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An adiabatic approach put forward by Greiter and Wilczek interpolates between the integer quantum Hall
effects of electrons and composite fermions by varying the statistical flux bound to electrons continuously from
zero to an even integer number of flux quanta, such that the intermediate states represent anyons in an external
magnetic field with the same “effective” integer filling factor. We consider such anyons on a torus, and we
construct representative wave functions for their ground as well as excited states. These wave functions involve
higher Landau levels in general, but can be explicitly projected into the lowest Landau level for many parameters.
We calculate the variational energy gap between the first excited state and the ground state, and we find that it
remains open as the statistical phase is varied. Finally, we obtain from these wave functions, both analytically
and numerically, various topological quantities, such as the ground-state degeneracy, the Chern number, and the
Hall viscosity.

DOI: 10.1103/PhysRevB.104.115135

I. INTRODUCTION

Composite fermions [1], the topological bound states of
electrons and an even number (2s) of quantized vortices, lead
to an explanation of the fractional quantum Hall effect [2,3] at
fractions ν = n/(2sn ± 1) as the integer quantum Hall effect
of composite fermions, and they allow a calculation of the
topological and nontopological features of these fractional
quantum Hall states [4–7]. Greiter and Wilczek [8–10] pro-
posed an adiabatic approach, wherein the fractional quantum
Hall effect is connected to the integer quantum Hall effect
by continuously tuning the strength of the vortex attached
to electrons from zero to 2s, while at the same time vary-
ing the external magnetic field in such a manner that the
effective magnetic field remains unchanged. The two limiting
cases are familiar and well-studied. When the number of at-
tached vortices is zero, we of course have the integer quantum
Hall effect of noninteracting electrons. When the number of
attached vortices is an even integer, the base particles are
composite fermions (CFs), producing the fractional quantum
Hall effect of electrons at ν = n/(2sn ± 1). This article is
concerned with the intermediate states, when the number of
vortices attached to each particle is a rational fraction and the
base particles are anyons obeying fractional braiding statistics
[11,12]. Recently, a Chern-Simons field theory with fluctuat-
ing dynamical gauge field has also been used to forge a bridge
connecting the integer and fractional quantum Hall states [13].

We note that the excitations of the fractional quantum Hall
states have been predicted to obey fractional braiding statis-
tics [6,14,15]. In contrast, we are dealing in our study with
fictitious anyons designed to interpolate between the integer
and fractional quantum Hall states.

The theoretical studies on anyons have been attempted
through various methods, including field theories [16–20],
exact diagonalization [21–29], density functional theory [30],
wave functions [31–38], and other methods [39–45]. The

wave-function approach gives an explicit description of the
many-particle states and allows direct calculations of both
topological and nontopological physical quantities. Earlier,
the wave function studies were mainly based on disk geometry
[31,33–36].

In this work, we revisit the problem of constructing an
anyon wave function on a torus for general filling factors.
The torus geometry offers certain special advantages. One of
them is that the torus is compact, which avoids complications
from edge states hosted by open boundaries. The shape of the
torus and the boundary conditions are tunable, which makes
it an ideal geometry to study topological bulk quantities such
as Chern number and Hall viscosity. The wave functions for
CFs carrying 2s vortices have been constructed on a torus
in Ref. [46]. However, unlike in the disk geometry, a gen-
eralization from CFs to anyons cannot be accomplished by
simply replacing the integer number of attached vortices by
a fractional number. The interplay of the periodic boundary
conditions and fractional statistics imposes a nontrivial braid-
ing group for anyons on a torus [47], which requires the
wave functions for anyons to be multicomponent. An alter-
native way to understand the origin of the multicomponent
structure has been discussed by Fayyazuddin [37] as arising
from the coupling of the gauge field and the particle degrees
of freedom. This multicomponent structure is consistent with
the exact diagonalization results on a lattice Hamiltonian on
a torus [27,28,48] and also with the Chern-Simons theory
[16,18,49]. Reference [38] has studied anyon ground-state
wave functions on a torus using the Chern-Simons gauge
transformation.

We achieve a construction of trial wave functions for de-
generate ground states as well as excited states of anyons for
general statistical parameters and filling factors such that the
effective filling factor is an integer. These wave functions are
more general and have a simpler form than those constructed
previously in the literature, reducing to the Jain CF wave
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functions [46] when the number of attached fluxes to each
particle is an even integer. We believe, from experience with
the CF theory, that the lowest Landau level (LLL) projec-
tions of these wave functions should provide a good account
of anyons interacting by a repulsive interaction, such as the
Coulomb interaction. However, we have not investigated the
quantitative validity of these wave functions. We calculate be-
low variational excitation gaps, as well as several topological
properties of the incompressible states of anyons, which are
expected to be insensitive to the details of the wave function.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the braiding group of anyons on a
torus. Then we construct a complete set of multicomponent
anyon wave functions that provide a representation of this
braiding group. We also show that our wave functions have
the expected ground-state degeneracies. In Sec. III, we cal-
culate the variational values for the charge gaps for anyons
interacting via the Coulomb interaction, and we find that the
gap is preserved as we tune the number of attached vortices;
this supports the view that the process is adiabatic and is also
consistent with exact diagonalization findings by Kudo and
Hatsugai [28]. In Secs. IV and V, we calculate the Chern
number and the Hall viscosity analytically and numerically.
We find that the total Hall viscosity can be viewed as the sum
of the Hall viscosities of different factors in the wave function,
and it encodes information on the number of filled effective
Landau levels and the anyon statistics. We summarize our
results in Sec. VI. Our results are consistent with the work
by Kudo and Hatsugai [28], who have diagonalized a lattice
model Hamiltonian in the torus geometry and numerically
calculated the ground-state degeneracies, gaps, and Chern
numbers.

II. MULTICOMPONENT ANYON WAVE FUNCTIONS
AND GROUND-STATE DEGENERACIES

We consider a two-dimensional many-particle system on
the surface of a torus with a perpendicular external magnetic
field applied. We assume that there are N anyons and Nφ

external magnetic flux quanta. The filling factor of anyons is
ν = N/Nφ . The adiabatic transport of an anyon around another
along a closed loop results in a statistical phase 2θ (which
defines our anyon). In what follows, we define

θ = π

(
1 + p

q

)
= π

p′

q
(1)

with p′ = p + q. When θ
π

is an odd (even) integer, the parti-
cles are fermions (bosons). The anyons can be mapped into
fermions or bosons with gauge fluxes attached. Assuming
that the base particles are fermions, the number of effective
magnetic flux quanta felt by them (counting both the external
magnetic field and the statistical field) is

N f
φ = Nφ −

(
θ

π
− 1

)
N = Nφ − p

q
N, (2)

and the effective filling factor for fermions, ν f , is given by

1

ν f
= 1

ν
− θ

π
+ 1 = 1

ν
− p

q
. (3)

It reduces to the standard CF theory when p/q is an even
integer. If the base particles are chosen to be bosons instead,
the number of effective magnetic flux quanta felt by them is

Nb
φ = Nφ − θ

π
N = Nφ − p′

q
N, (4)

and the inverse of the bosonic filling factor is

1

νb
= 1

ν
− θ

π
= 1

ν
− p′

q
. (5)

(We note that we use a different convention for the definition
of θ compared with that in Ref. [28]. Our θ corresponds to
2π − θ of that paper. We choose our convention because it is
more natural for CFs, as θ is simply mπ at filling 1/m for CFs.
Our convention is consistent with that of Refs. [8,9].)

A torus can be mapped into a parallelogram on a complex
plane with quasiperiodic boundary conditions imposed. We
define the real axis along one edge of the parallelogram and
name the length of that edge as L1. The other edge of the
parallelogram is defined as L2 = L1τ , where τ = τ1 + iτ2 is
a complex number called the modular parameter [50] of the
torus. In this work, we assume the external magnetic field
is B = −Bẑ. Then, in the symmetric gauge, the LLL wave
function is a holomorphic function of the particle coordi-

nates zi = xi + iyi times a Gaussian factor e− |z|2
4�2 , where � =√

h̄c/eB is the magnetic length. Later we will also use the
reduced particle coordinates θ1,i, θ2,i ∈ [0, 1), which are de-
fined through zi = L1θ1,i + L2θ2,i. The total area of the torus is
V = L2

1τ2 = 2πNφ�2. The quasiperiodic boundary conditions
under external magnetic field are defined through magnetic
translation operators [51,52]. For Hall viscosities, it is con-
venient to choose the τ gauge (Ax, Ay) = B(y,− τ1

τ2
y) [53,54].

In this gauge, the magnetic translation operators acting on a
single particle z = L1θ1 + L2θ2 are defined as

t (αL1 + βL2) = eα∂1+β∂2+i2πβNφθ1 , (6)

where ∂1 ≡ ∂
∂θ1

and ∂2 ≡ ∂
∂θ2

.
Fermions or bosons satisfy the quasiperiodic boundary

conditions on a torus:

t (Li )ψ (z, z̄) = eiφiψ (z, z̄), i = 1, 2. (7)

However, this is not the case for anyons since this equation
is inconsistent with the fractional statistics. As shown in
Ref. [55], the braiding can be accomplished on a torus by
wrapping two particles along the two periodic loops. If the
periodic boundary conditions are just represented by phases,
the braiding statistics can only be integer multiples of π .
References [27,47] have shown that the boundary conditions
for anyons on a torus are given by

t j (L1)� = eiφ1 e−i2 jθ

⎛
⎜⎜⎝

1 · · ·
c · · ·

...
...

...

· · · cq−1

⎞
⎟⎟⎠�, (8)

t j (L2)� = eiφ2 ei2 jθ

⎛
⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

1 0 0 · · · 0

⎞
⎟⎟⎠�, (9)
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with θ = π
p′
q , c = ei2π

p′
q . The twisted boundary conditions

are defined by phases φ1 and φ2, which represent 2π times
the number of magnetic flux quanta through the two holes
of the torus [27]. Here t j is the magnetic translation operator
acting on the jth particle. � is a q-component vector. For the
special case of CFs, q = 1, and the above boundary conditions
are satisfied by the Jain CF wave functions constructed in
Ref. [46].

In the remaining part of this section, we first find a solution
for Eqs. (8) and (9) for 1

ν f
= 1 by ansatz, just as was done in

Ref. [56] for Laughlin wave functions. Then we show how to
generalize the solution to other fillings. Finally, we show how
to obtain wave functions for all degenerate ground states.

A. ν f = 1

The effective filling factor ν f = 1 is obtained when anyons
with statistics θ = π

p′
q have a filling factor ν = q

p′ . Here, the
fermions fill the lowest Landau level, and the ground state has
q components. In what follows, we obtain trial wave functions
for the ground and excited states.

We make the following ansatz for the wave function (we
use superscript α to label the degeneracy and subscript k to
label the component):

� (α) = (
�

(α)
0 , �

(α)
1 , �

(α)
2 , . . . , �

(α)
q−1

)T
, (10)

�
(α)
k [zi] = eiπτNφ

∑
i θ

2
2,i

N∏
i=1

JiF
(α)

k (Z ) (11)

Ji =
∏
j>i

e

p′
q ln ϑ

[
1/2
1/2

]
( zi−z j

L1
|τ )

. (12)

Here Z = ∑N
i=1 zi is the center-of-mass coordinate, and we

use the Jacobi theta function with rational characteristics
[57]; its definition and some of its properties are listed in
Appendix A. The ansatz wave function has three parts. The
first part eiπτNφ

∑
i θ

2
2,i appears in the τ gauge. The second part∏N

i=1 Ji is purely made up of the relative coordinates zi − z j ;
it is analogous to the Jastrow factor

∏
i< j (zi − z j ) in the disk

geometry. The coefficient p′
q in the exponential of Eq. (12) is

fixed by the braiding statistics and defines the number of at-
tached vortices (it is replaced by an even integer for CFs). The
last part F (α)

k (Z ) is the center-of-mass part, which carries both
the degeneracy index and the component index. In making this
ansatz, we assume that the wave function can be written as a
product of the relative part and the center-or-mass part, which
is known to be true for q = 1, i.e., for the Laughlin states.

Note that Eq. (12) has a branch cut. We adopt
the convention that when z → z ± L1, ln ϑ[1/2

1/2](
z

L1
|τ ) →

ln ϑ[1/2
1/2](

z
L1

|τ ) ± iπ , i.e., when the particle coordinate moves
to the right (left) across the boundary, the ln ϑ function goes
up (down) on the Riemann surface.

Now we need to solve for the center-of-mass
part F (α)

k (Z ). According to Eqs. (8) and (9), it

satisfies

F (α)
k (Z + L1) = ei

[
φ1+2π

p′
q (k− N+1

2 )
]
F (α)

k (Z ), (13)

F (α)
k (Z + L2) = e−i( 2π p′Z

qL1
−φ2− p′

q π (N+1)+ π p′τ
q )F (α)

k+1(Z ), (14)

with k = 0, 1, . . . q − 1 and F (α)
q (Z ) = F (α)

0 (Z ). We can do a

Fourier expansion of F (α)
k (Z ) according to Eq. (13),

F (α)
k (Z ) =

∑
n

d (α)
k,n ei(2πn+φ1+2π

p′
q (k− N+1

2 )) Z
L1 . (15)

Through Eq. (14) and F (α)
q (Z ) = F (α)

0 (Z ), the coefficients are
fixed as

d (α)
k+1,n = ei(2πn+φ1+2π

p′
q (k− N

2 ))τ−i(φ2+ p′
q π (N+1))d (α)

k,n , (16)

d (α)
0,n+p′ = ei(2πnq+π p′q+qφ1−p′π (N+1))τ−i(qφ2+p′π (N+1))d (α)

0,n .

(17)

Because there are p′ independent coefficients, evidently, this
tells us that there are p′ independent solutions, depending on
our choice of the coefficients d (α)

0,0 , d (α)
0,1 , . . . , d (α)

0,p′−1. These so-
lutions can be written in an elegant form using theta functions:

F (α)
k (Z ) = ϑ

[
ak

bα

](
Z

L1

∣∣∣∣ q

p′ τ
)

, (18)

ak = 1

2π

(
φ1 − p′

q
π (N + 1) + 2πk

p′

q

)
, (19)

bα = − 1

2π

(
q

p′ (φ2 + 2πα) − 2π (N − 1)
q

p′

+π (N + 1)

)
, (20)

with k = 0, 1, . . . q − 1 and α = 0, 1, . . . p′ − 1. Equations
(10)–(12), and (18) together give the p′-fold degenerate q-
component ground-state wave functions.

If we apply the center-of-mass magnetic translation
tCM(L2/Nφ ) = ∏N

i=1 ti(L2/Nφ ) on � (α), we get

tCM(L2/Nφ )� (α) = ei q
p′ (φ2+2π (α−N+1)+ p′

q π (N+1))� (α). (21)

The degenerate states have different eigenvalues, and hence
are orthogonal. On the other hand, they can be transformed
into one another by applying tCM(L1/Nφ ):

tCM(L1/Nφ )� (α) = � (α−1). (22)

One may notice that for the special case of ν = 1/m, which
corresponds to the Laughlin state for fermions or bosons,
Eq. (10) does not have the familiar form given in the general
literature. [For instance, one can compare Eq. (10) to Eq. (6)
in Ref. [58].] Actually, they are related by an m-dimensional
unitary transformation. While Eq. (10) is an eigenstate of
tCM(L2/Nφ ), the more familiar Laughlin wave function (e.g.,
see Ref. [58]) is chosen to be the eigenstates of tCM(L1/Nφ ). If
one defines the periodic properties Eqs. (8) and (9) such that
tn(L2) is diagonal and tn(L1) is nondiagonal, the more familiar
form will be recovered.
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B. ν f = n

Now let us consider the case of more general ν f = n.
This corresponds to the case of N anyons with statistical
parameter θ = π (1 + p

q ), in a magnetic field with flux number

Nφ = ( 1
n + p

q )N , at ν = nq
q+np . When we model the anyons as

fermions with p
q vortices attached to them, the fermions fill n

Landau levels in the effective magnetic field, i.e., ν f = n. In
this case, below we construct the wave function as a product
of a q-component anyon wave function and the fermionic or
bosonic scalar wave function in the effective magnetic field.
We show that the ground-state degeneracy is given by q + np.
(For n = 1, which corresponds to ν f = 1, this gives a ground-

state degeneracy of q + p = p′, consistent with the previous
subsection.)

Following the standard CF construction, we first write the
wave function as a product state:

�n; p
q

= �n�
(N−1)
p
q

. (23)

Here, the q-component �
(N−1)
p
q

is given by Eq. (10) with

Nφ → p
q N, p′ → p, φ1 → φa

1 , φ2 → φa
2 . We choose α = N −

1 just to simplify the phase factor under tCM( qL2

pN ). The other
part �n is the (single-component) wave function of n-filled
Landau levels [54]:

�n[zi, z̄i] = eiπτN∗
φ

∑N
j=1 θ2

2, j
1√
N

χn[ fi(z j, z̄ j )], (24)

χm[ fi(z j, z̄ j )] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (0)
0 (z1) f (0)

0 (z2) · · · f (0)
0 (zN )

f (1)
0 (z1) f (1)

0 (z2) · · · f (1)
0 (zN )

...
...

...

f
(N∗

φ −1)
0 (z1) f

(N∗
φ −1)

0 (z2) · · · f
(N∗

φ −1)
0 (zN )

f (0)
1 (z1, z̄1) f (0)

1 (z2, z̄2) · · · f (0)
1 (zN , z̄N )

f (1)
1 (z1, z̄1) f (1)

1 (z2, z̄2) · · · f (1)
1 (zN , z̄N )

...
...

...

f
(N∗

φ −1)
n−1 (z1, z̄1) f

(N∗
φ −1)

n−1 (z2, z̄2) · · · f
(N∗

φ −1)
n−1 (zN , z̄N )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (25)

f (k)
n (z, z̄) =

∑
t∈Z+ k

N∗
φ

+ φ
f
1

2πN∗
φ

eiπN∗
φ τ t2

e
i2πN∗

φ t

(
z

L1
− φ

f
2

2πNφ

)
Hn

(τ2L1

�B
(θ2 + t )

)
, (26)

where N∗
φ = N/n and Hn(x) are the Hermite polynomials. (We

omit the normalization factors here.)
Since the phases generated by magnetic translation opera-

tors simply add, the above wave function satisfies Eqs. (8) and
(9) on the condition that φ1 = φ

f
1 + φa

1 and φ2 = φ
f
2 + φa

2 . We
find it natural to make the following choice for the phases:

φa
i = np

np + q
φi, i = 1, 2, (27)

φ
f
i = q

np + q
φi, i = 1, 2. (28)

In this choice, the magnetic fields through the two holes of
the torus felt by the fermions and anyons are in the same
proportion as the magnetic fields perpendicular to the torus
felt by the fermions and anyons. We conjecture that for this
choice, there exists at least one momentum sector in which
the wave function is well defined for all φ1 and φ2. We prove
this conjecture in Appendix B for ν f = 1, and we have found
it to be valid for all cases below.

One might at first think that the wave function in Eq. (23)
has a p-fold degeneracy, in contrast to the expected (q + np)-
fold degeneracy [28]. Below, we show how to reproduce the
q + np degenerate wave functions from Eq. (23). First, we

note that �n satisfies

tCM

(nL2

N

)
�n = ei(φ f

2 +π (N−1))n�n (29)

while � p
q

satisfies

tCM

(
qL2

pN

)
�

(N−1)
p
q

= ei( q
p φa

2+π (N+1))� (N−1)
p
q

. (30)

Therefore, Eq. (23) satisfies

tCM

(qnL2

N

)
�n; p

q
= ei[qnφ2+nπ (N+1)(p+q)]�n; p

q
. (31)

We can define a momentum projection operator:

Pα = 1√
np + q

np+q−1∑
j=0

[
e−i qnφ2+nπ (N+1)(p+q)+2πα

np+q tCM

(
L2

Nφ

)] j

.

(32)
This generates the degenerate eigenstates:

tCM(L2/Nφ )Pα�n; p
q

= ei qnφ2+nπ (N+1)(p+q)+2πα

np+q Pα�n; p
q
, (33)

where α = 0, 1, 2, . . . , np + q − 1 corresponds to the (np +
q)-fold ground-state degeneracy. The (np + q)-fold degener-
ate states are related to each other by tCM(L1/Nφ ). With some
possible gauge transformation, the degenerate states have such

115135-4



COMPOSITE ANYONS ON A TORUS PHYSICAL REVIEW B 104, 115135 (2021)

a relation,

tCM(L1/Nφ )Pα�n; p
q

= ei nqφ1+πq(N−n)
np+q Pα−nq�n; p

q
. (34)

To ensure that the wave function after momentum projec-
tion does not vanish, we have to choose φ

f
i = q

q+pnφi and
φa

i = np
q+npφi for i = 1, 2, as explained in Appendix B. Note

that the degeneracy is equal to q + np, which is equal to
the denominator of the filling factor ν = nq

q+np only when nq
and q + np are mutually coprime. For example, for n = 2

and p/q = 1/4, we have ν = 4/3 while the degeneracy is 6.
This result is consistent with the exact diagonalization results
shown in Ref. [28].

For n � 2, �n; p
q

given by Eq. (23) is not fully in the LLL.
In general, one can apply a direct LLL projection following
Ref. [59]. However, the direct-projected wave functions can-
not be used to calculate systems typically with more than 10
particles. An alternative Jain-Kamilla projection can be ap-
plied to evaluate large systems [60,61]. If p

q � 2, the modified
Jain-Kamilla projection [46,54] can be implemented as

�n; p
q

= (�0, �1, �2, . . . , �q−1)T , (35)

�k = eıπτNφ

∑
i θ

2
2,i Fk (Z )

N∏
i=1

J̄iχn[ĝi(z j )J̃ j], (36)

χn[ĝi(z j )J̃ j] =

∣∣∣∣∣∣∣∣∣

ĝ(0)
0 (z1)J̃1 · · · ĝ(0)

0 (zN )J̃N
...

...
...

ĝ(0)
1 (z1)J̃ p

1 · · · ĝ(0)
1 (zN )J̃N

...
...

...

∣∣∣∣∣∣∣∣∣
, (37)

J̄i =
∏
j �=i

e
( p

2q −1) ln ϑ

[
1/2
1/2

]
( zi−z j

L1
|τ )

, (38)

J̃i =
∏
j �=i

e
ln ϑ

[
1/2
1/2

]
( zi−z j

L1
|τ )

, (39)

where Fk (Z ) is given by Eq. (18) with p′ → p, φ1 → φa
1 , φ2 → φa

2 . The general form of ĝ(k)
n (z) was derived in detail in

Refs. [46,54]. Here we give the form for the lowest three Landau levels (without including any normalization factors):

ĝ(k)
0 (z) = f (k)

0 (z) = ϑ

⎡
⎣ k

N∗
φ

+ φ
f
1

2πN∗
φ

− φ
f
2

2π

⎤
⎦(

N∗
φ z

L1

∣∣∣∣N∗
φ τ

)
, (40)

ĝ(k)
1 (z) = (N∗

φ − Nφ )
∂ f (k)

0 (z)

∂z
+ N∗

φ f (k)
0 (z)2

∂

∂z
, (41)

ĝ(k)
2 (z) = (Nφ − N∗

φ )2 ∂2 f (k)
0 (z)

∂z2
− 2N∗

φ (Nφ − N∗
φ )

∂ f (k)
0 (z)

∂z
2

∂

∂z
+ N∗2

φ f (k)
0

(
2

∂

∂z

)2

. (42)

We mention a caveat for the projected wave
function Eq. (36). Compared to the Jastrow fac-
tor in the unprojected wave function Eq. (12),
we changed

∏
i< j exp( p

q ln ϑ[1/2
1/2](

zi−z j

L1
|τ )) to∏

i �= j exp( p
2q ln ϑ[1/2

1/2](
zi−z j

L1
|τ )). For composite fermions,

i.e., when p
q is an even integer, this process only generates a

factor of (−1)
pN (N−1)

4q , which is of no significance. However,
the Jastrow factors of anyons have branch cuts, and the
definition of how the Jastrow factors change across the branch
cuts is very subtle. If we use the definition for the multivalued
Jastrow factors mentioned right after Eq. (A5), we find that
the projected wave function no longer satisfies Eqs. (8) and
(9). On the other hand, if we confine the particles to the
principal region of the torus (i.e., the parallelogram spanned
by L1 and L2), the projected wave function captures the

lowest Landau level part of the unprojected wave function,
which satisfies the imposed braiding group. Therefore, the
projected wave function is still sufficient for calculating local
physical quantities such as energies, Berry curvatures, and
Hall viscosities.

An important property that is required for wave functions
on a torus is modular covariance. We discuss this issue in
Appendix C and show that the anyon wave function con-
structed above is modular covariant.

III. ENERGY GAP AND THE ADIABATIC PRINCIPLE

The key point of the adiabatic principle is that the ground
states remain gapped as we tune the strength of the attached
vortex, or in other words the statistical phase θ , in such a
manner that the effective filling factor remains constant. In
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FIG. 1. The transport gaps for ν f = 1 and ν f = 2 as a function
of 1/ν for N = 20, obtained from lowest-Landau-level projected
variational wave functions. Coulomb interaction is assumed between
the anyons, and the energies are quoted in units of e2/ε�.

this section, we numerically confirm this statement by calcu-
lating the transport gaps for ν f = 1, 2 using our ansatz wave
functions, assuming Coulomb interaction between the anyons.

We calculate the transport gaps by creating a quasiparticle
state and a quasihole state separately. A quasiparticle can
be obtained from Eq. (35) by occupying an extra orbital in
the lowest unoccupied effective Landau level in the Slater
determinant part. Similarly, a quasihole can be obtained by
leaving an unoccupied orbital in the highest occupied effective
Landau level in the Slater determinant part. For ν f = 1, the
transport gap is calculated as

�n=1; p
q
(N ) = Eqp

(
N, Nφ =

(
1 + p

q

)
N + 1

)

+ Eqh

(
N, Nφ =

(
1 + p

q

)
N − 1

)

− 2E0

(
N, Nφ =

(
1 + p

q

)
N

)
, (43)

where Eqp, Eqh, and E0 are the energies of the quasiparticle,
the quasihole, and the ground states. For ν f = 2, the transport
gap is calculated as

�n=2; p
q
(N ) = Eqp

(
N − 1, Nφ =

(
1

2
+ p

q

)
N − p

q

)

+ Eqh

(
N + 1, Nφ =

(
1

2
+ p

q

)
N + p

q

)

− 2E0

(
N, Nφ =

(
1

2
+ p

q

)
N

)
. (44)

We assume Coulomb interaction between particles.
We use variational Monte Carlo and the anyon wave func-

tion Eq. (35) to calculate the transport gaps. The results are
shown in Fig. 1. Because the energy only depends on the rela-
tive part of the wave function, we only use the first component

in Eq. (35) to calculate the energy and multiply the values by
the number of components to save the computation time. For
ν f = 1, we calculate the transport gaps for many anyon states
between two Laughlin states ν = 1/3 and 1/5. For ν f = 2, we
calculate the transport gaps for many anyon states between
two Jain states ν = 2/5 and 2/9. As Fig. 1 shows, the gaps
vary smoothly with the change of θ and remain nonzero. This
is a justification of the adiabatic heuristic principle proposed
by Greiter and Wilczek [8,9]. A similar result is obtained
by diagonalizing lattice Hamiltonian of smaller systems in
Ref. [28].

We note that we do not connect ν = 1/3 to ν = 1 or
ν = 2/5 to ν = 2. The reason is technical: we are not able to
perform the Jain-Kamilla projection for anyons in this filling
factor region. However, in light of the above results, there is
no reason to doubt that analogous adiabatic continuity in that
filling factor range also holds.

IV. CHERN NUMBERS AND HALL CONDUCTIVITY

In this section, we calculate the Chern number for the
anyon wave function in Eq. (10) following the approach used
by Niu, Thouless, and Wu [62] and Tao and Haldane [63]. The
Chern number is defined as

C = −i2π
∑

α

〈
∂J (α)

2

∂φ1
− ∂J (α)

1

∂φ2

〉
. (45)

Here 〈〉 refers to the average in (φ1, φ2) space, and the sum-
mation is over all degenerate ground states. J (α)

i is defined as

J (α)
i =

∑
k

〈
�

(α)
k

∣∣ ∂

∂φi

∣∣� (α)
k

〉
, (46)

where the wave function is normalized, i.e.,
∑

k〈� (α)
k |� (α)

k 〉 =
1. To see the periodicity of our wave function in the (φ1, φ2)
space, we need the identities Eqs. (A6) and (A7). Given these
identities and the assumption that the overall normalization
factor does not depend on φ1 and φ2, it is straightforward to
see (

Pα�n; p
q

)
k
(φ1 + 2π (q + pn), φ2)

= eiπ (N−n)q
(
Pα�n; p

q

)
k
(φ1, φ2), (47)(

Pα�n; p
q

)
k
[φ1, φ2 + 2π (q + pn)]

= e−i2πnq[ φ1
2π

− p
2q (N+1)+ pk

q + N−n
2n ](Pα�n; p

q

)
k
(φ1, φ2). (48)

Therefore, the average can be taken in the space (0, 2(q +
pn)π ) ⊗ (0, 2(q + pn)π ). With the above identities, we can
now prove

C = − i2π

[2π (q + pn)]2

∑
α

∫ 2(q+pn)π

0
dφ1

∫ 2(q+pn)π

0
dφ2

[
∂J (α)

2

∂φ1
− ∂J (α)

1

∂φ2

]

= − i2π

[2π (q + pn)]2

∑
α

∫ 2π (q+pn)

0
dφ2

(
J (α)

2 (2(q + pn)π, φ2) − J (α)
2 (0, φ2)

)

+ i2π

[2π (q + pn)]2

∑
α

∫ 2π (q+pn)

0
dφ1

(
J (α)

1 (φ1, 2π (q + pn)) − J (α)
1 (φ1, 0)

) = qn. (49)
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FIG. 2. The Berry curvature divided by q, i.e., −i 2π

q

∑
α (

∂J (α)
2

∂φ1
−

∂J (α)
1

∂φ2
), at different points in the (φ1, φ2) plane for our anyon wave

function with ν f = 1, ν = 2/3, N = 12. The value is expected to
be 1. We note that the Berry curvature is uniform to a high degree,
varying in a narrow range from 0.994 to 1.002. The sudden change in
the color is an artifact, arising because the Berry curvature has been
evaluated only for a discrete set of (φ1, φ2) points.

The Chern number qn depends not only on the fermionic fill-
ing factor n but also on the statistical phase θ = π (1 + p/q).
Only when θ is an integer multiple of π does the Chern
number equal n. Hence, it is not the Chern number but rather
C/q that remains invariant under the adiabatic evolution. This
is also consistent with the finding of Ref. [28]. (We note that
the Chern number in Ref. [28] is actually equal to our C/q.)
As shown in Ref. [62], the Hall conductivity in units of e2/h
is the Chern number per degenerate ground state. Thereby, it
is nq

q+np
e2

h for our anyon states.
As shown in Ref. [64] for fractional quantum Hall states,

the integration or average over the twist angles in Eq. (45)
is not necessary when the system size is large enough, since
the Berry curvature is already uniform. To see whether this is
also true for the anyon wave function, we calculate the Berry
curvature at different points in the (φ1, φ2) plane for ν f = 1,
ν = 2/3, N = 12. As shown in Fig. 2, the Berry curvature
is uniform to an extremely high degree, at the value derived

above. We then calculate the C/q = −i 2π
q

∑
α ( ∂J (α)

2
∂φ1

− ∂J (α)
1

∂φ2
)

without integration for different anyon wave functions with
ν f = 1, 2, N = 12. The results are shown in Fig. 3. The
numerical results are quantized at ν f , which agree with our
analytical derivations above.

V. HALL VISCOSITIES FOR ANYONS

In addition to the Chern number, another topological quan-
tity that can be easily calculated in torus geometry is the
Hall viscosity. Avron, Seiler, and Zograf [65] showed that the
Hall viscosity can be computed as Berry curvature through
adiabatic deformation of the geometry of the torus:

ηA = − h̄τ 2
2

V
Fτ1,τ2 , (50)

FIG. 3. This figure shows C/q = −i 2π

q

∑
α (

∂J (α)
2

∂φ1
− ∂J (α)

1
∂φ2

) evalu-
ated at randomly chosen (φ1, φ2) points for anyon ground states with
ν f = 1, 2, N = 12, where C is the total Chern number. The values of
C/q are well quantized at ν f as the statistics is varied, which agrees
with the analytical result. The unprojected wave functions have been
used for the calculation.

where

Fτ1,τ2 = −2 Im

〈
∂�

∂τ1

∣∣∣∣∂�

∂τ2

〉
. (51)

Based on Eq. (50), Read proposed [66,67] that for fermionic
and bosonic gapped states, ηA is given by

ηA = S h̄ρ

4
, (52)

where ρ = N/V and the “shift” S is a topological quantum
number defined in the spherical geometry, given by S = N

ν
−

Nφ . This relation has been derived or numerically confirmed
for Laughlin states, Pfaffian states, and Jain states by various
approaches [53,54,66–71]. In particular, Ref. [54] developed
an analytical derivation for microscopic wave functions. The
main result of that work is that if a wave function is a product
of several components, then the Hall viscosity is the sum of
the Hall viscosities for different components provided that the
normalization factor satisfies certain behavior in the thermo-
dynamic limit. This statement holds for the unprojected as
well as the projected Jain wave functions.

Clearly, Eq. (23) is in a product form, and we can apply
the theorem stated above. The fermionic part �n contributes
nNh̄
4V to the Hall viscosity. The remaining question is, how

much does the anyonic part � p
q

contribute? As is shown in
Refs. [68,72], if the wave function (disregarding the normal-
ization factor N ) is a holomorphic function of τ , which is the
case for � p

q
, then its contribution to Hall viscosity is given by

h̄τ 2
2

2V

[(
∂

∂τ1

)2

+
(

∂

∂τ2

)2]
lnN . (53)

We further note that � p
q

is very similar to the Laughlin wave
function. They can both be separated into a center-of-mass
part and a relative part [which is written in terms of (zi − z j )].
Furthermore, the relative part of � p

q
has the same form as the

relative part of the Laughlin wave function at ν = 1/m with
m = p/q. We now argue that the contribution of the center-
of-mass to the Hall viscosity vanishes in the thermodynamic
limit. The contribution of the center-of-mass part to lnN is on
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FIG. 4. The Hall viscosity in units of h̄ρ

4 for ν f = 1, 2. The
straight lines indicate the theoretically predicted values, which are
given by 1

ν
and 3

2 + 1
ν
, respectively. The system contains 20 particles

on a square torus. The ν f = 2 results are for the unprojected wave
functions (stars), but wherever possible we have also evaluated the
Hall viscosity for the LLL projected wave functions (circles). The
ν f = 1 wave functions are automatically in the LLL.

the order of ln N (N is the particle number), implying that its
contribution to the Hall viscosity vanishes as ln N

N in the ther-
modynamic limit. In fact, when deriving the Hall viscosity for
Laughlin states, Tokatly and Vignale [68] used the cylindrical
geometry in which the center-of-mass part is absent, which
also is valid only if the contribution of the center-of-mass part
is unimportant. Hence, the total contribution of � p

q
is pρ h̄

4q , and
the Hall viscosity for the anyon wave function in Eq. (23) is
(n + p

q ) ρ h̄
4 , or in terms of ν and ν f ,

ηA =
(

1

ν
− 1

ν f
+ ν f

)
h̄ρ

4
. (54)

We also calculate the Hall viscosity of the anyon wave
function Eq. (23) directly through Eq. (50). As mentioned
above, the Hall viscosity is dominated by the relative part,
so we only use the first component of the wave function
and multiply the result by the number of components, just
as we have done for energy. [We mention a slight subtlety
in the calculation. Because of the presence of branch cuts in
the Jastrow factors, we have to manually correct the jumps
between different Riemann sheets. For instance, when we vary
the geometry of the torus by a tiny amount, the imaginary part
of ln ϑ[1/2

1/2](
zi−z j

L1
|τ ) might change by δ ± 2π , where δ is a tiny

number. In that case, we manually correct the change to δ.]
The results are shown in Fig. 4. We consider a system of

20 particles on a square torus τ = i. We calculate the Hall vis-
cosity at ν f = 1, 2 for different filling factors by varying the
statistical phase θ . According to the analysis above, the Hall
viscosity for ν f = 1 is 1

ν

ρ h̄
4 and for ν f = 2 is ( 3

2 + 1
ν

) ρ h̄
4 . The

numerical results agree with these values. We also note that
the unprojected wave functions and projected wave functions
have the same Hall viscosity, as is also the case with the Jain
states [54].

VI. SUMMARY

In summary, we have achieved a construction of multi-
component anyon wave functions in the torus geometry. The
wave functions are representations of the braiding group and
have the expected ground-state degeneracy. In the special
cases in which θ is an integer multiple of π , the anyon wave

TABLE I. Summary of the number of components, ground-state
degeneracy, Chern number (C), and Hall viscosity (ηA) of the anyon
wave function at filling factor ν with statistical phase θ and effective
filling ν f . The integer quantum Hall states correspond to q = 1 and
p = 0, whereas the composite fermion states correspond to p = 2s
and q = 1.

ν f n

ν
nq

np+q

θ π
(
1 + p

q

)
number of components q
ground-state degeneracy q + np

C nq

Hall conductivity nq
q+np

e2

h

ηA h̄ρ

4 ( p
q + n)

functions return to the Jain CF wave functions [46]. When
p
q � 2, we can project the wave function to the LLL with
the efficient modified Jain-Kamilla method. We calculate the
transport gaps by evaluating the ground state, quasiparticle,
and quasihole energies. The transport gap varies smoothly
as we vary the statistical parameter θ . We also calculate the
Chern number, and we find that C

q is an adiabatic invariant,
i.e., it is invariant with the change of θ . This is consistent with
the exact diagonalization results of Kudo and Hatsugai [28].
We also evaluate the Hall viscosity and find it to be (n + p

q ) ρ h̄
4

for ν f = n, θ = (1 + p
q )π . The results are summarized in

Table I.
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APPENDIX A: JACOBI THETA FUNCTION
WITH RATIONAL CHARACTERISTICS

The Jacobi theta function with rational characteristics [57]
is defined as

ϑ

[
a
b

]
(z|τ ) =

∞∑
n=−∞

eiπ (n+a)2τ ei2π (n+a)(z+b). (A1)

The zeros of ϑ[
a
b
](z|τ ) lie at z = 1

2 − b + m + ( 1
2 − a + n)τ ,

where m and n are integers. We list here several periodic
properties of Jacobi theta functions that have been used in our
derivations in the main text:

ϑ

[
a
b

]
(z + 1|τ ) = ei2πaϑ

[
a
b

]
(z|τ ), (A2)

ϑ

[
a
b

]
(z + τ |τ ) = e−iπ[τ+2(z+b)]ϑ

[
a
b

]
(z|τ ), (A3)

115135-8



COMPOSITE ANYONS ON A TORUS PHYSICAL REVIEW B 104, 115135 (2021)

ϑ

[
a
b

]
(z + w|wτ ) = ϑ

[
a

b + w

]
(z|wτ ), (A4)

ϑ

[
a
b

]
(z + τ |wτ ) = e−i 2π

w (z+b+ τ
2 )ϑ

[
a + 1

w

b

]
(z|wτ ), (A5)

ϑ

[
a + 1

b

]
(z|τ ) = ϑ

[
a
b

]
(z|τ ), (A6)

ϑ

[
a

b + 1

]
(z|τ ) = ei2πaϑ

[
a
b

]
(z|τ ), (A7)

where w is a real number.

APPENDIX B: DISTRIBUTION OF THE TWISTED
BOUNDARY PHASES

In this Appendix, we discuss the constraint on the distribu-
tion of the twisted boundary phases φa

i and φ
f
i (i = 1, 2) for

composite anyon wave functions. As mentioned in the main
text and Ref. [46], the preservation of periodic boundary con-
ditions only requires φi = φa

i + φ
f
i . This implies, in general,

φa
i = γφi, i = 1, 2, (B1)

φ
f
i = (1 − γ )φi, i = 1, 2, (B2)

where γ is a real number. We fix γ as follows. The phases
correspond to the effective magnetic field through the holes
of the torus felt by the attached vortices and fermions, which
are in the proportion np/q. Requiring the same proportion for
the phases yields γ = np

np+q . In this context, we note that the
wave function in Eqs. (47) and (48) produces a different Chern
number for γ �= np

np+q ; the reason is that then the wave func-
tion Pα�n; p

q
vanishes for some values of φ1 and φ2. Hence, the

calculation of Chern only makes sense for γ = np
np+q . We next

demonstrate this statement for n = 1, leaving the generaliza-
tion to other values of n as an open question.

The anyon wave function Eq. (23) can be written as a
superposition of different momentum eigenstates,

�1; p
q

= �1�
(N−1)
p
q

=
p+q−1∑
α=0

cα�
(α)
1+ p

q
. (B3)

Here �
(α)
1+ p

q
are the momentum eigenstates. They can be ob-

tained by applying Pα defined in Eq. (32). For the special
case n = 1, there is an easier way: they are simply given by
Eq. (10) with the replacement p′ → p + q. Our task is to show
that all cα are nonzero for arbitrary φ1 and φ2 only when
γ = p

p+q .
The Jastrow factors on the left- and right-hand sides

of Eq. (B3) are obviously identical. The coefficients are
hence determined by the center-of-mass part. In other words,
Eq. (B3) can be rewritten as

ϑ

[
a f

bf

]( Z

L1

∣∣∣τ)
ϑ

[
aa

k
ba

](
Z

L1

∣∣∣∣qτ

p

)

∼
p+q−1∑
α=0

cαϑ

[
ak

bα

](
Z

L1

∣∣∣∣ qτ

p + q

)
, (B4)

where the parameters are given by

a f = N − 1

2
+ φ

f
1

2π
, (B5)

bf = N − 1

2
− φ

f
2

2π
, (B6)

aa
k = 1

2π

(
φa

1 − pπ

q
(N + 1) + 2π

pk

q

)
, (B7)

ba = − 1

2π

(
q

p
φa

2 + π (N + 1)

)
, (B8)

ak = 1

2π

(
φ1 − p + q

q
π (N + 1) + 2π

p + q

q
k

)
, (B9)

bα = − 1

2π

(
q

p+ q
(φ2+ 2πα)− 2π (N− 1)

q

p
+ π (N+ 1)

)
.

(B10)

In Eq. (B4) we use ∼ instead of = since, for simplicity, we
have omitted normalization factors in this equation and below.
This does not influence our judgment whether cα is zero. To
solve for cα , we expand the theta function according to its

definition and compare the coefficients of ei2π (n+a3 ) Z
L1 on the

left- and right-hand sides:

cαeiπ (n+ak )2 qτ

p+q +i2π (n+ak )bα ∼
∑

m1,m2

δn+ak ,m1+m2+a f +aa
k
eiπ (m1+a f )2τ+iπ (m2+aa

k )2 qτ

p +i2π (m1+a f )bf +i2π (m2+aa
k )ba

. (B11)

Since cα cannot depend on n or k, we choose n = 0, k = 0.
With some algebra, we get

cα ∼ ϑ

[
a f − a0

q
p+q

bf − ba

](
0

∣∣∣∣q + p

p
τ

)
. (B12)

The condition for cα = 0 is

a f − a0
q

p + q
= φ1

2π

(
p

p + q
− γ

)
+ N = 1

2
+ l1, (B13)

bf − ba = φ2

2π

(
q + p

p
γ − 1

)
+ N = 1

2
+ l2. (B14)

Here l1 and l2 are two arbitrary integers and N is the particle
number. When γ = p

p+q , it is not possible to satisfy the above
two equations for any φ1 and φ2. For γ �= p

p+q , one can always
find values of φ1 and φ2 to make cα zero. This proves our
statement that we have to choose γ = p

p+q to ensure that the
wave function remains nonzero in the entire (φ1, φ2) space.

APPENDIX C: MODULAR COVARIANCE
OF THE ANYON WAVE FUNCTIONS

As mentioned in the main text, the geometry of a torus
is parametrized by L1 and L2. However, the parametrization
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is not unique. The geometry is unchanged under a modular
transformation of L1 and L2,(

L′
2 L′

1

) = (
a b c d

)(
L2 L1

)
, (C1)

where a, b, c, d ∈ Z with ad − bc = 1. These transformations
form the modular group, which is spanned by two elements
T : (1 1

0 1) and S: (0 −1
1 0 ). The geometry itself is unchanged

by these transformations. If we redefine the twisted periodic
boundary phases φ1 and φ2 consistently with the modular
transformations, all the physical quantities should be invariant
under modular transformations. To guarantee this, the wave
functions must be covariant under modular transformations.
To be more specific, the Hilbert space of the degenerate
ground states is invariant under modular transformations, and
the transformations of degenerate ground states are described
by a unitary matrix. In this Appendix, we show that our anyon
wave functions do possess theses properties.

First let us consider the case in which there is no degener-
acy, i.e., p = 1. In this case, the ground state is nondegenerate
and thus should be invariant under modular transformation.
This is true for fermions and bosons, whose wave functions
are single-component. However, for anyons the transforma-
tion is more subtle. Under an S transformation, the new L1

direction is the original L2 direction. Thereby, ti(L1) acting on
the original wave function is now represented by a nondiag-
onal matrix instead of a diagonal matrix. One can, however,
recover the forms of Eqs. (8) and (9) by performing a unitary
transformation on the original ground-state wave function �k:

�̃k =
∑

k′
Ukk′�k′ , k, k′ = 0, 1, 2, . . . , q − 1. (C2)

In other words, the components are mixed and reordered. The
matrix can be obtained by comparing the periodic properties
of �̃k and �k . The matrices for T and S are

Ukk′ (T ) = 1√
q
δkk′c

k(k−1)
2 , (C3)

Ukk′ (S ) = 1√
q

c−kk′
(C4)

with c = ei2π
p′
q as defined in the main text.

When the ground-state degeneracy is present, there is an-
other set of matrices V that describes the mixing of degenerate
ground states � (α) = Pα�n; p

q
under modular transformation.

The V matrices can be derived by comparing the properties

FIG. 5. The Hall viscosity for different shapes of torus in units
of h̄ρ

4 for ν f = 1, θ = 3π/2, N = 4. The red and blue symbols are
related by the T transformation, and the left-hand side and right-hand
side of the y-axis are related by the S transformation.

of � (α) under tCM(L1
Nφ ) and tCM(L2

Nφ ) before and after the modular
transformations. The matrices for T and S are

Vαα′ (T ) = 1√
np + q

ei( 2π (α−α′ )
np+q +θ0 ) α′−α

nq , (C5)

Vαα′ (S ) = 1√
np + q

e
i
(

θ1α−θ2α′
nq − 2παα′

nq(np+q)

)
, (C6)

where θ0 = πq(nNφ−N )
np+q , θ1 = πq(N−n)−nπ (N+1)(p+q)

np+q , and θ2 =
πq(N−n)+nπ (N+1)(p+q)

np+q . The final modular transformation is de-
scribed by the direct products of U and V :

ϕ̃
(α)
k = Ukk′Vαα′ϕ

(α′ )
k′ . (C7)

Since the direct product U ⊗ V is unitary, the physical
quantities are guaranteed to be invariant under modular trans-
formations. As shown in Ref. [73], the modified Jain-Kamilla
projection preserves the modular covariance of the wave func-
tions.

To confirm the modular covariance of the wave functions
numerically, we calculate the Hall viscosities for wave func-
tions that are related by modular transformations. The result
is shown in Fig. 5. We choose ν f = 1, θ = 3π/2, N = 4. As
a result of the covariance under T transformation, blue circles
and red stars are supposed to be coincident, and the data are
expected to be symmetric with respect to the y-axis because
of the covariance under the S transformation. The numerical
results in Fig. 5 are explicitly consistent with these expecta-
tions, thus demonstrating that the wave functions are modular
covariant.
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