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The engineering of the optical response of materials is a paradigm that demands microscopic-level accuracy
and reliable predictive theoretical tools. Here we compare and contrast the dispersive permittivity tensor,
using both a low-energy effective model and density functional theory (DFT). As a representative material,
phosphorene subject to strain is considered. Employing a low-energy model Hamiltonian with a Green’s
function current-current correlation function, we compute the dynamical optical conductivity and its associated
permittivity tensor. For the DFT approach, first-principles calculations make use of the first-order random phase
approximation. Our results reveal that although the two models are generally in agreement within the low-strain
and low-frequency regime, the intricate features associated with the fundamental physical properties of the
system and optoelectronics devices implementation such as band gap, Drude absorption response, vanishing real
part, absorptivity, and sign of permittivity over the frequency range show significant discrepancies. Our results
suggest that the random phase approximation employed in widely used DFT packages should be revisited and
improved to be able to predict these fundamental electronic characteristics of a given material with confidence.
Furthermore, employing the permittivity results from both models, we uncover the pivotal role that phosphorene
can play in optoelectronics devices to facilitate highly programable perfect absorption of electromagnetic waves
by manipulating the chemical potential and exerting strain and illustrate how reliable predictions for the dielectric

response of a given material are crucial to precise device design.

DOI: 10.1103/PhysRevB.104.115144

I. INTRODUCTION

The dynamical finite-frequency optical conductivity and
permittivity are the most pivotal quantities in designing
optoelectronics devices [1,2]. Various measurable optical
properties such as the complex index of refraction, the
reflectivity, and absorptivity are governed directly by the per-
mittivity of the medium, which in turn is directly related to
the optical conductivity of a time-varying incident electro-
magnetic (EM) wave [1,3]. The permittivity also connects
the mutual influence of the medium and electric field of the
incident EM wave, i.e., the light-matter interactions, and can
reveal the precise nature of the medium [1,4]. Moreover, there
is an emerging need for optoelectronic chip architectures that
require precise determination and manipulation of the permit-
tivity and optical conductivity to benefit current fabrication
techniques and advance technological applications [2]. Only
then can fast, ultracompact low-power applications be effi-
ciently realized.

First-principles calculations reside at the frontier of ac-
curate simulations of various materials platforms [5]. For
example, density functional theory (DFT) calculations have
shown success in simulating the general band-gap trend as a
function of the number of layers in certain two-dimensional
(2D) materials, such as black phosphorus, which constitutes
a designed material (with desirable key characteristics such
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as epsilon-near-zero response [6,7]), and observed in exper-
iments [§—15]. Many 2D materials consist of 2D layers of
strongly bonded atoms attached to each other in the third di-
mension by weak forces. These weakly interacting 2D layers
allow for designing novel materials with controllable elec-
tronics characteristics with low-cost operations, such as layer
displacement. Nevertheless, it has proven that differing func-
tionals and approximations in DFT calculations can modify
the absolute band gap of materials. This issue is more pro-
nounced in 2D materials where both strong covalent bonds
and weak van der Waals (vdW) forces are present. This is
an important point in the context of DFT, which is unable
to properly account for vdW forces without incorporating
specific corrections [5,16,17].

The weak interlayer vdW interactions provide a unique
opportunity to peel off the layers and eventually create a
one-atom-thick 2D sheet with drastically different electronics
properties than the bulk material. Furthermore, performing
mechanical operations such as the exertion of strain on a
single-layer material is much easier, as it responds more ef-
fectively to these operations compared to the bulk material.
The most famous examples include graphene (a single layer of
carbon atoms extracted from graphite) [18] and phosphorene
(shown in Fig. 1, a single layer of phosphorus atoms extracted
from black phosphorus) [19]. Unlike graphene where carbon
atoms reside in a single plane, the phosphorene atoms reside

©2021 American Physical Society


https://orcid.org/0000-0002-1554-687X
https://orcid.org/0000-0002-9675-3191
https://orcid.org/0000-0002-6355-3134
https://orcid.org/0000-0001-9037-7095
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.115144&domain=pdf&date_stamp=2021-09-22
https://doi.org/10.1103/PhysRevB.104.115144

ALIDOUST, ISACHSEN, HALTERMAN, AND AKOLA

PHYSICAL REVIEW B 104, 115144 (2021)

FIG. 1. An expanded unit cell of phosphorene. (a), (b) Exhibit
the side views of the 2D material along the a and b principal axes,
whereas (c) shows phosphorene from the top view along the ¢ axis.
(d) Displays the expanded crystal with a generic view. The 2D ma-
terial is located at the middle of the unit cell with sufficiently large
vacuum regions along the ¢ principal axis.

within two planes with a finite separation distance, making
a puckered structure [see Figs. 1(a) and 1(b)]. Compared to
bulk black phosphorus, phosphorene acquires a fairly large
band gap, ~1.52 eV, very suitable for semiconductor and
field-effect transistor technologies [14]. In the following, we
specifically focus on phosphorene (with the possibility of in-
corporating strain) as its low-energy Hamiltonian is available
and provides an excellent semiconductor platform for strictly
comparing and contrasting the results of DFT and those ob-
tained by the low-energy model.

As the influence of vdW forces in a single layer of black
phosphorus weakens, one may expect that the deficiencies in
the various DFT simulations described earlier would conse-
quently diminish. However, as we shall see below, DFT with
a widely used functional still underestimates the band gap
of phosphorene. On the other hand, a low-energy effective
model can incorporate a proper band gap, as it is calibrated
through band-structure calculations and experimental inputs
when parametrizing a particular model. Furthermore, the low-
energy effective model can provide precise and deep insights
into the fundamental physical properties of the material, such
as dominant transitions across the band gap, which are inac-
cessible in purely computational approaches like DFT.

In this paper, we compute each component of the per-
mittivity tensor of phosphorene subject to in-plane strain.
Two methods are used: one involves DFT combined with a
random phase approximation (DFT-RPA) [20-27], and the
other uses a low-energy model Hamiltonian with the Green’s
function current-current correlator. Our results reveal that the
permittivity components calculated from DFT-RPA indicate
an anisotropic band gap (direction dependent) with magnitude
that is incompatible with the corresponding band structure
obtained from DFT and the Perdew-Burke-Ernzerhof (PBE)
functional. The permittivity tensor computed by the low-
energy model, however, is fully consistent with the associated
band gap and clearly describes the underlying physical char-
acteristics of phosphorene. The low-energy model also allows

for studying the influence of chemical potential or doping
variations. We show that in addition to chemical potential vari-
ations, the application of strain provides an effective on and
off switching mechanism for the Drude response. The under-
laying mechanism is the on and off switching of the intraband
transitions that can provide valuable information on the band
structure of the system. It should be emphasized that although
we have studied a specific 2D semiconductor, our conclusions
are generalizable to other materials and point to the urgent
need for revisiting DFT-RPA implementations used in many
DFT packages. Finally, employing the permittivity data from
the DFT and low-energy models, we demonstrate how their
differing predictions can influence the precise design of an
optoelectronics devices. Nevertheless, our findings with both
DFT-RPA and low-energy model reveal perfect absorption of
electromagnetic waves in layered devices containing phos-
phorene, which is highly tunable by the chemical potential
of phosphorene and the application of strain to the plane of
phosphorene.

The paper is organized as follows. In Sec. II, the for-
malisms used in both the DFT-RPA and low-energy models
are summarized. In Sec. IIT A, the components of the per-
mittivity tensor will be presented and the associated physics
will be analyzed through band-structure diagrams. It will be
discussed how the inaccurate results of DFT-RPA are unable
to provide correct information on the microscopic properties
of the system. In Sec. III B, the Drude absorption response,
and how it provides information on the band structure, will
be analyzed and discussed. In Sec. III C, the results of DFT
and low-energy models will be contrasted in a practical de-
vice scenario, where the importance of accurate permittivity
predictions are paramount to the proper design of a functional
optical device. Finally, a summary and concluding remarks
will be given in Sec. IV.

II. FRAMEWORKS AND FORMALISMS

Below, in Secs. I A and IIB, the basics of the two ap-
proaches, i.e., first-principles DFT-RPA and the low-energy
effective model Hamiltonian used in the Green’s function
current-current correlator are summarized.

A. First-principles density functional theory

The density functional calculations are based upon the
charge density response to sufficiently weak external interac-
tions, such as an electric field. In this case, the Kohn-Sham
equations can be evaluated to obtain the dielectric response
of the material [28]. In most DFT packages, such as GPAW,
QUANTUM ESPRESSO, and VASP, a random phase approxima-
tion (RPA) [20-22] is implemented to evaluate the dielectric
response, or permittivity tensor [23,29]. Unfortunately, this
approximation neglects the exchange-correlation contribution
and can lead to unphysical modifications to the original band
structure obtained through a specific functional and its associ-
ated exchange correlation [23]. In the linear response regime,
the dielectric matrix is given by

47
- ——xo6(q ), (1
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which is linked to the first-order density response x°, Bloch
vector of the incident wave q, reciprocal lattice vectors G, and
the conventional Kronecker delta §;;. In the RPA regime, the
dielectric function is obtained at the I" point so that
1
60,0((11 w)

In this work, first-principles DFT calculations of the di-
electric response are performed using RPA as implemented
in the GPAW DFT package [29-31]. The gradient-corrected
functional by PBE is used for the exchange-correlation en-
ergy when calculating the electronic band structure and the
dielectric response. To grid k space on the basis of the
Monkhorst-Pack scheme, a sufficiently large value, i.e., 6.0 k
points per A~', is incorporated. The cutoff for the kinetic
energy of the plane waves is set to 800 eV, and 60 unoccupied
electronic bands are included with a convergence on the first
50 bands. These high values ensure avoiding any artificial
effects due to the application of strain in the subsequent
calculations that follow. A small imaginary part is added to
the frequency variable throughout the calculations, i.e., n =
0.01 eV, and the width of the Fermi-Dirac distribution is fixed
at 0.01 eV.

We introduce the strain parameters s; (for the i = x,y,z
directions), to describe the expansion and compression of the
atom’s location and unit cell with respect to the relaxed unit
cell in each direction, i.e., a = s,ca9, b = sy,bo, and ¢ = s..¢o.
Here a, b, and c are the three strained unit-cell axis lengths,
and the unstrained unit-cell axis lengths are ag, by, and cg.
Therefore, in this notation, Sy, = sy, = 5;; = 0.9, 1.0, and 1.1
correspond to strains of —10%, 0%, and +10%, respectively.
The strain-free expanded unit cell with differing view angles
is shown in Fig. 1. The phosphorene sheet is located in the
a-b plane and a large vacuum region is included in the unit
cell in the ¢ direction. Since periodic boundary conditions in
all directions are set in the numerical simulations, the vacuum
spacing in the ¢ direction ensures zero overlap of the wave
functions in replicated sheets in the ¢ direction. Additionally,
as the system is nonmagnetic, the permeability is isotropic and
can be set to its vacuum value.

B. Low-energy effective model

To study the permittivity of phosphorene subject to an
in-plane strain &; within the effective low-energy regime, we
employ the model Hamiltonian presented in Refs. [32,33]:

[P LSy
_/ka (K)vk
dk

rt 2
= Wlﬂk{[uo + aisii + (0 + Bijsik: |70

+ [0 + misii + (vj + Vijsii)ka']fx - kayfy}ll}k, 3)
where the indices (i, j) run over the coordinates x, y. Here t;
are the Pauli matrices in pseudospin space (atomic sites), and
k = (ky, k,) is the momentum. The field operator associated
with the Hamiltonian is given by 47 (k) = (1//11, 1//;), where
the pseudospins are labeled by A and B. The parameters used

for this model are summarized in Table I. This model has also
been employed to study superconductivity and supercurrent in

TABLE 1. Band parameters of phosphorene subject to an in-
plane strain [32,33].

up (eV) 3o (eV) a, (eV) ay (eV) My (V)
—0.42 +0.76 +3.15 —0.58 +2.65
11y (eV) ne@VA%) o (eVAY)  y, (eVAY)  y, (eVA?Y)
+2.16 +0.58 +1.01 +3.93 +3.83
Bu (€VAY) B (eVA?) By (eVAY) B, (VA

—3.48 —0.57 +0.80 +2.39

vy (€VAY) b, (eVAY) 1, (eVAY) v, (eVA?) x, (eVA)
—~10.90 —11.33 —41.40 —14.80 +5.25

strained and magnetized phosphorene systems [34,35] where
it was found that strain can induce Majorana zero-energy
modes and drive s- and p-wave superconducting correlations
to d- and f-wave correlations that might explain experimental
observations in these contexts [36].

In the low-energy regime, the many-body dielectric re-
sponse can be expressed by [37]

Hab(ws (I) - ab(o (I)

6()6()2

“

€ap(w) = §gp — lim

lql—0

in which §,, is the Kronecker delta and €, is the vacuum per-

mittivity. The current-current correlation functions are given
by

Ma(w, q) =e TZZTr/ o )2J‘G(8n+wk,p+q)

&)

Here J; , are the components of the current operators in the
a,b dlrectlons The components of the Green’s function are
labeled Gy, and wy = 27Tk and &, = nT(2n + 1) are the
bosonic and fermionic Matsubara frequencies, respectively
(k, n are integers). Finally, the finite-frequency optical con-
ductivity tensor can be obtained from

X J[‘;YG‘Y(gna p)|

iwg—>w+is”

i
Gab(a)) = — lim {Hub(wv (l) - Hub(oa (l)} (6)
w lq/=0
Below, we employ separately these two frameworks discussed
in Secs. IIA and IIB and compute the components of the

permittivity tensor.

III. RESULTS AND DISCUSSIONS

This section is divided into three subsections: In Sec. IIT A,
the various aspects of permittivity and their underlying phys-
ical origins will be analyzed by visualizing the associated
band structures. In Sec. III B, the Drude absorption of strained
phosphorene will be discussed [38—41]. In Sec. IIIC, the
device implications will be presented.

A. Optical transitions and band-gap equivalence

We begin with the DFT-RPA approach to calculate the
anisotropic dielectric response and band structure of phos-
phorene. In Fig. 2, the permittivity components €,,(w) and
€yy(w) are shown as a function of frequency of the incident
light. The associated band structure along the high-symmetry
paths in k space calculated by GPAW is also shown. Biaxial
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FIG. 2. Real (blue) and imaginary (red) parts of permittivity obtained from first-principles calculations in combination with the RPA
(GPAW). The top and middle rows show () and €,,(w), respectively, whereas the bottom row is the band structure of phosphorene along
the different paths in k space. Columnwise, (a)—(c) correspond to biaxial strains of —10%, 0%, and +10%, respectively.

in-plane strains of representative strengths —10%, 0%, and
+10% are applied to phosphorene in Figs. 2(a)-2(c), re-
spectively. The blue and red curves in the top and middle
rows of Fig. 2 correspond to the real and imaginary parts
of the permittivity components (as labeled). Both permittiv-
ity components €,c(w) and €,,(w) at zero strain [Figs. 2(b1)
and 2(b2)] are nonzero within the low-frequency regime, and
approach zero at w &~ 4.7 eV. The imaginary parts of €,,(®)
and €,,(w) exhibit zero loss at frequencies below w ~ 1.5 eV
and o ~ 0.63 eV, respectively. As the onset of a nonzero
imaginary permittivity generally points to photon energies
that generate electron interband transitions in semiconductors
and insulators, one may conclude that the corresponding band
structure of the results shown in Figs. 2(b1) and 2(b2) should
possess bidirectional band gap on the orders of w ~ 1.5 eV
and o ~ 0.63 eV. Note that the intraband transitions within
the valence bands are not allowed due to the Pauli exclusion
principle. Next, upon applying a compressive strain of —10%,
Figs. 2(al) and 2(a2) show that the real part of the permittivity
now begins to diverge when w — 0. There are also multiple
zero crossings over the given frequency range, and peaks at
o =~ 0.59 eV [Fig. 2(al)] and w = 0.9 eV [Fig. 2(a2)]. The
different threshold frequencies for nonzero imaginary parts,
ie., ® & 0.45 eV and w =~ 0.55 eV, suggest anisotropic in-
terband transitions where the electronic transitions in the x

direction experience a larger gap than those occurring in the
y direction. Turning the strain type to tensile with the same
magnitude, i.e., +10%, Figs. 2(cl) and 2(c2) show that the
permittivity components exhibit qualitatively similar behavior
to those of zero strain shown in Figs. 2(bl) and 2(b2). As is
also seen, the frequency thresholds where the imaginary parts
vanish have increased to w &~ 1.7 eV and w ~ 1.35 eV, com-
pared to the cases with strains of —10% and 0%, suggesting
that there is an increase in the energy gap for the interband
transitions.

To confirm the correlation between the band-gap tran-
sitions and key regions of the frequency dispersion of the
permittivity, the band structure of phosphorene along high-
symmetry paths in k space is plotted in Figs. 2(a3), 2(b3), and
2(c3). The phosphorene layer is subject to the same biaxial
strain columnwise. The energies are scaled so that the Fermi
level resides at E = 0 (marked by the dashed line). As seen in
Fig. 2(b3), the unstrained system has a gap of ~0.67 eV at the
I' point. It is known that the band gap of phosphorene can be
tuned by the number of layers, from ~1.5 eV in a monolayer
to ~0.59 eV in a five-stack layer [42,43]. Also, it was argued
that the optical band gap of monolayer BP is around ~1.5 eV,
which is equivalent to a band gap of ~2.3 eV down-shifted
by ~0.8 eV through the binding energy [42,43]. Note that to
improve band-gap predictions, one can repeat the calculations
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with a hybrid functional, or make use of the GW approxima-
tion for the self-energy contribution [42-44]. Although it is
known that the bare PBE functional underestimates the band
gap of phosphorene (~1.52 eV) [6], the information extracted
earlier from the permittivity components calculated through
DFT-PRA are not consistent with this band gap either. By
exerting +10% strain in Fig. 2(c3), the band gap increases
to ~1.83 eV, consistent with the behavior of the permittivity
seen in Figs. 2(cl) and 2(c2), although the intricate features
that correlate with the interband transitions at low energies
are not consistent with the band structure. With the application
of —10% compressive strain, it is seen in Fig. 2(a3) that the
band gap closes and the conduction band at the I" point crosses
the Fermi level. Therefore, the associated permittivity should
show metallic characteristics at low energies. Indeed, the real
part of permittivity in Figs. 2(al) and 2(a2) acquires metallic
properties with a Drude-type response, centered around w =
0, due to the intraband transitions within the conduction band.
Nevertheless, the imaginary part of permittivity in Figs. 2(al)
and 2(a2) does not overlap with the Drude peak, suggesting
an anisotropic band gap, which is incompatible with the asso-
ciated band structure.

We now discuss the finite-frequency optical conductivity
and Drude response within the framework of the low-energy
model. To simplify our notation in what follows, we rewrite
the low-energy Hamiltonian model (3) by introducing new
parameters a; 2, by 2, ¢y 2:

H(kxa ky) = (al + b]k)% + bzk}%)fo
+ (ag + clkf + czkyz)rx — XykyTy. @)

In this notation, the components of Green’s function are given
by

Gi122(ks, ky, iw)

1 1 1
= —(, + - >, (8a)
2\iw—fi+g  iow—fi—g
G221 (ks ky, iw)
+ ixyk, 1 1
- Buh( - )
28 iw—fi—g iv—fi+g
where the variables fi, f>, and g| are given by
fi = a1 + bik2 + byk?, (9a)
h=a+ Clk)% + Czkf, (%9b)

= /13 + XK. (%)

Substituting the Green’s function components (9) into Eq. (6),
we obtain the real parts of the optical conductivity tensor,
expressed in terms of Dirac-delta functions:

82
= Inie f//dﬂdkxdky}"(ﬂ,w, w,T)
X (ha18(2 — fi + g)dw + 2 — fi — g1)

+8(Q2 — fi —g1)d(w+ Q2 — fi+g1)]
+ 8,02 — fi+ g+ 2~ fi+g1)
+gh8(Q— fi—gdw+Q— fi —gn}. (10)

oub(w)

The temperature dependence of the optical conductivity in
the continuum regime is given by F(Q, o, u,T) = f(2 —
w, T)— f(Q+w—u,T), in which u stands for the chem-
ical potential and f(X, T') is the Fermi-Dirac distribution at
temperature 7. Also, we have introduced the following vari-
ables to further simplify the final expressions:

24282
By = k2<X—y2‘2> (11a)
f3+ Xyky
gt =42 + ifs i 2bic1 fo (11b)
XX X f22 + Xyzk)% \/m
2 2k — fo
hey = 2c1kyky x 3—, (11c)
Yy y yf2 )%k}%
2k, ky
&= peeldls £ b1/ f7 + x2H2)
x (2022 £ 260\ [ 17 + X232 + 1), (11d)
(fr—2c0k2)" 52
hy = (11e)
fz + Xy Ky
& = 2| a2+ (2c2fo + Xf)2 4by (22 f> + xyz)
yy y 2 fz +X2k2 \/m
(11)

Here hy, = hyy, g, = &, and the functions f, and f, are
even functions of momenta k, and k,. Therefore, A, and gjh
determine the symmetry of the optical conductivity integrand
[Eq. (10)] with respect to momenta. As is seen, the integrands
of 0,,(w) and o,,(w) are odd functions of momenta due to the
aforementioned symmetry properties of Ay, hy,, gf\,, and gf,x.
Hence, without performing any further calculations, we find
that o,y (w) = 0y,(w) = 0 in this system. On the other hand,
hx, &is hyy, and gf‘ are even functions of momenta, and de-
termine the diagonal optical conductivity tensor components
0xx(w) and oy, (w). The real part of the optical conductivity
tensor, Eq. (6), is a complicated function of frequency and
momenta that must be evaluated numerically. In what follows,
we first compute the optical conductivity as a function of
o and then obtain the components of permittivity through
Eq. (4).

In Fig. 3, a study comparable to Fig. 2 is shown, except
now we implement the method based on the low-energy ef-
fective Hamiltonian (3). The parameters for the Hamiltonian
are obtained through fitting the model Hamiltonian to the
band structure obtained from first principles around the T’
point (summarized in Table I). The corrected band gap used
in the low-energy Hamiltonian is on the order of 1.52 eV,
although the magnitude of the band gap plays no role in our
conclusions. Comparing Figs. 2(b1l) and 2(b2) to Figs. 3(b1)
and 3(b2), we see that the two approaches share similarities at
low energies (o < 3eV). For example, the generic behaviors
are similar, namely, €,,(w) has a flat, smooth variation with
o while €,,(w) has a clearly defined peak at low frequen-
cies. Also, the strongly anisotropic nature of phosphorene
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FIG. 3. The permittivity components and associated band structure when using the low-energy effective Hamiltonian. The two top rows
show the €,,(w) and €,,(w) components, whereas the two bottom rows depict the band structure along the k, and k, directions. In columns (a),
(b), and (c) biaxial in-plane strains are applied to phosphorene system with strengths —10%, 0%, and +10%, respectively.

is exhibited by the vastly different frequency dependence of
€xr(w) and €,,(w). Both DFT-RPA and the low-energy Hamil-
tonian model show some similar trends, i.e., the magnitudes
follow |ex(w)| <K |€yy(w)| within low energies. There are,
however, significant quantitative differences between the two
approaches. The origins of these disagreements between the
two are twofold: First, the threshold value for nonzero imag-
inary permittivity in both €,,(w) and €,,(w) obtained through
the low-energy model are identical and equal to @ = 1.52 eV,
unlike the different values obtained using DFT-RPA. Hence,
the low-energy effective model suggests that the same band
gap exists in both directions. Second, we find from the low-
energy model that the real part of €,,(w) vanishes at w = 2 eV
despite the fairly large nonzero imaginary part of €,,(w) at the
same frequency. This feature is absent in the DFT-RPA results
and can play a pivotal role in devising novel optoelectronics
devices that are sensitive to loss.

Next, we incorporate strain, beginning with a +10% ten-
sile strain [Figs. 3(cl) and 3(c2)]. It is observed that now
the frequency cutoff for a nonzero imaginary permittivity
increases to w = 2.48 eV, suggesting an enlarged band gap.
Also, the permittivity is now nonzero over a larger inter-
val of frequencies, indicating a flattening of the conduction
and valence bands following application of this type of
strain. Reversing the strain direction, Figs. 3(al) and 3(a2)
display the permittivity components subject to —10% com-
pressive in-plane strain. As seen, both the real and imaginary
parts possess Drude absorption peaks, when @ — 0, indi-
cating metallic behavior. Unlike the DFT-RPA results in
Figs. 2(al) and 2(a2), within the low-energy regime, the
imaginary component of the permittivity has a diverging
Drude response for low frequencies, and a secondary peak
appears at w = 1.33 and 1.30 eV, for €. (w) and €,,(w),
respectively.
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In order to fully understand these features, we have plotted
the band structure associated with the low-energy effective
model along both the k, and &, directions. For the strain-free
case, the band structure in Figs. 3(b3) and 3(b4) illustrates
that the bottom of valence band and the top of conduction
band are separated by a gap of 1.52 eV for both directions.
This clearly explains the identical threshold values for the
nonzero imaginary permittivities shown in Figs. 3(b1) and
3(b2). The exertion of +10% tensile strain in Figs. 3(c3) and
3(c4) increases the band gap to 2.48 eV for both the k, and k,
directions, and results in smaller band curvatures compared
to unstrained phosphorene. This accounts for the nonzero
imaginary permittivity for frequencies beyond the threshold
w = 2.48 eV in Figs. 3(cl) and 3(c2). For a compressive
strain of —10%, Figs. 3(a3) and 3(a4) show a closing of the
gap, and the valence band now crosses the Fermi level. This
crossing allows for intraband transitions, and thus the Drude
peak for very low frequencies, @ — 0, emerges. As seen, the
band curvature now has further increased, resulting in a sup-
pressed peak in the permittivity components [Figs. 3(al) and
3(a2)]. Also, the two transitions at the energies of w = 1.33
and 1.30 eV [marked in Figs. 3(a3) and 3(a4)] follow from
the anisotropic band curvatures in the k. and k, directions.
Note that one is unable to make an immediate conclusion for
identifying the locations of these peaks by looking at the band
structure because €, ,,(w) are obtained by integrating over k,
and ky. Unlike the zero strain and tensile strain cases, these
differing transitions appear as peaks with differing locations
in both permittivity components presented in Figs. 3(al) and
3(a2).

We have performed the DFT-RPA calculations and ob-
tained the permittivity components for a few other materials
and semiconductors with moderate band gaps. Our results
reveal that the issues described here for the case of strained
phosphorene also appear for other material platforms. This
suggests that the adverse effects inherited from the RPA ap-
proach creates discrepancies that are generalizable to other
systems.

B. Optical conductivity and Drude weight

For completeness, Fig. 4 presents the absorptive compo-
nents of the dynamical optical conductivity Re{o,(w)} and
Re{oy,(w)} as a function of frequency in the strain-free sys-
tem. We normalize each component by oy = ¢ /8/. To sample
the different regions of the band structure, several representa-
tive values of the chemical potential are chosen. When the
chemical potential is equal to zero or a value within the band
gap, e.g., u = 0.34 eV [see Figs. 3(b3) and 3(b4)], the optical
conductivity is zero at low frequencies and then sharply rises
at w = 1.52 eV (the band-gap magnitude), corresponding to
the absorption onset. In other words, the onset of nonzero
optical absorption is controlled by the band-gap edges. The
associated transitions are schematically shown by arrows in
Figs. 4(a) and 4(b). By increasing the chemical potential,
the Drude absorption peak persists as w — 0, and the onset
of nonzero optical absorption shifts to higher values of w.
Note that when © = 0 and 0.34 eV, the optical conductivities
do not exhibit low-frequency divergences, as those energies
reside inside the band gap. Meanwhile, the small oy, ,,(®)

0.3 % - - - - - @

Oze (W)

oyy(w)

FIG. 4. The normalized real part of the optical conductivity
for a strain-free system obtained using the low-energy model. (a),
(b) Show the diagonal components of the optical conductivity tensor
as a function of frequency. The chemical potential takes the values
u=0,0.34,0.71, 1.08, 1.45 eV.

that is observed at low frequencies for u = 0.34 eV is due
to a small imaginary term 7 = 0.01 eV, added to the fre-
quencies for numerical stability, and is physically equivalent
to nonelastic scattering. When the chemical potential crosses
the valence band at a representative value, e.g., u = 0.71 eV,
and larger values [see Figs. 3(b3) and 3(b4)], the Drude re-
sponse acquires more pronounced values as w — 0. Similar
to the components of the permittivity tensor, the magnitudes
of the components of the optical conductivity tensor obey
lowc ()] < |oyy(@)].

From observations of the strain-free case, it is straightfor-
ward to understand how strain affects the dynamical optical
conductivity. In the presence of, e.g., +10% tensile strain,
the optical conductivity has the same structure as the strain-
free case except now the band gap increases to 2.48 eV
[see Figs. 3(c3) and 3(c4)]. Conversely, a —10% compressive
strain closes the band gap and, therefore, the low-frequency
Drude response appears (even when p = 0), with unequal
dissipation threshold values, i.e., @ = 1.33 and 1.30 eV at
the first peak of the optical conductivity components o, (w)
and oy,(w), respectively. This anisotropy originates again,
from the differing curvatures of the valence and conduction
bands in different directions, causing the different interband
transition gaps shown in Figs. 3(a3) and 3(a4).

The Drude weight of the anisotropic optical response can
be obtained by integrating the Drude response part of the op-
tical conductivity near v — 0: D,, = lim,— ({0 (®)), and
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FIG. 5. The Drude weight is shown as a function of chemical po-
tential w. Three values of biaxial strain are considered: —10%, 0%,
and +10%. (a), (b) Show the Drude weight for the conductivity
components o (w) and oy, (), respectively. For easier comparison,
(c) and (d) show each curve from (a) and (b) shifted to begin at the
origin.

D,y = lim,,_,¢{0yy,(®)),. Thus, D,, ,, gives a weight to the
zero-frequency divergence of the optical conductivity and is
closely associated with intraband transitions. In Fig. 5, we
illustrate the Drude weight for both components of the optical
conductivity o, (@) and oy, (w) as a function of chemical
potential p, for three biaxial strain values of —10%, 0%, and
+10%. The calculations shown in Figs. 5(a) and 5(b) reaffirm
the anisotropic Drude response in this system. Nevertheless,
the threshold chemical potential where the Drude weight be-
comes nonzero is the same for both the x and y directions.
Note that this threshold value for u determines the distance
between the Fermi level and the bottom of conduction band.
When there is a compressive strain on phosphorene, there is
a Drude response, even at ;= 0. The remaining strain cases

Phosphorene

FIG. 6. Schematic of the configuration involving a single layer of
phosphorene with an effective thickness ¢ on top of a spacer layer of
thickness d and metal reflecting substrate. The phosphorene system
resides in the x-y plane. The phosphorene layer is exposed to an
electromagnetic wave from the vacuum region, where the incident
electric field is polarized along y, and the magnetic field is polarized
in the x-z plane. The incident wave vector ko makes an angle 6 with
the z axis. The crystallography principal directions are set as follows:
x=a,y=b,andz = c.

show that the distance between the Fermi level and the bottom
of the conduction band is 0.32 and 1.04 eV in the presence of
0% and +10% strain, which are in excellent agreement with
the band-structure diagrams in Fig. 3.

To illustrate the nonuniformity of the Drude response, the
Drude weight curves are shifted to the origin in Figs. 5(c) and
5(d). As seen, the steepest response belongs to D,, for the
case of +10% strain, whereas D,, has a moderate response
for the same strain value. This counterintuitive finding cannot
be deduced by simple examination of the conduction bands
in Fig. 3. This is due to the fact that the band structure is
nonuniform in the k,-k, plane (see, e.g., the isoenergy con-
tour plots presented in Ref. [36]), and to obtain the Drude
weight, the intraband transitions are integrated over the entire
isoenergy curves in the k-k, plane. Nevertheless, to confirm
these findings, we have performed checks by summing up the
contributions from the vertical intraband transitions through
the following formula [37,45]:

dE (ky(y), ky(x))
11m (Trxiyyy (@) /Z ‘ 0 Ky

dky.  (12)
dkx(y) y(x)-

x())

As seen, this formula accounts for the vertical intraband tran-
sitions through the slope of the conduction band E(k,, k,) at
E(ky, ky,) = n, where k’( ) are the roots of E(k,, ky,) — u = 0.
The total Drude weight is proportional to the integration of all
these states over ky(y). These calculations were found to have
perfect agreement with those presented in Fig. 5.

C. Implications for device design

We now demonstrate that having an accurate microscopic
model for predicting the optical response of a material is cru-
cial for the successful design of even a simple optics device,
which in this case involves phosphorene. As seen in Fig. 6,
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the basic design involves a phosphorene layer deposited on
top of an insulator layer with thickness d, and a perfect
conductor, serving as a back plate. The incident EM wave,
propagating through vacuum, impinges on the device from
the phosphorene side with an angle of 6, measured from the
normal to the phosphorene plane. In general, the permittivity
tensor £ and permeability tensor f in the principal coordinates
take the following biaxial forms for a given (uniform) region
(n=0,1,2):

En = ek + £,,99 + €,.22, (13a)
/in = U XX + ,unyj’j’ + W22, (13b)

where n denotes the vacuum region (n = 0), the phosphorene
layer (n = 1), or the spacer layer (n = 2).

We now investigate the absorption of EM waves from the
layered configuration shown in Fig. 6. The metallic back plate
is taken to have perfect conductivity (PEC) for simplicity.
The electric field of the incident wave is polarized along ¥,
and is incident from the vacuum region with wave vector
ko in the x-z plane: ko = Xko, + Zko,, where ko, = ko sin6,
and ko, = ko cos 6. Since &, has no off-diagonal components,
the transverse electric (TE) and transverse magnetic (TM)
modes are decoupled. The absorption can be calculated from
Maxwell’s equations. Assuming a harmonic time dependence
exp(—iwt) for the EM field, we have

V x E, = +iopofi,-H,,
V x H, = —iweo,-E,. (14)
Combining Egs. (14), we get
V x (i, -V xE) =k}, E),
Vx (5" VxH)=kj(t, H). (15)

We consider TE modes, corresponding to nonzero field com-
ponents E,,, H,,, and H,. The electric field E,, satisfies the
following wave equation:

1 92E,,
Mz 0x2

1 9%Eyy
+ /,L_?; + kggnyEny = ()7 (16)

which admits separable solutions of the form v/ (z) exp(iko,x).
In what follows, we consider nonmagnetic media, so that
Unx = Mn; = 1. The parallel wave vector ko, is determined
by the incident wave, and is conserved across the interface.
The form of v (z) then simply involves linear combinations
of the exponential exp(ik,.z) for a given region. Thus, the
electric field in the vacuum region E( is written in terms of
incident and reflected waves: Eq= (e’ +E, e~ ku?)eknrg,
From the electric field, we can use Eq. (14) to easily de-
duce the magnetic field components. Due to the presence
of the perfect metal plate, in the spacer region, the general
form of the electric field is written in terms of standing
waves: E»,=FE» sin[ky(z — d )]e*»* where from Eq. (16), the

wave number k, is given by k=x+,/e:k3 — k3 . Note that
the boundary condition that E, vanishes at the ground plane
(z=d) is accounted for (see Fig. 6).

To construct the H fields we use Egs. (14) to arrive at
H,=(—0.E,,, 0:E,,)/(inoko), for n =0, 2, and where ny =
Lo/ €0 1s the impedance of free space. The presence of phos-

phorene enters in the boundary condition for the tangential
component of the magnetic field by writing

i x (Hy—H,) =J, (17

where i is the normal to the vacuum-phosphorene interface,
and J is the current density in the phosphorene layer. Thus,
we have H,,(z=0)—Ho,(z=0)=J,, where Ohm’s law connects
the surface current density J, to the electric field in the usual
way: J =6 E. The dielectric tensor in turn is defined through
the surface conductivity tensor & via

(@) =8yt 22, (18)

teow

where ¢ is the effective thickness of the phosphorene layer,
which we take to be 1 nm (see Fig. 6). One can also consider
the phosphorene layer as a finite-sized slab, like the spacer
layer, and solve for the fields within the layer. This approach
leads to equivalent results, but treating the phosphorene layer
as a current sheet with infinitesimal thickness leads to simpler
expressions. Upon matching the tangential electric fields at
the vacuum-spacer interface, and using Eq. (17), it is straight-
forward to determine the unknown coefficients Eo,, and E;.
First, the reflection coefficient E,, is found to be

2 cosf

E y = —1 4+ -
Ory iy cot(kad) + cos 6 + nooy,

.19

where we define k, = ky /ko. The coefficient E, for the electric
field in the spacer region is similarly found to be
2 cos 6 csc(kod)

E, =— , 20
2 cos 0 + 190,y + iks cot(kad) (20

where from Eq. (18), the dimensionless quantity 740,, can be
expressed in terms of the permittivity: nooy,, = i(1 — &y, )kot.

The fraction of energy that is absorbed by the system is
determined by the absorptance (A): A = 1 — R, where R is the
reflectance. Note that due to the metallic substrate, there is no
transmission of EM fields into the region z > d. In determin-
ing the absorptance of the phosphorene system, we consider
the time-averaged Poynting vector in the direction perpendic-
ular to the interfaces (the z direction), So,=Re{—Eo,H,}/2.
Upon inserting the electric and magnetic fields for the vac-
uum region, we find A=1—|Ey,,|>, where A=S,y/So and
So=ko;/(2eow) is the time-averaged Poynting vector for a
plane wave traveling in the z direction.

In the following, we consider representative material and
geometric parameters, and demonstrate how the differing
predictions from the low-energy model and DFT-RPA can
considerably influence the absorption of EM energy in a
phosphorene-based system. We illustrate in Fig. 7 the ab-
sorptance as a function of incident angle 6 and thickness of
the insulator layer d. The absorptance is determined after
the permittivity tensor is calculated from the DFT-RPA and
low-energy models. Results are shown in Figs. 7(a) and 7(b)
for the DFT-RPA approach, and in Figs. 7(c) and 7(d) for the
low-energy model. The frequency of the incident EM wave
is set to w = 0.06 eV in Figs. 7(a) and 7(c), and w = 1.4 eV
in Figs. 7(b) and 7(d). In all cases, the chemical potential is
set to zero and a compressive strain of —10% is considered.
Considering first the DFT-RPA results in Figs. 7(a) and 7(b), it
is evident that over most of the parameter space, the incident
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FIG. 7. The absorptance as a function of the angle of incident light 6 and the thickness of the insulator layer d. The DFT data and
low-energy model are used in the top and bottom rows, respectively. The frequency of the incident light is set to w = 0.06 eV (left column)
and 1.4 eV (right column). The biaxial strain is fixed at —10%, and for proper comparisons, the chemical potential is set to u = 0.

beam reflects completely off the structure (A = 0). There is
only a small region of the diagram in 7(b) where there is near
perfect absorption for near-grazing incidences (6 = 90°). The
low-energy model in Fig. 7(c), however, predicts an extremely
strong absorption region within 2 um < d < 3um. In con-
trast to the DFT approach, the low-energy model results in
nearly perfect absorption within 45° < 6 < 75°. Increasing
the frequency to w = 1.4 eV in Fig. 7(d), the results of DFT
and the low-energy model become more similar, although the
low-energy model still predicts stronger absorption over a
broader range of spacer layer thicknesses and angles 6.

To further contrast the DFT-RPA method and low-energy
model, Fig. 8 displays the absorptance as a function of 8 (left
column) and w (right column), for three values of the biaxial
strain: —10%, 0%, and +10%. Results in the left column
have a set frequency w = 1.4 eV, and an insulator thickness
of d = 100 nm, whereas the right column has d = 310 nm
and 6 = 80°. Figure 8(c) corresponds to a slice of Figs. 7(b)
and 7(d), and more clearly shows how the DFT results cause
a shifting of the near-perfect absorption peak towards 6 =
90°. The discrepancies between the two models are seen to
dramatically increase for the other strain values shown in
Figs. 8(a) and 8(b). Examining the frequency response in
Figs. 8(d)-8(f), it is evident that the two models again lead to
different absorption characteristics. For zero strain [Fig. 8(d)]
the absorptance profiles are similar but shifted in frequency.

When a tensile strain of +10% is applied to phosphorene
[Fig. 8(e)], the DFT approach shows a small amount of ab-
sorption, but overall both models predict that the incident EM
wave is mostly reflected over the given frequency window.
When a compressive strain of —10% is applied [Fig. 8(f)],
there is again a shift similar to Fig. 8(d), but now the mag-
nitudes of the peaks are much different, with the low-energy
model exhibiting near perfect absorption at = 1.4 eV. These
discrepancies originate mainly from the different predictions
for the permittivities, where, e.g., the DFT and low-energy
methods give different dissipation thresholds and significant
amplitude variations (see Figs. 2 and 3).

Regardless of the discrepancies and deviations discussed
above (when using the permittivity data produced by the
DFT-RPA and low-energy model), one can clearly observe
the strong switching characteristics of the device considered
(Fig. 6) in absorbing the incident EM wave. As seen in Figs. 7
and 8, the device shown in Fig. 6 can absorb nearly perfectly
the incident EM wave within certain incident angles, strain,
the thickness of the insulator layer, frequency, and chemical
potential. For example, comparing the results obtained for
different values of strain in Figs. 8(a)-8(c), we conclude that
the application of low strains (less than 10%) into the plane
of phosphorene can effectively control the absorptivity of
this device, switching efficiently between vanishingly small
absorption and nearly perfect absorption of an incident EM
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FIG. 8. The absorptance A calculated by employing the results of DFT and low-energy models. Three biaxial strain values are considered
(as labeled): —10%, 0%, +10%. The left column shows A as a function of the incident angle 0, at fixed frequency w = 1.4 eV, and for an
insulator thickness of d = 100 nm. The right column has A as a function of frequency of the incident EM wave at an incident angle of 6 = 80°,

and d = 310 nm. In all cases, the chemical potential is zero: u = 0.

wave at certain incident angles. Although the overall behavior
of the permittivity components in Figs. 2 and 3 at 0% and
+10% seem to be the same, at the given frequency, i.e.,
w = 1.4 eV, these components possess substantially different
imaginary and real parts, that together with the strong EM
wave interference in the device, cause considerable differ-
ences in the absorptivity seen in Figs. 7 and 8. Both the
interference phenomenon and Joule-heating effects are known
to be strongly dependent on the amount of loss in the mate-
rial, and are governed by the imaginary part of the relevant
permittivity component. For example, in the left set of figures
in Fig. 7 (where the frequency is the same, and fixed at w =
0.06 eV), the imaginary part of ¢, is 0.00906 (DFT) and 157.4
(low-energy model). These huge variations in the dissipation
translate into the observed absorptivity differences.

IV. CONCLUSIONS

Due to the fundamental importance of light-matter interac-
tions, we have investigated the permittivity of phosphorene,
subject to in-plane strain, as a representative material plat-
form, using two approaches: one approach employed density
functional theory combined with the random phase ap-
proximation (DFT-RPA), and the other method involved a
low-energy effective Hamiltonian model and Green’s func-
tion. The permittivity components for this strongly anisotropic
material are fully explained by its associated band struc-
tures, electronic transitions, and optical conductivities within
the low-energy formalism. However, the results of DFT-
RPA and the corresponding band structures calculated from

the Perdew-Burke-Ernzerhof functional showed considerable
discrepancies. The DFT calculations were repeated using
two different packages, and similar results were obtained.
Although some broad, generic trends for the frequency dis-
persion of the permittivity components were in agreement for
both approaches, several important differences stood out, in-
cluding the onset of the imaginary part of the Drude response
that revealed important fundamental physical characteristics
of the material, such as the band gap and interband and intra-
band transitions.

To illustrate the fundamental importance of accurate
predictions of the permittivity response in designing new
optoelectronics devices, we have compared the perfect ab-
sorption characteristics of a simple device, employing the
permittivity data from the low-energy model and DFT-RPA.
Our results suggest that the DFT-RPA method implemented
in many types of DFT packages needs to be revisited and
improvements made so that the results are at least more
consistent with the associated band structures. Accurate pre-
dictions for the permittivity and optical conductivity are of
pivotal importance in determining the physical properties of
materials and designing novel optoelectronics devices.

Interestingly, on the technological side of making use of
phosphorene in optoelectronics devices, we find that strained
phosphorene can serve as the switching element for the ab-
sorption of EM wave in EM wave absorbers. This switching
effect can be effectively controlled by the application of rela-
tively low mechanical strains (less than 10%) in the plane of
phosphorene and/or manipulation of the chemical potential of
phosphorene through a gate voltage.
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