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Model for fractons, fluxons, and free vertex excitations
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We propose a lattice spin model on a cubic lattice that shares many of the properties of the 3D toric code and
the X-cube fracton model. The model, made of Z3 degrees of freedom at the links, has the vertex, the cube, and
the plaquette terms. Being a stabilizer code the ground states are exactly solved. With only the vertex and the
cube terms present, we show that the ground state degeneracy (GSD) is 3L3+3L−1, where L is the linear dimension
of the cubic lattice. In addition to fractons, there are free vertex excitations we call the freeons. With the addition
of the plaquette terms, GSD is vastly reduced to 33, with fracton, fluxon, and freeon excitations, among which
only the freeons are deconfined. The model is called the AB model if only the vertex (Av) and the cube (Bc) terms
are present and the ABC model if in addition the plaquette terms (Cp) are included. The AC model consisting
of vertex and plaquette terms is the Z3 3D toric code. The extensive GSD of the AB model derives from the
existence of both local and nonlocal logical operators that connect different ground states. The latter operators
are identical to the logical operators of the Z3 X-cube model. Fracton excitations are immobile and accompanied
by the creation of fluxons—plaquettes having nonzero flux. In the ABC model, such fluxon creation costs energy
and ends up confining the fractons. Unlike past models of fractons, vertex excitations are free to move in any
direction and pick up a nontrivial statistical phase when passing through a fluxon or a fracton cluster.
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I. INTRODUCTION

We have witnessed significant convergence of ideas from
quantum information, quantum computation, and quantum
many-body theory in the past decades [1]. Since Shor intro-
duced the idea of error correction [2], a large number of papers
have followed suit [3–14] firmly establishing the notion of
quantum computation and quantum memory. As a model for
quantum memory, the stability of quantum bits stored in the
toric code [4] or its annular [9,10] and higher dimensional
versions [15–17] derives from having to invoke a nonlocal
string operator to move one ground state into a different one.
The idea of self-correcting quantum memory also has been
proposed and improved [18–20]. Nowadays, the confluence is
especially apparent in the works on fractons [21–30].

Fracton models are either gapped or gapless. Further,
gapped fracton models can be classified as type I or type II
[21]. Type I gapped fracton models have two distinct quasi-
particles: fractons which are immobile and subdimensional
particles such as lineons and planons which can move along a
line or within a plane, respectively. The X-cube model [22] is
a simple realization of the type I gapped fracton models and a
natural generalization of the toric code to three dimensions.
Type II gapped fracton models can have only fractons as
quasiparticles and the well-known example is Haah’s cubic
code [23]. The number of quantum bits becomes equivalent to
the logarithm of the ground state degeneracy (GSD) in topo-
logical models of quantum memory and grows subextensively,
i.e., linear in the system size L, for the gapped fracton models
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proposed so far [21]. Gapless fracton models can be under-
stood to some extent in the framework of U(1) symmetric
tensor gauge theory [31,32], which describes well the origin
of the restricted mobility of subdimensional particles.

In this paper, we propose a different kind of fracton model.
Written in terms of Z3 degrees of freedom on the links of
the L × L × L cubic lattice, our model consists of mutually
commuting vertex, cube, and plaquette operators. When only
the vertex and the cube operators are present, the model sup-
ports extensive GSD equal to 3L3+3L−1. With the addition of
the plaquette term, GSD becomes 33. The ZN generalization
of the X -cube model suggested previously [24–27] predicts,
on the other hand, a subextensive GSD: logN GSD ∼ O(L).
The vast increase in the GSD is understood in terms of local
symmetries in our model, absent in previous fracton models.
Some of the ground states are connected by a local operation
(therefore not topological) but some are only connected by
nonlocal loop operator as in other models of topological quan-
tum computation. We identify such local as well as nonlocal
operators in the model.

In addition to fracton excitations that are immobile as
usual, there are vertex excitations in our model whose motion
is “free,” unlike in other fracton models predicting one-
dimensional confinement of the vertex excitation. Our vertex
excitations are thus called freeons in contrast to lineons in
previous fracton models. The third kind of excitation sup-
ported in our model is the fluxon, which is an analog of
m particles in the toric code. Unlike the toric code, how-
ever, these fluxons cannot exist in isolation but must always
share an edge with another fluxon and therefore always form
a cluster. The boundary of such cluster then forms a flux
loop. A freeon passing through such a loop picks up an
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Aharonov-Bohm phase, in a generalization of the statistical
phase factors picked up by e and m particles in the ZN toric
code. In essence, the m particles of the toric codes are replaced
by “m tubes,” inside which the flux is confined. The adiabatic
motion of a freeon can be used also as a detection scheme for
fractons, as described in other works [25,33–36].

Section II makes a self-consistent review of the toric code
and the X-cube models in a language and notation that will
be consistently used in the remainder of the paper. The model
we propose is introduced in Sec. III. Counting of the ground
state degeneracy is performed carefully in Sec. IV followed
by the analysis of logical operators in Sec. V. The fracton,
fluxon, and freeon excitations of the model are defined and
their characteristics and statistical interactions analyzed in
Sec. VI.

II. REVIEW OF Z2 TORIC CODE AND X-CUBE MODEL

The mathematical structures of the toric code and the X-
cube model are well known. The toric code has Z2 degrees
of freedom residing on the links of a square lattice. There
are vertex operators Av and plaquette operators Bp defined
respectively as

Av = 1

2

(
1 +

∏
i∈+v

xi

)
,

Bp = 1

2

⎛
⎝1 +

∏
j∈�p

z j

⎞
⎠ (2.1)

in terms of the Pauli operators x and z at the links. The
subscript i refers to the four links emanating from a vertex
v and j to the four links surrounding a given plaquette p. Both
operators are projectors A2

v = Av , B2
p = Bp and define the toric

code Hamiltonian

H = −
∑

v

Av −
∑

p

Bp (2.2)

as the sum over all the vertices and the links of the lattice.
The ground state(s) of the model is found by either projecting
the ground state of −∑

v Av with
∏

p Bp or by projecting the
ground state of −∑

p Bp with
∏

v Av . In each case, we obtain
the ground states

|G1〉 =
[∏

p

Bp

]
|SA〉

or |G′
1〉 =

[∏
v

Av

]
|SB〉 , (2.3)

where the seed states |SA〉 and |SB〉 respectively satisfy
Av |SA〉 = |SA〉 and Bp |SB〉 = |SB〉 for arbitrary v and p. One
simple example of |SA〉 and |SB〉 is given as a product of |0〉l ’s
and |0〉l ’s over all the links l , which are the eigenstates of z and
x operators with zi|0〉i = |0〉i and xi|0〉i = |0〉i, respectively. In
general, we have |G1〉 �= |G′

1〉 as they possess different sets of
quantum numbers, to be clarified below.

FIG. 1. Deformed path in the toric code is obtained by acting an
elementary plaquette operator Bp to an existing path. The new path
defines the same logical operator as the old one.

The toric code possesses string operators that commute
with the Hamiltonian:

Zh =
∏
i∈hl

zi, Zv =
∏
i∈vl

zi. (2.4)

The product runs over a horizontal line labeled hl , or a vertical
line labeled vl , in the square lattice. There is a second pair of
string operators given by

X h =
∏
i∈hd

xi, X v =
∏
i∈vd

xi. (2.5)

This time the strings pass through the dual lattice points at the
center of the plaquettes, as shown in Fig. 1. The two sets of
string operators obey the algebra

X hZv = −ZvX h, X vZh = −ZhX v. (2.6)

On a torus, new ground states are generated from |G1〉 in
Eq. (2.3) through the action of string operators

|G2〉 = X h|G1〉,
|G3〉 = X v|G1〉,
|G4〉 = X vX h|G1〉. (2.7)

It turns out the other pair of string operators characterizes the
four ground states as

Zh|G1〉 = +|G1〉, Zv|G1〉 = +|G1〉,
Zh|G2〉 = +|G2〉, Zv|G2〉 = −|G2〉,
Zh|G3〉 = −|G3〉, Zv|G3〉 = +|G3〉,
Zh|G4〉 = −|G4〉, Zv|G4〉 = −|G4〉. (2.8)

Each ground state is labeled with a pair of binary quantum
numbers corresponding to the eigenvalues of (Zh, Zv ). Alter-
natively, one can choose the four ground states as |G′

1〉 and

|G′
2〉 = Zh|G′

1〉,
|G′

3〉 = Zv|G′
1〉,

|G′
4〉 = ZvZh|G′

1〉. (2.9)

These four states are in turn labeled by

X h|G′
1〉 = +|G′

1〉, X v|G′
1〉 = +|G′

1〉,
X h|G′

2〉 = +|G′
2〉, X v|G′

2〉 = −|G′
2〉,

X h|G′
3〉 = −|G′

3〉, X v|G′
3〉 = +|G′

3〉,
X h|G′

4〉 = −|G′
4〉, X v|G′

4〉 = −|G′
4〉. (2.10)
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The string operators X, Z are also known as logical operators
for their implication in quantum information [4]—a term we
continue to adopt in the rest of the paper.

The X-cube model is a generalization of the toric code to
three dimensions. There are three kinds of vertex operators per
vertex v:

Axy
v = 1

2

(
1 + axy

v

)
, axy

v =
∏

i∈+v,xy

xi,

Ayz
v = 1

2

(
1 + ayz

v

)
, ayz

v =
∏

i∈+v,yz

xi,

Axz
v = 1

2

(
1 + axz

v

)
, axz

v =
∏

i∈+v,xz

xi. (2.11)

Each one has the same form as the vertex operator of the toric
code, but now there are three planes xy, yz, and xz in which to
define them. The symbol i ∈ +v,xy for instance means the four
links emanating from the vertex v in the xy plane. Instead of
the plaquette operator Bp in the toric code, one has the cube
operator Bc:

Bc = 1

2
(1 + bc), bc =

∏
j∈�c

z j . (2.12)

There are twelve z operators coming from the edges of a
cube c. All four operators Axy

v , Ayz
v , Axz

v , Bc are projectors and
mutually commuting. The GSD of this model is known to be
26L−3 for a L × L × L cubic lattice under the periodic bound-
ary conditions (PBC) in all three directions (a three-torus)
[22,27,33]. The factor 6L − 3 in the exponent is indicative
of the number of independent logical operators in the X-cube
model.

First, a ground state of the X-cube model is found by the
projection

|G〉 =
[∏

v

Axy
v Ayz

v Axz
v

](∏
l

|0〉l

)

or |G′〉 =
[∏

c

Bc

](∏
l

|0〉l

)
, (2.13)

in close analogy to the ground state construction of the toric
code. The logical operators are exactly those of the toric
code, Eqs. (2.4) and (2.5), but now they exist for each planar
orientation xy, yz, and xz. Application of one of these logical
operators on the ground state |G〉 shown in Eq. (2.13) brings
it to another ground state of the X-cube Hamiltonian.

We make a careful discussion of the translational invari-
ance property of the logical operators in the toric code or the
X-cube model. The horizontal string operator, for instance, is
defined for an arbitrary vertical position of the square lattice
and vice versa and yet exactly the same state results from
their actions on the ground state irrespective of their vertical
positions. The reason for this is a special property of the link
operators,

Aα
v =

⎛
⎝ ∏

i∈+v,α

xi

⎞
⎠Aα

v , (2.14)

where α = xy, yz, xz. It states that any vertex operator Aα
v

can be interpreted equally well as an additional operation∏
i∈+v,α

xi followed by Aα
v operation itself. What the extra

operation
∏

i∈+v,α
xi does is to flip the seed spin states |0〉l on

the four links tied to a vertex v in the α plane: |0〉l → |1〉l .
Due to the identity mentioned in Eq. (2.14), one might as well
absorb

∏
i∈+v,xy

xi as part of the logical operator,

X xy
v Axy

v =
⎛
⎝X xy

v

∏
i∈+v,xy

xi

⎞
⎠Axy

v . (2.15)

The upper index in X xy
v means that it is the vertical logical

operator within the xy plane of the cubic lattice. The new
logical operator X xy

v

∏
i∈+v,xy

xi has a trajectory that is bent by
one elementary square unit, in a manner depicted in Fig. 1,
but its action on a ground state |G〉 results in exactly the same
state as before due to identities mentioned in Eqs. (2.14) and
(2.15). In particular, a shift of the entire vertical trajectory
of X xy

v by one lattice spacing along the horizontal direction
results in the same logical operator. This is why there are only
two independent logical operators, one horizontal and one
vertical, in the toric code.

There are two logical operators per plane, per layer, per
orientation (i.e., xy, yz, xz), which make up the 6L logical op-
erators overall in the X-cube model. Certain constraints exist
among these logical operators [33], and reduce the number
of independent operators from 6L to 6L − 3. This, in turn,
explains GSD = 26L−3 of the X-cube model [22,27,33].

We present another way to obtain the same GSD. A gen-
eral theory of GSD for the stabilizer codes as worked out in
Refs. [6,7] says

logN GSD = Nl − Ns = Nlo. (2.16)

Each symbol represents the degrees of freedom (N) residing
at the link, the number of links (Nl ), of independent stabilizers
(Ns), and of independent logical operators (Nlo), respectively.
For instance, in the toric code, the number of independent
stabilizers is Ns = 2L2 − 2 because among the 2L2 stabilizers
there exist two constraints. One can obtain Nlo = 2 alterna-
tively from the argument on the number of independent logical
operators presented above. Previous counting argument for
the GSD of the X-cube model [27,33] focused on Nlo. Below
we show how to count Ns and arrive at the same GSD.

Ostensibly, there are 4L3 stabilizers in the X-cube model
far exceeding even the number of links, 3L3. One quickly
notices though that axz

v = axy
v ayz

v at every vertex v, allowing for
only 2L3 independent vertex stabilizers. Furthermore, there
are certain identities obeyed among the vertex operators

∏
v∈ith α plane

aα
v = 1, (2.17)

where α = xy, yz, xz. The product of axy
v operators over

the vertices in a given xy plane is an identity and so on.
Altogether there are 3L such identities among the vertex sta-
bilizers, which seems to reduce the number of independent
vertex stabilizers from 2L3 to 2L3 − 3L. Such counting is still
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incomplete, as there is yet another identity(
L∏

i=1

∏
v∈ith xy plane

axy
v

)(
L∏

i=1

∏
v∈ith yz plane

ayz
v

)

=
(

L∏
i=1

∏
v∈ith xz plane

axz
v

)
, (2.18)

which follows readily from axy
v ayz

v axz
v = 1. Instead of having

3L independent identities shown in Eq. (2.17), we have only
3L − 1 identities due to Eq. (2.18); hence the total number
of independent vertex operators is 2L3 − 3L + 1. There are
analogous constraints among the cube operators bc,∏

c∈ith α layer

bc = 1, (2.19)

where α = xy, yz, xz layer refers to a single stack of cubes
parallel to the α plane. There are 3L identities overall among
the cube operators but here we also find some extra relations
among the identities

L∏
i=1

∏
c∈ith xy layer

bc =
L∏

i=1

∏
c∈ith yz layer

bc

=
L∏

i=1

∏
c∈ith xz layer

bc. (2.20)

This gives two extra relations among the identities mentioned
in Eq. (2.19) and reduces the number of constraints from 3L
to 3L − 2. As a result, the number of independent cube opera-
tors is L3 − 3L + 2. The number of independent stabilizers is
therefore

Ns = (2L3 − 3L + 1) + (L3 − 3L + 2)

= 3L3 − 6L + 3, (2.21)

which directly leads to the well-known result GSD =
2Nl −Ns = 26L−3 for the X-cube model. This way of counting
the number of independent stabilizers seems cumbersome in
the case of the X-cube model but will prove valuable when it
comes to calculating GSD of our model.

III. ABC MODEL

The model we propose consists of the vertex (Av), the cube
(Bc), and the plaquette (Cp) terms:

H = −
∑

v

Av −
∑

c

Bc − α
∑

p

Cp. (3.1)

Like its predecessors, it is a stabilizer code on a cubic lattice.
Distinct from most stabilizer models, there are three kinds
of terms which are mutually commuting in our model. The
link variables are specifically chosen to be Z3. We continue
to adopt notations x and z for the operators which obey the
relations (|g〉 = |0〉, |1〉, |2〉)

x |g〉 = |g + 1〉 (mod3), z |g〉 = ωg |g〉 . (3.2)

FIG. 2. Definitions of vertex, cube, and plaquette operators in our
model. Red and blue lines respectively represent x and x2 for av and
z and z2 for bc and cp,λ’s. The x, y, z orientations shown here will be
adopted for all subsequent figures.

As a result we get zx = ωxz, where ω = e2π i/3. The operators
x and z in Eq. (3.2) are not Hermitian, but instead obey

x† = x2, z† = z2. (3.3)

This property distinguishes them from conventional Pauli x
and z operators which are Hermitian.

The Hermiticity of the vertex (Av) and the cube (Bc) oper-
ators is recovered by writing them as

Av = 1
3

(
1 + av + a2

v

)
, Bc = 1

3

(
1 + bc + b2

c

)
. (3.4)

The av operator is given as the product of x’s and x2’s defined
on the six links connected to a vertex as shown in Fig. 2. The
cube operator bc is the product of z’s and z2’s defined on the
twelve edges of a cube as illustrated in Fig. 2. The operators
av and bc can be expressed as

av =
∏

lr

xlr

∏
lb

x2
lb, bc =

∏
lr

zlr

∏
lb

z2
lb, (3.5)

where lr and lb stand for red links and blue links, respectively,
in Fig. 2. Using Eq. (3.3), one can easily see that a†

v = a2
v and

b†
p = b2

p, which make Av and Bp both Hermitian.
In addition, there is a Hermitian plaquette operator Cp,λ

(λ = xy, yz, xz) for each plaquette of the lattice,

Cp,λ = 1
3

(
1 + cp,λ + c2

p,λ

)
, (3.6)

with cp,λ defined as in Fig. 2 and expressed as

cp,λ =
∏

lr

zlr

∏
lb

z2
lb, (3.7)

where lr and lb stand for red links and blue links, respectively,
in Fig. 2. The x, y, z directions of the cubic lattice shown
in Fig. 2 will be adopted in all subsequent figures. All the
operators Av, Bc, Cp,λ are projectors and commuting, i.e.,
A2

v = Av , B2
c = Bc, C2

p,λ = Cp,λ. Therefore, our Z3 model is
a stabilizer code model and distinctly different from the ZN

(N = 3) generalizations of the X-cube model given previously
[24–27].

Computing the GSD of the AB model requires that we
work out either Ns or Nlo in the general formula, Eq. (2.16).
The number of independent stabilizers Ns is easy to work out.
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There are L3 vertex stabilizers in the AB model, but only
L3 − 1 of them are independent due to the identity

∏
v av = 1

(product over all the vertices of the cubic lattice). For the cube
operators, the constraints given in Eqs. (2.19) and (2.20) apply
to the AB model as well, with the appropriate modification
of the definition of the bc. As in the X-cube model, only
L3 − 3L + 2 cube stabilizers are independent. The overall
number of independent cube and vertex stabilizers is

Ns = (L3 − 1) + (L3 − 3L + 2)

= 2L3 − 3L + 1, (3.8)

meaning that the GSD of the AB model is

log3(GSD) = L3 + 3L − 1 (AB model). (3.9)

The GSD here is extensive. What happens to the GSD for
the full ABC model requires an understanding of the local
plaquette symmetry and the notion of independent p sectors,
which is discussed in the next section. Once this is cleared,
GSD of the ABC model follows as 33.

IV. LOCAL PLAQUETTE SYMMETRY

Eigenstates of the ABC model can be labeled in terms
of the eigenvalues of the plaquette operators cp,λ as they
commute with the rest of the terms in the model. The 33L3

-
dimensional Hilbert space divides up into various sectors
according to the eigenvalues of the plaquette operators taking
on 1, ω, or ω2. Each “p sector” is then characterized by a
set of 3L3 values {pi} (pi = 1, ω, ω2), where i refers to a
plaquette. At first, there seems to be 33L3

distinct p sectors,
but more careful reasoning says otherwise.

As a warmup, we consider the situation of a two-
dimensional square lattice where each elementary square
plaquette carries one of the three eigenvalues of the cp,xy

operator. The Hilbert space dimension for an L × L square
lattice is 32L2

. There are L2 plaquette operators in total, but
the product of all the plaquette operators in the square lattice
equals 1. The number of independent p sectors becomes 3L2−1

instead of 3L2
, also implying that within each p sector the

dimension of the Hilbert space must be 3L2+1. One can in fact
check that this is so by explicit counting of the number of
distinct link configurations {zi} (zi = 0, 1, 2) that are consis-
tent with a given distribution of plaquette quantum numbers.
Take, for instance, the case where pi = 1 (zero flux) for all
the elementary plaquettes, requiring the four-link variables to
obey the condition z1 + z2 = z3 + z4 (mod 3). Careful count-
ing of all the possible z’s consistent with the constraints indeed
yields the desired result 3L2+1. The 32L2

-dimensional Hilbert
space factorizes as

32L2 = 3L2−1 × 3L2+1. (4.1)

A similar consideration gives the factorization of the Hilbert
space of the ABC model as

33L3 = 32L3−2 × 3L3+2. (4.2)

The number of independent p sectors is 32L3−2, while the
number of states in a given p sector is 3L3+2.

FIG. 3. First layer of the cubic lattice. The plaquettes that con-
tribute to the counting of the independent link configurations are
colored. Floor plaquettes, front plaquettes, and side plaquettes are
colored in yellow, blue, and gray, respectively.

The gist of the counting argument in both two and three
dimensions can be explained. One starts with a single, two-
dimensional square lattice. By explicit counting, one can
prove that the number of independent link configurations,
consistent with the constraint, in the first row of squares is
32L. For the subsequent rows, the number of independent link
configurations is reduced to 3L per row, except the last row
where only three possible link values are allowed. In total, the
number of allowed link configurations in the two-dimensional
square lattice, under the PBC, is

32L × 3L × · · · 3L × 3 = 3L2+1. (4.3)

The counting argument for the number of link configura-
tions in three dimensions proceeds similarly, by starting with
the first layer of cubes (Fig. 3). Counting the link configura-
tions of the bottom xy plane (yellow) is already done and gives
3L2+1. The numbers of link configurations of the front plaque-
ttes (blue, facing us) and the side plaquettes (gray, at right
angles to the front plaquettes) are 3L and 3L(L−1), respectively,
by explicit counting. The rest of the plaquettes at the back
and the top carry no further degrees of freedom in the link
variables. For the second to the (L − 1)th layers, the number
of link configurations for the front and the side plaquettes
are the same as in the first layer, but the floor plaquettes no
longer need to be counted because their configurations have
been fixed from the layer below. For the final, Lth layer, there
are only three link configurations allowed after taking into
account the PBC. Tallying the count, we get

3L2+1 × (3L3L(L−1))L−1 × 3 = 3L3+2 (4.4)

for the number of link configurations in a given p sector. This
explains the factor 3L3+2 in the factorization, Eq. (4.2).

Next, although this is not strictly necessary, we count the
number of independent p sectors. The correct answer must be
33L3

/3L3+2 = 32L3−2, but an independent check will be highly
desirable. In the case of a two-dimensional lattice, we saw
that one of the plaquette numbers is fixed entirely in terms
of the remaining L2 − 1 plaquette numbers. In the cubic lat-
tice, there are certain constraints associated with each cube.
Note that the product of plaquette operators on the six faces
of a cube in the manner depicted in Fig. 4(b) equals one. The
plaquette numbers must satisfy a similar constraint that their
product is equal to one for each cube. There are L3 cubes
but only L3 − 1 cube constraints since the product of all cube
constraints automatically gives 1 and one of the constraints
can be expressed as the product of the remaining L3 − 1 cube
constraints.
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FIG. 4. Various constraints on the plaquette operators. (a) Prod-
uct of cp’s in a given xy layer has to be 1. The same condition applies
for yz and xz layers as well. (b) Product of three cp’s (yellow) and
three c2

p’s (blue) of a cube in this manner gives 1. (c) The product
of all cube operator cp’s results in surface contributions only, which
then becomes 1 under the PBC. (d) The product of cube operators in
a single layer is equivalent to a product of plaquette operators at the
top and the bottom.

We are still not completely done. In the case of a two-
dimensional lattice, there are planar constraints like the one
in Fig. 4(a) and, even in a three-dimensional lattice, these
constraints must still hold. However, the planar constraints are
not entirely independent from the cube constraints mentioned
in the previous paragraph. To see why, take the product of
all the cube constraints in one layer, as shown in Fig. 4(d).
It is easy to check that the operators on the side of the layer
become one [hence not shown in Fig. 4(d)], while the top and
the bottom faces of the layer give the product of pi’s. From
the condition that the product of all cube constraints in a layer
is one, we infer the following relation among the product of
pi’s in the two planes:∏

i

pxy,i =
∏

j

pxy, j . (4.5)

The indices i and j refer to the plaquettes of the upper and
the lower plane, respectively. As a result, there are planar con-
straints but for only one of the planes in a given orientation.
One may think of Eq. (4.5) as “constraints among constraints,”
so to speak. With three such constraints, one per orientation
of the planes, we finally come to the number of independent
constraints on the plaquette operators L3 − 1 + 3 = L3 + 2.
The number of distinct p sectors is then 33L3−(L3+2) = 32L3−2

as desired.
Finally, we come to the task of calculating GSD of the full

ABC model. It is first of all essential to realize that the cube
stabilizer is no longer an independent operator, in the sense
that it can be decomposed as a product of four plaquette oper-
ators as shown in Fig. 5. The cube operators must be ruled out
in the counting of the number of independent stabilizers. On
the other hand, the number of independent plaquette operators
is derived straightforwardly from the number of independent p
configurations, which we worked out to be 32L3−2 earlier. The
number of independent Av stabilizers is L3 − 1 as mentioned
earlier. Overall, we get the number of independent stabilizers

FIG. 5. Product of cp (c2
p) on upper (lower) xy plane of a cube

and cp (c2
p) on the front (back) yz plane of a cube is equal to the cube

operator bc.

and the GSD in the ABC model as

Ns = (L3 − 1) + (2L3 − 2) = 3L3 − 3,

GSD = 3Nl −Ns = 33 (ABC model). (4.6)

As far as counting of the GSD goes, the AC model (without
the cube term) is the same as the full ABC model.

The ground states of the ABC model arise in the pi = 1
sector (zero flux for all the plaquettes). There are only three
logical operators Nlo = 3 generating the ground state man-
ifold. When we start from a ground state [

∏
v Av](⊗l |0〉l ),

logical operators that connect this ground state to other ground
states are shown in Fig. 6 as the product of x’s occupying
an entire “membrane” and are distinguished from the string
operators of the toric code or the X-cube model. Translating
a membrane operator by one lattice constant is an identity
operation, in the same sense that the translation of the logical
operator in the toric code or the X cube is an identity. There is
one membrane logical operator per plane orientation and three
overall.

Identifying the logical operators generating the ground
states of the AB model is much more challenging. There
should be L3 + 3L − 1 of them according to Eq. (3.9), but
it turns out not all of them are nonlocal. We will make a
careful discussion of these operators, both local and nonlocal,
in Sec. V.

V. LOGICAL OPERATORS

It is much easier to first think about the logical operators
in the ABC model as there are only three of them, and they
are quite easy to construct, as shown earlier in Fig. 6. This
is the only kind of nonlocal operator that commutes with the
ABC Hamiltonian. Using the identity Av = avAv and the fact
that a ground state is given as the projection [

∏
v Av](⊗l |0〉l ),

one can show that a membrane operator acting on a ground

FIG. 6. Three independent membrane operators generating the
ground states in the ABC model.
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FIG. 7. Vertex operators that serve as local logical operators of
the AB model. Red and blue lines respectively represent x and x2.

state gives an identical state as another membrane operator,
translated by one lattice spacing in the direction orthogonal to
the membrane, acting on the same ground state. This explains
why there are only three independent logical operators for the
ABC model and GSD = 33. Since all logical operators in the
ABC model are nonlocal, one can say it has topological order.

For the AB model, we argued earlier that there will be
L3 + 3L − 1 independent, logical operators. They can be clas-
sified as local and nonlocal. Here we are using the term
“logical operators” as those that are capable of changing one
ground state into another when acting on the initial ground
state. The local logical operators are av,λ’s (λ = xy, yz, xz)
shown in Fig. 7, while the nonlocal ones are straight-loop
operators in the usual sense.

We start with calculating the number of independent local
logical operators. First of all, the vertex operators av,λ (λ =
xy, yz, xz) shown in Fig. 7 commute with the existing av and
bc that define the vertex and cube operators of the AB model.
These operators are, in fact, the Z3 versions of the vertex oper-
ators in the X-cube model, Eq. (2.11). If we naively count the
number of av,λ’s, there will be 3L3 of them, not all of which
are independent. As shown in Figs. 8(a) and 8(b), one can see

FIG. 8. (a) av,yz is the product of a2
v,xy on a given vertex and av .

(b) av,xz is the product of a2
v,xy on a given vertex and av,yz. (c) The

product of av,xy along the x direction connects adjacent straight loop
logical operators extended along the x direction.

that av,yz is equal to the product a2
v,xyav and av,xz is equal to

a2
v,xyav,yz. It then suffices to count the local logical operators

that are made in terms of av,xy only. The product of av,λ in
a given λ layer is an identity as we described in Fig. 4(a),
implying that only L2 − 1 av,xy operators are independent in
a given xy layer. In the last xy layer in a stack of L layers of
the cubic lattice, the counting argument applies differently as
one should keep in mind not only the identity in the xy layer
but also the identities of the yz and xz layers, which gives rise
to (L − 1)2 independent local logical operators for the last xy
layer instead of L2 − 1. Therefore, the number of local logical
operators is

(L2 − 1) × (L − 1) + (L − 1)2 = L3 − 3L + 2. (5.1)

The rest of the logical operators are the straight loop logical
operators given as the product

∏
i xi along a noncontractible

straight loop in all three directions. One can easily check
that they commute with all the vertex and the cube operators
and that there are 6L − 3 of them, which is also the number
of logical operators in the X-cube model. In the toric code
or the X-cube model, logical operators defined on adjacent
straight lines are equivalent and do not produce new ground
states when acting on a given ground state. In the AB model,
they are not equivalent, but are still connected to each other
by various local operators av,λ, whose actions have already
been accounted for. Figure 8(c) shows how the two adjacent
straight loop operators extended along the x direction are
connected by the product of av,xy’s. A similar argument ap-
plies to other orientations of straight loop operators. Although
they are different nonlocal operators, they fail to produce any
new ground states not already accounted for by the action of
local operators. In summary, the 3L3+3L−1 ground states of
the AB model are connected to one another by applying one
of the 6L − 3 nonlocal operators or one of the L3 − 3L + 2
local logical operators. The nonlocal logical operators can be
thought of as those of the Z3 X-cube model.

VI. EXCITATIONS AND BRAIDING

The ABC model supports various excitations, dubbed flux-
ons, fractons, and freeons. They are the excitations taking
place inside a plaquette, a cube, or at the vertex, respectively.
The freeon is the three-dimensional analog of the e particle
in the toric code and is free to move without any directional
constraint. All the excitations in our model come in two colors
(charges) due to having Z3 degrees of freedom at the links. It
is helpful first to introduce some additional vertex, cube, and
plaquette operators Av (n), Bc(n), and Cp(n), defined as

Av (n) = 1
3

(
1 + ωnav + ω2na2

v

)
,

Bc(n) = 1
3

(
1 + ωnbc + ω2nb2

c

)
,

Cp(n) = 1
3

(
1 + ωncp + ω2nc2

p

)
, (6.1)

where n = 0, 1, 2. One can check the following relations:

O(n)O(n′) = δ(n, n′)O(n),

[O(n), O′(n′)] = 0,∑
n

O(n) = 1, (6.2)
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FIG. 9. Applying an x operator on a link creates (a) two blue
fractons and two yellow fractons, as well as (b) two blue fluxons
and two yellow fluxons in the ABC model. (c) Four fractons can be
taken apart without extra cube energy, but (d) costs plaquette energy
growing as α times the number of fluxons. (e) A single blue or yellow
fracton cannot move without creating two additional fractons.

where O = Av, Bc, Cp and O′ = Av′ , Bc′ , Cp′ . With these
machinery at the ready, we discuss the fracton and fluxon
excitations first, as they are closely related, and the freeon
excitations later.

A. Fractons and fluxons

The fracton excitations in our model can be characterized
with the help of Bc(n). Acting on a ground state with x on a
single link (a “defect link”) as illustrated in Fig. 9(a), eigen-
values of the four cube operators Bc that share the defect link
become 0, leading to four fracton excitations on the adjoining
cubes. These fractons are in turn distinguished in terms of
their colors. Let us define bcb and bcy as the cube operators
for the blue cube and the yellow cube, respectively, in Fig. 9.
One can show bcy x = ω2xbcy and bcbx = ωxbcb by Eq. (3.2)
and, from this, it follows that

Bcy (n)x |G〉 = 1
3 (1 + ωn+2 + ω2n+1)x |G〉 ,

Bcb (n)x |G〉 = 1
3 (1 + ωn+1 + ω2n+2)x |G〉 . (6.3)

Namely, yellow cubes are the eigenstates of Bc(1) with the
eigenvalue 1, while blue cubes are the eigenstates of Bc(2)
with the eigenvalue 1. Simultaneously, the eigenvalues of the
plaquette operators Cp for the four plaquettes sharing the
defect link also change from +1 to 0, costing energy α per
plaquette as in Fig. 9(b). Similar to fractons, fluxons are col-
ored by yellow or blue as they become the eigenstates of Cp(1)
or Cp(2) with eigenvalue 1, respectively. These are the fluxon
excitations. Starting from the four-fracton cluster in Fig. 9(a),
one can make continued insertions of the defect links as shown
in Fig. 9(c) without an extra cost in the cube energy. However,
there are some plaquette excitations associated with each new
defect link that cost energy +α each [see Fig. 9(d)]. Fractons

FIG. 10. Red and blue lines respectively represent z and z2.
(a) Applying a z operator on a link creates two vertex excitations.
(b) A square quasiparticle can move along the y direction without an
extra energy cost by continued application of z’s. A square quasipar-
ticle can change its direction to (c) −x or +z direction without extra
energy by acting z and (d) +x or −z direction without extra energy
by acting z2.

and the accompanying fluxons are confined in the ABC model,
in the sense that the expansion of the four-fracton cluster costs
energy that grows as α times the number of accompanying
fluxons. When we move a single blue or yellow fracton in any
direction as in Fig. 9(e), there is an extra blue-yellow cube pair
left behind, as is characteristic of the fracton physics [22].

B. Freeon excitations

Vertex excitations in the X-cube model are known as li-
neons as they are able to move freely (i.e., without extra
energy cost) along only one direction. The vertex excitations
in our ABC model, on the contrary, are able to move freely
in any direction. Rather than being lineons, they behave like
the vertex excitations in the two- and three-dimensional toric
codes.

When we act z on a link of a ground state as shown in
Fig. 10(a), eigenvalues of the two vertex operators Av whose
vertices touch the link become 0 and two vertex excitations
are created. In Fig. 10, we marked them as • (circle) and �
(square) at the respective vertices. We can show

Av• (n)z |G〉 = 1
3 (1 + ωn−1 + ω2n−2)z |G〉 ,

Av� (n)z |G〉 = 1
3 (1 + ωn−2 + ω2n−1)z |G〉 , (6.4)

where Av• (n) and Av� (n) are the vertex operators acting on
the circle vertex and the square vertex, respectively. In other
words, circle and square vertices are respectively the eigen-
states of Av (1) and Av (2) with the eigenvalue 1, implying two
different charges of the freeon excitation.

To separate the freeon pair, one keeps applying the z op-
erator along a continued line segment as in Fig. 10(b). To
create a turn, one applies either a z or z2 operator at the link
orthogonal to the original line segment as shown in Fig. 10(c)
or 10(d). The choice is made in such a way that the freeon
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FIG. 11. Magnetic flux lines emanating from the four-fluxon
cluster form a closed ring of effective magnetic flux. Red lines
represent x. Blue and yellow plaquettes represent ω and ω2 plaquette
quantum numbers (fluxes).

pair configuration commutes with all the vertex operators Av

except the two at the ends. As a result, vertex excitations can
move in any direction without having to further create residual
vertex excitations. The scheme fails in the case of X cube or
its Zn generalizations due to the fact that there are always
three kinds of vertex operators Axy

v , Ayz
v , Axz

v , and a turn in
the path of the string operator is bound to create excitations
in at least one of them. There is only one vertex operator in
the ABC model (as in the three-dimensional toric code), and
finding a freeon path that commutes with the vertex operators
becomes possible. The coexistence of vertex excitations with
no directional restriction and the fracton excitation with re-
stricted mobility places our model in a distinct category from
either type I or type II fracton models.

C. Braiding

Thanks to the unrestricted mobility of the freeon, one can
imagine an adiabatic motion of a freeon and a nontrivial phase
picked up in the process. Since the freeons are the only exci-
tations with truly unrestricted mobility, it is natural to think of
a freeon trajectory in the background of other excitations that
are held fixed.

Although fractons and fluxons tend to be created in tan-
dem, for ease of illustration we display only the fluxon clusters
in Fig. 11. Each fluxon emanates a “magnetic flux” in the
direction perpendicular to the plaquette. Depending on the
color of the fluxon, one can assign the direction of the mag-
netic flux to the plaquette. By smoothly connecting the fluxes
emanating from the plaquettes, one arrives at a closed path
shown as circles in Fig. 11. The path is directed, pointing
at the “positive” direction of the magnetic flux. The fluxon
boundaries can be deformed in various ways. Figure 12(a)
depicts the situation where, as the fluxon cluster expands from
having four to six fluxons, the encircling path expands along
with it. The fluxon loop does not have to be confined to a
plane, as shown in Fig. 12(b). It can even be a figure-eight
shape, as in Fig. 12(c), implying that an x and an x2 link
excitation will not merge and annihilate easily.

Now imagine a freeon of either charge (a circle or a square
freeon) entering the fluxon loop in a clockwise fashion, i.e.,
seeing the arrows in the fluxon loop as going clockwise as
the freeon enters the region enclosed by it. The freeon path
must intersect one of the fluxon defect links made by either
x or x2 and pick up a phase of ω or ω2 as it moves back
to its original position (Fig. 13). For the entrance into the
counterclockwise fluxon loop, the phase factor will reverse.

FIG. 12. (a) Fluxon-enclosing path can be enlarged as more flux-
ons appear. (b) The fluxon-enclosing path can make a turn as the
fluxons appear on different planar orientations. (c) A figure-eight
path is associated with this configuration of fluxons.

The closed loop made by a fluxon cluster can be viewed
as the loop of magnetic flux or a vortex loop. The analogy
becomes natural in Z3 models as the two fluxon charges
can be viewed as directions of the magnetic flux. There is
no sense of direction for the π -flux excitations in the Z2

models. One can say the m particles of the Z3 toric code are
now created three dimensionally, forming the flux loops. The
charged particles—e particles in the toric code and freeons
in our model—pick up the Aharonov-Bohm phase by going
round the flux loop. The mutual statistics of e and m particles
in the toric code can be interpreted as the effective magnetic
flux of π carried by the other species. Here in our model, the
effective flux of 2π/3 is concentrated along the fluxon loop.
A freeon moving adiabatically around a closed path can detect

FIG. 13. Red and blue lines represent z and z2, respectively.
(a) When a square freeon enters the fluxon loop in a clockwise fash-
ion and moves back to the original position, it gives a phase factor ω.
(b) When a circle freeon enters the fluxon loop in a clockwise fashion
and moves back to the original position, it gives a phase factor ω2.
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FIG. 14. Schematic figure of the procedure of square freeon
braiding in the AB model. Red lines and blue lines represent z and
z2, respectively. In each step, newly created circle or square freeons
are fully filled and annihilated ones are scarcely filled.

the presence of fluxons through the phase factor it picks up
during the passage.

One may ask the following: is it possible to use freeons to
detect the presence of fractons as well? The answer is yes, as
already well explained in recent papers [33,36]. We give an
adaptation of the existing argument that suits our model. This
time, the freeon path is defined utilizing the bc operators (not
z operators), and moving a freeon by a series of multiplication
of bc or b2

c operators for arbitrary size of the cube can be un-
derstood by the fusion rule of freeons. When we have a square
freeon, for instance, if a square freeon moves along the edges
of the arbitrary size of the cube, we can initiate the statistical
interaction of the freeon and a fracton by first separating the
square freeon into two circle freeons and moving them to
the vertices that are placed at −y and +z directions from the
original vertex (the second diagram of Fig. 14). After that,
two circle freeons change to one circle freeon plus two square
freeons, and the three of them move to the vertices marked in
the third diagram of Fig. 14. Following through the procedures
outlined in Fig. 14, where each step relies on the fusion rule of
freeons, the original square freeon state is restored, but with
multiplication by the operator b2

c. Therefore, in effect, the pro-
cess will have measured the presence of a fracton regardless
of which kind of fluxon distribution accompanies the fracton
creation. When we have a circle freeon instead, the procedure
described in Fig. 14 is equal to multiplication by bc instead. In
either case, the procedure results in a nontrivial phase factor
if there is a fracton inside the cube. These remote detection
methods for fractons were introduced in Refs. [33,36]. We
have outlined in Fig. 14 the Z3 version of the remote detection
scheme for fractons, applicable for both AB and ABC models.

The reason why the above elaborate detection scheme for
fractons is essential is that the freeon loop used to detect the
fluxon cluster fails to give a unique answer when it comes
to detecting fractons. To illustrate why, Fig. 15 shows two
identical fracton clusters that differ in their fluxon contents. A

FIG. 15. Constructing an identical fracton cluster in two different
ways. Red lines and blue lines represent x and x2, respectively. Note
that their fluxon contents differ.

freeon path such as given before obviously picks up different
phase factors in the two situations, although the fracton con-
tents are the same in both. Note that the two operations shown
in Fig. 15 are related by av,xy. Meanwhile, a closed freeon path
like those in Fig. 13 is generated by the product of cp,xy’s and
c2

p,xy’s, which do not commute with av,xy. This is why the two
fracton configurations in Fig. 13 give rise to different freeon
phases.

To sum up, the detection of both fluxons and fractons by
the adiabatic evolution of freeons can be done in the ABC
model but only the detection of fractons is meaningful in the
AB model. The ABC model and the Z3 toric code in three
dimensions share the same GSD, but the big difference arises
in the existence of fractons in the ABC model but not in
the toric code. As a result, freeons experience phase factors
through statistical interaction with fractons as well as the flux-
ons, while only the fluxons are responsible for the adiabatic
phase of freeons in the toric code.

VII. DISCUSSION

We have presented a different kind of fracton model
distinct from previous models in (i) the existence of local
symmetries and (closely related) extensive GSD, (ii) the exis-
tence of both nonlocal and local logical operators connecting
different ground states, and (iii) free vertex excitations called
freeons with nontrivial mutual statistics with respect to the
fracton-fluxon excitations. There are mutually commuting
vertex (Av), cube (Bc), and plaquette (Cp) terms in the model.
The extensive GSD is present only in the AB model with the
vertex and the cube terms present. The logical operators that
help alter one ground state into another have been sorted out
for both AB and ABC models. The fracton excitations are
accompanied by the fluxons, and the latter objects tend to
create a linear potential between the fractons leading to the
confinement of both in the ABC model. The vertex excitations
called freeons, on the other hand, remain completely free
to move in any direction both in the AB and ABC models.
The freeon and the local plaquette excitation exhibit mutual
anyonic statistics that can be detected whenever the freeon
path crosses the loop encompassing the fluxon cluster.

Past generalizations of the X-cube model involved geomet-
ric deformations of the cubic lattice [26,27] and/or enhancing
Z2 to ZN degrees of freedom at the links [24–27]. Common to
these models is the existence of three kinds of vertex operators
at the vertex, one for each planar orientation. This is one route
to generalize the vertex terms in the two-dimensional ZN toric
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code, of course, but our proposal here defines another route at
the generalization. The key idea is the introduction of only
one vertex operator Av consisting of x−1 for half the links
and x for the other half of the links connected to a vertex.
Such construction works well for Z3 link variables but fails
to produce a vertex operator that commutes with the cube
operator if the local Hilbert space is Z2. In other words, Z3

local Hilbert space is essential for our construction to work.
Other properties of the model such as the orientation of the
flux and flux loop excitations also derive from Z3 and are
absent in Z2 models.

It turns out the three-dimensional Z3 toric code assumes
exactly the same kind of vertex operator as ours but, instead of
a cube operator, has three sets of plaquette (or flux) operators
[37]. Our model in the absence of the cube term, i.e., the AC
model, is in fact the three-dimensional Z3 toric code. The ver-
tex excitations in the toric codes are also free—a property that
our model inherits despite also having fractonlike excitations.

Therefore, in many respects, our model is a hybrid between
the X cube and the three-dimensional toric code and realizes
properties of both, most notably the fracton excitations and
the free vertex excitations. Our model is intriguing in the
sense that the model is a host to three types of quasiparticles
(freeons, fluxons, and fractons) and some nontrivial statis-
tical interaction among them, while at most two types of
excitations are allowed in the X-cube model or the 3D toric
code. It should be emphasized, once again, that the particular
stabilizer model we propose is possible only by allowing the
Z3 degrees of freedom at the links. The intriguing nature of

the ground states and the excitations of the AB and the ABC
models we propose may well warrant experimental implemen-
tation in the future.

Our model study suggests that the subextensive GSD is not
a necessary ingredient for realizing fracton behavior. It will be
interesting to see how the higher-rank gauge theory formula-
tion of the fracton dynamics first suggested in Ref. [31] will
play out in our model. Characteristics of fluxon and freeon
excitations we analyzed in the ABC model might also lead
to robust error correcting code whose nature is akin to that
of the 3D toric code. In the 3D toric code, different ground
states that retain the quantum bit of information are connected
by the membrane operators whose energy costs due to the
fluxon creation are O(L2/3), which makes it a very stable
quantum memory [20]. Also, since the topological order of
the 3D toric code does not get annihilated at finite temper-
ature, the model system can store the memory in terms of
the quantum superposition of states in the same topological
sector [38]. The mechanics of the ABC model is quite similar
to 3D toric code and the model may well serve as an error
correcting code. Since the creation of fractons accompanying
the fluxons further adds to the energy cost, one might expect
even more stability as a quantum memory from the ABC
model.
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