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Quantum percolation of monopole paths and the response of quantum spin ice
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We consider quantum spin ice in a temperature regime in which its response is dominated by the coherent
motion of a dilute gas of monopoles through an incoherent spin background, taken to be quasistatic on the
relevant timescales. The latter introduces well-known blocked directions that we find sufficient to reduce the
coherent propagation of monopoles to quantum diffusion. This result is robust against disorder, as a direct
consequence of the ground-state degeneracy, which disrupts the quantum interference processes needed for weak
localization. Moreover, recent work [Tomasello et al., Phys. Rev. Lett. 123, 067204 (2019)] has shown that the
monopole hopping amplitudes are roughly bimodal: for ≈1/3 of the flippable spins surrounding a monopole,
these amplitudes are extremely small. We exploit this structure to construct a theory of quantum monopole
motion in spin ice. In the limit where the slow hopping terms are set to zero, the monopole wave functions
appear to be fractal; we explain this observation via mapping to quantum percolation on trees. The fractal,
nonergodic nature of monopole wave functions manifests itself in the low-frequency behavior of monopole
spectral functions, and is consistent with experimental observations.
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I. INTRODUCTION

Topological quantum spin liquids feature fractionalized
quasiparticles [1–4], whose properties stem from the topo-
logical nature of the ground state [5–11]. It is tempting to
regard these quasiparticles as simply dressed free particles
[12]; however, the fact that they are defined above a nontrivial
and sometimes degenerate vacuum can qualitatively invalidate
this free-particle picture. A case in point is quantum spin
ice (QSI) [13]. Classically, the ground state of spin ice has
extensive entropy, as all configurations satisfying the “ice
rules” are ground states [14]; quantum fluctuations lift this
degeneracy and give rise to quantum spin-liquid behavior
[2,15,16]. However, while classical spin ice is well under-
stood [17], we lack a definitive quantum counterpart (see e.g.,
Refs. [18,19]). Potential probes of quantum spin ice often
focus on its quasiparticles, which are expected to resemble
quantum electrodynamics [15,16]. Understanding excitations
and their interplay in a strongly correlated three-dimensional
quantum spin system is, however, technically challenging
(see, e.g., Refs. [20–24]).

This motivates the development of effective models of
quasiparticle dynamics. In spin ice, the quasiparticles are
not free pointlike excitations, but they are inextricable from
the rearrangement of the underlying quantum spin state.
The situation is particularly transparent at low but nonzero
temperatures, when the underlying spin state is a statistical
mixture over all classically allowed ground states [26]. When
a monopole moves through this background, it leaves a trail
of flipped spins behind; the presence of this observable trail

prevents interference between different paths and leads to
quantum diffusive behavior as in the motion of holes in the
Hubbard model [27–31]. Moreover, as we will see below,
the monopole traverses a background with randomness that is
quenched on the monopole hopping timescales. This quenched
randomness affects monopole motion by energetically block-
ing some directions and, as recently pointed out in Ref. [25],
by suppressing the amplitude for certain monopole moves.
We note in passing that an incoherent spin background can
be induced not only by finite temperature but also by the
proliferation of vison excitations (i.e., ring exchange spin flip
processes) at low but nonzero temperatures, for example close
to a phase transition out of the QSI phase [32].

Here we construct a theory of monopole dynamics in this
intermediate temperature regime. The quenched randomness
in hopping amplitudes, arising from the random background
[25], allows us to draw a connection between the dynamics of
spin ice and quantum percolation, and, remarkably, enables
more efficient numerical simulations (by only including the
parts of Hilbert space that the monopole can visit). The
resulting model is interesting in its own right: it presents
a concrete setting where one can study kinetic constraints
in quantum dynamics, and thus has affinities with certain
models of disorder-free many-body localization [33–37]. We
find that the blocked directions in the underlying state reduce
the coherent propagation of monopoles to quantum diffusion.
Diffusion is robust against disorder, as a direct consequence
of the ground-state degeneracy, which disrupts the quantum
interference processes needed for weak localization. Thus
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the bimodal distribution of transverse kinetic terms, or even
explicit randomness in the hopping matrix elements, affects
dynamics only quantitatively by decreasing the diffusion
constant.

With the more efficient numerical simulations, we are able
to extract statistical properties of the monopole wave func-
tions and their spectra. Remarkably, although transport is
diffusive, the wave functions are not ergodic but multifractal.
A fraction of states, meanwhile, are confined to move on finite
spin clusters, resulting in characteristic sharp finite-frequency
peaks in the density of states, conductivity, and other spec-
tral functions, in the absence of disorder. We account for
these results by mapping monopole dynamics to a percolation
problem on the Bethe lattice. We also briefly discuss the
optical conductivity in this single-monopole limit, which has
qualitatively similar features to those noted in Ref. [38] in
experiments on Yb2Ti2O7.

Our results are relevant to ultrafast spectroscopy measure-
ments on QSI materials [38], and also to QSI implementations
on quantum annealers [39]; moreover, the observation that
some monopoles are confined to move on finite spin clusters
potentially has consequences for inelastic properties and mag-
netic noise, which are accessible using neutron scattering [4]
and SQUID [40–42] measurements, respectively.

II. MODELS AND METHODS

The phenomena relevant here are captured by the following
effective nearest-neighbor Hamiltonian for spins s > 1/2 on
the pyrochlore lattice:

H = −J
∑
〈i j〉

Si · S j − �
∑

i

(ni·Si )
2, (1)

which encompasses a nearest neighbor spin-spin interaction
and a strong local easy-axis anisotropy [43]. The spins live on
the sites of the pyrochlore lattice, and the local easy axes ni

point from the centers of one sublattice of tetrahedra to the
centers of the other. There are four inequivalent directions.

For � � J , each spin can be projected onto a ground-state
doublet along its local easy axis; interaction terms parallel to
this axis couple directly to the doublet, whereas transverse
terms induce matrix elements involving the excited state and
are therefore virtual processes, suppressed by factors of 1/�.
Since the easy axes of neighboring spins are not parallel to
one another, the exchange field

hi = J
∑
j:〈i j〉

S j (2)

has in general both a component parallel to the local axis
ni, as well as a component transverse to it. The longitudinal
component fixes the ground-state manifold. The transverse
component—comprising terms ∼Sz

i Sx
j —gives dynamics to the

spins [44]. Both components depend on the (classical) con-
figuration of the surrounding spins. In the ground state, a
dominant longitudinal term pins the spin to its lowest energy
state. In our work we are concerned with the dynamics of a
single monopole in a regime where creation and annihilation
events are energetically forbidden [45]. When a tetrahedron
hosts a monopole (e.g., a three-in one-out defect in the ground
state), three of the surrounding spins are free to flip, in which

case the monopole hops to an adjacent tetrahedron at no
energy cost: the longitudinal term correspondingly vanishes.
The fourth spin cannot be flipped without introducing further
violations of the ice rules, and its motion is energetically
blocked. The three flippable spins are able to precess under
the action of the transverse component. As shown in Ref. [25],
the transverse component can take either a finite value (on
average, in 2/3 of the cases), or it can vanish (1/3 of the
cases). In the latter case, even if there is no energy barrier
preventing the spin to flip, there is also no matrix element
inducing any dynamics and the spin remains static.

We make the further simplification of working on a two-
dimensional version of spin ice called square ice (equivalently
known as the six vertex model). The criterion for a spin to
be static is chosen in resemblance to the three-dimensional
(3D) case (as explained in Appendix A), so that the average
number of dynamical (neither blocked nor static) spins around
the monopole is two. We expect the phenomena studied in this
paper not to differ significantly between the two lattices, as
they are locally both trees with identical connectivity and—as
we discuss below—loops do not play an important role in the
dynamics [23].

We construct and diagonalize this model as follows. First
we generate a random ice-rule obeying configuration with
open boundary conditions; then we flip a single spin to create
a pair of monopoles, and we move one member of this pair
to the edge of the sample. Next we construct a tree graph
of all configurations that can be reached from this initial
configuration by moving the other monopole across all al-
lowed spins. We keep track of the real-space position of the
monopole at each node on this tree; however, inequivalent
paths that reach the same node are treated as distinct, since
they are physically distinguishable via the trail of flipped
spins the monopole leaves behind. This remark is essentially
exact out to a long timescale (compared to the characteris-
tic timescale to flip a spin), on which nontrivial interfering
paths—involving flipping the same trail of spins—can be con-
structed (see Appendix A). These paths do not appear for the
times and sizes we consider, and are quite fine tuned; therefore
we expect that any weak localization corrections they generate
will be small.

We study two limits: one in which only the blocked spins
are prevented from flipping and all others have the same
flipping amplitude; and another in which all static spins are
treated as completely frozen and prevented from flipping. We
call these two cases unconstrained and constrained, respec-
tively. In the first case, the tree is regular and has connectivity
3. When the static spins are frozen, each node of the tree (other
than the first) can either have three allowed directions (branch-
ing), two allowed directions (linear), or one allowed direction
(dead end). Eventually we stop this process, either because
we have reached all accessible nodes, or because the Hilbert
space of the tree becomes intractably large. The constrained
case is not only more realistic, but also offers a numerical
advantage, since the Hilbert space grows more slowly with
the distance traveled, and therefore reliable simulations are
possible to longer times. When nonvanishing, the magnitudes
of the transverse components of the exchange fields from
Eq. (1) are uniform across the system. We also consider the
effect of adding static disorder to the transverse fields.
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FIG. 1. (a) Hierarchy of energy (or equivalently time/
temperature) scales in QSI. The spin ice constraint acts on energy
scales below the interaction strength (set to unity); the density of
monopoles is exponentially suppressed in T � 1 and they hop on
scales set by the transverse field h. On timescales 1/h � t � 1/h′

(where h′ is the “slow” hopping), monopoles effectively experience
constrained motion; on longer timescales, this constraint is absent.
At very long times, dynamics in the ground-state manifold, and
intermonopole interactions, are important. (b) Constrained square
ice model; open circles mark monopole positions. Consider the bold
spins; fast (slow) configurations are those in which this spin can
(cannot) move under h. The spins surrounding it are grouped into
three inequivalent color-coded types; for the bold spin to be static
each inequivalent pair must point oppositely [25]. (c) Monopole
diffusion in three cases: unconstrained motion, constrained motion
(h′ = 0), and constrained + disordered hopping, with h ∈ [ 2

3 , 1].
The system sizes are 102 for the unconstrained case, and 142 for
the constrained cases; there are no finite size effects out to the
times shown. The diffusion constant is 1.15 ± 0.03 (unconstrained),
0.38 ± 0.01 (constrained), and 0.22 ± 0.01 (disordered).

III. DIFFUSION

As a first diagnostic tool, we look at the variance in the
displacement of a monopole 〈x2〉 vs time t (see Fig. 1). We
note that the direction of monopole motion is opposite to
the direction in which the net magnetization of the system
changes. Thus the monopole diffusion constant is directly
related to the autocorrelation function of the total magneti-
zation, as measured, e.g., spectroscopically [38].

The blocked directions alone lead to purely self-retracing
monopole paths, and therefore to quantum diffusion. This is
seen as a linear growth of the variance 〈x2〉 = 2Dt . Further
constraints (e.g., ignoring the static spins) change the results
only quantitatively (by reducing the diffusion constant D),
similarly to the effects of disorder. The diffusion constant in
the constrained case is roughly a third of what it is in the
unconstrained case; disorder suppresses it yet further. This
diffusion constant is related to the low-frequency limit of the
monopole “conductivity” by the Einstein relation.

IV. MAPPING TO QUANTUM PERCOLATION ON TREES

Although the variance of the position grows linearly in
time, in the constrained case the higher moments behave quite

(a) (b)

FIG. 2. (a) One-monopole density of states vs energy, for un-
constrained, constrained, and constrained + disordered spin ice with
disorder of 25% in the hoppings. The constraint creates disconnected
clusters, which have discrete widely spaced levels. The disconnected
clusters are all identical (in the absence of disorder in the hopping) so
their levels coincide, giving sharp peaks in the DOS. Even relatively
weak disorder smears out these peaks. (b) Distribution of inverse
participation ratios for the constrained case with various values of
hopping disorder. The many sharp peaks corresponding to small
clusters are smeared by disorder. However, the peak at the inverse
participation ratio (IPR) I2 = 1/2 is unaffected by disorder, since
the eigenstates on two-site clusters are the same no matter what the
hopping amplitude is.

differently from what classical diffusion predicts. In particu-
lar, the autocorrelation function does not decay to zero, but
instead saturates to a finite, size-independent value on the or-
der of 5%. To understand this effect, we explore more directly
the consequences of the mapping between the monopole mo-
tion and quantum hopping on a Cayley tree.

Ignoring weak correlations due to the spin ice background
(see in Appendix A), one can regard each bond on the tree
(of coordination 3) as having a 1/3 probability of being cut,
because the corresponding spin is static. This immediately im-
plies, for instance, that in 1/27 of the initial sites a monopole
has no available moves, and so on. Classical percolation on a
Cayley tree was solved in Ref. [46]; the percolation threshold
is when half the links are cut, so constrained spin ice is well
above this classical percolation threshold. Nevertheless, the
quantum problem is not trivially delocalized [47]. Extended
states appear in the quantum problem when a fraction �0.4 of
bonds are cut (i.e., for p � 0.6 of having a bond). As this is
close to 2/3 one might expect some signatures of proximity to
percolation to appear in the properties of the spectra and wave
functions. This is indeed what we see.

V. DENSITY OF STATES AND WAVE FUNCTION
PROPERTIES

We first consider the density of states. In the absence of a
constraint, this is a regular function of energy; constraints give
rise to peaks in the DOS corresponding to short disconnected
clusters (see Fig. 2). Disorder in the hopping smears these
peaks out, since the peak energies corresponding to different
clusters are at different energies in the disordered system.
There are also corresponding peaks in the inverse participation
ratio (IPR), which is defined as I2 ≡ ∑

i |ψ (i)|4 and counts
the number of states on which a wave function has appre-
ciable support. In the absence of constraints, essentially all
wave functions are delocalized over the entire tree, and the
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(a) (b)

FIG. 3. (a) Scaling of the generalized IPR Iq of the least local-
ized state (defined in the main text) vs tree size. All IPRs decrease
algebraically with tree size, as Iq ∼ N−τq (q−1), where τq is plotted
vs q − 1 in (b). Ergodic states should have τq = 1 (black line). The
least localized state is therefore nonergodic; the slight downward
curvature of τq (relative to the gray line) indicates that these states
are weakly multifractal.

monopole is ergodic. The constraint drastically changes this:
in addition to the states localized on classically disconnected
clusters, which give discrete, evenly spaced peaks in the IPR
distribution, there is a background of quantum localized states
that live on one-dimensional segments of the percolation clus-
ter, and experience standard quantum localization (as a result
of the random self-energies due to small side chains hanging
off the cluster [47]). Localized and delocalized states are in-
terspersed in the same energy window, without any apparent
pattern (see Appendix B).

To investigate whether the delocalized states are ergodic or
critical, we now explore the properties of the least localized
state in a typical sample, as a function of system size. The
rationale for this choice is to understand whether any ergodic
states exist. We find (Fig. 3) that the IPR of the least localized
state scales as N−0.82 (as opposed to N−1 as one would expect

for an ergodic sample). Thus even the most delocalized states
are nonergodic.

We explore the structure of these states further by com-
puting their generalized IPRs, Iq ≡ ∑

i |ψ (i)|2q. These go as
q-dependent power laws, Iq ∼ N−τq . The anomalous expo-
nent τq is plotted in Fig. 3(b): if the wave functions were
fractal but otherwise structureless, we would see τq ∝ q −
1. The curve bends slightly downward, indicating that the
states are (weakly) multifractal. This multifractal behavior
is explored in more detail in Appendix B. The finding of
nonergodic monopole states is interesting because much at-
tention has gone into exploring such states in the context of
many-body localization. Perhaps surprisingly, the absence of
any ergodic wave functions appears to be compatible with
quantum diffusion, as our results here indicate.

VI. CONDUCTIVITY

We finally briefly remark on the dynamical spin structure
factor Sαβ (q, ω) and other dynamical response functions; we
choose αβ = xx for concreteness. Sxx(q, ω) is proportional
to the Fourier transform of the autocorrelation function of
the total spin; this is, in turn, proportional to the density of
monopoles times the displacement of each monopole at time
t . Assuming independently diffusing monopoles, Sxx(q, ω) ∼
Dq2/(D2q4 + ω2), so the monopole conductivity κxx(ω) ∼
Dω2/(D2q4 + ω2). In the DC limit we expect this formula
to be invalid, because collective effects become important.
In Appendix C we explore the frequency and temperature
dependence of κ (ω), using numerical studies of random reg-
ular graphs (RRGs) to mitigate finite-size effects (see Fig. 4).
For the unconstrained model this analysis gives diffusion,
with a diffusion constant that is in good agreement with
the directly determined one. For the constrained model, the
“apparent” DC conductivity—defined by time integrating the
current-current correlator—seems to decrease as a function
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FIG. 4. Real and imaginary parts of the monopole conductivity κ (ω) at high, intermediate, and low temperatures for the constrained (left)
and unconstrained RRGs. All curves are fixed to have the same normalization, so that they can be shown on the same scale.
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of observation time, even on the timescales where real-time
dynamics sees diffusion. Note that κ (ω) is more sensitive
to subleading nonanalytic terms than the wave packet width;
thus, in regimes with coexisting localized and diffusive states,
these quantities might disagree.

In addition to this diffusive structure, response functions
will generically have sharp peaks at predictable frequencies in
the constrained case. However, these peaks are unstable to be-
ing smeared out by disorder, and therefore might not be visible
in experiments involving non-Kramers ions, where structural
disorder has been argued to act as a disordered transverse field
to the spins [48,49]. Finally, our Kubo calculations do yield a
reactive part in the conductivity that changes sign as a func-
tion of frequency (see Appendix C); this behavior—which
emerges here from a microscopic model—is reminiscent of
the one observed in Ref. [38], and was explained phenomeno-
logically by attributing a band mass to the monopoles [50].

VII. DISCUSSION

In this work we discussed the dynamics of an isolated
quantum monopole in spin ice, in the temperature regime
where the system samples the entire classical ground-state
manifold. A mapping to quantum percolation on a Cayley
tree exists; a finite fraction of monopole states are localized,
while the majority are delocalized yet nonergodic in Fock
space. Despite these anomalous properties, transport is dif-
fusive, with a well-defined diffusion constant that depends
only quantitatively on dynamical constraints or extrinsic dis-
order. An important question for future work is to identify
observable consequences of these anomalous and localized
states [51], e.g., in nonlinear response. It would also be in-
teresting to see how much of this phenomenology survives
at still lower temperatures, e.g., when the monopole lives on
top of a true quantum spin-liquid ground state rather than
a classical mixture. Although we considered square ice as a
proxy for pyrochlore ice, our central results hinge on a Cayley
tree mapping that applies equally well in both cases; thus,
we expect these conclusions to extend to pyrochlore ice. An
important implication of this work is that QSI is a model
experimental system for studying quantum percolation, and
related localization phenomena, on Cayley trees. In this con-
text, it is interesting that multifractal wave functions appear to
coexist with diffusive transport.

Our results are relevant not only in searching for QSL
behavior in QSI candidate materials, but also in the con-
text of implementing QSI (and QSLs in general) in quantum
annealers—a possibility that has come to the fore recently
[39]. Indeed, quantum annealer implementations operate
precisely in the temperature regime of the classical inco-
herent spin background discussed in our work. Reference
[39] demonstrates that, while quantum square ice orders at
zero temperature and the excitations are log confined, finite
temperature suppresses the ordered phase and allows the ex-
citations to wonder unimpeded across the lattice (over the
relevant time and length scales). This opens the door to im-
plementing and investigating quantum spin ice and quantum
spin liquids in quantum annealers, by exploiting precisely
the semiclassical finite-temperature regime that we investigate
here; moreover, implementing QSLs in quantum annealers

paves the way to other types of gauge theories, the toric code
and color and surface codes that may put quantum annealers
back on the map towards topological quantum information
processing and quantum computing.
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APPENDIX A: FROM QUANTUM SPIN ICE TO TREES

In this Appendix we describe the mapping between quan-
tum spin ice clusters and random regular graphs, compare the
two cases numerically, and then describe “transport” proper-
ties on the random regular graph.

1. Geometric considerations

We first discuss the mapping from the dynamics of quan-
tum spin ice to that on a Cayley tree. The essential idea,
as explained in the main text, is that the dynamics of spin
ice is essentially treelike: different trajectories from A to B
leave distinct trails of flipped spins behind, and therefore
cannot interfere. Thus, as outlined in the main text, one can
approximate the spin ice dynamics using a Cayley tree of the
appropriate random connectivity (∼ 2

3 ). This mapping leaves
out some features: first, the orientations of the three flippable
spins surrounding a monopole are not entirely independent,
but could in principle be correlated via the ice rules; and sec-
ond, there are specific pairs of paths that interfere, as shown in
Fig. 5. This figure shows two paths that have the same trail and
the same endpoints, but different path lengths and different
phases. The minimal case with definite constructive interfer-
ence consists of trajectories that go through two “bends” of
the form shown. A trajectory that takes the first bend the long
way and the second the short way will interfere constructively
with one that takes the first bend the short way and the second
the long way, yielding a correction.

Neither effect is especially significant: the former reduces
the fraction of unblocked paths to slightly below 2

3 , while the
latter effect seems to require fine-tuned low-entropy pairs of
paths.

In the tree approximation, 1
27 monopoles are entirely

blocked; 4
243 rattle between two sites; etc. These two types of

localized configurations are shown in Fig. 6; for a discussion
of the distribution of small cluster sizes within this tree model
we refer to Ref. [46]. The square ice model has further correla-
tions imposed by the ice rule (so the states of the three edges
around a monopole are not strictly independent). Analyzing
these carefully gives us that in fact the fraction of flippable
spins is p ≈ 0.626 < 2

3 . By contrast, in pyrochlore spin ice,
these correlations are unimportant so p ≈ 2

3 to good accuracy.
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FIG. 5. Two inequivalent monopole trajectories that both lead to the same set of flipped spins (dark red). The second trajectory involves
flipping some spins (dark green) twice, and thus has longer path length.

Counting path distributions in the constrained spin ice model
agrees quantitatively with this prediction (Fig. 6).

2. Numerical comparisons

We now turn to a comparison of numerical calculations
on the spin ice model within the tree approximation (we will
call this the microscopic tree in what follows) and those on
random regular graphs with the same average connectivity.
The algorithm for constructing and analyzing trees is outlined
in the main text: briefly, one begins with a randomly generated
spin ice configuration, flips a spin to create a monopole-
antimonopole pair, moves the antimonopole to the edge of the
system, and then constructs a graph of paths that the monopole

spin ice
p = 2/3
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0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

points visited

cu
m
ul
at
iv
e
pr
ob
ab
ilit
y

FIG. 6. Left/center: Configurations of path length zero and one.
The monopole itself (and the region in which it can move) are indi-
cated in red. Each monopole position has one energetically blocked
spin, marked in purple. Potentially flippable spins (frozen because
of the transverse field configuration) are marked in green, while
spins that “cage” the monopole by immobilizing the green spins
are themselves marked in brown. Right: Cluster sizes for square ice,
compared with the results for random regular graphs with p = 0.63
and p = 2

3 connectivity. All the models have a finite fraction of
very small clusters; this fraction quantitatively matches for p = 0.63
(which is the appropriate connectivity in square ice, once one incor-
porates nearest neighbor correlations).

is allowed to traverse. This graph is treelike, by construction,
and we call it the microscopic tree. The microscopic trees
and the random regular graphs have somewhat different draw-
backs. On the one hand, the microscopic tree incorporates
local correlations that are neglected by random regular graphs
(RRGs), and thus gives a more accurate picture of the local
physics. On the other hand, the microscopic trees terminate
when they hit the edge of the sample, and a finite fraction
of the nodes of the sample are at the edge. The states near
the edge generally have lower coordination and are likelier
to form disconnected clusters (or localized wave functions
on connected clusters). The RRG avoids these spurious edge
effects by terminating the tree with large loops rather than cut
edges. Comparing the behavior of the two models, the RRG
consistently seems less localized than the microscopic tree
(Fig. 7).

As Fig. 7 shows, despite these quantitative differences,
both models show the main features we are interested in:
for example, both models have wave functions that appear
multifractal at these scales, filling in only a small fraction of
the classical clusters they live on, although the multifractal ex-
ponents are different. Likewise, the density of states has regu-
larly spaced peaks, as discussed in the main text, although the
peak heights are suppressed. We note the suppression of den-
sity of states at energies near the peaks; this feature is robust,
but we do not have an analytic understanding of it at present.

APPENDIX B: WAVE FUNCTION PROPERTIES

For the temporal dynamics shown in the main text, we
were able to work with the microscopic trees and avoid the
edge effects because a monopole initialized at the root of
the tree could not reach the edge on the studied timescales.
Unfortunately, this is no longer the case for wave function
properties or optical conductivity, so we work with RRGs.
For the wave function properties, which we consider first,
we expect the RRG model to be quantitatively correct. For
optical conductivity, which we discuss next, turning to RRGs
entails an additional approximation, but we still expect that
the qualitative behavior is correctly captured.

Figure 8 plots the inverse participation ratio (IPR) vs en-
ergy. To get meaningful numerical data, one must break the
large degeneracies that exist in the clean constrained system;
we do so by adding disorder of 1% in the hoppings. In
both the “nearly clean” and strongly disordered cases, wave
functions are heterogeneous (with some much more localized
than others) but there is no clear sign of a mobility edge.
Rather, the wave functions at a given energy have a broad
distribution of localization lengths. This is a distinctive feature
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FIG. 7. Comparison of exact diagonalization data on microscopic trees (top) and RRGs (bottom). (a) Density of states of monopoles on
constrained square ice, showing peaks due to disconnected clusters and a pronounced depletion near E = 0. (b) Probability density of |ψ (x)|;
at small x this goes as P(|ψ |) ∼ |ψ |−0.8. (c) Typical participation ratio of wave functions on a cluster vs size of cluster: IPRtyp.(L) ∼ L−0.18.
Lower panel: Corresponding results on random regular graphs. For this case one has P(|ψ |) ∼ |ψ |−0.36 (e) and IPRtyp.(L) ∼ L−0.66 (f).

of percolation on trees. At the sizes we have studied, none of
the states appears to be fully delocalized. Moreover, in the
clean case, one sees a sequence of isolated states that live
on disconnected clusters, for which the IPR and energy are
geometrically determined. These localized clusters are less
distinct in the disordered case, but the two- and three-site
clusters manifest themselves as horizontal lines at IPR 1

2 , 1
3 ,

respectively.

APPENDIX C: OPTICAL CONDUCTIVITY

We now turn from wave function properties to dynam-
ics. In particular, we will consider the frequency-dependent
monopole conductivity κ (ω). In order to define this on the
RRG we need to first map the structure of the monopole
current operator onto the RRG. We begin with the microscopic
tree, for which one can define a real-space monopole position
operator X̂ that identifies the real-space position (along the
direction x for concreteness) of the monopole in each global
spin configuration (i.e., node of the tree). This is the same
operator that we used to compute real-time dynamics as de-
scribed in the main text. The current is then Ĵx = d

dt X̂ , from
which one can derive the linear response optical conductivity
via the Kubo formula as

Re[κ (ω)] ∝ ω(1 − e−βω )
∫ ∞

−∞
dt eiωt 〈X̂ (t )X̂ (0)〉, (C1)

where we are leaving out a factor of monopole density. The
imaginary part of the conductivity follows from the Kramers-
Kronig relation.

To better understand the structure of the local cur-
rent operator Ĵ(r), we consider the equation of motion
for the monopole density. First, we observe that Q̂(r) =∑

α |α〉〈α|δ(rα − r). By commuting Q̂(r) with the Hamilto-
nian and using the continuity equation, we conclude that the

current across a link is given by

Ĵx(r, r′) = i
∑
αβ

(|α〉〈β| − |β〉〈α|)

× δ(rα − r)δ(r′
β − r′)(xr′ − xr ). (C2)

Each pair of sites linked by the current operator can either
have the same x component or an x component that is larger
or smaller by one. The sites to which the monopole can hop
from a given position are oriented essentially randomly be-
cause of the entropy of the ice manifold. Motivated by these
observations, we define an approximate current matrix on an
RRG as follows: any pair of connected configurations has an
associated current operator that is +i with probability 1

4 , −i
with probability 1

4 , and zero otherwise. This ignores certain
local correlations (in the physical system one cannot, for ex-
ample, have two links out of a site that both point rightward),
but in practice this type of unphysical connectivity occurs at
2% of nodes, so for simplicity we have not put in an extra rule
to exclude it.

1. Temperature and disorder dependence

We now explore the properties of κ (ω) in this RRG model.
Figure 4 in the main text plots out its temperature dependence.
Note that this is temperature is set only by the kinetic energy
of the monopoles: we are assuming throughout this work
that the temperature is too high to allow the ground-state
degeneracy to be lifted. In the constrained case, there is a
clear sign change in the imaginary part of the conductivity
(recall that this is the reactive response) that was previously
experimentally observed and attributed to monopole inertia
[50]. This feature becomes more pronounced and moves out
to higher frequencies at higher temperatures. Interestingly, the
low-frequency conductivity increases as the temperature is
decreased: the states near the bottom of the band seem to have
a higher mobility than those near E = 0.

We also briefly explore the behavior of κ (ω) in regimes
where the hopping is disordered or the fraction of blocked
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FIG. 8. Behavior of inverse participation ratio (IPR) vs energy.
Left: Density of states as a function of IPR and energy in the
constrained model; the color scheme goes from blue (low density)
to red (high density). Center: Scatter plot of IPR and energy for
three different system sizes: L = 800, 1600, 3200 (green, red, black).
Right: Same axes and color scheme, but with 33% disorder in the
hopping.

directions is set artificially high (at 1/2, i.e., percolation
threshold for the RRG). Here Fig. 9 shows the high- and
low-temperature behavior in these cases. Below percolation
threshold, the low-frequency behavior is much more
clearly insulating (especially at high temperatures), and
the peaks corresponding to small clusters are pronounced.
Disorder smears the peaks, but also depletes low-frequency
conductivity as one might expect. Finally, the rightmost panel
of Fig. 9 shows the size dependence of Re[κ (ω)], which is
very slight (although there is a slight drift toward having less
weight at low frequencies).

2. Comparison with microscopic trees

We now turn to a comparison between these results for
the optical conductivity and results for the model with mi-
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FIG. 9. High- and low-temperature conductivity for RRGs below
percolation threshold (left) and with hopping drawn randomly from
the interval (0.5, 1) (center). Right: Size dependence of conductivity
at high temperatures in the constrained (but disorder-free) case.

croscopic trees. In the microscopic tree model we construct
clusters of paths that are 20 or fewer steps away from the root
(where the monopole initially sits). As before, the adjacency
matrix of this graph is the monopole Hamiltonian. If we com-
pute the monopole conductivity using the Kubo formula, we
find that the results are close to those for an RRG a little below
the percolation threshold (Fig. 10). This effect seems to be due
to anomalously localized states at the edge of the graph: these
states have no weight on the initial monopole position, and
thus do not affect the real-time dynamics studied in the main
text, but do affect the conductivity.

3. Low-frequency limit

Finally, we discuss the DC limit of the conductivity. As
one can see from the discussion of the optical conductivity,
extrapolating to the DC limit from the finite-frequency data
is delicate. The right panel of Fig. 7 does this by computing
an apparent conductivity that one extracts by integrating the
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FIG. 10. Left: Real part of the conductivity from direct compu-
tation on the microscopic tree compared with results on the RRG at
two different values of the connectivity. Edge effects seem to push
the microscopic tree results to lower effective connectivity. Right:
“Apparent” DC limit vs time, from integrating the current-current
correlator out to some time t . In the unconstrained case the model is
cleanly diffusive, whereas the constrained and disordered cases have
diffusion constants that drift downward with time.

correlation function 〈J (t ′)J (0)〉 out to some time t . In a diffu-
sive system this integral converges to a finite answer, which is
the DC conductivity. This is what we see in the unconstrained
model. Both the constrained and disordered models, however,

FIG. 11. Finite-size scaling of apparent conductivity at various
system sizes and p. Values of p are color coded as in the leg-
end; within each group, dashed lines represent N = 50, dotted lines
N = 100, and solid lines N = 400. All data are averaged over 400
realizations.

have an apparent conductivity that drifts downward as time
passes. In the short time window for which we have reliable
data on the microscopic model, the two approaches lead to
similar conclusions: the constrained value is about 2

3 of the
unconstrained one, and the disordered value is about 2

3 of
the constrained value. However, the conductivity is clearly
drifting to lower values as system size increases, suggesting
that not all the curvature seen in the diffusion data is due
to saturation. We have checked that this behavior is not a
finite-size effect in the RRG (Fig. 11). At p = 1 the model
quickly approaches diffusive behavior, but even for p = 0.8
(deep in the percolating phase) the apparent DC conductivity
drifts down with time and it is unclear whether this quantity
is finite. This phenomenon seems related to the existence of
critical states, but we do not have a clear understanding of it.
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