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Triply degenerate point in three-dimensional spinless systems
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We study the possibility of triply degenerate points (TPs) that can be stabilized in spinless crystalline systems.
Based on an exhaustive search over all 230 space groups, we find that the spinless TPs can exist at both
high-symmetry points and high-symmetry paths, and they may have either linear or quadratic dispersions. For
TPs located at high-symmetry points, they all share a common minimal set of symmetries, which is the point
group T . The TP protected solely by the T group is chiral and has a Chern number of ±2. By incorporating
additional symmetries, this TP can evolve into chiral pseudospin-1 point, linear TP without chirality, or quadratic
contact TP. For accidental TPs residing on a high-symmetry path, they are not chiral but can have either linear
or quadratic dispersions in the plane normal to the path. We further construct effective k · p models and minimal
lattice models for characterizing these TPs. Distinguished phenomena for the chiral TPs are discussed, including
the extensive surface Fermi arcs and the chiral Landau bands.

DOI: 10.1103/PhysRevB.104.115116

I. INTRODUCTION

Physical properties of metals are largely determined by
the electronic quasiparticles around the Fermi level. In usual
cases, these electrons can be well approximated as free par-
ticles characterized by a renormalized effective mass [1].
However, there are also special cases in which this treatment is
no longer valid, namely, when certain band degeneracy points
(BDPs) are located at or close to the Fermi level. These points
may change the fundamental character of the low-energy
quasiparticles [2–4]. First, the particles acquire a pseudospin
degree of freedom corresponding to the degeneracy of the
BDP. Second, the energy dispersion of the particles could be
different and is determined by the character of the BDP. Third,
the particles may even acquire chirality when the BDP carries
a chiral topological charge. As prominent examples, Weyl
and Dirac particles emerge around twofold degenerate Weyl
and fourfold degenerate Dirac points [4–9], respectively. They
are massless with linear dispersions. And the Weyl particles
have a definite chirality, corresponding to the Chern number
[5,10,11] of the Weyl point.

In condensed matters, the BDPs and the associated emer-
gent quasiparticles have a much richer variety compared with
the high-energy physics, because the symmetry requirement,
i.e., the space group (SG) symmetry, is much reduced from the
Poincaré group for elementary particles [12]. Notably, a kind
of three-component particles, emerging at triply degenerate
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points (TPs), was proposed and attracted great interest. It
was predicted in WC-family materials [13], θ -TaN [14], and
many other systems [15–25]. TPs in some of these proposals
have been successfully demonstrated in experiment [26–30].
Physically, the TP particles may be regarded as intermedi-
ate between two-component Weyl and four-component Dirac
particles. It was shown that they may lead to interesting sur-
face states, unusual transport property, and topological phase
transitions [12–14,25,31,32].

So far, most studies on TPs are in systems with spin-
orbit coupling (SOC). For example, the material examples
mentioned above have sizable SOC. In Ref. [12], Bradlyn
et al. classified possible TPs at high-symmetry points of the
Brillouin zone (BZ) for systems with SOC. On the other hand,
it was noted that TPs may also appear in spinless systems. For
example, linear and special quadratic TPs were reported in
three-dimensional (3D) honeycomb carbon [33] and H-boron
[34], where the SOC can be neglected. It is noted that for
electrons in materials, the desired band degeneracies should
be close to the Fermi level, which is critical for experimen-
tal measurement or further applications. This depends in a
complicated way on the intrinsic orbital properties, electron
filling, and interaction effects for a specific material. Mean-
while, the discussion of topological states also applies to the
huge fields of bosonic and even classical periodic systems,
which are currently under rapid development [35–45]. These
systems are intrinsically spinless, and the energy position of
the degeneracy can be less constrained, as typically the whole
spectrum can be probed in experiment. For example, a recent
work by Yang et al. [46] demonstrated a special chiral TP
in a phononic crystal. Therefore, it is an important task to
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TABLE I. List of TPs at high-symmetry points identified in 230 SGs for spinless systems. Here, |C| is the Chern number of the point.

Order Minimal symmetry Adding symmetry SG and location |C| notation

Linear C3,111, C2z, C2y 197, P 2 C-2 TP
T C2;110 211, P 2

T 195–199, �; 195, R; 197, 199, H 2
C2,110, T 207–214, �; 207-208, R; 211, 214, H 2

PT 204, P - TP
M110 217, P -

M110, PT 229, P -

Quadratic P , T 200–206, �; 200–201 R; 204, 206, H 0 QCTP
M110, T 215–220, �; 215, R; 217, H 0

P , M110, T 221–230, �; 221, 224, R; 229, H 0

have a systematic analysis of TPs in spinless systems. The
study will help us address the following open questions: What
are all possible kinds of TPs in spinless systems? What are
their symmetry requirements? What are the properties of the
emergent TP particles?

In this work, we undertake this task and answer the above
questions. We perform an exhaustive search of all possible
TPs in the 230 SGs for 3D spinless systems with time-reversal
symmetry. The results are summarized in Tables I and II.
Our key findings are the following. (i) TPs can be classified
into two large classes: Those at high-symmetry points of the
BZ and those on high-symmetry lines. All these points are
isolated, meaning that there are no triply degenerate nodal
lines or surfaces. (ii) For each class, there are two subclasses
according to the dispersion of the TP: Linear or quadratic.
In other words, we find that the leading order in dispersion
for a TP cannot be higher than two. (iii) Chiral TPs only
appear for linear TPs at high-symmetry points. Notably, they
may reside at both time-reversal-invariant momentum (TRIM)
points and non-TRIM points. This is in contrast to chiral TPs

in spinful systems, which cannot appear at TRIM points and
must require certain nonsymmorphic symmetry. We present
the symmetry conditions and the k · p effective model for
each kind of TPs. For the most interesting cases with chiral
TPs and quadratic TPs, we also construct lattice models to
demonstrate their existence. The manifestation of the chi-
ral TPs in topological surface states and Landau spectra is
discussed.

Our work provides a comprehensive view of TPs in spin-
less systems. The results will be useful for searching and
studying TP particles in real materials as well as in designed
artificial structures.

II. APPROACH

To obtain a complete classification of TPs in spinless
systems, we scan through all the irreducible representations
(IRRs) of the little group at high-symmetry points and lines
in the BZ for each of the 230 SGs (clearly, TPs cannot oc-
cur at generic k points). For spinless systems, these IRRs

TABLE II. List of TPs on high-symmetry lines identified in 230 SGs for spinless systems. It should be noted that they are categorized
according to their local symmetries. For instance, {C4z, My} and {C4y, Mx} are the same.

Order Minimal symmetry Adding symmetry SG and location

Linear C2z, S4zT 81-82, �; 81-82, V
My 111–122, �; 111–112, 115–121, V ; 122, V ; 215, 218, T ; 215-220, �

C3z, S3zT 174, �

C3z, PT 147, �; 148, �; 147-148, 164–165, 175–176, P; 200–206, �; 204, 206, F
C4z, PT 83–88, �; 83–88,V
C3z, Mx 156–159, �; 160–161, �; 157, 159–161, 183–186, 189–190, P

PT 162–165, �; 166–167, �; 162–163, 166–167, 191–194, P
S3zT 187–190, �

C3;111, M110 215–220, �; 217, 220, F
PT 221–230, �; 229–230, F

C4z, My 99–110, �; 99, 101, 103, 105, 107–108, V
C2z 100, 102, 104, 106, 109–110, V
PT 123–142, �; 123–124, 131–132, 139–142,V ; 221, 223, T ; 221–230, �

C2z, PT 125–126, 133–134, V ; 222, T
C2z, Mx , M110

PT 224, T

Quadratic C6z, PT 175–176, �

C6z, Mx 183–186, �

PT 191–194, �
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correspond to the single-valued representations, which have
been tabulated in standard references [47].

At high-symmetry points, a TP corresponds to a 3D IRR of
the little group. On a high-symmetry line, a TP corresponds to
a crossing between bands with 2D and 1D IRRs. We investi-
gate all these possibilities with the knowledge of the IRRs.

For each identified TP, we characterize it by constructing
the k · p effective model Heff from the symmetry constraints

D(Gi )Heff(G−1
i k)D−1(Gi ) = Heff(k), (1)

where Gi is the i-th generator of the little group at TP, and
D(Gi ) stands for the matrix representation of Gi. The disper-
sion and the chiral charge can be obtained from this effective
model. The similar approach is also used for constructing the
lattice models for a few representative SGs.

In the following, we shall discuss the obtained results in
Tables I and II.

III. HIGH-SYMMETRY POINTS

TPs at high-symmetry points correspond to the 3D IRRs of
the little group at the point. We find that all these TPs share a
common minimal set of symmetries. In Sec. III A, we shall
first discuss this minimal set and present the most general
model. Then, in Sec. III B, we shall add additional symmetries
to this minimal set (denoted as “symmetry ascending”) and
investigate the impact on the character of the TP.

A. Minimal symmetry

Let G be the little group at a high-symmetry point, a TP is
associated with the 3D single-valued IRR of G. The minimal
symmetry would then be the simplest G that possesses a 3D
IRR. We find that this is given by the point group T .

Group T is generated by three elements: A twofold ro-
tation C2y, a twofold rotation C2y, and a threefold rotation
C3;111. Here, the rotation axis for C3;111 is along the [111]
direction. The 3D IRR for T corresponds to the basis states
of � = (px, py, pz ). Under this basis, the representations of
the three generators are given by

D(C3;111) =
⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦, D(C2z ) =

⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦,

D(C2y) =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦. (2)

The effective model for the corresponding TP can be de-
rived according to Eqs. (1) and (2). The obtained model
expanded to the first order in k can be expressed in a compact
form as

H = c1Hchiral + c2Hachiral, (3)

with

Hchiral = kx�7 − ky�5 + kz�2, (4)

and

Hachiral = kx�6 + ky�4 + kz�1. (5)

Here, the energy and the momentum are measured from the
TP, c1 and c2 are real parameters, and �i are the 3 × 3 Gell-
Mann matrices (see the Appendix for their concrete forms). If
we only have the first term in Eq. (3), the TP would feature a
Chern number of ±2. ( For a nodal point, its Chern number
is defined for the valence bands on a small sphere enclosing
the point.) In contrast, if the TP only has the second term
in Eq. (3), it does not have a well-defined Chern number, as
one crossing band is doubly degenerate along certain high-
symmetry paths. This explains the meaning of the subscripts.
In the general case, i.e., with group T , both terms should be
present, and the TP is chiral and has Chern number ±2. Such
TPs are termed as charge-2 TPs. Interestingly, we note that
in spinful systems, the existence of chiral TPs would require
nonsymmorphic symmetries [12]. In comparison, for spinless
systems, symmorphic symmetries are sufficient to stabilize a
chiral TP.

This minimal symmetry case is met at point P for the SG
197, as shown in Table I. When additional symmetries are
added, some of the terms in Eq. (3) could be eliminated,
and the TP may be transformed to other types. The result
of such symmetry ascending process will be discussed in the
following.

B. Symmetry ascending

1. Charge-2 TP

As we demonstrated above, the minimal symmetry con-
dition gives a charge-2 TP described by Eq. (3). By adding
additional symmetries, such as the time-reversal symmetry T ,
twofold rotation C2;110 along the [110] direction, or their com-
bination T C2;110, we find that the TP will remain a charge-2
TP with linear dispersion in all directions (see Table I), but its
effective model is greatly simplified.

Consider the TP at the � point of SG 195 as an example.
The little cogroup is G = T ⊗ {T , E} with E the identity
element. The matrix representation of T under the basis �

is

D(T ) = I3K, (6)

with K the complex conjugation and I3 the 3 × 3 identity
matrix. Clearly, the added T symmetry eliminates the second
term in Eq. (3), since the Gell-Mann matrices involved in
Hachiral are purely real. Then, the low-energy model for this
TP takes a very simple form of

H�
195 = cHchiral. (7)

Notice that the Gell-Mann matrices in Hchiral satisfy the alge-
bra of angular momentum operators [Si, S j] = iεi jkSk , if we
set Sx = �7, Sy = −�5, and Sz = �2. Hence, the charge-2 TP
here corresponds to the chiral pseudospin-1 particles [12]. It
was shown that such particles can exhibit remarkable effects
such as super Klein tunneling [48], supercollimation [49], and
super Andreev reflection [50]. The chiral TP reported in the
recent experiment on a phononic crystal (with SG 198) also
belongs to this category [46].
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2. Linear achiral TP

With the addition of M110, the combination of T and in-
version symmetry P , or both M110 and PT (see Table I), the
original charge-2 TP in (3) would transform into a TP without
a finite Chern number. This can be easily understood, since
the PT symmetry suppresses the Berry curvature field and
any monopole topological charge cannot reside on a mirror
plane.

Consider the triple point at the P point of SG 204, which
has PT in addition to the minimum symmetry T . The matrix
representation of PT under the basis � can be written as

D(PT ) = −I3K. (8)

This symmetry eliminates the first term in Eq. (3), as the Gell-
Mann matrices in it are purely imaginary. Hence, we obtain

HP
204 = cHachiral. (9)

This TP has linear dispersion, vanishing Berry curvature, and
is not chiral. Moreover, a detailed analysis shows that two of
the three bands must be degenerate along the P-H and P-�
paths, due to the C3 symmetry.

3. Quadratic contact TP

Apart from the linear TPs discussed above, we also find
TPs exhibiting quadratic energy splitting along all directions
in momentum space, as shown in Table I. This is possible
when the additional symmetry is P or T M110.

Let us first consider the consequence of adding P . This
applies to the � point of SG 204. Then, the point group T
is transformed into Th. Since all the P-invariant points are
also TRIM points, the T symmetry must also be present. The
matrix representation of P under the basis state � reads

D(P ) = −I3. (10)

According to the constraint

D(P )Heff(−k)D−1(P ) = Heff(k), (11)

all the odd-order terms in k must be excluded. Therefore,
the leading order becomes k quadratic. Expanded up to the
k-quadratic order, we obtain

H�
204 = c1k2I3 + c2(kxky�1 + kxkz�4 + kykz�6)

+ (
√

3c3�3 + (c3 + 2c4)�8)k2
x − (

√
3(c4 + c3)�3

+ (c4 − c3)�8)k2
y + (

√
3c4�3 − (2c3 + c4)�8)k2

z .

(12)

Clearly, this TP has a quadratic energy splitting along all
directions in the momentum space. We term this kind of TP
as quadratic contact TP (QCTP) to indicate that the bands
“contact” rather than “cross” each other [51].

The QCTP can also be protected by the Td group together
with T , corresponding to adding a vertical mirror M110 and
T to T . This applies, for example, to the � point for SG 215.
In such a case, the low-energy effective model reads

H�
215 = c1k2I3 + c2(kxky�1 + kxkz�4 + kykz�6)

+ c3
[√

3
(
k2

x − k2
y

)
�3 + (

k2
x + k2

y − 2k2
z

)
�8

]
. (13)

Finally, with the addition of symmetry M110 (P), the point
group Th (Td ) will be further transformed into the Oh group,
which has four different 3D IRRs. We find that the TPs pro-
tected by these IRRs of Oh are also QCTPs. And one notes
that since the QCTPs have either PT or M110 symmetry, the
Chern numbers for all the three bands of a QCTP must be
zero.

IV. HIGH-SYMMETRY LINES

TPs on high-symmetry lines are formed by the crossing be-
tween a nondegenerate band and a doubly degenerate band. In
this sense, these TPs belong to the accidental band crossings.
The collection of such TPs from our systematic search is listed
in Table II. We note that first, while the TPs at high-symmetry
points are only available in cubic crystal systems, the ex-
istence of TPs on high-symmetry lines is more extensive.
Besides cubic systems, they also appear in tetragonal, trigonal,
and hexagonal systems. Second, in addition to the linear TPs,
we also have quadratic TPs on high-symmetry lines. This is
distinct from spinful systems, where quadratic TPs cannot
exist on high-symmetry lines [12,13]. Third, all TPs on high-
symmetry lines do not have a well-defined Chern number.
This can be easily understood by noting that one crossing band
is doubly degenerate along the high-symmetry path. Last, dif-
ferent from the QCTPs at high-symmetry points which have
quadratic dispersion along all directions, the quadratic TPs on
high-symmetry lines have linear dispersion along the line and
quadratic dispersion in the plane normal to the line.

A. Minimal symmetry

There are three different types of minimal symmetry con-
ditions for protecting TPs on a high-symmetry line. The first
one is the group Cnv (with n = 3, 4, 6), which has both 1D and
2D single-valued IRRs. The second is the threefold rotation
C3z together with PT or S3zT , as the pair of conjugated
1D single-valued IRR of C3z are bound together into a 2D
corepresentation by PT or S3zT . Here, S3z is the threefold
roto-reflection along z. The last case is a twofold rotation
C2z together with S4zT . The bands on the high-symmetry line
along z can be labeled by the eigenvalues of C2z, which are
±1. Correspondingly, we have (S4zT )2 = C2z = ±1, so the
bands with C2z = 1 are nondegenerate, while the bands with
C2z = −1 must be doubly degenerate due to the Kramers-like
constraint (S4zT )2 = −1. A crossing between a nondegen-
erate band and a doubly degenerate band will then form an
accidental TP.

With symmetry ascending, the accidental TPs protected by
the minimal symmetry conditions may be transformed into
other types of BDPs. All the cases giving TPs are listed in
Table II.

From Table II, one finds most of the accidental TPs show
linear energy splitting. There do exist several TPs exhibiting
quadratic energy splitting in the plane normal to the high-
symmetry line. While the linear accidental TPs have been
well studied in both spinless and spinful systems in previous
works, especially in the WC-family materials [13–15,26,27],
the report of quadratic TPs is very limited. In a recent work
[34], the quadratic TP was found in H-boron, with SG 194. In
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TABLE III. IRRs for quadratic TPs on high-symmetry lines.
Quadratic TPs can be found only on sixfold axis in SGs 175–176,
183–186, and 191–194, which also require specific IRRs provided
here. In the table, PG and AG denote a point group and an abstract
group, respectively. The notations of AG and the corresponding IRRs
are adopted from Ref. [47].

SGs PG AG IRRs

175−176 C6 G1
6 {R1, R3 ⊕ R5}, {R2 ⊕ R6, R4}

183−186 C6v G3
12 {R1, R5}, {R2, R5}, {R3, R6}, {R4, R6}

191−194 C6v G3
12 {R1, R5}, {R2, R5}, {R3, R6}, {R4, R6}

the following section, we shall give a detailed discussion of
the quadratic TPs.

B. Quadratic TP

As shown in Table II, quadratic TPs only occur on the high-
symmetry line (�) with sixfold rotation C6z in SGs 175–176,
183–186, and 191–194, where the line � also has PT , Mx,
and both PT and Mx symmetry, respectively. The appearance
of quadratic TPs also requires the crossing between bands
with a particular pair of IRRs, which are presented in Table III.

Let us take the quadratic TP formed by the R4 and R6

IRRs on the � line in SG 191 as an example. The matrix
representations for the symmetries can be taken as

D(C6) =
⎡
⎣

−1 0 0

0 1
2 −

√
3

2

0
√

3
2

1
2

⎤
⎦, D(Mx ) =

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦,

(14)

and D(PT ) = I3K. Clearly, we have

D(C6)3 = D(C2z ) = −I3, (15)

and the twofold rotation requires that

D(C2z )Heff(−kx,−ky, kz )D−1(C2z ) = Heff(k), (16)

which eliminates all the terms with odd orders in kx and ky.
Therefore, the leading order for dispersion in the kx-ky plane
becomes quadratic. Expanded to the leading order in each
direction, the effective model for this quadratic TP can be
obtained as

H�
191 = [

c1kz + c2k2
z + c3

(
k2

x + k2
y

)]
I3 + c4

(
k2

x − k2
y

)
�4

+ (2c4�1 + c5�6)kxky + (3�3 +
√

3�8)

× (
c6kz + c7k2

z

) + [
√

3c8�3 + (2c9 − c8)�8]k2
x

+ [
√

3c9�3 + (2c8 − c9)�8]k2
y . (17)

V. LATTICE MODELS

In this section, we present lattice models for the three
most interesting cases, namely, the charge-2 TP, the QCTP,
and the quadratic TP, in order to explicitly demonstrate their
existence. These models will also serve as a good starting
point for studying their physical properties.

A. Lattice model for charge-2 TP

Let us first consider a lattice model with SG 195, which
contains the charge-2 TP. We take a simple cubic lattice and
assign three active orbitals {px, py, pz} at the lattice sites
(corresponding to the 1a Wyckoff position). We find that the
following lattice model satisfies all the symmetry constraints
of SG 195:

HTB
195 = c1(�2 sin kz − �5 sin ky + �7 sin kx )

+ c2(�1 sin kx sin ky + �4 sin kx sin kz

+ �6 sin ky sin kz )

+ c3(�2 cos ky sin kz − �5 cos kx sin ky

+ �7 cos kz sin kx )

+ (
√

3�3 − �8)(c4 + c5 cos kz ) cos kx

− (
√

3�3 + �8)(c4 + c5 cos ky) cos kz

+ 2�8(c4 + c5 cos kx ) cos ky. (18)

The calculated band structure of this model is plotted in
Fig. 1(b). One can clearly observe two TPs at � and R points.
These points have linear energy splitting, as illustrated in
Fig. 1(c). Each of them is described by the model in Eq. (7)
(here R point has the same symmetry as �). For the parameters
taken in Fig. 1(b), we verify that the TP at � has a Chern
number of -2, whereas the TP at R has a Chern number of 2.

It should be pointed out that in the current case, the two
charge-2 TPs can be the only BDPs around the Fermi level (if
considering a spinless fermionic system). This is in contrast
to the spinful systems, where a charge-2 TP must coexist with
other kinds of BDPs, such as those at TRIM point [12].

B. Lattice model for QCTP

For the QCTP, we consider a lattice model with SG 204.
Again, we take a simple cubic lattice, with three active orbits
{px, py, pz} on each lattice site. The model we obtain is given
by

HTB
204 = c1(�1 cos kz sin kx sin ky + �4 cos ky sin kx sin kz

+ �6 cos kx sin ky sin kz ) + [c2(
√

3�3 − �8)

− 2c3�8] cos 2kx+[2c2�8+c3(
√

3�3 + �8)] cos 2ky

+ [c3(�8 −
√

3�3) − c2(�8 +
√

3�3)] cos 2kz.

(19)

The calculated band structure is plotted in Fig. 2(b). One can
clearly observe two QCTPs at � and H points. We confirm
that the leading-order energy splitting around these points are
of quadratic order. Meanwhile, there is another linear achiral
TP at the P point, which is consistent with results in Table I.

C. Lattice model for Quadratic TP

For the quadratic TP on a high-symmetry line, we con-
sider a lattice model with SG 191. We take a trigonal lattice,
with three active orbitals {dx2−y2 , dxy, dz2 } on each lattice site
(1a Wyckoff position). The lattice model that satisfies all
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FIG. 1. (a) BZ of SG 195. (b) Band structure of the tight-binding model (18) with SG 195. The parameters in the model are taken as
c1 = −1.4, c2 = 1.4, c3 = 0.8, c4 = 0.6, and c5 = −0.4. The red circles denote the two chiral TPs at � and R points. (c) Linear energy
dispersion in the vicinity of the chiral TP.

symmetry constraints can be taken as

HTB
191 = c1

[
�1

(
cos ky − cos

√
3kx

2
cos

ky

2

)

+
√

3�4 sin

√
3kx

2
sin

ky

2

]
+ (

√
3�3 + �8)

[
c2 cos kz

+ c3

(
cos ky + 2 cos

√
3kx

2
cos

ky

2

)]
. (20)

The calculated band structure can be found in Fig. 3. One
observes that two TPs appear on the �-A and the H-K paths,
with linear band crossing along kz. By investigating the band
dispersion around these points in the plane normal to kz, we
confirm that the TP on �-A is a quadratic TP [see Fig. 3(c)],
whereas that on H-K is a linear TP [see Fig. 3(d)], consistent
with the results in Table II.

VI. PROPERTY OF CHIRAL TP

Due to the nonzero Chern number, the charge-2 TPs can
exhibit many interesting physical properties. In this section,
we will highlight two examples. One is the topologically
protected long surface Fermi arcs, and the other is the chiral
Landau bands under a magnetic field.

FIG. 2. (a) BZ for SG 204. (b) Band structure of the tight-binding
model (19) with SG 204. The model parameters are taken as c1 =
0.4, c2 = −0.2, and c3 = −0.02. The red circles denote the QCTPs
at � and H points. The green circle denotes the achiral TP at P with
linear dispersion in all directions.

A. Extensive Fermi arcs

According to the bulk-boundary correspondence, a BDP
with a nonzero topological charge would generate protected
surface states [5]. For a Charge-2 TP, there must be two
Fermi arcs emanating from its projection in the surface BZ.
To demonstrate this explicitly, we calculate the surface spectra
based on the lattice model with SG 195 in Eq. (18). From
Fig. 1, we already know that there are two charge-2 TPs
with opposite Chern numbers ±2 at � and R. In Fig. 4(a),
we plot the surface spectrum for the (001) surface. One can
clearly find two surface Fermi arcs connecting the projections
of the two charge-2 TPs, consistent with the Chern number.
Moreover, since the two TPs are pinned at the high-symmetry
points � and R, the Fermi arcs must be extensive and traverse
the whole surface BZ. Similar surface spectra appear for the
(010) and (100) surfaces, as they are both related to the (001)
surface by the C3,111 symmetry. For example, the result for the
(010) surface is shown in Fig. 4(b). Such extensive Fermi arcs

FIG. 3. (a) Band structure of the tight-binding model (20) with
SG 191. The model parameters are taken as c1 = c2 = −0.5, and
c3 = −0.1. The red circle indicates the quadratic TP on the �-A (�)
path. The green circle indicates a linear TP on the H -K (P) path.
(b) BZ of SG 191. Panels (c) and (d) show the energy dispersion
around the quadratic TP and the linear TP, respectively.
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FIG. 4. Surface states for the lattice model (18) with SG 195 on
the surface (a) (001) and (b) (010). The white (green) dot denotes the
projection of TP at � (R) point. The model parameters are the same
as in Fig. 1.

are desired for experimental study and for possible applica-
tions based on Fermi arcs.

B. Chiral Landau bands

Under a magnetic field, each Weyl point is featured with a
single gapless chiral Landau band, with a definite handedness
corresponding to the chiral charge. In a recent work, Zhao and
Yang [52] proved a general index theorem, showing that there
is an intrinsic connection between the topological charge and
the chiral Landau bands for a BDP. It follows that a charge-2
TP should have two chiral Landau bands. To demonstrate
this, we calculate the Landau spectrum for the lattice model
in Eq. (18) by applying a magnetic field in the z direction
(via the standard Peierls substitution). The result is shown in
Fig. 5. The electron movement in the x-y plane is quantized
into Landau levels by the B field, so the spectrum consists
of 1D Landau bands that disperse along the z direction. In
the spectrum, one indeed observes two gapless chiral Landau
bands around both kz = 0 and kz = π , which correspond to
the locations of the two charge-2 TPs. We mention that these
chiral Landau bands can also be derived in the k · p effective
model, which is explicitly shown in the Supplemental Ma-
terial [53]. The chiral Landau bands can generate intriguing

FIG. 5. Landau band structure calculated from the lattice model
(18) with SG 195. The magnetic field is along the z direction. The
chiral Landau bands are colored in red.

physical effects, like chiral anomaly and negative longitudinal
magnetoresistance similar to those in Weyl semimetals.

VII. DISCUSSION AND CONCLUSION

In Sec. VI, we discussed the extensive Fermi arcs and the
chiral Landau bands for the chiral TPs. In fact, one may expect
that many exotic effects proposed for Weyl fermions may
also exist for chiral TP fermions, as they both have nontrivial
Chern numbers. For example, the unconventional gyrotropic
magnetic effect [54], the quantized circular photogalvanic ef-
fect [55], as well as anomalies in lattice dynamics [56] should
also be investigated in the context of chiral TPs. Particularly,
we note that the absence of mirror/inversion/rotoinversion
symmetries in chiral SGs will generally make the opposite
chiral TPs located at inequivalent energies. This would fa-
cilitate the possible observation of the circular photogalvanic
effect [55]. On the other hand, due to the different pseudospin
structure, one can also expect that the chiral TPs could bring
new features beyond the Weyl points. This is already evi-
denced in Refs. [48–50].

Our results in Tables I and II provide useful guidance for
searching or designing concrete systems to achieve the various
TPs. For electronic systems, it is promising to search for these
TPs in materials made of light elements, such as the carbon
and boron allotropes, where SOC can be neglected. Indeed,
we have already seen a few examples [33,34]. However, it
should also be pointed out that in these examples, the desired
TPs are away from the Fermi level and the low energy bands
are not clean enough. Hence, it remains an important task to
search for ideal candidate materials. For this task, the com-
bination of our result with symmetry indicator approach may
offer an efficient method. For example, the recent work by
Zhang et al. [57] develops a method to detect band degeneracy
on high-symmetry paths based on symmetry eigenvalues at
high-symmetry points. By extracting the symmetries of the
crossing bands that form the degeneracy, one can use our
result to figure out the type of the possible TPs.

More importantly, spinless TPs may also be explored
beyond electronic systems. For example, they can be re-
alized in phonon spectra of real materials [58], artificial
acoustic/photonic crystals [35–38], electric circuit arrays
[39,40], or even mechanical networks [41,42]. In the Sup-
plemental Material [53], we give three examples where our
predicted TPs are realized in the phonon spectra of concrete
solid materials, including SiOs, IrP3, and BiPt. For artificial
systems, we have a huge degree of freedom to tune the various
parameters. This will be a big advantage for achieving and
studying spinless TPs.

Finally, our analysis here can be extended to systems with
broken time-reversal symmetry, i.e., for magnetic groups. Ac-
tually, we note that all four types of TPs found here, including
the charge-2 TP, the linear achiral TP, the QCTP, and the
Quadratic TP, should also exist in systems with broken T ,
because the T symmetry itself is not essential in our analysis.

In conclusion, we have systematically investigated all pos-
sible TPs in the 230 SGs for spinless systems. We classify all
TPs according to their locations in the BZ, their dispersion,
and chirality. Besides the conventional linear achiral TP, we
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find chiral charge-2 TPs, QCTPs, and quadratic TPs. For each
kind of TPs, we present its SGs and low-energy effective
models. Lattice models are constructed to explicitly demon-
strate the existence of three special TPs. For the charge-2 TPs,
we also discuss their physical manifestations in the extensive
topological surface Fermi arcs and the chiral Landau bands.
Our work provides a comprehensive classification of TPs in
spinless systems. It offers useful guidance for exploring TPs
in various systems ranging from spinless electronic systems,
bosonic systems, to artificial periodic systems.
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APPENDIX: GELL-MANN MATRICES

Gell-Mann matrices are traceless Hermitian generators of
the SU(3) Lie algebra. In this work, the Gell-Mann matrices

are taken to be [59]

�1 =
⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦, �2 =

⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦,

�3 =
⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦,�4 =

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦,

�5 =
⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦, �6 =

⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦,

�7 =
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦, �8 = 1√

3

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦. (A1)

These matrices, together with the 3 × 3 identity matrix, form
a complete basis for 3 × 3 Hermitian matrices.
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