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Topological line in frustrated toric code models

M. H. Zarei 1,* and J. Abouie 2,†

1Department of Physics, School of Science, Shiraz University, Shiraz 71454, Iran
2Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

(Received 13 January 2021; revised 7 September 2021; accepted 13 September 2021; published 21 September 2021)

Typical topological systems undergo a topological phase transition in the presence of a strong enough
perturbation. We propose an adjustable frustrated toric code with a “topological line” at which no phase transition
happens in the system and the topological order is robust against a nonlinear perturbation of arbitrary strength.
This important result is a consequence of the interplay between frustration and nonlinearity in our system, which
also causes the emergence of other interesting phenomena such as reentrant topological phases and survival of the
topological order under local projection operations. Our study opens a window towards more robust topological
quantum codes which are the cornerstones of large-scale quantum computing.
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I. INTRODUCTION

Topological phases are states of matter that are robust
against local perturbations [1–7]. Designing topological sys-
tems is of crucial importance in a wide range of practical
applications, from quantum computing [8–13] and topological
spintronics [14,15] to soft matter and mechanical systems
[16,17], and searching for systems with rich topological prop-
erties is one of the growing interests in both theoretical and
experimental physics [18–23]. Toric codes (TCs) are a kind
of topological quantum model, characterizing by their robust
topological degeneracy. They were first introduced for topo-
logical quantum memory [24,25], and have gained significant
importance in recent years in the context of large-scale quan-
tum computing [26–29]. Much attention has been devoted
to the investigation of the effects of different types of per-
turbations, including external magnetic fields [30–36], Ising
interactions [37,38], and local tensor perturbations [39], on
the topological properties of TCs on different lattices.

One of the important challenges is to find different prop-
erties that lead to more robustness of the topological orders.
Recently, the interplay of topology and frustration has been
studied and demonstrated that geometrical frustration leads to
the further robustness of the TC state [40,41]. Furthermore, it
has also been shown that the perturbations that couple non-
linearly to a topological model can lead to further robustness
[42]. Nevertheless, it is believed that regardless of the kind
of local perturbation, topological order will eventually be
destroyed at a point where a topological-trivial phase tran-
sition occurs in the system. Hence, it raises the question of
whether it is possible to construct an adjustable system with
an everlasting topological order.

In this paper, we examine the combined effects of frustra-
tion and nonlinearity by proposing frustrated quantum models
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composed of a TC coupled nonlinearly to an external pertur-
bation, and show that their ground states on various lattices
possess a topological phase with interesting properties, not
seen in other topological systems so far. We demonstrate that
there is a topological line (TL) at which (i) by tuning the
physical parameters of the system it remains in the topological
phase in the presence of perturbation of any strengths, and
(ii) the topological order of the ground state survives under
local projection operations. In order to identify this TL and to
figure out the physical mechanism behind such a nontrivial
phenomenon, we define a topological string parameter and
show that the TL is a line separating two topological regions
with different behaviors of the string parameter. Our frustrated
TC (FTC) models also have another interesting feature, in
which a reentrant topological phase transition occurs in the
ground-state phase diagram of the system while the pertur-
bation parameter increases. This phenomenon signifies the
reversibility of the topological order to the system in the
presence of strong perturbations.

This paper is structured as follows: In Sec. II, we introduce
our FTC model and find its phase diagram by using a mapping
to the frustrated Ising model. Then, in Sec. III, we analyze
the phase diagram to find that there is a reentrant topological
phase transition. More importantly, in Sec. IV, we introduce
the topological line which is characterized by a topological
string parameter and, accordingly, we explain how the system
is robust against the perturbation along the topological line.
Finally, in Sec. V, we show that the system is also robust
against local projections at the topological line.

II. TORIC CODE IN PRESENCE OF
A NONLINEAR PERTURBATION

A TC model is described by the Hamiltonian

HTC = −
∑

p

Bp −
∑

v

Av, (1)
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FIG. 1. An illustration of the TC on the UJ lattice (black solid
lines). The red and yellow qubits correspond to the vertex and pla-
quette operators, respectively. The dual square-octagonal lattice is
displayed by the gray dashed lines, where each vertex of the TC
can be represented by a simple loop in the dual lattice. The red
dashed lines show a loop configuration on the dual lattice. The qubits
belonging to these loops are in the state |1〉, an eigenstate of Z with
eigenvalue −1.

where Bp = ∏
i∈∂ p Zi and Av = ∏

i∈v Xi are, respectively, the
plaquette and vertex operators, with Z and X being the Pauli
operators; i ∈ ∂ p refers to the qubits around the plaquette p,
and i ∈ v refers to the qubits incoming to the vertex v (see
the yellow and red dots in Fig. 1). This Hamiltonian is ex-
actly solvable and its ground state is given by |ψ〉 = ∏

v (I +
Av )|0〉⊗N , where |0〉 is an eigenstate of Z with eigenvalue 1, I
refers to the identity operator, and N is the number of qubits.
Since each vertex operator can also be represented by a loop
operator in a dual lattice [in Fig. 1, we illustrate the dual of a
Union-Jack (UJ) lattice by the gray dashed lines], the ground
state |ψ〉 is also a loop-condensed state (each loop is made
of |1〉 states, and a loop-condensed state is a superposition of
all loop configurations in a sea of |0〉 states). It is important
to note that with the periodic boundary condition, the initial
lattice is attached to a torus with nontrivial loops which lead
to different degenerate ground states. Since these degenerate
states correspond to different topological classes, they are
robust against local perturbations.

Now, let us introduce a perturbation to the system via the
Hamiltonian

He =
∑

v

e−β
∑

i∈v JiZi , (2)

where β and Ji are parameters controlling the order of the
system. Using a Taylor expansion, one can see that Ji can
be served as the magnetic moment of the qubit i, adjustable
within the system, and β refers to an inevitable perturbation,
arising from an effective field coupled to the moments. At
small values of β, the above perturbation reduces to a Zee-
man term where the field is coupled linearly to the spins;
however, for larger values of β, nonlinear effects arising from
the local multispin interactions around each vertex (spins that
are the nearest neighbor of the vertices) become important

in the topological characteristics of the system, especially in
the robustness of the topological order [43]. In practice, the
perturbation β is unavoidable and the topological order of
the system is finally lost by strong perturbations; however,
our FTC system has an additional ability that by adjusting
the moments of the qubits (Ji), one can achieve a topological
order that is robust against perturbation of any strengths. The
systems with adjustable magnetic moments and multibody
interactions can be realized in experiment with current tech-
nologies by cold atoms (to find how multibody interactions
can be implemented, see the protocol recently proposed in
Ref. [44] and references therein). Here, we set Ji to J1 for all
qubits on the vertical and horizontal edges and J2 for all on
the diagonal edges.

The frustrated Hamiltonian, HFTC = HTC + He, is indeed
a type of stochastic matrix form Hamiltonians [45], and its
ground state can be exactly found [42,46,47] as

|G(β, {Ji})〉 = 1√
Z (β )

e
β

2

∑
i JiZi |ψ〉, (3)

where |ψ〉 is the ground state of the Hamiltonian HTC. By
applying the operator e

β

2

∑
i JiZi on the state |ψ〉, we will have a

superposition of loop configurations with amplitudes e
β

2

∑
i Jiσi ,

where σi = −1(+1) for links with qubits in the state |1〉
(|0〉). The normalization factor in Eq. (3) is thus obtained as
Z (β ) = ∑

lc eβ
∑

i Jiσi , where the summation runs over all loop
configurations. This function is simply the partition function
of a classical Ising model on the UJ lattice, where the param-
eter β plays the role of the inverse of the thermal energy kBT ,
Ji is the local exchange interaction between the two nearest-
neighbor Ising spins Si and Si+1 located at the UJ lattice points
i and i + 1, and σi = SiSi+1 is equal to +1 (−1) when the
nearest-neighbor spins are parallel (antiparallel) [48]. In the
low-temperature expansion of this partition function, we can
see that each spin configuration is also represented by a loop
configuration in the dual square-octagonal lattice.

It is intuitive to compare the ground state of the TC on a
square lattice in the presence of a uniform magnetic field with
the ground state of our FTC model. In both cases, they are
a superposition of loop configurations, but the effects of the
perturbations are different. In the former case, the perturba-
tion causes the generation of open strings [30,40], while in
ours, owing to nonlinearities arising from the local multibody
interactions, the perturbation only changes the amplitudes of
the loop configurations. For example, in the case of J1 = J2 =
+1, the amplitudes in Eq. (3) are in the form of ∼e−βl , where
l is the total perimeter of all loops. This term shows that the
perturbation acts as a tension, and an increase of β decreases
the amplitude of large loops. In particular, in the limit of
β → ∞, the amplitude of all loop configurations goes to zero
and the final state will be the product state |00 . . . 0〉. Since the
initial state at β = 0 is the topological loop-condensed state
|ψ〉, it is concluded that a topological-trivial phase transition
must occur by the increase of β from zero to ∞ (more details
for the ground-state phase diagram of the TC on a simple
unfrustrated square lattice have been addressed in [42,46]).
On the other hand, the situation is different if J1 = J2 = −1.
In this case, the amplitudes in Eq. (3) are simplified as ∼eβl .
In contrast to the previous case, here the perturbation eβl
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plays the role of a pressure, and an increase of β leads to
the generation of loops with larger total perimeter. In the
limit of β → ∞, the loop configuration with maximum total
perimeter is dominant and the ground state is the product state
|11 . . . 1〉. Finally, in the case of J1 � 0 and J2 � 0, both the
string tension and pressure are present in the system. In this
case, the interplay of the string tension and pressure causes
the system to be frustrated. The simultaneous presence of the
frustration and nonlinearities arising from the local multibody
interactions favors topological robustness and leads to the
interesting phenomena discussed in the following sections.

III. REENTRANT TOPOLOGICAL PHASE

In order to obtain the topological phase transition points in
our FTC model, we investigate the behavior of the ground-
state fidelity, F = 〈G(β, {J1, J2})|G(β + dβ, {J1, J2})〉. Em-
ploying a Taylor expansion, the ground-state fidelity [49] is
readily obtained in terms of the specific heat (CV ) of the Ising
model as

F 
 1 − CV

8β2
dβ2, (4)

where we have used the equality CV = β2 ∂2 lnZ
∂β2 . The above

relation indicates that corresponding to a phase transition tem-
perature in the classical model where the specific heat shows a
singularity, there must be a topological phase transition point
where the ground-state fidelity becomes singular.

Fortunately, the phase diagram of the Ising model on differ-
ent lattices such as the UJ and the triangular lattices is exactly
known [48,53]. Here, as an interlude, we explain the classi-
cal phase diagram of the Ising model on the UJ lattice with
J1 > 0 and J2 couplings. This model possesses two different
phases with ferromagnetic and antiferromagnetic long-range
orders at low temperatures and a paramagnetic disorder phase
at high temperatures. For large positive (negative) values
of J2/J1, strong ferromagnetic (antiferromagnetic) couplings
cause the system to be in the ferromagnetic (antiferromag-
netic) phase at low temperatures. However, at intermediate
strengths of J2/J1 < 0, the system behaves exotically; it is
in the paramagnetic phase at high temperatures and goes to
the antiferromagnetic phase by decreasing temperature. By
further decreasing the temperature, we expect the staggered
magnetization to increase and the true long-range Neel order
to form in the classical phase diagram, but this will not happen
and, amazingly, a phase transition occurs to the paramagnetic
phase. This phenomena, which is a consequence of frustration,
is called the reentrant phase transition.

Now we come back to our frustrated TC model on the UJ
lattice, where β is the perturbation parameter. Since β−1 plays
the role of temperature in the classical Ising model, the para-
magnetic phase corresponds to a topological order at small
values of β, and the ordered ferromagnetic and antiferromag-
netic phases at low temperatures correspond to a topologically
trivial phase at large values of β. In Fig. 2, we have presented
the ground-state phase diagram of our FTC model on the UJ
lattice. Let us focus on the interesting region of Ji

2 < J2 < J f
2 .

At large values of β−1 (or small strengths of perturbation),
the ground state possesses a topological order; however, this
order cannot persist in the presence of stronger perturbations

2J 2J

Trivial phase Trivial phase

Topological phase
(Oscillatory)

1
-1

2
-1

3
-1

Topological phase
(Non-oscillatory)

S

r
TL

S

r

-1

i f 0

FIG. 2. The ground-state phase diagram of our FTC on the UJ
lattice. The vertical and horizontal axes are, respectively, β−1 and J2

(we set J1 = 1). The green and the pink regions are, respectively, the
topological and the trivial phases which are separated by the phase
boundaries with equations: cosh(4βJ1) = e−4βJ2 ± 2e−2βJ2 , where
the signs + and − are, respectively, for the blue curves at the right
and the left sides of the red dashed line. The dashed red line is
the TL. This line divides the green region into two parts where
the topological string parameter has oscillatory and nonoscillatory
decay with respect to the string length. In the interval Ji

2 < J2 < J f
2 , a

reentrant topological phase appears at small values of β−1 (the green
region between β−1

1 and β−1
2 ). For the case of J1 = 1, the parameters

Ji
2 and J f

2 are approximately equal to −1 and −0.9.

(or smaller β−1) and disappears eventually at a transition point
(β−1

3 ) where the system enters into a trivial phase. Now, we
expect the system to be locked in the trivial phase, and pertur-
bations wash out the topological order completely; however,
we see that, amazingly, a “reentrant topological phase transi-
tion” occurs in the system and the topological order revives at
the second phase transition point (β−1

2 ). We have also exam-
ined our FTC model on other geometrically frustrated lattices,
such as kagome and triangular lattices (the results are not
shown here), and observed the above-mentioned phenomenon
in these systems also. Actually, the emergence of a reentrant
topological phase is a dramatic impact of frustration and non-
linearities arising from the multibody interactions introduced
by the Hamiltonian in Eq. (2) to the system.

IV. TOPOLOGICAL LINE

As we discussed, there is a topological order in the ground-
state phase diagram of our FTC model which is robust against
small perturbations, β, but disappears in the presence of strong
perturbations when a topological-trivial phase transition oc-
curs in the system. However, surprisingly, we see that exactly
at a line in the topological phase, the system remains in
the topological phase in the presence of any strength of the
parameter β. We call this line the “topological line” (TL)
because the topological order survives at this line regardless
of the strength of β (see the dashed line in Fig. 2). In order
to obtain the equation of this TL in the ground-state phase
diagram, we utilize the TC-Ising mapping explained in the
previous section. In the language of the classical Ising model
on the UJ lattice, the TL is a disorder line in the paramagnetic
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FIG. 3. A UJ lattice with Ising spins (white dots). The solid lines

are strings that connect the two spins Si and Sj located at the lattice
points i and j. The red and white dots are, respectively, spin +1 and
−1. The blue (green) string crosses a loop for even (odd) times.

phase which separates two regions with different two-point
correlation functions. In the region next to the ferromagnetic
phase, the two-point correlations show nonoscillatory decay
by increasing the separation distance of the Ising spins, while
the decay is oscillatory in the region next to the antiferromag-
netic phase. The two-point correlation functions in the Ising
model are equal to the signed summations of the Boltzmann
weights, where the sign behind each Boltzmann weight is
determined by the sign of SiS j (Si is an Ising spin located
at UJ lattice point i). Since each spin configuration on the
UJ lattice is represented by a loop configuration on its dual
lattice, we can express the two-point correlation functions as
signed summations of the Boltzmann weights corresponding
to different loop configurations. In order to determine the
sign of the mentioned Boltzmann weights, we pull a string γ

between the two spins Si and S j on the UJ lattice (see Fig. 3).
For spin configurations with parallel (antiparallel) Si and S j ,
the corresponding loop configurations on the dual lattice will
cross the string γ for even (odd) times (see Fig. 3), and the
sign of the Boltzmann weight becomes +1 (−1). Now, we
define a string operator as Sγ = ∏

i∈γ Zi, where i ∈ γ refers
to all qubits belonging to the string γ [50]. The expectation
value of this operator in the ground state of our FTC model is
equal to the two-point correlation function 〈SiS j〉 in the Ising
model, i.e., 〈SiS j〉 = 〈G(β )|Sγ |G(β )〉. By using this relation,
we can obtain the equation of the TL as

cosh(4βJ1) = exp(−4βJ2). (5)

This TL divides the topological phase into two parts, as shown
in Fig. 2. In these regions, the topological string parameter
has oscillatory and nonoscillatory decay by increasing the
length of the string, respectively. These different behaviors
can be well interpreted by comparing the strengths of the
string tension and pressure in the FTC model. Actually, in the
topological phase at the left of the TL, the pressure causes sev-
eral small loops to be generated in the system, and hence loop
configurations with larger total perimeters play the dominant
role in determining the ground state of the system. It should be
noted that loop configurations with large perimeters are those
which are generated from several small loops. Accordingly, a
typical string γ with the length of r successively crosses the
small loops and, consequently, the sign of the string parameter

2J

3J

1J1

54

3

2p

q

FIG. 4. Schematic illustration of our FTC model on a triangular
lattice with J1, J2, and J3 tuning parameters. The plaquettes p and q
share the qubit 3. At the TL, projecting out the red qubits, denoted
by 1, 2, and 3, by the state 〈+| leads to the same frustrated toric
code model on a reduced triangular lattice where the plaquette p is
removed.

〈Sγ (r)〉 oscillates by increasing r. On the other hand, in the
topological phase at the right of the TL, the string tension
plays the dominant role and the loop configurations with very
few small loops are crucial in determining the ground state. In
this region, unlike the topological phase at the left of the TL,
the sign of the string parameter does not change by r (see
the inset plots in Fig. 2). Finally, at the TL, the reciprocal
effects of tension and pressure are balanced, resulting in the
formation of closed loops with different sizes. The stability of
the various loops leads to robustness of the topological order
at the TL.

V. TOPOLOGICAL LINE AND ROBUSTNESS AGAINST
LOCAL PROJECTIONS

The TL also has another characteristic at which local pro-
jection operations are not able to destroy the topological order
of the ground state. To explain this phenomenon, we start with
an important property of the TC state, |G(β = 0)〉 = |ψ〉, in
which, if we apply a projection operator such as |+〉〈+|, with
|+〉 being an eigenstate of the Pauli operator X , on a single
qubit of the state |ψ〉, it removes the corresponding edge from
the lattice and the quantum state of the rest will again be
a TC state [51,52]. Now, we consider our FTC model on a
triangular lattice with three tuning parameter J1, J2, and J3,
corresponding to three qubits of each triangle; see Fig. 4. If
we project out the three spins of a triangle, the quantum state
of the rest is given by

|G̃(β )〉 = 〈+1 +2 +3|G(β )〉, (6)

where |G(β )〉 is the ground state of the FTC on a triangular
lattice. By applying the mentioned projection operators se-
quentially on the ground state, different excitations will be
created in the system. They move in the lattice and destroy the
topological order of the ground state. In general, the reduced
ground state |G̃(β )〉 is not the same as the initial state |G(β )〉.
However, at the TL, they are exactly identical. In order to
prove this important property of the TL, let us project out the
three spins of a triangle, for example, the triangle denoted by
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p shown in Fig. 4. The ground state of our FTC is written as
|G(β )〉 = 1

Z e
∑

i
Ki
2 Zi |ψ〉, where Ki = βJi and |ψ〉 is the pure

TC state on the triangular lattice which can be written in
the form of

∏
�(1 + B�)|+〉N , where � refers to triangular

plaquettes, N is the number of edges, and B� = ∏
i∈� Zi is the

plaquette operator. Substituting |G(β )〉 in Eq. (6), we obtain

|G̃(β )〉 = e
∑

i �=1,2,3 Ki
2 Zi

∏

� �=p,q

(1 + B�)|+〉⊗(N−3)

×〈+1 +2 +3|e
∑3

i=1
KiZi

2 (1 + Bp)(1 + Bq)| +1 +2+3〉,

where Bp = Z1Z2Z3 and Bq = Z3Z4Z5. Here, p and q are the
label of triangles which share the qubit 3 (see Fig. 4). By doing
straightforward calculations, we achieve the ground state of
the FTC as

|G̃(β )〉 = e
∑

i �=1,2,3 Ki
2 Zi

∏

� �=p,q

(1 + B�)|+〉⊗(N−3)

×[A(K1, K2, K3) + B(K1, K2, K3)Z1Z2], (7)

with

A(K1, K2, K3) =
3∏

i=1

cosh(Ki/2) +
3∏

i=1

sinh(Ki/2),

B(K1, K2, K3) =
2∏

i=1

cosh(Ki/2) sinh(K3/2)

+
2∏

i=1

sinh(Ki/2) cosh(K3/2). (8)

Now, if we set B(K1, K2, K3) to zero, according to Eq. (7),
the ground state |G̃(β )〉 is identical to |G(β )〉 on the reduced
triangular lattice where the triangle p is removed. Conse-
quently, for those K1, K2, and K3 which satisfy the constraint
B(K1, K2, K3) = 0, the final state will again be the FTC state.
This constraint is simply the equation of the TL. Finally, we
point out that regarding the classical-quantum mapping, the
above process for our FTC model is similar to the “dimen-
sional reduction” in a frustrated Ising model, where one can
obtain the partition function of the classical Ising model at the

disorder line by tracing over spin degrees of freedom row by
row [53].

The invariance of our FTC ground state under the local
projections implies that independent of the strength of the
perturbations, the excitations are suppressed at the TL by
frustration and nonlinearity, and the topological order survives
under the above local projections. The existence of such a TL
in our FTC models is crucial in practical applications. In par-
ticular, one can imagine that in the presence of a perturbation
with arbitrary strength, we can tune the moment J2 related to
physical qubits living in the diagonal edges of the lattice so
that the system permanently remains in the topological phase.
Actually, having two types of physical qubits with different
moments, J1 and J2, is an additional ability of our FTC, which
is absent in the TC.

VI. SUMMARY AND OUTLOOK

The robustness of topological orders against local per-
turbations is of crucial importance for modern practical
applications, and constructing highly robust topological sys-
tems is one of the most important current challenges. In this
paper, we have taken an important step forward by introducing
realizable models with a robust topological order. We demon-
strated that the interplay of frustration and nonlinearity in our
system leads to the formation of a TL at which no phase
transition occurs in the system, and the topological order is
robust even against local projection operations. We also found
another interesting phenomena, not seen in other frustrated
systems, that the ground state of our frustrated toric code
model experiences a reentrant topological phase transition.
This phenomenon signifies the reversibility of the topological
order to the system in the presence of frustration.

Our paper paves the way for future studies for implement-
ing more robust topological quantum codes. In particular, it
is interesting to explore the existence of such a TL in differ-
ent quantum codes, including color codes and fracton codes,
employing proper quantum-classical mappings.
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