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Surface density of states on semi-infinite topological photonic and acoustic crystals
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The iterative Green’s function, based on a cyclic reduction of block-tridiagonal matrices, has been the ideal
algorithm, through tight-binding models, to compute the surface density of states of semi-infinite topological
electronic materials. In this paper, we apply this method to photonic and acoustic crystals, using finite-element
discretizations and a generalized eigenvalue formulation, to calculate the local density of states on a single
surface of semi-infinite lattices. Three-dimensional examples of gapless helicoidal surface states in Weyl and
Dirac crystals are shown and the computational cost, convergence, and accuracy are analyzed.
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I. INTRODUCTION

Topological classical waves are an exciting focus of recent
research [1–4] whose key features are gapless and robust
topological surface states at the interfaces. However, there
has been no well-established numerical methods to compute a
single topological interface state between semi-infinite three-
dimensional (3D) bulk crystals made of continuous material.
In this paper, we adopt the block-tridiagonal iterative Green’s
function method to achieve this goal.

The current dominant approach for calculating these states
has been to compute the frequency eigenvalues (band struc-
tures) of finite-thickness supercells (“slabs”). Although easy
to understand and implement, this slab method has several
limitations. First, there are two surfaces on each slab. One
has to disentangle the two surface states by checking their
wave functions. Second, large supercells may be required to
minimize the coupling between surface states localized on
opposite surfaces, greatly increasing the computational costs.
Third, it is not convenient to obtain isofrequency cuts of the
band diagram, which is required to verify the topological
properties such as surface arcs and to compare with the related
field-scan experiments [5,6].

It would be ideal to compute the states of a single surface
on semi-infinite bulk cells. The effective approach is to com-
pute the local density of states (LDOS) on the surface through
the Green’s functions [7–10]. Many techniques [11] have
been developed for the Green’s functions in semi-infinite sys-
tems including the recursive method [12,13], transfer-matrix
method [14–16], and iterative method [17,18]. All these meth-
ods divide the semi-infinite bulk into layers below the surface.
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The recursive method writes the Green’s function in the
form of a continued fraction by relating the neighboring lay-
ers. Only a relatively small matrix, describing each layer,
is inverted in each recursion and the effective system size
grows layer by layer. For example, a recursive scheme based
on a finite-difference discretization was used to compute the
edge mode of a semi-infinite two-dimensional (2D) photonic
crystal [19]. The recursive method is quite general in that
each bulk layer can be distinct, i.e., the medium need not be
periodic in the direction orthogonal to the surface.

If the semi-infinite bulk cells are all identical, which is the
case for periodic lattices, more efficient methods have been
developed such as the transfer-matrix and iterative Green’s
function methods. The transfer-matrix method [14–16] relates
the Green’s functions of every two neighboring layers with
a transfer matrix. By diagonalizing the matrix and obtaining
the eigensolutions, the surface Green’s function, surface band
structure, and surface wave functions can all be constructed.
For example, the plane-wave transfer-matrix method was used
to study the transmission and edge modes in 2D semi-infinite
photonic crystals [20,21]. Unfortunately, the transfer matrix
is non-Hermitian and the eigenvector basis can be ill condi-
tioned near an exceptional point [22]. Furthermore, solving
eigenvectors is much slower than matrix inversions and the
size of the transfer matrix is twice as large as that of a single
repeating bulk layer.

The iterative Green’s function method [17,18] is the most
efficient and is the one used in this paper. The basic idea
illustrated in Fig. 1 is to relate the Green’s functions of
every even layers, by removing the odd ones, so that the
surface layer couples with the 2i layers after i iterations.
As a result, the surface Green’s function quickly decouples
spatially from the bulk and can be solved independently. His-
torically, a similar iterative technique was proposed for rapidly
solving linear systems composed of block-cyclic tridiagonal
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FIG. 1. The iterative Green’s function method. (a) Schematic of a semi-infinite crystal. Each cell represents a crystal layer and the top gray
surface is the surface boundary. The surface cell can be different from the rest. (b) Iterative procedure for solving the surface Green’s function.
The block elements (α, β, and γ) are relabeled from M i, j in Eqs. (4) and (5b). After each iteration, half the number of blocks is eliminated and
the matrix size is halved. When the off-diagonal blocks are sufficiently small, after enough iterations, the Green’s function can be obtained by
inverting the remaining diagonal blocks.

(block-Toeplitz) matrices [23–26]. Recently, it has been a
standard method for evaluating topological surface states in
electronic systems through simplified tight-binding models in
a standard eigenvalue problem [27–30].

We note that the semi-infinite periodic media can also be
simulated by implementing the outgoing (radiation) bound-
ary conditions in the bulk medium. Unfortunately, the most
popular numerical techniques for absorbing boundaries, the
perfectly matched layers (PMLs), fail in periodic media [31].
The difficulty lies in the fact that the analytical wave solu-
tions in the periodic medium are not known in general. In
this regard, methods such as nonlinear coordinate transforms
[32], adiabatic absorbers [31], and the Dirichlet-to-Neumann
approach [33] have been developed and numerical examples
are all given in 2D.

In this paper, we implement the iterative Green’s function
method for photonic and acoustic crystals through regular
finite-element meshing in a generalized eigenvalue problem
Topological surface states of 3D Weyl and Dirac crystals are
calculated for demonstration and the computational perfor-
mances are discussed in the end.

II. LDOS AND GREEN’S FUNCTION

The source-free Maxwell’s equations can be written as
a frequency-domain eigenproblem for electric field E. The
sound wave equation in fluids can also be expressed in the
same form for acoustic pressure p. Both governing equa-
tions for electromagnetics and acoustics can be unified into
a generalized eigenvalue problem with ω2 as the eigenvalue in
Eq. (1),

∇ × (μ−1 · ∇ × E ) = ω2ε · E

∇ · (ρ−1∇p) = −ω2K−1 p

}
Au = ω2Bu, (1)

where ε, μ, ρ, and K are the permittivity, permeability, mass
density, and bulk modulus of the material, respectively. A is
the differential operator (∇ × μ−1 · ∇× or ∇ · ρ−1∇), B is
the material parameter (ε or −K−1), and u is the eigenstate (E
or p).

The Green’s function, the solution to a differential equation
excited by a Dirac delta source, in our system is

(ω2B − A)G(ω) = M(ω)G(ω) = I, (2)

where I is the identity operator.
LDOS, the key physical quantity to compute in this work,

describes the response of a point source (the power emitted by
a dipole). It can be written in terms of an imaginary part of G
by imposing an infinitesimal imaginary frequency η [8–10].
η has to be introduced in lossless Hermitian systems, so that
the poles in the Green’s function [G(ω) = M(ω)−1] broaden
to finite values for numerical evaluation. For vector fields, the
Green’s function is dyadic, and one sums the field components
by taking the trace:

LDOS(r; ω) = 2ω

π
Tr

{
Im

[
B(r) · lim

η→0+
G(r, r; ω − jη)

]}
.

(3)

We emphasize that this definition, as well as this work, applies
to any frequency-independent material parameters including
lossy and gyrotropic terms. B is usually required to be positive
definite for LDOS to be a non-negative real number.

III. ITERATIVE GREEN’S FUNCTION METHOD

By discretizing the system with finite elements
[34–36] (edge elements are employed in photonic
systems to avoid fake modes), we obtain the semi-infinite
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FIG. 2. Surface DOS on a semi-infinite Weyl photonic crystal. (a) Geometry of semi-infinite dielectric photonic crystals with a relative
permittivity of 16. The top gray surface is the perfect electric conductor, which satisfies n̂ × E = 0 and n̂ is the surface normal. Here, we use
cylinders with a radius of 0.10a to approximate the double-gyroid structures and an air cylinder with a height of 0.07a to break the inversion
symmetry, where a is the lattice constant. (b) Band structure of the 12-cell photonic crystal slab with perfect electric conductors on both
surfaces. The Weyl points are at the normalized frequency 0.55. (c) Surface DOS on semi-infinite bulk cells. (d)–(f) The isofrequency cuts at
normalized frequencies 0.567, 0.552, and 0.537.

eigenmatrix:

M(ω − jη) = (ω − jη)2B − A

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M0,0 M0,1

M1,0 M1,1 M1,2

M2,1 M1,1 M1,2
. . .

. . .
. . .

M2,1 M1,1 M1,2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)

M is block-cyclic tridiagonal and the subscripts represent
the layer numbers. The diagonal block Mn,n represents the
intracoupling matrix of the nth layer. The off-diagonal blocks
Mn,n+1 and Mn+1,n denote the intercoupling matrix between
the neighboring layers, whose meshes are joined only at the
layer boundaries. These bulk block matrices are identical to
M1,1, M1,2, and M2,1, due to the semi-infinite crystal period-
icity. In order to fully accommodate the realistic conditions

for the sample surfaces, the surface layer (n = 0) is assumed
here to be arbitrarily different from the inner bulk layers in its
thickness, materials, and geometry.

We now derive the surface Green’s function G0,0 using
Eqs. (2) and (4). Multiplying M by the zeroth block row of
the matrix G, we get a series of chain equations,⎧⎪⎨

⎪⎩
−γ s

0G0,0 = −I + αs
0G1,0,

−γ0G1,0 = βs
0G0,0 + α0G2,0,

−γ0Gn,0 = β0Gn−1,0 + α0Gn+1,0 (n � 2),

(5a)

with

α0 = M1,2, αs
0 = M0,1,

β0 = M2,1, βs
0 = M1,0,

γ0 = M1,1, γ s
0 = M0,0,

(5b)

where α0, αs
0, β0, βs

0, γ0, and γ s
0 are the changes in notations

for ease of later iterations and the superscript s denotes the sur-
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FIG. 3. Surface DOS on a semi-infinite Dirac acoustic crystal. (a) Geometry of the semi-infinite blue-phase-I acoustic crystal. The material
is taken as hard wall boundaries in numerics, which satisfies n̂ · ∇p = 0 and n̂ is the surface normal. (b) Band structure of 12-cell acoustic
crystal slab with two hard wall boundaries. The Dirac points are at the normalized frequency 1.30. (c) Surface DOS on the semi-infinite bulk
cells. (d)–(f) The isofrequency cuts at normalized frequencies 1.276, 1.221, and 1.166.

face layer. By eliminating the odd-layer (odd-index) Green’s
functions, we update Eq. (5a) as

⎧⎪⎨
⎪⎩

−γ s
1G0,0 = −I + αs

1G2,0,

−γ1G2,0 = βs
1G0,0 + α1G4,0,

−γ1G2n,0 = β1G2(n−1),0 + α1G2(n+1),0 (n � 2),

(6a)

with

α1 = α0(γ0)−1α0,

αs
1 = αs

0(γ0)−1α0,

β1 = β0(γ0)−1β0,

βs
1 = β0(γ0)−1βs

0,

γ1 = γ0 − α0(γ0)−1β0 − β0(γ0)−1α0,

γ s
1 = γ s

0 − αs
0(γ0)−1βs

0.

(6b)

Equation (6a) has half the number of equations in Eq. (5a)
but still remains the same structure as Eq. (5a). By repeating
this procedure, we obtain the general chain equations,⎧⎪⎨

⎪⎩
−γ s

i G0,0 = −I + αs
i G2i,0,

−γ iG2i,0 = βs
i G0,0 + αiG2i+1,0,

−γ iG2in,0 = βiG2i (n−1),0 + αiG2i (n+1),0 (n � 2),

(7a)

with the iterative relations

αi = αi−1(γ i−1)−1αi−1,

αs
i = αs

i−1(γ i−1)−1αi−1,

βi = βi−1(γ i−1)−1βi−1,

βs
i = βi−1(γ i−1)−1βs

i−1,

γ i = γ i−1 − αi−1(γ i−1)−1βi−1

− βi−1(γ i−1)−1αi−1,

γ s
i = γ s

i−1 − αs
i−1(γ i−1)−1βs

i−1.

(7b)

The subscript i (i � 1) means the ith iterations, after which
the surface Green’s function G0,0 couples with the Green’s
function G2i,0 of the 2i layer. The coupling (off-diagonal)
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FIG. 4. Numerical convergence and accuracy of the acoustic example. (a) Convergence variance with different imaginary frequencies.
The residual is defined as ‖γ s

i (η) − γ s
i−1(η)‖F /‖γ s

i−1(η)‖F , where i is the iteration step and ‖ ‖F represents the Frobenius norm of a matrix.
(b) Accuracy dependence on different imaginary frequencies. The error is defined as limi→∞ ‖γ s

i (η) − γ s
i (0

+)‖F /‖γ s
i (0

+)‖F .

matrices αs
i , αi, βs

i , βi approach zero exponentially fast with
the iteration number, so that, after a few iterations, the surface
Green’s function in Eq. (7a) equals the inverse of the zeroth
diagonal block:

G0,0(ω − jη) = lim
i→∞

(γ s
i )−1

. (8)

The surface-layer DOS is proportional to the trace of G0,0.
If the surface layer is identical to the bulk ones, which is
the case when the iterative Green’s function method was first
introduced [17,18], the problem is simplified with αi = αs

i and
βi = βs

i in Eq. (7b).
Importantly, this iterative approach, solving surface DOS

on one semi-infinite crystal, can be extended to solve the
surface DOS at the interface between two semi-infinite crys-
tals. Either of them can also be a semi-infinite homogeneous
medium such as air.

IV. NUMERICAL EXAMPLES

Using the above iterative Green’s function method, we
calculate the surface DOS in semi-infinite 3D topological
photonic and acoustic crystals with Bloch-periodic bound-
ary conditions, specified by the Bloch wave vector k, in the
surface-parallel directions. In the surface-normal direction,
the crystals are terminated with a perfect electrical conductor
or hard wall boundary.

The photonic example, in Fig. 2, is the double-gyroid di-
electric photonic crystal [37,38] having four bulk Weyl points
and a single helicoid surface state [39]. The surface arcs con-
necting the four projected Weyl points are plotted in Fig. 2(e).

The acoustic example, in Fig. 3, is the blue-phase-I acous-
tic crystal having two Dirac points and four helicoid surface
states protected by the glide symmetries [6]. The two Dirac
points project onto the same point in the surface Brillouin
zone attached with four surface arcs, as shown in Fig. 3(d).

The data quality from the semi-infinite crystals is superior,
in many ways, to the band structures from the 12-cell slab
calculations in Figs. 2(b) and 3(b). First, the surface states
from the second surface do not exist in the semi-infinite data.
Second, as the bulk level spacing vanishes in the semi-infinite
data, one can identify the bulk continuum and the gapless
Weyl and Dirac points. Third, the LDOS intensity, measuring

the field localization on the surface, automatically highlights
the surface states and compares directly to experiments of
near-field scans.

V. COMPUTING EFFICIENCY

The total data points are 125 × 250, for the band structures
in Figs. 2(c) and 3(c), and 80 × 80 for the isofrequency cuts
in Figs. 2(d)–2(f) and Figs. 3(d)–3(f). The detailed compu-
tational costs of each data point (k, ω) are listed in Table I
for one iteration. Different numbers of iterations are required
to converge for different data points, typically ranging from
three to five iterations when the residual is set to be 10−3 and
η is set to be 0.01ω in Fig. 4.

Mathematically, introducing the imaginary frequency η

is equivalent to doing a frequency average of LDOS in a
Lorentzian window [40], where η determines the broadening
and the height of the peaks at the poles. If we interpret η as
the quality factor Q = ω/2η of the system, η = 0.01ω means
Q = 50. We linearly scale the η with ω to ensure the same
linewidth broadening across the whole spectrum. As shown in
Fig. 4, the Green’s function converges faster with a larger η,
but the error also increases linearly with η.

The computational cost for each iteration grows with N , the
number of unknowns in the unit cell as shown in Fig. 1(b). Al-
though the finite-element eigenmatrix M is sparse, its inverse
is not [γ−1 in Eqs. 6(b), 7(b), and (8)]. So faster algorithms
designed for sparse matrices cannot help and the memory and
time costs grow with N2 and N3, as a regular matrix problem.
Using 20 Intel Xeon 2.30-GHz processing cores, it takes 10–
20 days to obtain the results in Figs. 3(c) and 2(c), and 0.5–1
day to obtain the results in Figs. 3(d)–3(f) and Figs. 2(d)–2(f),

TABLE I. Time and memory costs of the surface DOS calcula-
tion for a single data point (k, ω).

Photonic Acoustic

Unit-cell unknowns N 4802 3780
Peak memory (GB) 5.2 3.4
Time per iterationa (s) 179.1 90.5

aMATLAB run using one 2.30-GHz Intel Xeon Gold 6140 processor
core.

115131-5



YI-XIN SHA et al. PHYSICAL REVIEW B 104, 115131 (2021)

while it takes no more than half a day to obtain the band
structures of a supercell slab as shown in Figs. 3(b) and 2(b).
Our approach can be trivially paralleled by distributing the
independent data points (k, ω) on different cores.

VI. CONCLUSION

We implement the iterative Green’s function method to
calculate the surface density of states in semi-infinite photonic
and acoustic crystals. The results are highly desirable for
studying the topological states in classical systems, despite the
drawback of its large computation costs for 3D problems. This
method can be further developed to treat frequency-dependent
material parameters [41].
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M. Soljačić, Experimental observation of Weyl points, Science
349, 622 (2015).

[39] C. Fang, L. Lu, J. Liu, and L. Fu, Topological semimet-
als with helicoid surface states, Nat. Phys. 12, 936
(2016).

[40] X. Liang and S. G. Johnson, Formulation for scalable optimiza-
tion of microcavities via the frequency-averaged local density
of states, Opt. Express 21, 30812 (2013).

[41] A. Spence and C. Poulton, Photonic band structure calculations
using nonlinear eigenvalue techniques, J. Comput. Phys. 204,
65 (2005).

115131-7

https://doi.org/10.1364/OE.16.011376
https://doi.org/10.1364/JOSAA.22.001844
https://doi.org/10.1016/j.apnum.2008.12.013
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/nphys3782
https://doi.org/10.1364/OE.21.030812
https://doi.org/10.1016/j.jcp.2004.09.016

