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We calculate the phase diagram of a model for topological superconducting wires with local s-wave pairing,
spin-orbit coupling X, and magnetic field B with arbitrary orientations. This model is a generalized lattice version
of the one proposed by Lutchyn et al. [Phys. Rev. Lett. 105, 077001 (2010)] and Oreg et al. [Phys. Rev. Lett. 105,
177002 (2010)], who considered A perpendicular to B. The model has a topological gapped phase with Majorana
zero modes localized at the ends of the wires. We determine analytically the boundary of this phase. When the
directions of the spin-orbit coupling and magnetic field are not perpendicular, in addition to the topological phase
and the gapped nontopological phase, a gapless superconducting phase appears.
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I. INTRODUCTION

The study of topological superconducting wires, which
host Majorana zero modes (MZMs) at their ends, is a field
of intense research in condensed matter physics, not only
because of the interesting basic physics involved [1], but also
because of possible applications in decoherence-free quantum
computing [2-5].

In 2010, Lutchyn et al. [6] and Oreg et al. [7] proposed
a model for topological superconducting wires describing a
system formed by a semiconducting wire with spin-orbit cou-
pling (SOC) and proximity-induced s-wave superconductivity
under an applied magnetic field perpendicular to the direction
of the SOC. This yields a topological superconducting phase
with MZMs localized at its ends. The observation of these
MZMs in these types of wires was reported in different exper-
imental studies [8-11].

The search for different models and mechanisms leading
to topological superconducting phases continues being a very
active avenue of research theoretically and experimentally.

More recently, there has been experimental research as
well as theoretical studies in similar models, including
those for time-reversal invariant topological superconductors
[12,13], of the effects of MZMs in Josephson junctions, in
particular because the dependence on the applied magnetic
flux introduces an additional control knob [13-20].

In particular, it has been recently proposed that the current-
phase relation measured in Josephson junctions may be used
to find the parameters that define the MZMs [20]. A possible
difficulty in these experiments is the slow thermalization to the
ground state in the presence of a gap [21]. A way to circum-
vent this problem is to rotate the magnetic field slowly from
a direction not perpendicular to the SOC in which the system
is in a gapless superconducting phase, in which thermaliza-
tion is easier [20]. Therefore, it is convenient to know the
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phase diagram of the system and the extension of this gapless
phase.

In this work we calculate the phase diagram of the lattice
version of the model and discuss in particular the gapless
phase. The paper is organized as follows. In Sec. II we de-
scribe the model. The topological invariants use to define
the phase diagram are presented in Sec. III. In Sec. IV we
show the numerical results, analytical expressions for the
boundaries of the topological phase, and discuss briefly the
Majorana zero modes. We summarize the results in Sec. V.

II. MODEL

The model for topological superconducting wires studied
in this work is the lattice version of that introduced by Lutchyn
et al. [6] and Oreg et al. [7]. The Hamiltonian can be written
as [20]

H = "[c](~t 09— ik - &)ery1 + Acj,c], + He.
14

—¢}(B- 3 + poo)el, (1)

where £ labels the sites of a chain, ¢, = (¢4, cu)T, t is the
nearest-neighbor hopping, X is the SOC, A represents the
magnitude of the proximity-induced superconductivity, B is
the applied magnetic field, and w is the chemical potential. As
usual, the components of the vector 6 = (oy, 0y, 0;) are the
Pauli matrices and oy is the 2 x 2 unitary matrix. The pairing
amplitude A can be assumed real. Otherwise, the phase can
be eliminated by a gauge transformation in the operators c}a
that absorbs the phase.

Without loss of generality, we choose the z direction as
that of the magnetic field (B = BZ) and x perpendicular to
the plane defined by %and B (A = AY + A;Z). After Fourier
transformation, the Hamiltonian takes the form H = Zk H;,
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with
Hy = —[p+ 21 cos(k)l(c},cxy + ¢ cx))
— B ycur = cfyexs) — 2 sin(liny ey, — e u)

+)\z(C£TCkT — C£¢Ck¢)] + A(C;tTCT_H +cepcrp). ()

Using th(.a fopr—component s.pino.r (clT, cz 1 €=kt C—k 1) [22],
the contribution to the Hamiltonian for wave vector k can be
written in the form

Hy = — [ + 2t cos(k)]t, ® o9 — Bt, @ 0, — ATy ® 0y
—+ 2 sin(k)T, ® oy — 2, sin(k)7y) ® o, 3)

where the Pauli matrices o, act on the spin space, while the
7, act on the particle-hole space. Writing the matrix explicitly,
H, takes the form

—a—B—z —1y 0 A
H— iy —a+B+z —A 0
k= 0 —A a+B—z iy ’
A 0 —iy a—B+z

“4)

where a = u + 2t cos(k), B = |B| = B, y = 2A, sin(k), and
z = 2X;sin(k).

III. TOPOLOGICAL INVARIANTS

In this section we define the topological invariants we
use to characterize the topological phases. In general, the
Hamiltonian belongs to topological class D with a Z, topo-
logical invariant [23,24]. However, for perpendicular % and B
(z = 0), the system has a chiral symmetry and belongs to the
topological class BDI with a Z (integer) topological invariant
corresponding to a winding number [22]. In this case, the
calculation of the topological invariant is simpler, as shown
by Tewari and Sau [22].

Following this work, we perform a rotation in 7 /2 around
the § axis in particle-hole space, which transforms z, to t,:
H = UHU' withU = exp(—im /4)t,. With this transforma-
tion H] becomes

-z 0 —a—B A-—-iy
- 0 Z —A+iy —a+B
H=1_._8 —A—iy -z 0 - )
A+iy —a+B 0 z

Taking z = 0, this rotation yields an off-diagonal (chiral
symmetric) Hamiltonian. This allows us to define a wind-
ing number W (a topological Z invariant) from the phase
of the determinant of the 2 x 2 matrix A(k), which is the
upper right corner of Eq. (5) [22]. Specifically Det[A(k)] =
|Det[A(k)]|e?® = a> — B? — (A — iy)* and

_ s o i6 (k)
WZJ/%LJ ©)
0

T 210k

In addition, a Z, invariant I can be defined from the relative
sign of Det(A) (which is real for k = 0 and k = ) between

the points k =0 and k = m:

Det[A(r)]

—(—_1\V —
I=(-1) _SgnDet[A(O)]'

(N
Looking for the condition that I = —1 (mod 2), we obtain that
the conditions for the system to be in the topological phase are
that A, = |A| # 0 # A and the remaining parameters should
satisfy

withr = +v/B2 — A2 > (.
()

We note that changing the sign of any of the parameters does
not change the boundary of the topological phase. This is due
to the symmetry properties of the Hamiltonian [20].

In the more general case, when % and B are not perpendic-
ular, it is not possible to follow the approach outlined above.
In this case, we use the Zak Berry phase to construct the topo-
logical invariant [24—34]. Specifically, the Hamiltonian H} has
four different eigenvectors and, for each of them, following
Zak [25], one can calculate a Berry phase from the Bloch
functions as the wave vector k varies in the loop 0 < k < 2x
(with k = 2 equivalent to k = 0). For each eigenstate |u(k))
of Hy, the Berry phase is

120z] = r| < [uel < 2] 4 1],

2 9
y = —Im /0 dk(u(k)lﬁlu(k))- ©)

In addition (as noted before [20]), choosing a suitable co-
ordinate frame (X - y= B- §¥ = 0), the Hamiltonian Eq. (1) is
invariant under an antiunitary operator defined as the product
of inversion (defined by the transformation £ <> N + 1 — ¢,
for a chain with N sites) and complex conjugation, implying
that the Berry phase y is quantized with only two possible
values 0 and 7 (mod 27) [31]. Naturally the value of the Berry
phase does not depend on the choice of the reference frame.
Therefore, as for an insulator, if the system has a gap, the sum
of the Berry phases of all one-particle states of energies below
the gap mod 2 defines a Z, topological number, indicating
that the system is trivial (topological) if this sum is equiva-
lent to O () mod 27 [24,34]. Moreover, from Eq. (3) it is
easy to realize that the charge conjugation CZU <> Cyy, Which
in Fourier space means c}:g = (I/W) Zz e”“cza < C_kos
transforms H; <> —H_;. Therefore, the sum of the Berry
phases of all positive eigenvalues gives the same topological
number as the sum of all negative eigenvalues.

In our model, H; has four eigenvalues E (k). The lowest
one E; (k) is always negative and the corresponding eigenvec-
tor has always a Berry phase 0. From the above mentioned
charge-transfer symmetry, the fourth eigenvalue (the highest
one) has energy E4(k) = —E|(—k) > 0. Therefore, the Berry
phase of the second eigenvalue (which is equal to that of
the third one) determines the Z, invariant. We have cal-
culated the Berry phase y of each of the four bands (and
particularly the second one) from the normalized eigenvec-
tors |u;) = |u(k;)) of the 4 x 4 matrix obtained numerically
at M wave vectors k; = 27 (j — 1)/M, using a numerically
invariant expression [28,33]. This expression is derived in
the following way. Discretizing Eq. (9) and approximating
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FIG. 1. Phase diagram in the p, A plane for perpendicular % and
E, t =1, A = |A| = 2, and several values of B. Gray region I denotes
the topological sector and white region II the nontopological one.

dlu(k)/ok = (M /27 )[|u(kjt1)) — lu(k;))], one obtains
M
y =—Im > [uj|(jujs1) — lu;)]. (10)
j=1

If M is large enough so that k; and k;i; are very close,
then x = (uj|uj1) — 1 is very small and one can retain only
the first term in the Taylor series expansion In(1 + x) = x —
x?/2 + - -. Replacing in Eq. (10) one obtains

y = —Im[In(P)],
where P = (u |uz) (uz|uz) . . . (tpg—1luy). (11)

It is easy to see that Eq. (9) is gauge invariant. This means that
the result does not change if |u(k)) is replaced by €% |u(k)),
where ¢(k) is a smooth function with ¢(27) = ¢(0). Simi-
larly, the product P is independent of the base chosen by the
numerical algorithm to find the eigenstates |u;). Therefore,
Eq. (11) is numerically gauge invariant. Analyzing the change
in the results with increasing M, we find that M ~ 250 is
enough to obtain accurately all phase boundaries shown be-
low. A further increase in M leads to changes that are not
visible in the scale of the figures.

This Z, topological invariant defined by the Berry phase
of the second (or third) state can be trivially extended to the
gapless case if the energies of the second and third state do not
cross as a function of k. Even if the energies cross the Berry
phases can be calculated switching the states at the crossing.
Howeyver, this case is not of interest here.

IV. RESULTS

A. Phase diagram

We start by discussing the simplest case of perpendicular
% and B. In Fig. 1 we display the resulting phase diagram
for some parameters, showing the possible different shapes.
There are two gapped phases, the trivial (white region II) and
the topological one (light gray I), separated in general by two
circular arcs defined by Eqgs. (8). For simplicity we discuss
the case 7, B > 0. The topological character is independent
of the sign of the different parameters. If B < 2¢, the region
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FIG. 2. Phase diagram in the u, A plane fort = 1,A =2,B =4,
and several values of the angle 85 between X and B. Regions I and
Il as in Fig. 1. Region III (IV) in dark gray (black) corresponds to the
gapless phase with Berry phase 7 (0). The red points at the top left
correspond to numerical calculations which detected localized states
at the ends.

of possible values of || inside the topological sector extends
from 2t — Bto 2t 4+ B for A — 0 and shrinks for increasing A
until it reduces to the point || = 2f for A — B.If B = 2¢, the
semicircle touches the point u = 0. For larger B, the region
|| < /B2 — A2 — 2t for A? < B?> — 4¢? is excluded from
the topological region.

While for perpendicular % and B, the gap vanishes only at
particular lines in the phase diagram (black lines in Fig. 1) for
which the topological transition takes place, for general angles
Bp between both vectors, there is a finite region in the u, A
plane for which the gap vanishes, in particular for |A| < A,
where A, is a critical value, independent of 1, determined an-
alytically below. Before presenting the analytical calculation,
we describe the general features of each phase in the phase di-
agram, as shown in Fig. 2. The gapped regions in the figure are
denoted by I and II. The remaining two regions are gapless.
We separate them by the trivial (topological) character of the
Berry phases of the second and third eigenstate, indicating the
corresponding regions with black (dark gray) color and roman
number IV (III). In spite of the topological Berry phases
of the latter gapless phase, MZMs in a finite chain are not
expected to be protected against small perturbations because
of the absence of a gap. Therefore, we describe this phase
as nontopological. Furthermore, we do not find numerically
signatures of localized end states in this phase.

We have also checked the boundaries of the topological
phase solving numerically finite chains and searching for lo-
calized states at their ends and the presence of the finite gap.
The localized states are described in Sec. IV D. The presence
of the gap is defined by the condition that the determinant
D(k) of Hy. is positive for each k. As it can be seen in Fig. 2
top left, the results of both approaches agree.

B. Analytical expressions for the boundaries
of the topological phase

For perpendicular % and B, the boundaries of the topo-
logical phase are defined by Egs. (8) and the conditions
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|X| # 0 and A # 0. As the angle is changed from 90°, the
gap reduces and a nonzero |A| is necessary to keep the gap
open (see Fig. 2). For convenience, we discuss first the case
. = 0 (perpendicular A and B) and later consider the general
case A = A§ + A2 with A, # 0. For A, = 0, the determinant
Dy(k) of Hy [see Egs. (4) or (5)],

Dy(k) = C* + 4A%?,
C=d+ A?—B* -y, (12)

is positive semidefinite. It can vanish only for y = 0 implying
eitherk =0ork = w.Fork = 0 (k = 7),C = Oimplies | +
2t| = r (| — 2t| = r). Comparing with Egs. (8), one realizes
that the gap vanishes in general only at one wave vector and
only at the transition between topological and nontopological
gapped phases, as expected. The exception is the case |2¢| = r
and pu = 0, for which the gap vanishes at both wave vectors.

In the general case with z = 2, sin(k) nonzero, the deter-
minant of Hy is [see Eq. (5)]

D(k) = Do+ 222(A*+y* —a> =B+t (13)

We can consider D(k) as a function of x = cos(k). For large
enough |A,|, it turns out that, at the wave vector k = 0, and
parameters for which C =y =z =0 [implying D(0) = 0],
dD(x)/dx > 0 and as a consequence for small positive k (x <
1) the determinant becomes negative, signaling the instability
of the gapped phase. For A, = 0, as in the previous case the
derivative is negative, but x cannot be increased beyond 1,
so that D(k) > 0. A similar reasoning with the corresponding
changes in the sign can be followed for k = 7. An explicit cal-
culation of the derivative using the conditions C = sin(k) = 0
gives

dD

dx
This implies that to have a gap one needs that |[A| > A,
where

=32[B°A2 — A*(A2 + 43) ] (14)

2
A2 — 32 )\'Z
c

A2+ A7

= B? cos*(Bsp). (15)

This condition has been found before for a model similar to
ours in the continuum with quadratic dispersion [35].

After some algebra, the determinant in the general case can
be written in the form

D= (C—2)+16(32 +1))(A* = A))(1 —x%),  (16)

which is again positive semidefinite for |A| > A, and posi-
tive definite for 0 # k # =, indicating a gapped phase. Since
x =1 implies y = z = 1, the remaining boundaries of the
topological phase remain the same as for perpendicular % and
B. For |A| = A, (as in Fig. 4), the values of k for which the
determinant vanishes are given by the solutions with |x| < 1
of the following quadratic equation:

0 = 4% + A\)x> + 4t pux
+u?+ A2 — B* —4)°, (17)

where A = |A|.

FIG. 3. Second (black thin lines) and third (red thick lines) eigen-
values of H; as a function of wave vector for t =1, A=A =2,
B = p =5, and several values of the angle ;5 between A and B.

C. Transition from the topological phase to the gapless phases

To gain insight into the transition from the topological
phase to the gapless phases, we represent in Fig. 3 the second
and third eigenvalues of H; [E,(k) and E5(k), respectively]
for different values ;5 of the angle between % and B. The
parameters are such that, for %-B=0, the system is in the
topological phase with a finite gap. As the angle is changed
(in either direction) the gap between the second and third
eigenvalue decreases until at a certain critical angle [given
by the solution of Eq. (17)] E,(k.) = E3(—k.) =0 at one
particular wave vector k. (0.36137 in the figure), denoting
the onset of the gapless phase. Further turning % and B to the
parallel (or antiparallel) direction, both eigenvalues vanish at
two different wave vectors.

If keeping the other parameters fixed, the chemical poten-
tial p is changed towards one border w. of the topological
phase for »-B=0 [given by Eq. (8)]; the critical wave vector
k. is displaced either to k. = 0 or to k. = m depending on
the border. This is illustrated in Fig. 4. At the corresponding

/L:‘\/Z_;2.0 -

- < p=40 —-—.

SN p=>5.0 g o-2-
i ~ n=+21+2.0
PR N\ e

Eigenvalues

FIG. 4. Same as Fig. 3 for t =1, A=A =2, B=5, Bp =
66.42°, and several values of .
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FIG. 5. Top: probability of finding a fermion at each site of a
chain for the eigenstate of lowest positive energy for t =1, A = 2,
B=4, B3 =80° w=3, and A =0.75. Bottom: inverse of the
localization length as a function of A. The transition between phases
Iand Il is at A, = 0.694592711 and the transition between phases
Iand ILis at A, = 3.872983346.

border u = w., one has E,(k.) = Es(k;) = 0, indicating a
crossing of the levels which is also accompanied by a change
in the Berry phases of the corresponding eigenvectors. Further
displacing p the system enters the nontopological gapped
phase. Therefore, the point & = u., A = A, is at the border of
the topological phase, the nontrivial gapless phase with Berry
phase 7, and the nontopological gapped phase. In fact also
the trivial gapless phase reaches this tetracritical point in the
phase diagram (see Fig. 2).

D. Majorana modes

The topological phase is characterized by the presence of
Majorana modes’ zero modes at the ends of an infinite chain.
For a finite chain, the modes at both ends mix, giving rise to
a fermion I' and its Hermitian conjugate with energies +E
which decay exponentially with the length L of the chain. We
have obtained I numerically in chains of L ~ 200 sites. The
probability p(i) of finding a fermion at site i (adding both
spins and creation and annihilation) is shown in Fig. 5. The
main feature of the top figure is a decay of p(i) as the distance
from any of the ends increases. We have chosen a case with a
rather slow decay to facilitate visualization. In addition to this
decay, some oscillations are visible with a short period.

In order to quantify the decay length of the localiza-
tion of the end modes, we have fit the probability with an
exponentially decaying function p(i) ~ Aexp(—i/&) at the

left end. At the bottom of Fig. 5 we show the dependence
of £ inside the topological phase I as one of the parame-
ters is varied. As expected, £ diverges at the boundary with
the nontopological gapped phase II, which has a different
Z; topological invariant (at A, = 3.872983346 in the fig-
ure). We also find that & diverges at the boundary with
the gapless phase III (at A, = 0.694592711 in the figure),
a phase with the same topological invariant but gapless.
These facts allow us to obtain numerically the transitions
from the localization of the end states (see top left panel of
Fig. 2).

V. SUMMARY AND DISCUSSION

Using numerical and analytical methods, we calculate the
phase diagram of a widely used model for topological super-
conducting wires, the essential ingredients of which are local
s-wave pairing A, spin-orbit coupling %, and magnetic field B.
We determine the boundary of the gapped topological phase
analytically. This phase contains robust Majorana zero modes
at both ends that are of great interest. We expect that this result
will be relevant for future studies in the field.

The optimal situation for topological superconductivity is
when B is perpendicular to X. In this case, both the topological
and nontopological phases are gapped. If instead B has a
component in the direction of X, a gapless superconducting
phase appears for certain parameters. This phase can also be
separated in two phases differing in a Z, topological invariant.
However, due to the absence of a gap, we do not find Majorana
zero modes at the ends of the phase with nontrivial Z;, in
contrast to those present in the gapped topological phase.

Tilting the magnetic field to enter the gapless phase might
be used as a trick to relax the system to the ground state in
some measurements, like Josephson current. In the gapped
topological phase, in the absence of low-frequency phonons
or other excitations, the physics is dominated by a few bound
states inside the gap, completely isolated from the continuum,
and the current would oscillate, without reaching a steady
state [36]. One way to avoid this problem would be to use a
magnetic field so that the system is in the gapless phase, with
low-energy excitations available for thermalization, and then
rotate adiabatically the field to the desired value so that the
system remains in the ground state.
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