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Bosonic fractional Chern insulating state at integer fillings in a multiband system
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The integer quantum Hall state occurs when Landau levels are fully occupied by fermions, while the fractional
quantum Hall state usually emerges when the Landau level is partially filled by strongly correlated fermions or
bosons. Here, we report two fractional Chern insulating states of hard-core bosons in a multiband lattice model
hosting topological flat bands with a high Chern number. The previously proposed ν = 1/3 fractional Chern
insulating state inherited from the high Chern number C = 2 of the lowest topological flat band is revisited by
the infinite density matrix renormalization group algorithm. In particular, we numerically identify a bosonic 1/2-
Laughlin-like fractional Chern insulating state at the integer fillings. We show two lower topological flat bands
jointly generate an effective C = 1 Chern band with half filling. Furthermore, we find a strictly particle-hole-like
symmetry between the ν and 3 − ν filling in our model. These findings extend our understanding of quantum
Hall states and offer a route to realize fractional states in the system with multibands and high Chern numbers.
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I. INTRODUCTION

The emergence of topological state and topological order
opens a window to classify phases of matter beyond Landau’s
symmetry-breaking paradigm [1]. The precise quantization of
Hall conductivity σxy = C e2

h , with C a topological invariant
Chern number, appears when the Landau levels generated by
the external magnetic field are fully filled. In contrast, the
fractional quantum Hall state is observed when the strongly
interacting electrons partially fill a Landau level, whose
topological order can be characterized by the ground-state
degeneracy on a compact geometry and the gapless edge exci-
tations described by the chiral Luttinger liquid [1,2]. Laughlin
proposed a trial wave function that captures the essence of
the fractional quantum Hall state, in which the quasiparticle
excitations host the fractional charges and fractional braiding
statistics [3]. Halperin further generalized the Laughlin state
into the two-component system [noted as Halperin (mmn)
state] to account for the spin or pseudospin degrees of freedom
[4]. The lattice version of an integer quantum Hall state in
the absence of the Landau level, also known as the Chern
insulating state, was proposed on a honeycomb lattice model
with staggered flux threading [5] and experimentally realized
in solid-state materials [6] and cold atom systems [7]. Chern
insulators, compared with their continuum counterpart, can
survive in a less strict setup and host more exotic topological
phases [8], and thus provide a promising application platform.
Since the C = 1 Chern band can be adiabatically connected
to the Landau level [9–11], the fractional quantum Hall effect
was possible to be realized in lattice models. It was previously
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proposed for ultracold atoms confined in an optical lattice
[12–14] in which the effective magnetic field was simulated
by introducing oscillating quadrupole potential or lattice rota-
tion. The proposal of a topological flat band (TFB) [15–17] in
the absence of the external magnetic field opens a window to
realize the fractional Chern insulator. Subsequently, a series of
fractional Chern insulators were established in various lattice
models hosting the C = 1 TFB [18–20].

Unlike the unit Chern number of the Landau level in the
continuum limit, the lattice model can host high Chern num-
bers, such as in the Hofstadter model [21–23]. Similar bands
with high Chern numbers can also be generated in the TFB
lattice model. Initially, C = 2 TFBs were constructed in a dice
lattice model [24] and three-band triangular lattice model [25],
and the systematic approaches to generate TFBs with arbitrary
Chern numbers were further proposed in multilayer systems
[26] and multiorbital structures [27]. Although a C > 1 Chern
band can be mapped to a C-component Landau level using
hybrid Wannier states [28], these components are mutually
entangled with each other, in contrast with the case in the
usual Halperin state. A series of fermionic fractional Chern
insulators at ν = 1/(2C + 1) filling were established numer-
ically in TFB models with high Chern number C [25,29–
31], which can be understood as the SU(C) color-entangled
version of Halperin states [32,33]. On the other hand, the
topological states in a bosonic system are much subtle. The
bosonic fractional Chern insulators at ν = 1/(C + 1) filling
were also proposed in the TFB models [25,29,34]. These
incompressible states can also be understood by the concept of
flux attachment in a lattice system [22,35], yielding a series of
fractional Chern insulators at filling factors ν = r/(r|C| + 1)
for bosons and ν = r/(2r|C| + 1) for fermions with r an
integer [23]. The bosonic integer quantum Hall (BIQH) state,
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a topological phase protected by U(1) symmetry but in the
absence of intrinsic topological order, was perceived in in-
teracting two-component boson gases at the integer filling
ν = 1 + 1 [36–40]. Its existence was also predicted by the
composite fermion theory at integer filling ν = 1 of |C| = 2
band (r = −1) [23] and numerically confirmed in different
lattice models [41–45].

So far, the topological nature of the Chern insulators fol-
lows a similar way established in the continuum limit with
the Landau levels, i.e., the integer and fractional quantum
Hall effect emerge at the integer and fractional filling. It is
interesting to explore fractional Chern insulators with no ana-
log in the continuum limit [22,46]. In this paper, combining
the exact diagonalization (ED) and infinite density matrix
renormalization group (iDMRG) algorithm, we study exotic
fractional Chern insulators of hard-core bosons in a specific
multiband model. The adopted triangular lattice model hosts
two lower TFBs with respective Chern numbers C = 2, and
−1. We numerically confirm the previously proposed ν = 1/3
bosonic fractional Chern insulating (FCI) state. Its topological
order is well characterized by the K = (2 1

1 2)-matrix, i.e., a

color-entangled 1
3 -FCI state with the two components origi-

nating from the high Chern number C = 2 of the lowest TFB.
More importantly, an unexpected bosonic FCI state, rather
than the BIQH state, is observed at integer fillings ν = 1 and
ν = 2. The twofold ground-state degeneracy and the exact
fractional-1/2 charge pumping, as well as the level counting
of the low-lying entanglement spectrum, evidence the emer-
gence of a ν = 1/2 Laughlin-like FCI state. We identify that
the two lower TFBs produce an effective C = 1 Chern band
with half filling. In addition, we find a strict particle-hole-like
symmetry between the ν and 3 − ν filling inherited from the
intrinsic time-reversal symmetry of the specific model.

II. MODEL AND METHOD

We consider loading hard-core bosons with U(1) charge
conservation into a specific three-band triangular-lattice
model proposed by one of our authors [25]:

H = ±t
∑

〈i j〉
[b†

i b j exp (iφi j ) + H.c.]

±t ′ ∑

〈〈i j〉〉
[b†

i b j exp(iφi j ) + H.c.], (1)

where b†
i creates a hard-core boson at site i, 〈. . . 〉 and

〈〈. . . 〉〉 denote the nearest-neighbor (NN) and the next-
nearest-neighbor (NNN) pairs of sites with the specified phase
factor denoted by the arrows (Fig. 1), respectively. Each unit
cell (gray hexagon) contains three inequivalent sites and thus
three single-particle bands are created. The flatness ratio and
topological index of each band are parameter dependent (for
more details, see Appendix A). Here we fix t = 1, t ′ = 1/4,
and φ = π/3 [25] unless specified, yielding C = 2, −1, −1 in
each band (from bottom to top) and two lower flat bands with
respective flatness ratios of about 15, 14, respectively. Those
TFBs mimic the Landau levels in the continuum but with
diverse Chern numbers. We, therefore construct a multiband
model with high Chern numbers.

t

tei2φ

−tei2φ

−t

t′eiφ

−t′

FIG. 1. Schematic structure of the adopted triangular lattice
model. The unit cell is highlighted by a gray hexagon and the hop-
ping process between the NN and NNN neighbors with specified
gauges are given on the right-hand side.

Numerically, we employ the unbiased ED and iDMRG
methods to study the topological order of potentially topologi-
cal states. In the ED scheme, a finite system of Norb = Nx × Ny

unit cells (the total number of site Ns = 3 × Nx × Ny) with
periodic boundary conditions in both directions is consid-
ered. The filling factor is defined as ν = Nb/Norb with Nb

the number of hard-core bosons loaded. Due to the transla-
tional symmetry, the many-body eigenstates can be labeled
by the total momentum quantum number (kx, ky) in units of
(2π/Nx, 2π/Ny ). To access larger system sizes and extend
numerical evidence beyond the ED method, we also study the
interacting system on an infinite cylinder (with finite width Ly)
by iDMRG alogrithm [47,48]. This method allows us to di-
rectly simulate the charge pumping process [49–52] and con-
veniently explores the underlying topological order by the en-
tanglement properties in the many-body ground state [53,54].

A. FCI state at ν = 1/3

The ν = 1/3 bosonic fractional Chern insulator had been
previously studied by the ED method on a torus geometry
[25,55]. The low-lying energy spectrum in Fig. 2(a) unam-
biguously shows that three quasidegenerate ground states,
being robust against the boundary conditions, evolve into
each other while being well separated from the higher excited
states. By imposing the twisted boundary phases θx and θy in
both directions, the Chern number of a many-body ground-
state is given by C = 1

2π

∫ 2π

0

∫ 2π

0 dθxdθyF (θx, θy), where
F (θx, θy) = �(〈∂θx ψ |∂θyψ〉 − 〈∂θyψ |∂θx ψ〉) is the gauge-
invariant Berry curvature with ψ the ground-state wave
functions [56]. The Berry curvature of the ground-state
manifold [Fig. 2(b)] contributes a total Chern number C = 2.
The topological order of the ν = 1/3 FCI state can be well
characterized by the K matrix in terms of Chern-Simons
field theory [57,58]. Here, the ground-state degeneracy d =
det K = 3 and the total Chern number C = ∑

i, j (K
−1)i j = 2,

yielding K = (2 1
1 2). Alternatively, this ν = 1/3 state is

also predicted by composite fermion theory [23] at bosonic
filling ν = r/(r|C| + 1) with r = 1, where one flux quantum
is attached to each boson to form the weakly interacting
composite fermion. An incompressible state is expected to
form when they fully fill an integer number of Chern bands.

115126-2



BOSONIC FRACTIONAL CHERN INSULATING STATE AT … PHYSICAL REVIEW B 104, 115126 (2021)

FIG. 2. ν = 1/3 FCI state. (a) Spectral flow as a function of
twist boundary phase θy. (b) Total Berry curvature of the three
quasidegenerate ground states at 10 × 10 mesh points, which shares
a total Chern number C = 2. (c) 2/3 charge pumping during the adi-
abatic flux quanta insertion. (d) Momentum-resolved entanglement
spectrum revealing two branches of chiral edge modes, each with
degeneracy pattern: 1, 2, 5. The lattice size Ns = 3 × 3 × 5 = 45
is used in ED calculation. The cylinder width Ly = 6 is adopted in
iDMRG calculation.

To complement the ED results on a torus, we study the ν =
1/3 case on a cylinder geometry using the iDMRG algorithm.
The exact 2/3 charge pumping after a flux quanta threading
[Fig. 2(c)] agrees with the Chern number calculation using the
ED method [25], where each ground-state average contributes
to a Chern number C = 2/3. Furthermore, two parallel propa-
gating edge modes with the same level counting (1, 2, 5, · · · )
are observed in the momentum-resolved entanglement spec-
trum of the ground state [Fig. 2(d)], in agreement with two
positive eigenvalues in the K-matrix description and the
low-lying structure of edge excitations in 1/3 FQH systems
[53,59]. Therefore, the present state is a two-component frac-
tional quantum Hall state, in which the two-component nature
originates from the C = 2 Chern number of the lowest TFB.
The exact equivalence between the two components render the
bosonic FCI state a color-entangled 1

3 -FCI state [32,33,55],
which differs from the general two-component ν = 1/3 + 1/3
case discussed previously in the Bose gas with two spin states
[38,60], though they share a similar topological order.

B. FCI state at ν = 1

It is commonly accepted that the integer quantum Hall
effect emerges when electrons fully fill the Landau levels.

The BIQH, characterized by K = (0 1
1 0), were predicted in

the lowest Landau level filled with two-component interacting
bosons at total filling ν = 1 + 1 [36,37]. This state was also
proposed in the Hofstadter model when the C = 2 Chern
bands are fully occupied by the hard-core bosons [43]. It is
thus interesting to explore the potential state in the current
lattice model at integer filling.

We study the low-lying energy spectrum of different lat-
tice sizes up to 36 sites with the ED scheme, which is
almost the current computational limit (Hilbert space dimen-
sion reaches 108 for a single momentum sector). The twofold
quasidegenerate ground states, separated from the excited
states by a finite gap, emerge at the fixed momentum sector
(kx, ky) = (0, 0), irrespective of the lattice size [Fig. 3(a)].
The robustness of the ground-state manifold is also confirmed
by the twisted boundary conditions θx/y [Fig. 3(b)], where
the two states never mix with higher excited states. This
agrees with the previous statistical rule in C = 1 TFB sys-
tems [19,20,25,61], where two ground states are predicted
to emerge at (kx, ky) and (kx + Nb, ky + Nb) mod (Nx, Ny )
sector, respectively. In contrast, only a single ground state
is observed in the C = 2 Hofstadter bands at ν = 1 [43],
in which a BIQH state is predicted. The FCI at integer fill-
ing ν = 1 is further supported by the iDMRG results. The
charge pumping after a flux quanta threading is exactly 1/2
[Fig. 3(d)]. This agrees with the existence of two degenerate
ground states carrying a total Chern number C = 1. Moreover,
only a single branch of the edge mode is observed in the
momentum-resolved entanglement spectrum [Fig. 3(e)], in
sharp contrast with the usual situation of two branches of edge
modes in a C = 2 band. The corresponding counting sequence
(1, 1, 2, 3, 5, 7, · · · ) is consistent with that in a 1/2 Laughlin
state. Therefore, we find a 1/2 Laughlin-like FCI state at the
integer filling ν = 1, rather than the expected BIQH state.

The confirmed evidence of 1/2 Laughlin-like fractional
Chern insulator comes from the many-body Chern number of
the ground-state wave function by integrating the Berry curva-
ture in the first Brillouin zone. The discrete Berry curvatures
[56] are relatively smooth [Fig. 3(c)]. Their summations yield
a precisely quantized Chern number Ctot = 1 or, averagely, a
C = 1/2 fractional Chern number for each ground state. This
is in stark contrast to the FCI states reported at the bosonic
ν = 1/3 filling and the fermionic ν = 1/5 filling in this model
before [25] and the BIQH state reported in bosonic gases
[36,37] and the Hofstadter band [43], where the ground-state
manifold contributes to a total Chern number Ctot = 2. Con-
sidering the fact of two lower TFBs with C = 2 and C = −1
in our model, it is natural to believe that the hard-core bosons
occupy the two lower TFBs simultaneously, which effectively
generate a C = 1 topological band but with ν = 1/2 filling. It
was previously reported giving width to the Chern band with
a high Chern number can help to stabilize a fractional Chern
insulator [30]. Here, the two TFBs, instead of a high Chern
number, play a similar role, which may be the reason why the
1/2 FCI state remains robust at the integer filling though the
effective flatness ratio of the generated |C| = 1 Chern band
is much reduced down to about 4 (details see Appendix A).
The less strict condition for the fractional Chern insulator may
provide a platform to realize the fractional quantum Hall state
in multiband systems.
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FIG. 3. ν = 1 FCI state. (a) Low-lying energy spectrum for different lattice sizes. (b) Spectral flow as a function of twist boundary
phase θy. (c) Total Berry curvature of the two ground states, which share a total Chern number |C| = 1. (d) 1/2 charge pumping during
adiabatic flux quanta insertion. (e) Momentum-resolved entanglement spectrum revealing one branch of chiral edge mode, with degeneracy
pattern: 1, 1, 2, 3, 5, 7. The lattice size Ns = 3 × 3 × 3 = 27 is used in ED calculation. The cylinder width Ly = 6 is adopted in iDMRG
calculation.

C. Robustness of FCI state at ν = 1

A similar band topology but in the absence of flat bands
was previously constructed in a specific Hofstadter lattice
model [31], where the BIQH state is predicted at integer
filling with hard-core bosons [43]. It is therefore interesting
to study whether the FCI state at integer filling turns into
the BIQH state, or other competing order, when the flatness
of TFBs is lowered. The flatness of TFBs is closely related
to the NNN hopping integral t ′ (Appendix A). We show the
low-energy many-body spectrum En − E1 evolving with t ′ in
Fig. 4(a) on a torus with fixed Ns = 3 × 3 × 3 = 27 sites. The
twofold ground-state quasidegeneracy remains evident among
0.12 � t ′ � 0.4, indicating the robustness of a FCI state at
ν = 1 filling in this region. When t ′ is reduced down to below
0.12, only a single ground state separated by excited states
is observed. In contrast to BIQH, this is a trivial state with

FIG. 4. Robustness of ν = 1 FCI state. Evolution of low-lying
energy spectrum versus NNN hopping strength t ′ (a) and NN interac-
tion V (b). System size is Ns = 3 × 3 × 3 = 27. Colors label distinct
momentum sectors, in particular, states at (0,0) momentum sector
are colored blue. In (a), the ν = 1 FCI state is dominated between
0.12 < t ′ < 0.4, where the two ground states always share a Chern
number |C| = 1. Beyond this region, two topologically trivial states
emerge. In (b), a phase transition from the 1/2 Laughlin-like FCI
state to the topologically trivial charge-density-wave state occurs at
V = 1.1 at integer fillings ν = 1.

C = 0. Another phase transition is observed at t ′ = 0.4, where
the underlying band topology changes (Appendix A). We do
not find any signature of the BIQH state within the current
setup.

On the other hand, the FCI state is often challenged
by other conventional ordered states in strongly correlated
systems [18], e.g., the charge-density-wave state may be fa-
vorable when long-range Coulomb interactions are taken into
account [19,54]. We further discuss the role of NN Coulomb
repulsion V [62] on the FCI state. In the large V limit, the
loading bosons tend to occupy the NNN neighbors, i.e., the
same sublattice, to lower energy contributed by the Coulomb
repulsion. Figure 4(b) shows a phase transition occurring at
Vc � 1.1. The FCI state at the integer filling ν = 1 is robust
below Vc since the twofold quasidegeneracy remains. Above
the critical Vc, a topologically trivial charge-density-wave
state characterized by the threefold quasidegenerate ground
state emerges, in agreement with the constructed three sublat-
tices in our model.

D. Particle-hole symmetry

Since no band projection is performed here, we are able
to study the system at higher fillings with ν > 1. Given the
unexpected FCI state at ν = 1 filling, in which an effective
1
2 -filled Chern band with C = 1 is produced, is it possible that
the BIQH state emerges when the two lower TFBs are fully
occupied? Our numerical results on ν = 2 filling show that
the present bosonic system remains in the 1/2 Laughlin-like
FCI state. We, therefore, establish a fractional Chern insulator
at the integer fillings in our constructed bosonic lattice model.
It should be emphasized that the energy spectrum at ν = 2
filling is exactly the same as that at ν = 1 filling. The charge
pumping, and entanglement spectrum, except for a minus
sign and the reversal propagating direction, respectively, are
also the same (Appendix B). Similar behavior can be further
observed at the filling of ν = 1

3 and ν = 8
3 . It seems that there

exists a particle-hole-like symmetry between ν and 3 − ν

filling in our adopted model. The particle-hole symmetry be-
tween the ν and 1 − ν filling of fermions and between ν and
2 − ν filling of two-component bosons in the quantum Hall
state was previously reported when particles partially occupy
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the lowest Landau level [40,63], where the particle-hole sym-
metry is preserved due to the perfectness of the Landau level.
Here, no such symmetry explicitly exists as revealed by the
band structure. Considering a particle-hole transformation Pph

i.e., b†
i ↔ bi, yielding PphH (φ)P−1

ph = H (−φ). We show that
the only difference between φ and −φ is the reversed sign
of the Chern number for each band. Therefore, an additional
particle-hole-like symmetry between ν and 3 − ν filling exists
in our constructed bosonic lattice model. Such symmetry orig-
inates from the intrinsic commute relation of bosons and the
special time-reversal symmetry of the model Hamiltonian (for
more details, see Appendix B). We emphasize that no particle-
hole symmetry is presented in the corresponding fermionic
system.

III. SUMMARY AND DISCUSSION

In summary, we study the FCI states of hard-core bosons
on a specific three-band triangular lattice model possessing
two lower TFBs with C = 2 and C = −1. Combining the
ED and iDMRG algorithm, we characterize the underlying
topological orders by ground-state degeneracy, low energy
spectrum, and Chern number, together with charge pumping
and entanglement spectrum. At ν = 1/3 filling, a color-
entangled 1

3 FCI state is observed, in which two components
come from the Chern number C = 2 of the lowest TFB.
Particularly, instead of a BIQH state, we find a robust 1/2
Laughlin-like FCI state at the integer fillings. The loading
hard-core bosons simultaneously occupy the two lower TFBs,
producing an effective C = 1 Chern band with ν = 1/2 fill-
ing. In addition, a strict particle-hole-like symmetry between
the ν and 3 − ν fillings, originating from the intrinsic com-
mute relation of bosons and the time-reversal symmetry of
the specific model, is revealed in the present lattice model.
Our results demonstrate the rich family of topological states
in lattice systems with high Chern number and multibands,
and add the insight into the FCIs.

Further understanding the topological order of the present
FCI state at integer fillings, especially constructing a model
fractional state and performing the overlap with the ground-
state wave function obtained by the ED method, is highly
desirable. Exploring more exotic FCI states and potential
relation to the generalized Pauli principle in the multiband
system with nontrivial topology should be interesting for
future study. Such multiband physics is neglected in most pre-
vious studies due to the simplified band projection. Whether
the multiband-induced fractional Chern insulators can also be
realized in the fermionic system is also interesting. Very re-
cently, a direct transition between 1

3 Laughlin state and Chern
insulating state driven by the interaction was reported in the
Harper-Hofstadter model loaded by fermions [64], where the
lowest Landau level comprises multiple subbands. This may
be the clue of the multiband and high Chern number induced
fractional state at integer filling in fermionic systems.

The single-occupancy constraint of hard-core bosons may
prevent the emergence of a BIQH state in the present lattice
model. Whether the BIQH state will survive in this TFB
model loaded by soft-core bosons, especially for intermedi-
ate interaction regime, is also an interesting problem worth
delicate investigation. An initial study of three-body hard-core

bosons with intermediate Hubbard interaction strength has not
given any clue of the BIQH state. Since the computational
effort to study the full phase diagram in the current TFB model
with soft-core bosons are much larger than that of hard-core
bosons, and more exotic non-Abelian FCI phases that occupy
multiple Chern bands may also emerge, we will leave the
numerically intensive problem to a detailed future work.
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APPENDIX A: SINGLE-PARTICLE ENERGY SPECTRUM

The adopted triangular lattice model loaded with the hard-
core bosons has been schematically shown in the main text.
The model Hamiltonian can be written as [25]

H = ±t
∑

〈i j〉
[b†

i b j exp(iφi j ) + H.c.]

±t ′ ∑

〈〈i j〉〉
[b†

i b j exp(iφi j ) + H.c.]. (A1)

Each unit cell comprises three inequivalent sites, which natu-
rally produce three single particle bands. Only the NN and the
NNN hopping process of the hard-core bosons are considered.
It should be remembered that no on-site term exists in our
model, which is crucial for the particle-hole-like symmetry
existing in the present bosonic model as discussed below.
In addition, we restrict our model in the canonical ensem-
ble, which guarantees the particle number conservation. Even
though no explicit interactions are considered, the model sys-
tem remains strongly correlated due to the nature of hard-core
boson.

The band topology of the present lattice model is param-
eter dependent. In Fig. 5, we show the band structure on a
cylinder evolving with the next-NN hopping integral t ′ at fixed
φ = π/3. A topological phase transition occurs at t ′

c = 1/3.
Below t ′

c, the Chern number for the respective Chern band
is (2,−1,−1) (from bottom to top), while it turns out to be
(−4, 5,−1) for t ′ > t ′

c. For large enough t ′ > 1, a topological
phase with Chern number (5,−4,−1) may also exist. We
emphasize that a special time-reversal-like symmetry exists
in the present model. The band structure remains unchanged
except for the reversed Chern number for each band when
φ → −φ but with the other parameters fixed. The chiral edge
states shown in Fig. 5 reverse their propagating direction (not
shown).

On the other hand, the flatness ratio of the respective topo-
logical band also varies with parameters as shown in Fig. 6.
We define the flatness ratio of the respective lower topological
band by 	i/Wi, where 	i, and Wi denotes the band gap above,
and the bandwidth of, the selected ith band (i = 1, 2 from
bottom to top), respectively. With fixed φ = π/3, the flatness
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FIG. 5. Single-particle spectrum of the three-band triangular lat-
tice model for different t ′ at fixed φ = π/3. (a) and (b) The Chern
numbers, from low to high energy bands, for t ′ < 1/3 topological
phase is (2, −1, −1). (c) Higher-Chern-number bands exists for t ′ >

1/3, which is C = (−4, 5, −1) at t ′ = 1/2.

ratio of the lowest TFB reaches its maximum at t ′ = 1
4 . It

decreases monotonically with enhanced or weakened t ′. The
flatness ratio of the middle TBF could be higher than 200 at
t ′ = 1

5 . As mentioned in main text, the two lower TFBs jointly
generate an effective C = 1 Chern band at integer fillings,
which is the reason for the emergence of 1

2 Laughlin-like FCI
state at integer filling. We also show the flatness ratio of the
generated effective C = 1 Chern band comprising two lower
TFBs, defined as RT = 	2/(W1 + W2 + 	1). The flatness ra-
tio of this Chern band in the region where the 1

2 Laughlin-like
FCI state at integer fillings is observed is relative high, but
much reduced in comparison with that of the respective TFB.
In this sense, the multiband physics provides the easy access
to the FCI state.

FIG. 6. t ′ dependence of the flatness ratio of the respective topo-
logical flat band, together with that of the generated C = 1 Chern
band. The flatness ratio of the middle topological flat band is renor-
malized by a factor of 10. φ is fixed at π/3.

FIG. 7. ν = 1 (top) and ν = 2 (bottom) FCI states. (a) 1/2 charge
pumping after one flux insertion. (b) Momentum-resolved entan-
glement spectrum reveals one branch of chiral edge mode with
degeneracy pattern: 1, 1, 2, 3, 5, 7,... The two FCI states are time-
reversal counterparts of each other, where the charge pumping differs
by a sign and edge mode differs by the propogating direction.

APPENDIX B: PARTICLE-HOLE-LIKE SYMMETRY

Obviously, the band structure in the above section shows
no particle-hole symmetry for fermions. However, the situ-
ation in the bosonic system is significantly different from
that in the fermionic system due to the intrinsic statistical
law. In a hard-core bosonic system, we apply the particle-
hole transformation P , i.e., b† ↔ b, on Hamiltonian Eq. (A1),
yielding

H = ±t
∑

〈i j〉
[b jb

†
i exp(iφi j ) + H.c.]

±t ′ ∑

〈〈i j〉〉
[b jb

†
i exp(iφi j ) + H.c.]. (B1)

Due to the commute relation between [bi, b†
j] = 0, we have

PH (φ)P−1 = H (−φ). We have shown that the band structure
remains unchanged except for the reversed Chern number
for φ → −φ. Therefore, the only change for the topological
state is the reversed propagating direction, or particle to hole.
Such particle-hole symmetry may be broken when the mass
terms, i.e., b†

i bi, are taken into account, by which [bi, b†
i ] =

1. Therefore, the particle-hole-like symmetry found in the
present bosonic lattice model originates from the intrinsic
commute relation of the bosons and the unique time-reversal
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symmetry of the specific model. This symmetry is naturally
absent in the fermionic system due to the anticommute rela-
tion of fermionic operators.

The particle-hole-like symmetry may be further under-
stood by mapping the hard-core bosons onto the spin- 1

2
quantum model. Using the Matsuda-Matsubara transfor-
mation, b†

i → S+
i , bi → S−

i , and ni → Sz
i + 1

2 , the above
Hamiltonian can be expressed as

H = ±t
∑

〈i j〉
[S+

i S−
j exp(iφi j ) + H.c.]

±t ′ ∑

〈〈i j〉〉
[S+

i S−
j exp(iφi j ) + H.c.]. (B2)

The particle-hole transformation in the bosonic model is same
as the spin-flip process in spin model. In the absence of sym-
metry breaking term Sz

i , the above Hamiltonian after spin flip
also results in H (−φ).

In Fig. 7, we plot the charge pumping and entanglement
spectrum to show the particle-hole-like symmetry between
ν = 1 and ν = 2, in which a 1/2 Laughlin-like FCI state is
realized at integer fillings. The two cases are almost exactly
the same, except for the charge (or hole) pumping process
and reversal propagating direction. Similar behavior can be
also found at the integer filling ν = 1/3 and ν = 8/3, where a
color-entangled 1

3 FCI state is observed.
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