortion
present in Ca2RuO4, which selects the direction of the ordered
moment in the AF state, was seen in Ref. [26] to leave some
signatures in magnetic excitations spectra. However, its im-
pact in the spin-orbital wave function was seen to be relatively
small compared to the changes observed when varying other
parameters like λ and �, and we consequently do not include
it here. The SOC terms can be written in the form

HSOC = λ
∑

i

Si · Li = iλ
∑

i

∑
α, β, γ

σ, σ ′

εαβγ τα
σσ ′c†

i,β,σ ci,γ ,σ ′ , (8)
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where εαβγ denotes the Levi-Civita symbol and τα are Pauli
matrices [10,37]. SOC favors the total angular momentum to
be J = 0, while the CF favors a double occupancy of the xy
orbital. Projected onto the low-energy Hilbert space spanned
by S = 1 and L = 1, they can be written as

HIon = HSOC + HCF = λ
∑

i

SiLi + �
∑

i

(
Lz

i

)2
. (9)

Going beyond previous effective models [14,38,39], our
model thus fully captures the influence of the Hund’s cou-
pling JH and gives the possibility to investigate anisotropic
hoppings as well as the λ,� → 0 limits.

The competition between the last two terms, CF � and
SOC λ, is one of the main topics of this paper. We thus fix
the remaining parameters to values appropriate for Ca2RuO4

[40]. Hopping processes between NN sites and NNN sites
were included with hopping parameters set to txy = 0.2 eV,
tyz = tzx = 0.137 eV, tNNN = 0.1 eV, and � = 0.25 eV via
density-functional theory [40]. However, we found that results
only differ in details when more symmetric NN hoppings
txy = tyz = tzx are used or when NNN hopping is left off. Sub-
stantial onsite Coulomb repulsion and Hund’s rule coupling
U = 2 eV and JH = 0.34 eV, as can be inferred from x-ray
studies [41], stabilize a Mott insulator with robust onsite spin
S = 1. Previous calculations using the VCA have shown [26]
that most of the weight of the ground state is indeed captured
by states that minimize Coulomb interactions (2), so that a
superexchange treatment and the resulting spin-orbital model
can be justified.

The approximation of including only high-spin states
breaks down for very large SOC, where j- j coupling ap-
plies and both holes go into the j = 1

2 doublet, or for strong
negative CF, where both holes would be in the xy orbital.
Dynamical mean-field theory addressing the model without
magnetic order [10] indicates that CF and SOC of the orders
of magnitude discussed below should not be strong enough
to overcome JH = 0.34 eV. Similarly, calculations using the
VCA [26] have shown that most of the weight of the ground
state is indeed captured by the high-spin states included here.
This only changes for values of SOC considerably stronger
than needed to drive the system into the PM regime, which
might be appropriate to iridates [41].

B. PM phase and triplon model

For strong SOC, we expect our system to be in a PM phase
where each ion is in the J = 0 state [14,26]. Transition into
magnetically ordered states occurs then via condensation of
triplons. We are going to compare the large-SOC limit of
the full spin-orbit superexchange model to a triplon model
appropriate for significant SOC. We take an approach like in
Ref. [39] and project (4)–(6) onto the low-energy subspace of
the SOC Hamiltonian, i.e., onto the J = 0 and 1 states

|J = 0, MJ = 0〉 = 1√
3

(|MS = 1, ML = −1〉

+ |−1, 1〉 − |0, 0〉),

|J = 1, MJ = 1〉 = 1√
2

(|1, 0〉 − |0, 1〉),

/

FIG. 3. 〈J2〉 of the spin-orbit model (red) and triplon number nb

of the triplon model (blue) are plotted in dependency of SOC λ. Cal-
culations were performed with ED. The dashed blue line denotes the
crossover to the PM phase in the triplon model, which is determined

via d2nb
dλ2 = 0. The parameters are chosen to be txy = 0.2 eV, tyz =

tzx = 0.137 eV, tNNN = 0.1 eV, U = 2 eV, JH = 0.34 eV, and � =
0.1 eV. The inset shows the

√
8 × √

8 cluster used for the ED
calculations.

|J = 1, MJ = 0〉 = 1√
2

(|1,−1〉 − |−1, 1〉),

|J = 1, MJ = −1〉 = 1√
2

(|−1, 0〉 − |0,−1〉) (10)

and projecting out the J = 2 levels.
We then can define triplon operators T †

1/0/−1 (T1/0/−1)
which create (annihilate) the respective J = 1 triplet state and
annihilate (create) the J = 0 singlet. These operators can then
be rewritten to Tx/y/z (for further details see [14]).

C. Methods

To investigate these models we use ED on an eight-site
cluster with

√
8 × √

8 (inset of Fig. 3) geometry to determine
a �-λ phase diagram as well as the dynamical spin structure
factor (DSSF) for specific � and λ.

This is done for both the full spin-orbital model (Sec. II A)
and the triplon model introduced in Sec. II B. While the spin-
orbital model is capable of capturing the physics at weak
SOC, for strong SOC the triplon model is numerically more
accessible due to the reduction of the Hilbert space.

To confirm the results of ED and get a better under-
standing of the phases identified, we additionally performed
semiclassical parallel tempering MC calculations with the full
spin-orbital model for a 4 × 4 cluster. The easier approach of
a fully classical treatment, meaning a parametrization of Si

and Li as three-dimensional real vectors, is not sufficient here.
A simple example can be found in the (LβLα )i terms in the
Hamiltonian. There is a clear difference between calculating
this expression with scalar components of a three-dimensional
vector and representing the angular momenta as noncommuta-
tive matrices. We accomplish the latter by instead considering
trial wave functions of direct-product form

|
〉 = ⊗i(|Si〉 ⊗ |Li〉), (11)
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where the first product runs over all sites i. We allow
all complex linear combinations of the Lz eigenvalues
|Li〉 = μ1,i |ML = −1〉 + μ2,i |ML = 0〉 + μ3,i |ML = +1〉
with μT

i μ∗
i = 1, and analogously for the spin |Si〉. These

trial wave functions are used to calculate the energy, i.e., the
energy becomes a (real-valued) function of classical complex
vectors μi. Classical Markov-chain Monte Carlo is then based
on this energy function.

A similar approach has been used for quadrupole corre-
lations in a spin-1 model with biquadratic interaction [13].
In this context one might refer to our method as a SU(3) ⊗
SU(3) semiclassical MC simulation. Compared to ED the nu-
merical expenses of this method are minute. A big drawback
of the product state nature of the basis is its inability to ac-
curately represent the singlet and hence find the paramagnetic
phase. However, we have the triplon model to confirm ED data
in this parameter range. The Monte Carlo code is used as a
counterpart of the triplon model for low spin-orbit coupling.

Finally, we point out that all terms in the Hamiltonian are
represented as matrices in the chosen basis and the scalar defi-
nitions of spin components or other observables are recovered
by simply constructing the expectation values regarding |
〉.

III. RESULTS

In this section we want to gain an insight into the impact λ

and � have on the spin-orbital state. Hopping parameters txy,
tyz, tzx, Coulomb repulsion U , and Hund’s coupling JH were
chosen as introduced in Sec. II A.

A. Limiting regimes

1. � � λ limit

Presumably, the most straightforward limit of the t4
2g model

is the case of dominant CF � 
 λ favoring the xy orbital
to be fully occupied. The two remaining orbitals zx and yz
are then half-filled and form a spin one. Magnetic ordering
within the plane is then determined by the ratio of NNN and
NN superexchange, with the latter usually dominating and
favoring a checkerboard pattern.

2. λ � � limit

This is the regime where the triplon model introduced
in Sec. II B is appropriate: For dominant SOC λ 
 �, the
ground state becomes the J = 0 state without magnetic mo-
ment and therefore leads to a PM phase. Decreasing SOC
leads to the possibility of an admixture of the J = 1 states
to the ground state since the energy gap between the J states
is decreasing and superexchange is driving the crossover
between the J = 0 and the J = 1 states [14,15]. This triplon-
condensation leads to a finite magnetization and magnetic
ordering can be described with the model of Sec. II B.

The crossover from a magnetically ordered state to the
PM state is seen in Fig. 3, which shows the triplon num-
ber obtained using ED for the triplon model on a

√
8 × √

8
cluster. CF is here set to � = 0.1 eV, where the magnetic
order has a checkerboard pattern. The inflection point of the
triplon number vs SOC λ (at λ ≈ 0.07 eV) was taken as
the phase boundary to the PM phase. Figure 3 also shows
the expectation value 〈J2〉 obtained for the full spin-orbital

FIG. 4. Phase diagram for large SOC in the triplon model
introduced in Sec. II B. Calculations were performed with
ED. The parameters are chosen to be txy = 0.2 eV, tyz = tzx =
0.137 eV, tNNN = 0.1 eV, U = 2 eV, and JH = 0.34 eV. Gray lines
show the mesh grid used in the simulations. For large SOC, the
J = 0 phase arises where no triplons are prevalent, while for � < 0
the z-AFM and for � > 0 the xy-AFM phase is favored. The insets
display a cartoon of the respective phase.

superexchange model. While there is no obvious signal, like,
e.g., an inflection point, for a critical point in the crossover,
increasing λ leads to a decrease of 〈J2〉, in agreement with
the triplon number. Figure 4 gives the �-λ phase diagram for
the triplon model at intermediate to large λ, where it can be
assumed to be valid. Magnetic order switches from in plane to
out of plane at � ≈ 0, and the phase diagram is in qualitative
agreement with [38] for � � 0, where JH = 0 and isotropic
hopping were used. The triplon model is naturally not able to
capture the physical behavior for small SOC. From here on
we will therefore focus on performing our calculations with
the full spin-orbital model.

3. λ = 0 limit

The opposite limit of λ = 0 has been investigated for var-
ied Coulomb repulsion U and Hund’s coupling JH [42]. The
calculations in [42] were done with a full nonperturbative
treatment of the Hubbard-type Hamiltonian, which limited the
cluster size to 2 × 2. In agreement with our results, obtained
with the full spin-orbital model, large orbital degeneracy at
small CF 0 � � � 0.24 eV leads to a complex stripy spin-
orbital pattern [26,42]. For larger positive � � 0.24 eV, CF
dominates and double occupancy is uniformly in the xy or-
bital. Therefore, the Hamiltonian reduces to orbital-preserving
terms which yield a simple Heisenberg spin Hamiltonian,
while NNN interactions are frustrated. These effects cause
a phase transition from the stripy phase to a checkerboard
pattern.

The magnetic ordering can be inferred from the spin
structure factors (SSF) for λ = 0 and variable CF that are sum-
marized in Fig. 5(c). In addition to the stripy and xy-polarized
checkerboard patterns seen for � � 0, we find checkerboard
order again for � � 0. In this negative-� regime, the xy
orbital is half-filled to gain in-plane kinetic (respectively su-
perexchange) energy, while double occupation of zx and yz
orbitals alternates in a checkerboard pattern as well. The
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(b)

(a)

(c)

(d)

FIG. 5. In-plane- (x-y) and out-of-plane (z) SSF Sα (k, λ,�) are
shown for varied SOC [(a), (b)] and CF [(c), (d)]. Calculations
were performed with ED. λ is varied in (a) with � = 0 eV and
(b) with � = 0.25 eV. � is varied in (c) with λ = 0 and (d) with
λ = 0.06 eV. The unique momenta k accessible on an

√
8 × √

8
cluster are k = (0, 0), (π, 0), ( π

2 , π

2 ), and (π, π ). Remaining param-
eters are given in Sec. II A.

overall ordering is thus reminiscent of that obtained for vana-
dates with two t2g electrons [43]. The present model can also
be adapted to explicitly address vanadates, but it would nat-
urally have to be modified to reflect their three-dimensional
lattice.

In the regime −0.12 eV < � � 0, an additional phase is
finally seen that has finite SSF’s for several momenta: (π, 0),
(π, π ), and (0,0). To clarify the nature of this phase, we

FIG. 6. Spin components Sz (a)–(c) and Sx (d) per site as well as
for all relevant wave vectors k for a 4 × 4 square lattice. Calculations
were performed with semiclassical parallel tempering MC. In (a)–
(d) snapshots of the different phases arising in the parameter range
−0.2 < � < 0.2 and 0.01 eV < λ < 0.08 eV are shown. These can
be directly compared to the ED results of Fig. 9.

performed MC simulations on a 4 × 4 cluster, where we
include weak SOC λ = 0.01 eV for numerical reasons. In
Figs. 6(a)–6(d), snapshots of the four phases appearing in
the MC results are shown for the whole � range discussed
above. For � = 0 the pattern becomes an alternation of
AFM and FM stripes [Fig. 6(b)], which leads to maxima at
Sz(π, 0), Sz(0, π ), Sz(π, π ), and Sz(0, 0) in the momentum
space comparable to the signatures in the SSF of the ED. This
phase is from here on referred as “3-up-1-down.”

Overall, the phases seen in the semiclassical MC model
are in good agreement with the characterization based on
ED results. For � = −0.2 eV [Fig. 6(a)], the out-of-plane
checkerboard AFM pattern is the ground state with a max-
imum at Sz(π, π ) and a clear checkerboard pattern in z
direction in position space. After the “3-up-1-down” phase at
� ≈ 0, positive � ≈ 0.125 eV leads to a stripy pattern with a
maximum at Sz(π, 0) [Fig. 6(c)] and larger � = 0.2 eV to the
in-plane AFM order with maxima at Sx(π, π ) and Sy(π, π ),
both in accordance with the ED results. Reference [28], which
restricts itself to FM and Néel AFM phases, reports an FM
phase with some AFM correlations at weak CF, i.e., also sees
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competition of FM and AFM tendencies roughly where we
find the stripy and “3-up-1-down” patterns.

B. Phase diagram of the full spin-orbital model

After discussing the limiting cases of small and large CF
and SOC, we now investigate the �-λ plane. We first study
the static SSF for fixed λ and � [Figs. 5(a)–5(d)]. Since
we perform ED on an eight-site cluster, the SSF is only ob-
tainable for eight different k values, from which only four
are unique. These are k = (0, 0), respectively FM ordering,
(π, 0), respectively stripy ordering, (π, π ), respectively AFM
ordering, and (π/2, π/2). In Figs. 5(a)–5(d) only the SSF’s
with appreciable weight are displayed. In Fig. 5(a), CF is
fixed to � = 0 eV and one sees three phases depending on
the strength of SOC. For small SOC (λ < 0.02 eV), one finds
the stripy phase, where (π, 0)-SSF’s have similar in-plane
and out-of-plane components. This is in concordance with the
results of VCA calculations of [26] as well as ED calculations
on a 2 × 2 cluster [42,44].

Increasing the SOC to 0.02 eV < λ < 0.04 eV gives rise
to a phase with contributions from in- and out-of-plane (π, 0)
as well as (π, π ) structure factors and additionally the (0,0)
out-of-plane contribution. This phase is the “3-up-1-down”
state already discussed in the limit λ = 0 (see Sec. III A). In-
creasing SOC further (λ > 0.04 eV) leads to an out-of-plane
AFM phase. This phase is identical with the out-of-plane
AFM phase arising in the triplon model (dark orange phase in
Fig. 4). This phase was also found at � = 0 eV and substan-
tial SOC in the VCA calculations of [26]. Further increase
of SOC starts to reduce the SSF at (π, π ) again, and finally
suppresses all AFM order (see the discussion of the triplon
model and Fig. 4).

The results for a large fixed CF at � = 0.25 eV are dis-
played in Fig. 5(b). Starting from SOC λ = 0 eV, the ground
state is an isotropic AFM phase. SOC induces a smooth tran-
sition to an in-plane AFM order. This is due to the fact that
positive � favors the double occupancy of the xy orbital and
therefore Lz = 0. Since λ couples spin and orbital momenta,
this also leads to a decrease of the Sz component.

Lastly, in Fig. 5(d) SOC is set to the value λ = 0.06 eV. As
already mentioned earlier � > 0.04 eV stabilizes an in-plane
AFM pattern, due to the preference of Lz = 0 which results in
a preference of Sz = 0 due to SOC. If the CF is small or has a
negative sign, out-of-plane AFM ordering is favored since the
xy orbital is mostly singly occupied. This phase transition is
well captured by the triplon model discussed in Sec. III A.

The information gained from the ED SSF’s, supported by
semiclassical MC in case of the “3-up-1-down” pattern, as
well as the information on the crossover to the PM phase
inferred from the triplon model is summarized in the �-λ
phase diagram in Fig. 7. To obtain this phase diagram we
performed multiple sweeps by varying � for fixed λ (and
vice versa), like in Fig. 5, and included the PM phase from
the triplon model. We did this because the crossover is bet-
ter identifiable than with 〈J2〉 (see Fig. 3). If both CF and
SOC are weak, the interaction terms introduced in (4)–(6)
dominate, which favor a stripy alignment of spins (light blue)
together with a complex orbital pattern [26,37]. For large CF,
the double occupation locates either at the xy (� > 0) or

FIG. 7. �-λ phase diagram obtained by ED calculations on a√
8 × √

8 cluster. The PM phase (dark gray) was identified via the
triplon model of Sec. II B. Dark gray dots denote the points measured
to obtain the phase diagram. Sketches show the spin ordering for
the respective phase, calculated via MC on a 4 × 4 cluster. The
white dots denote the snapshots taken to investigate the dynamical
SSF in Fig. 9 (for further information see Sec. III D), including the
parameter setting for Ca2RuO4 calculations.

alternates between zx and yz orbitals (� < 0), which results
in an x-y-AFM (light orange) or z-AFM order (dark orange),
respectively. These phases are both very robust against SOC,
which favors a J = 0 PM phase (dark gray). The competition
between the z-AFM and the stripy phase at small negative CF
and small SOC, causes the “3-up-1-down” phase to arise (dark
blue).

Locating Ca2RuO4 in this phase diagram (corresponding
white dot in Fig. 7) puts it solidly within the in-plane AFM
phase, as expected from experiment [17,24,40,41]. Also,
Ca2RuO4 does not appear to be very close to any CF-driven
phase transition and its AFM order can thus be expected to be
rather robust.

More generally, one can conclude that a CF �0.2 eV is
enough to induce quite robust checkerboard AFM order. The
transition to the PM state is then pushed to very high SOC
and the transition to the stripy phase needs orbitals to be
nearer degeneracy. For smaller (larger) superexchange, both
CF and SOC given here would have to be increased (reduced)
accordingly. As we are going to argue in the next section,
the negative-CF side of the phase diagram can be expected
to be relevant to t2

2g systems as well. In order to investigate
other lattice geometries, the superexchange part of the model
would naturally have to be adapted. Adding a third dimension
is fairly straightforward, 90◦ bond angles, where hopping does
not conserve orbital flavor, needs more substantial modifica-
tions.

C. Comparison of semiclassical MC and quantum models

Having made use of a semiclassical Markov chain MC to
identify the “3-up-1-down” phase, we now compare the semi-
classical MC and quantum phase diagrams more generally.
Several snapshots for weak SOC were already discussed in
Sec. III A to clarify the regime of weak SOC and � � 0.
To obtain a full semiclassical MC phase diagram, several CF
sweeps for different strengths of SOC between −0.2 eV <
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FIG. 8. Phase diagram depending on λ and � obtained via MC
for remaining parameters as given in Sec. II A. White dots denote
the snapshots of Fig. 6. The faded region for large SOC indicates the
incapability of the semiclassical MC to describe the PM phase. Dark
gray dots denote the points measured to obtain the phase diagram.

� < 0.2 eV were performed and the SSF for (π, π ), (π, 0),
and (0,0) are calculated. The results yield the phase diagram
shown in Fig. 8 white points denote the locations of the
snapshots of Figs. 6(a)–6(d). For dominant SOC λ > 0.04 eV
and � < 0, an out-of-plane AFM phase arises (dark orange in
Fig. 8), while positive CF � > 0 eV gives rise to an in-plane
AFM phase (light orange). For strong CF |�| > 0 both phases
stay stable up to λ = 0. For weak SOC λ < 0.04 eV and CF
0.05 eV < � < 0.15 eV, the interaction part in the Hamilto-
nian becomes dominant. This is similar to Sec. III B, which
leads to an out-of-plane stripy phase (light blue). The competi-
tion between the stripy and the out-of-plane AFM phase leads
to the “3-up-1-down” phase (dark blue) already discussed in
Sec. III A at −0.05 eV < � < 0.05 eV for λ � 0.04 eV.

This phase diagram is in good qualitative agreement with
the spin-orbit model (Fig. 4). The exact location of the phase
transitions differs somewhat between semiclassical MC and
quantum models. In comparison to the ED simulations, in
the semiclassical MC calculations the AFM phases (both in
and out of plane) are more dominant. While ED predicts the
z-AFM phase to end at � ≈ −0.1 eV for λ = 0 eV, in the
semiclassical MC simulations the z-AFM phase stays robust
until � ≈ −0.05 eV (same for the x-y-AFM ordering, see
Figs. 7 and 8). While the origin for the difference might
lie in the small clusters used (especially for ED), it is quite
plausible that quantum fluctuations have the strongest impact
near orbital degeneracy. The fact that semiclassical MC cap-
tures the same phases as ED gives a promising pathway that
effective spin-orbital models can also be studied on significant
larger cluster size with semiclassical MC while still giving
reasonable results.

D. Dynamic spin-structure factor

Experimentally, the various phases might be distinguished
via magnetic excitations. Therefore, we discuss here the sig-
natures expected for the dynamic structure factors

Oα (k, ω) = − 1

π
Im 〈φ0| Oα (−k)

1

ω − H + i0+ Oα (k) |φ0〉 ,

(12)
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FIG. 9. Dynamical spin structure factor S(k, ω) for (a) � =
0.25 eV; λ = 0.065 eV, (b) � = 0.0 eV; λ = 0.06 eV, (c) � =
0.15 eV; λ = 0 eV, and (d) � = 0.0 eV; λ = 0.03 eV. Calculations
were performed with ED. Parameters in (a) are the ones used to
describe Ca2RuO4 [26] and capture the characteristics of the inelastic
neutron scattering experiments.

with O ∈ {S, M, L} and α ∈ {x, y, z}. This gives an ω reso-
lution of the phases introduced in Fig. 5, which can then be
compared to inelastic neutron scattering [17,24]. In Fig. 9 the
DSSF’s [O = S in (12)] of the four distinct phases are shown.
The locations of these snapshots in the phase diagram are
denoted with white dots in Fig. 7.

1. Excitations of the in-plane AFM regime

For � = 0.25 eV and λ = 0.065 eV [Fig. 9(a)], the Gold-
stone mode at (π, π ) allows us to identify the in-plane AFM
phase found above in Figs. 5(b) and 5(d). The spectrum of
Fig. 9(a) was already presented in Ref. [26] as the parameters
closely fit Ca2RuO4. As already discussed in [26] the in-plane
(red guideline) and out-of-plane (blue guideline) transverse
modes can be identified. Especially the in-plane transverse
mode shows an excellent agreement to [17] reproducing the
excitation energy at k = (0, 0) ω� = 54 meV.

This maximum, a characteristic signature of the x-y sym-
metry of the magnetic moments, strongly depends on the hole
density nh

xy in the xy orbital, which is nh
xy ≈ 0.25 in Fig. 9(a).

Figure 10(a) shows the dependence of nh
xy and the excitation

energy ω� on SOC λ. The excitation energy at k = (0, 0)
increases steadily from a minimum at ω� ≈ 20 meV to the
maximum at ω� = 54 meV for the Ca2RuO4 parameters in
Fig. 9(a). Having a maximum at k = (0, 0) is thus closely
connected to finite, but not necessarily large, hole density in
the xy orbital.

Without SOC, strong CF � = 0.25 eV localizes the two
holes in the zx and yz orbitals, with nh

xy ≈ 0.05, in agreement
with ab initio calculations for Ca2RuO4 performed with-
out SOC [45,46]. Increasing SOC softens this polarization
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Γ

FIG. 10. Excitation energy at k = (0, 0) ωP (blue) and hole den-
sity nh

xy in the xy orbital (red), depending on SOC for CF � =
0.25 eV (a) and depending on CF for SOC λ = 0.065 eV (b). Cal-
culations were performed with ED.

because it couples S and L and thus competes with �. SOC
increases the hole density at xy so that it reaches nh

xy = 0.25 at
λ = 0.065 eV. On one hand, this implies that the xy orbital
continues to be rather close to fully occupied and justifies
the picture of Ca2RuO4 as orbitally ordered [25]. On the
other hand, Figs. 10(a) and 9(a) reveal that the relatively few
holes in the xy orbital have a decisive impact on magnetic
excitations.

Vice versa, if SOC is fixed and the CF is increased
[Fig. 10(b)] the maximum at k = (0, 0) vanishes. Starting at
λ = 0.065 eV and � = 0.25 eV the maximum is, as already
discussed, at ω� = 54 meV. Increasing � up to � = 0.6 eV
strongly suppresses the hole density in the xy orbital and at
the same time leads to a minimum in the excitation spectrum
at ω� = 36 meV. It is noteworthy that while the hole density
appears to be linked to ω� , it is not the only influence. This
can be concluded by the fact that for the parameter settings
� = 0.25 eV; λ = 0.015 eV and � = 0.6 eV; λ = 0.065 eV
the hole densities are very similar (nh

xy ≈ 0.05) while ω� of the
excitation differs by a factor of 1.8 between strong and weak
values of SOC and CF. This means that SOC and CF also have
direct influence to the excitation at k = (0, 0) in addition to
the indirect influence via the hole density of nh

xy.
Taken together, the extensive study of the excitation at

k = (0, 0) has shown that excitation spectra already differ
from the one measured in [17] for relatively weak changes
in λ and �, even though the ground state of Ca2RuO4 is quite
robust against such perturbations. It is therefore remarkable
that the DSSF in Fig. 9(a) of the effective model is in such
close agreement with the experimental data.

2. Excitations of the PM and various out-of-plane AFM phases

Decreasing CF to � = 0.0 eV and leaving λ = 0.06 eV,
the lowest excitation only has out-of-plane contributions
[Fig. 9(b)]. This indicates z-AFM ordering [cf. Figs. 5(a) and
5(d)], although the system is here close to the PM state (see
Fig. 7). Choosing a large value for SOC λ = 0.12 eV firmly
puts the system into the PM state, and the excitation minimum
at (π, π ) moves to higher ω. This can be seen in Fig. 11(a),
with the magnetization M = 2S − L and the dynamical mag-
netic structure factor [O = M in (12)]. The excitation gap is
ωGap = 0.046 eV [Fig. 11(a)] meaning there is a significant
energy cost for the system to create a triplon.
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( , )
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22
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FIG. 11. Dynamical magnetic structure factor M(k, ω) for
(a) � = 0.0 eV and (b) � = 0.25 eV with substantial SOC λ =
0.12 eV. Calculations were performed with ED. ωGap marks the
energy gap between the ground state and the lowest-lying excitation.

Increasing the CF to � = 0.25 eV [Fig. 11(b)] one can see
that (i) the lowest-energy triplon has now x-y character and
(ii) its energy is decreased significantly to ωGap = 0.027 eV.
The finite CF thus reduces triplon energy so that they can
eventually condense into magnetic order. This can also be seen
nicely in Fig. 7 where Ca2RuO4 (corresponding white dot in
Fig. 7) would be in the PM phase if it had no significant CF
splitting.

Spectra for the stripy and and “3-up-1-down” phases
realized near orbital degeneracy are shown in Fig. 9(c), re-
spectively 9(d). The stripy phase (� = 0.15 eV; λ = 0 eV) in
Fig. 9(c) not only shows spin isotropy but also a degeneracy
between x- (π, 0) and y-stripy (0, π ) order. Finally, the DSSF
of the “3-up-1-down” phase from Fig. 5(a) is displayed in
Fig. 9(d) and shows the many ordering vectors contributing
for ω → 0.

The last phase to be discussed in detail is the checkerboard
AFM order with out-of-plane anisotropy at � � 0. For λ = 0,
moderate CF � ≈ −0.3 eV is enough to fix the xy orbital
to half-filling, so that either zx or yz orbitals are double oc-
cupied. These two states alternate in a checkerboard pattern
with the same unit cell as a Heisenberg-symmetric AFM.
A corresponding magnetic excitation spectrum is shown in
Fig. 12(a), where weak λ = 0.0002 eV induces slight Ising
anisotropy into a nearly isotropic spectrum. For the orbital
analog to the DSSF one chooses O = L in (12), where Lα are
the angular-momentum operators (3). The resulting spectrum
shown in Fig. 12(b) is, however, featureless, because alternat-
ing order in real orbitals is quadrupolar and would show up
in the (Lx )2 − (Ly)2 ∝ nxz − nyz channel.

Already for rather small λ = 0.01 eV, however, Ising
anisotropy in spin excitations is very pronounced with an
ordered moment along z and a substantial excitation gap [see
Fig. 12(c)]. At the same time, orbital order is now also clearly
dipolar and peaked at (π, π ) [see Fig. 12(d)]. SOC has thus
coupled spin and orbital ordering into a checkerboard pattern
with Lz = 1, Sz = −1 on one sublattice and Lz = −1, Sz = 1
on the other. In contrast to � > 0 discussed above, where
SOC induces a gradual crossover from a Heisenberg spin-one
system to an excitonic AFM state, the transition between the
isotropic and Ising states is here much more abrupt.
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FIG. 12. Dynamical spin and orbital structure factors for crystal
field � = −0.3 eV and weak SOC. (a), (c) Show the DSSF (12)
while (b) and (d) give the orbital analog based on (3). Calculations
were performed with ED. In (a) and (b), λ = 0.002 eV and in (c) and
(d), λ = 0.01 eV.

IV. SUMMARY AND DISCUSSION

In this paper we investigate the interplay of CF and SOC in
an effective low-energy spin-orbital Hamiltonian for Mott in-
sulators with t4

2g filling and strong Hund’s-rule coupling. This
model interpolates from the strong SOC regime, where a de-
scription in terms of triplons is applicable, to vanishing SOC
and moreover includes Hund’s coupling and anisotropic hop-
ping. We performed ED calculations on a

√
8 × √

8 square
lattice to obtain both static and dynamic SSF’s for varying
CF � and SOC λ. The results for the static SSF indicated
the existence of four distinct phases. Namely, a z-AFM and
x-y-AFM with checkerboard pattern, stripy-AFM and a “3-
up-1-down” phase at small CF and SOC λ � 0. The stripy
and “3-up-1-down” arise near orbital degeneracy, i.e., when
neither SOC nor CF dominate, out of the competition and
partial frustration of various superexchange terms. The two
checkerboard phases, in contrast, extend to large CF’s and
include excitonic variants at moderate SOC, whereas strong
SOC finally drives a crossover to a PM state. This crossover
was clarified with the help of an effective triplon model com-
parable to [14]. Combining these results gave us a complete
�-λ phase diagram (valid for strong onsite Coulomb and
Hund interactions) that establishes the competition of CF and
SOC for strongly correlated t4

2g systems.
We supplemented the ED analysis of the quantum model

with MC calculations for a semiclassical variant of the same
spin-orbital model on a 4 × 4 cluster. This gives us access to
somewhat larger lattice sizes, which is particularly important
in the case of the “3-up-1-down” pattern, as all other states

had previously been seen in related models on smaller 2 × 2
clusters [26,42,44]. Overall agreement between the semiclas-
sical MC and quantum-mechanical models was quite good,
with the same patterns found in similar regions of the phase
diagram. The largest differences concern phase boundaries
around orbital degeneracy �,λ ≈ 0.

We also investigate the DSSF and show that there is a
remarkable correspondence [26] between calculations based
on ab initio parameters obtained for Ca2RuO4 and neutron-
scattering results for the same compounds, despite the fact that
the calculations appear to strongly depend on the hole density
in the xy orbital. Parameter dependence is also quite sensitive,
which makes this a stringent test of the model that allows a
distinction between orbital degeneracy lifted by a CF or by
SOC. We further give spectra expected for the other phases
found with the model.

In contrast to the gradual impact of SOC on the excitations
of the orbitally polarized regime � > 0, a much clearer tran-
sition is revealed at � < 0. Relatively small SOC is enough
to switch from alternating orbital order and Heisenberg AFM
to order involving complex orbitals. However, coupling to fur-
ther lattice distortions, not discussed here, would be expected
to push this transition to stronger SOC.

V. CONCLUSIONS AND OUTLOOK

The aim of our paper was to address the competition of
CF and SOC in strongly coupled t4

2g systems, where we have
here treated the square lattice with 180◦ bond angles. This
was to a large extent motivated by the well-studied compound
Ca2RuO4 approximately realizing such a geometry, where
onsite interactions, including Hund’s-rule coupling [46], are
generally accepted to be strong and where both CF and SOC
are known to be present. Starting from parameters modeling
this compound, we explored how weaker or stronger SOC and
CF would affect the expected DSSF and which phases can be
expected for weaker or stronger SOC and CF.

Similar competition between CF and SOC is likely at
work in Ru-based compounds with different lattice geome-
try. For instance, honeycomb compound Li2RuO3 is usually
interpreted in terms of an orbitally ordered state supporting
intersite spin singlets [47], while an onsite J = 0 singlet had
recently been proposed for K2RuCl6 [48]. In the case of ≈90◦
bond angles, hoppings do not even approximately conserve
orbital flavor, so that superexchange has to be based on a
different starting point than our hopping Eq. (1). Nevertheless,
derivation is analogous, and studies treating CF and SOC on
equal footing are needed in general to investigate the transition
from “spin-plus-orbital” to “spin-orbit coupled” order.

Finally, the order found here for negative CF is somewhat
reminiscent of alternating orbital order in vanadates [43].
Negative � < 0 leads to nearly always doubly occupied (for
t4
2g), respectively empty (for the vanadate filling t2

2g), xy or-
bitals. The effective spin symmetry is then Ising type, so that
the fact that SOC has the opposite sign in the t2

2g case does
not qualitatively affect results in this regime. The spin-orbital
superexchange model discussed here can naturally be applied
to the two-electron case and an extension to three dimensions
might thus be used to indeed study the impact of SOC and CF
in vanadates.
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