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We study the superfluid response and localization dynamics from static and mobile impurities. The superflu-
idity is formed in the rung-Mott phase of a bosonic ladder model producing spin-Meissner currents induced by
a U(1) gauge field or a uniform magnetic field. Impurities are described through two-state systems, which act
as a two-peak random potential. An impurity sits either at the top or at the bottom of the ladder on each rung
equally, producing a telegraph signal. The impurities-matter coupling gives rise to a classical Ising symmetry
for static and mobile impurities associated to the inversion symmetry of the two legs of the ladder. From
the decoupled rungs limit, we also identify a local Z, gauge theory for mobile impurities. The properties
of the system are studied from an effective quantum spin model including the possibility of four-body coupling
in the limit of a strong interaction between bosons and impurities. Through analytical approaches and numerical
exact diagonalization, we study the superfluid currents both in the weakly-coupled and strongly-coupled rungs
limits for the bosons. In the weakly-coupled rungs situation, we find a smooth power-law localization whereas the
strongly-coupled rungs limit produces a steep localization or insulating phase for various configurations of the
two-peak random potential. In the strongly disordered situation, through entanglement and bipartite fluctuation
measures, we also identify a many-body localization regime in time after a quench of the system when prepared

in a Néel state.
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I. INTRODUCTION

Understanding the physical mechanisms related to the oc-
currence of phases of matter and their transitions is important
for fundamental purposes and also for practical applications.
In spin systems, it is quite natural to identify Z, symmetries.
The classical Ising chain

H ZJZTjTj-H’ (1)
i

with 7; = £1 is obviously invariant under a simultaneous
transformation 7; — —1; on all sites. For quantum systems,
7, lattice gauge theories have been then developed from the
spin algebra and local symmetries in a variety of strongly-
correlated systems such as Ising and Kitaev spin models,
high-T, superconductors, and light-matter Hamiltonians [1,2].
It is important to mention progress on realizations of lattice
gauge theories in quantum technology [3—6]. In this article, we
will start from the Z, classical symmetry t; — —t;. The ap-
plication of a uniform magnetic field producing a U(1) gauge
field is also known to induce a variety of interesting phases in
these one-dimensional ladder systems such as a Meissner-like
phase, vortex phase, or fractional quantum Hall phases [7-10].
Therefore, we propose a model combining features of both
effects: On the one hand, we will map a bosonic ladder model
to a quantum spin chain with Z, symmetry. On the other hand,
we will include a U(1) gauge field, which allows us to define
and study a superfluid current flow in the system. We will then
address the role of impurities on the current profile associated
to the superflow.

2469-9950/2021/104(11)/115113(22)

115113-1

Studying the effect of impurities opens the door to the vast
field of research about localization phenomena and disorder
effects. The basic question in this area goes back to Ander-
son, who asked how mobile particles can get localized in the
presence of disorder [11]. It turned out that this localization
can even occur in the presence of interactions [12-15], lead-
ing recently to many-body localization, which is an active
area of both experimental and theoretical research [16,17].
Recently, the case of mobile impurities in a quantum fluid
has been shown to result in interesting resonance phenom-
ena [ 18] related to the Kane-Fisher double barrier model [19].
Related to phases of matter and transitions between them,
disorder and impurities produce interesting physics, which
is worth being studied through different probes [20-22].
In turn, the transition between different types of localiza-
tion is not fully understood, in particular with respect to
many-body localization [23]. One of the most striking char-
acteristics of many-body localized phases is that they do not
fulfill the eigenstate thermalization hypothesis, meaning that
the initial state will manifest itself in all later states of the
system [17,24,25]. This property and transitions have been
thoroughly analyzed using bipartite fluctuations and entan-
glement measures [23,26]. It is important to emphasize here
that two-fluids systems in relation with localization effects and
gauge theories [27,28] have attracted attention these last years,
in particular through quantum spin models [29,30] and ladder
models [31].

In this article, we present conclusions about the localiza-
tion by directly studying the current along a ladder-shaped
lattice. We introduce a second particle species to this lattice
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and distinguish the cases where these behave as a static dis-
order thus forming a telegraph signal and where impurities
correspond to dynamical two-state or spin-1/2 systems. We
address the correlated limit for the bosonic particles referring
to the rung-Mott phase with one particle (boson) per rung such
that the system is in fact a spin superfluid when applying a
uniform magnetic field [7] and such that the total Hamiltonian
can be rewritten as a quantum spin model. The occurrence
of a spin Meissner current, which represents here the phys-
ical response to the applied magnetic field or U(1) gauge
field, is stabilized from the Josephson effect between wires.
The bosons-impurities coupling has an intrinsic Z, symmetry
similar to the classical Ising model. This is equivalent to the
sublattice symmetry in our case corresponding to invert the
two legs of the ladder. In the limit where all the rungs are
decoupled, we also identify a relation with local Z, quantum
gauge theories in the presence of a magnetic flux. This will
allow us to study the interplay between the U(1) and Z, gauge
fields, which become dynamical. Including a finite coupling
between the rungs, the global Z, gauge symmetry present in
Refs. [32,33] is explicitly broken by the magnetic field but
the sublattice symmetry remains. As a direct comparison, we
study the evolution of observables from the weakly coupled
rungs limit. We will also describe the effect of the telegraph
potential on the persistent current regime for small Josephson
coupling between the legs of the ladder. Finally, we will show
many-body localization physics in time when preparing the
rung-Mott phase in an antiferromagnetic Néel state along the
Z axis.

The ladder geometry is frequently being used in cold atom
experiments and allows to implement both U(1) and Z, gauge
fields [8,32,33]. Through an appropriate periodic driving pro-
tocol, both types of symmetries can be realized [33-35]. It has
been suggested that it can also be useful to test localization
effects [36-38]. The progress in experimental techniques us-
ing Bose-Einstein condensates in optical lattices also allows
to address Mott physics [39—41]. We emphasize here that
the spin superfluid current in the rung-Mott phase has not
been studied in Ref. [33] in relation with Z, gauge theories.
We also note other recent theoretical studies with a telegraph
potential or binary disorder showing feasible applications of
many-body localization in the ladder systems [42,43], which
considered a ladder without Josephson coupling between the
wires.

The article is organized as follows. In Sec. II, we introduce
the model and remind definitions related to the rung-Mott
state of the bosonic ladder system [7]. In Sec. III, we show
distinct limits of solvable quantum dynamics in the presence
of impurities associated to a smooth localization of the (spin)
Meissner superfluid response, with a power-law profile, in the
situation of weakly-coupled rungs. We first study the case
of static impurities behaving then as purely classical objects
commuting with the Hamiltonian and then the case where
impurities acquire a quantum dynamics. In the latter case,
we will show a connection with a one-dimensional Z, lattice
gauge theory from the limit of decoupled rungs. Four-body
spin Hamiltonians occur in the limit of strong interactions
with impurities. In Sec. IV, we describe the limit of strong
interrung interactions when including a prominent longitudi-
nal hopping term for the bosons and study the behavior of the

persistent current. We make a bridge with fermions through
the Jordan-Wigner transformation in the case of the tele-
graph signal when averaging over different configurations.
This shows the occurrence of an insulating (localized) phase
from the profile of the current at strong coupling with the
impurities. We also address the specific case of aligned im-
purities. For the situation of antiferromagnetically aligned
impurities, we apply the bosonization formalism of Luttinger
liquids [44] and renormalization group arguments. We ob-
serve a strong (steep) localization effect and compare the
results with Gaussian disorder [45]. In Sec. V, we discuss
the limit of many-body localization from quantum spin chain
models [23,46], including here the particular profile of the
telegraph potential. To realize this limit, the system evolves
as a mixed state produced after a quench when preparing
the rung-Mott system in a Néel state. We study the time-
dependent profile of entanglement and bipartite fluctuation
measures [23,26].

We present various analytical methods and compare with
results from numerical exact diagonalizations (ED). Informa-
tion on the numerical approach is shown in Appendix A. In
Appendix B, we discuss mathematical derivations related to
the Bloch sphere theory in Sec. III A. Details on the cal-
culation of observables with mobile impurities discussed in
Sec. III B are given in Appendix C. In Appendix D we derive
a four-body spin Hamiltonian related to Sec. III C.

II. THE MODEL

We introduce the bosonic two-leg ladder populated by a
particle species, which we will in the following often call ‘a
particles’ [7,47]. In this model, we want to access a variety
of different scenarios, for which we introduce the following
parameters: First of all, there should be hopping along the
legs of the ladder, which we consider as the x direction, with
an amplitude ¢{. There is also hopping along the rungs of
the ladder, in the y direction, with an amplitude t;,’. Different
phases of this model can be controlled by three energy scales.
A chemical potential yu determines the filling of the ladder.
Furthermore, we introduce an on-site repulsion potential U,
penalizing two bosonic particles sitting on the same site.
Lastly, we also introduce a potential V| causing repulsion for
two particles on the same rung. This setup is shown pictorially
in Fig. 1.

The effect of a magnetic field can be included through a
Peierls substitution following [7]. In a link to cold atom exper-
iments, this can be realized using a large on-site potential and
refacilitating the hopping by driving the system periodically
in time [34,35]. Then, we add a second particle species also
living on this same ladder and following its own dynamics,
while interacting with the a particles, inspired from [33]. We
will call this second particle species ‘gauge particles’, ‘f
particles’ or impurities, due to the different roles they play in
the article. A priori, we could imagine a and f particles with
similar dynamics and influencing each other through an inter-
action potential. In the following, we will however be mainly
interested in the dynamics of the a particles in the presence
of the impurities. We therefore assume to have exactly one f
particle on each rung, which corresponds to half-filling and an
infinitely high on-site and on-rung repulsion. The dynamics
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FIG. 1. The setup of a bosonic ladder with hopping strengths (in
gray) and potentials felt by the a particles (in green). The effect of
a magnetic vector potential enters through the Peierls substitution as
complex phases to the hopping strengths. Going around one square
plaquette, a flux ®;,,; is acquired.

of the f particles on the lattice can then be identified with
the telegraph signal. When these impurities are entirely static,
this is similar to imposing a kind of quenched disorder on the
a particles.

The interaction between the two particle species is realized
in a density dependent way with an energy scale U,s. For
clarity, first we address the situation of static impurities in
Eqg. (2) below. In summary, we get the following Hamiltonian
for the a particles interacting with the impurities:

a iaA¥, T
H = -t E eiina, a, 11 + H.e.

o,

—t Ze_’““azlah +H.c. +

a“ Znal Nyi — 1)
+VJ— ananI I’LGat + Uaf Znal az (2)

We use the following notation: Superscripts a or f desig-
nate the respective particle species. In the sums, o denotes the
leg of the ladder (1 or 2 as shown in Fig. 1), i goes along the
rungs. Consequently, a ; and ay; are the bosonic creation and
annihilation operators of an a particle at a rung i and the leg
a = 1, 2 of the ladder, with the number operator n = aT [Aai.

The number operator related to the f particles n ; is defined
similarly. The phases of the hopping terms enter through a
Peierls substitution for a uniform external magnetic field (or
gauge field). They are different along the legs (e“Vi+1) and
along the rungs (¢4+) with A%, | and A, ; being the compo-
nents of the vector potential at the respective link of the ladder
and a and & the respective lattice spacings (see Fig. 1) [7].
The flux per plaquette can be evaluated by a contour integral
around a plaquette and through Stokes theorem shows the
following relation with a uniform magnetic field [7,9]:

D;it1 = %A'dl

A. Rung-Mott Phase and Definitions

—d' (ALiy1 —AL).
3

(A111+1 A121+1)

To realize the spin model with the Z, symmetry, we assume
the system to be in the Mott phase for the a particles. The

particles are localized with one particle per rung referring to
the rung-Mott state. For clarity’s sake, here we fix the defini-
tions starting from Ref. [7]. A simple matrix analysis of the
system neglecting the interaction with impurities shows that
the system is in the Mott phase for V, + 1 > u > —z/. Treat-
ing the hopping along the legs of the ladder perturbatively
allows to derive the following effective spin Hamiltonian by
considering all possible second-order processes:

H = Z —2J, e"’A"+'o o, +He +Jofof,

Uaf 7.2
A 4
5Ot “4)

IS

— g( cos(d’A)o}" — Sin(a/Aii)Uiy) +

Here, we define J,, = (t%)*/Vy, J; = (t)*(=2/Us + 1/V1),
g=1and wroteAthLI =A1. AlzlJrl
The second-order induced terms for the a particles can be
identified as a correlated hopping term (Jy,) between the two
wires and an Ising interaction term (J,). Both are tunable when
varying the potentials V| and U,,, which are in principle both
positive to obtain a larger region with the rung-Mott phase.
We have J, = 0 when V|, = U,,/2 and otherwise J, can take
both signs. The particle creation and annihilation operators
have been replaced by Pauli matrices o with @ = x, y, z for
effective spins due to a particles. More precisely, we used
the Schwmger boson representatlon of the SU(2) algebra [48]
with o} = aLazl + ayay;, 0 = zaT (i + zallazl and o7
al.a; — al.ay; (and therefore o, = aiaz, ando; = al,a; In
analogy to the Schwinger- boson representation, we defined

TP = n{l - ”21 for the f particles, which here are to be thought

of as classical two-state systems defined through n1 = fifui
and i, = £} foi.

Formulating the Hamiltonian using spin operators is justi-
fied since there is precisely one particle of each species on a
given rung, as the a particles are in the Mott phase and we
assumed that the f particles are two-state systems in a general
sense, e.g., spinless fermions such that f;rl.f” + f;l.f% =1
This allows us to write their states at each rung in the basis
[10);, |01);, which can be identified with the spin basis |1);,
[);- Without the Peierls phases, the Hamiltonian (4) is that of
an XXZ model in a magnetic field, where the transverse field
acting on each rung g represents the Josephson term for the a
particles. Here, we also introduce the matter-impurities cou-
pling Uy, which now represents an Ising coupling between
spins. The term U,y can be realized through an interaction be-
tween two species similar to a Hubbard interaction as shown
in Fig. 2. The choice of parameters within the rung-Mott phase
for the a particles is motivated by the occurrence of a Z,
(classical) symmetry under flipping all z spin components, i.e.,
changing 07 — —o? and 77 — —17 simultaneously. Physi-
cally, this symmetry corresponds to invert the two legs 1 and
2, referring then to the sublattice symmetry on a rung i, such
that aj; <> ay; and fi; <> fo;. This also leads to al.y — —oiy
such that the SU(2) quantum spin algebra for the & spins is
preserved.

The 1 <> 2 sublattice symmetry can be implemented
through the operator

R=[[or0®2, ®)

i
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FIG. 2. The f particles shown in red cause an additional on-site
potential felt by the a particles, which we call U,;. This potential
is random in a sense that the f particles are at each rung randomly
placed on one of the two legs referring then to the telegraph signal.

where the Z, symbol defines the classical Ising symmetry
77 — —17. In the presence of a magnetic flux, the transforma-
tion 1 <> 2 is implemented through the modification A ; —
—Ay; and A}, — —A] | such that Of (A1, A, DIW) =
f(=ALi, —Al, )OI for any state |W). The O opera-
tor corresponds to invert the direction of the magnetic
field on each square of the ladder simultaneously such
that the R symmetry, which commutes with the Hamilto-
nian, is defined in a gauge-independent form. This sublat-
tice symmetry will be present in all the sections of the
article.

In Sec. III B for the situation of mobile impurities, we will
also discuss Z; quantum gauge theories starting from the ob-
servation that in the decoupled rungs limit, with J,, = J, =0,
we can also define a local Z, symmetry

G; = (cos(d'A1;)o}" — sin(d'A1;)0]) ® 75, (6)

such that G; = HG;H™'. In Sec. IIIB, the Z, symmetry
77 — —1 in Eq. 6 will be implemented quantum mechani-
cally through the t;* operator acting on each rung. Here, G;
has a well-defined local origin starting from a double-well
limit or one rung that we will study in Sec. IIIB related
to Z, gauge theories. We will analyze the consequences of
the local Z, gauge theory in Eq. (6) on physical observ-
ables starting from decoupled rungs and mobile impurities
bouncing back and forth between the top and bottom sites.
It should be mentioned that in the presence of a finite flux,
G =1]1;Gi does not commute with the Hamiltonian when
including finite values of J,, and J, therefore we cannot
associate a global Z, symmetry in that case. But, for the
particular situations ®;,4; =0 and ®;;1y =n, G=[][.G
can yet define a global Z, symmetry operator commuting with
the Hamiltonian. Consequently, in the absence of a magnetic
flux, the sublattice symmetry R = []; G; becomes a global Z,
symmetry.

The local current operator j of the a particles can be evalu-
ated as the time derivative of the particle densities, which are
related to o7, as we defined o7 = a},ai; — a},as; = n?; — ng,.
This can be computed by j = —i[H, 7] and gives a paral-
lel component j; (proportional to Jy,) and a perpendicular
component j, (proportional to g). We assume (if not stated
otherwise) in the formulas that for all rungs i we have the
magnetic vector potential such that a’A; = aA! At each

ii+1°
site i, the perpendicular current and the outgoing parallel

current are determined by the following operators [7]
jL = —2g((rix sin(@'A ;) + o7 cos(a’AL,-)), (72)

. . iaAl 4+ — —igA! 4
J = —4le),(e MO O — e oy Oi+l)’

2y((ofay + o]0}y, sin (aAzU.,Hl)
+ (Uiyoi)fH - Uixaiyﬂ) cos (aAl“‘,i-H))' (7b)

Under the application of the 1 <> 2 symmetry, we also
verify that the current operators are modified as j, — —j,
and jj — —Jjj.

In the following, we investigate how the parallel current be-
haves under different configurations of the parameters of this
model. We regard the parallel current for different strengths
in the disorder potential U,s. In this way, we use it as an in-
dicator for localization in the different regimes. This requires
to evaluate the expectation value of the current operator in
Eq. (7b) in the ground state of the system by invoking different
approximations, which will be justified below. Finally, we
compare also to other indicators.

III. WEAKLY-COUPLED RUNGS LIMIT

A. Meissner Effect with Static Impurities

The bosonic ladder model introduced in Eq. (2) in its
superfluid phase shows an analog of the Meissner effect [49]
through the formation of currents along the legs of the ladder
proportional to the negative applied flux and a screening of
the currents along the rungs [7,9]. The existence of a ‘spin-
Meissner’-like phase in the Mott-insulating regime can be
understood through the Schwinger-boson representation used
to map the model to Eq. (4). In this framework, the magnetic
field couples to the spin degrees of freedom [7]. Lattice mod-
els with this property can exhibit a spin current even when the
charge sector is in an insulating phase [50]. A particle current
along one leg is associated to a hole-like current along the
other leg. Due to the form of the Josephson term g, to mini-
mize energy, the perpendicular current has a zero net-transfer
of charge so that (j; ) = 0. The parallel current screening the
U(1) magnetic flux gives rise to a current of purely spin origin
related to the fact that we fix the boson density to unity on
a rung [7]. Here we consider a setup with small interactions
between a particles along the legs, which translates in the
language of Hamiltonian (4) to g > Jx,, J;. We thus call this
limit the ‘weakly-coupled rungs limit’ or ‘(almost) decoupled
rungs limit’.

Without impurities, the expectation value of the parallel
current operator or simply the parallel current can be evaluated
invoking a pinning of the phase due to the dominant g term
as [7]

(Jn = =20y P it1. (8)

In the following we will describe how this result is modified
in the presence of an interaction with impurities. We will first
study the case of static impurities to show that in the weakly-
coupled rungs limit, the localization shows a smooth power-
law profile as a function of U, , reflecting the classical aspect
of the impurities in this situation. General information on the
numerical approach can be found in Appendix A. Then, as a
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first setup with mobile quantum impurities, we will study the
case of vertical motion described by a transverse field for the 7
spins. This situation precisely refers to the bouncing between
top and bottom legs on a given rung such that the effect of
impurities can be solved one by one.

Including the effect of impurities and considering g and
U, s as amagnetic field in transverse and longitudinal direction
respectively, the limit is attained if this magnetic field is large
compared to Jy, and J;. It is then justified to consider the
ground state as the state minimizing the energy on each rung i
neglecting the influence of J;, and J;. We can thus consider a
Bloch sphere representation of the decoupled spins, which we
define by

<al-x) = cos ©; cos p;, (9a)
(07) = cos ©; sin p;, (9b)
<of> = sin ©;. (9¢)

Here, ©®; represents the inclination angle and p; the az-
imuthal angle with ©; € [-7, %] and p; € [0, 27). This
choice of coordinates is useful to calculate the minimization
of the energy, as explained in Appendix B. Requiring mini-
mization of energy yields

pi = —d'Al, (10a)
sin ©; = —gf——Jar/(28) -, (10b)
J1+ (504 /9)
cos®; = ! =. (10c)
\/ 1+ (tiUar/(29))

The details of this calculation can be found in Appendix B.
We recall that 77 = #£1 is just a number and in particular
(1’1?)2 =1 to simplify further. Plugging the obtained results
into Eq. (7b) and invoking a mean-field approximation for the
two-body terms in the current, we finally obtain

1
—2Jy—————— sin
1+ (Uar/28)?

Below, we fix the perpendicular component of the vector
potential such that for all rungs a’A;; = a’A; and the parallel
component such that aA) | = aAl. The flux is similar on all
the sites with @, ;1; = & = —aAl corresponding to a uniform
magnetic field in z direction and inducing a homogeneous
current in the system. We use such a setup to show the validity
of Eq. (11) by comparing to results from ED simulations,
which is shown in Fig. 3.

Since the decoupled rung limit has been evoked for the
calculations leading to Eq. (11), there is consequently no
dependence of the current on a site on the respective t; vari-
able. Mathematically, this can be understood since the U,r
term gets a second contribution of 77 from the approximate
solution for (o7), so that we finally have (1’1-1)2 =1 as we
are treating these variables as static. In the ED simulations,
there is still an influence on the configuration of 7, since
they are performed for small, but nonzero values of J; and J,,,
which is not addressed in the decoupled rung approximation.
For that reason, we compare the prediction to the average over
all possible configurations of 7. Throughout this article if

U = D;it1. (11)

Current in the weakly-coupled rungs limit

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Uay

FIG. 3. The parallel current (j;) as a function of the coupling
term U,; normalized by —sin ® and J,,. Comparison of Eq. (11)
(solid line) with simulation results (crosses) obtained as an average
over all possible configurations of 77 (we wrote (j;) in the y axis to
signify that here we are considering a disorder average of the expec-
tation value of the current). The parameters used for this simulation
were J, = 0.01, J, = 0.01, g = 1.0, dA; = aA),,, = 0.01 for all
sites i leading to & = ®; ;| = —aAII.l_i+l = —0.01. The simulation
was done for a chain with eight sites and periodic boundary con-
ditions. The current was measured between two neighboring sites i,

i+ 1.

not mentioned differently, we indicate expectation values or
(averaged values) by (-), while we denote disorder averages
of a quantity A over realizations of 7} disorder configurations
by a bar, i.e., A.

In Fig. 3, we show m between two neighboring sites
when averaging over all possible configurations of disorder
and using periodic boundary conditions. The result (11) shows
that the current in this semiclassical-impurity regime reveals
a power-law profile, even for large values of U, s in agreement
with the numerical results in Fig. 3.

It is also relevant here to distinguish the present situation
from the case of one impurity localized at a given site. In
the rung-Mott phase the term U,y would produce a renormal-
ization of the on-site energy, which can be reabsorbed in the
chemical potential w.

B. Mobile Impurities

In the limit of decoupled rungs the f particles can be easily
rendered as quantum particles constrained to hopping along
a rung, which technically corresponds to addition of a term
—g7; to the Hamiltonian (4).

Associated to the Ising symmetry of — —of and 77 —
—1{ when inverting the two legs of the ladder, now we also
have t7 — —1; such that the quantum algebra for the 7 spin
is maintained. The operator R associated to the sublattice
symmetry 1 <> 2 and introduced in Eq. (5) now takes the form
R =[1];07O ® . In addition, the local symmetry of Eq. (6)
acting on each rung becomes

Gi = (cos(d’AL)o} —sin(@'AL)o?) @ T} (12)

i
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commuting with the Hamiltonian when J,, = J, = 0. Below,
we discuss the implications of this local symmetry for Z,
lattice gauge theory (LGT), from decoupled rungs.

For each of the decoupled rungs, the situation is then
comparable to a model for Z, LGT in a double well [33,51]:
Let us define a new spin variable with y =0/ and y =
cos(d’A ;)0 — sin(a@’A 1 ;)o] (which effectively corresponds
to a rotation). Then the local symmetry in the decoupled rung
limit reads G; = ¥ ® t*. Each rung then corresponds to a
Z, LGT on a double well with 77 as a Z, gauge field and
7 playing the role of a Z, electric field [33,51]. From the
Hamiltonian of one rung

H = —gy{ — gr7) + Uasy'tf, (13)

we see that for U,y = 0, we would have the y spin oriented in
z direction and the T spin oriented in x direction, which would
lead to an eigenvalue +1 of the operator G;. With nonzero U, ¢
the dynamics of both spins are coupled, but since G; commutes
with the Hamiltonian, its eigenvalue is conserved, therefore
flipping y; requires flipping 7;* as well, which comes with
an energy cost proportional to gy [32]. This shows how a
large parameter g, can through the coupling of both spins
effectively stabilize the ¥ spin in the z direction. Transforming
back to the & variables, this implies that a large g, term
supports the orientation of the ¢ spin in the direction given by
the g term. Therefore, g stabilizes the superfluid spin current
and we thus expect it to hinder the localization.

To complete the analogy with [32,33,51], we can define a
charge for each site of the double well (which correspond to
the different legs) from the operator y;° by expressing through
a boson tunneling between the two sites with y7 =7i; ; — i ;.
Here 7i, ; is the number operator on the respective site of the
rung i and the charge would be defined by Q,; = (—1)*y}.
We could then define the two conserved local symmetry op-
erators Giy = Qq,; ® 7/ as in [51]. However, since for the
situation of one particle in a double well Q;; and Q,; are
related by Q; ;0> ; = —1 (similarly to [33]), we drew conclu-
sions about the influence of this Z, LGT on a double well
directly using the symmetry operator G;.

It is important to emphasize that the previous considera-
tions only hold for decoupled rungs. When Jy,, J; # 0, our
model cannot be described by Z, LGT as the operators G; do
not commute with the Hamiltonian in that case. For the spe-
cial cases of ®; ;41 = 0and ®; ;41 = m, G = [[; G; realizes a
global Z, symmetry, which is broken for general values of the
flux.

In the realm of Z, LGT, the vison operator or magnetic
field operator is usually defined by B, = Hz€ap 7/ (with dp
referring here to the closed path on a given unit cell) [33].
In our case, we identified a minimal Z, LGT for each of the
decoupled rungs representing a double well. In general, for
one-dimensional Z, LGT, the magnetic plaquette term can not
be defined [51]. However, if we consider the ladder as a whole,
we can define the operator B, phenomenologically in the same
form as above and use it to describe the situation for the f
particles.

For the simple case of decoupled rungs, we can evaluate
observables analytically. The Hamiltonian can be diagonal-
ized on each rung and the ground state can be written down,
from which expectation values can be evaluated directly. For

Current vs Uy for different g

2.00 1 SOCOOOOOXYAN

1.75 1 X 9r=00
g9r=10

1.50 1 g5 =100

gy = 100.0

1.00 1

(1) / (= Jzy sin @)

0
0754 &
&
0501 -1
0 2
0 1 D) 3 4

Uy

FIG. 4. Simulation results (crosses) and predictions from
Eq. (14) (solid lines) for the parallel current as a function of U, for
different values of g, in the ground state of the combined system of
¢ and 7 spins. The inset shows the expectation value of the ot/ cor-
relation as a function of U,y, evaluated numerically from ED (dots)
and from the analytical result in the decoupled rung limit of Eq. (C3),
for the same values of g,. Here we simulated a chain with six sites
and open boundary conditions and otherwise the same parameters as
in Fig. 3. The current and the correlation were evaluated at the center
of the chain.

the limit of decoupled rungs, we verify from Appendix C
that when g; # 0 we have (z7) = 0 and therefore (777, ) =
(rf ® tf,;) = 0. This implies that B, is disordered and has
a zero expectation value on a square unit cell, the state
corresponds to a vison condensate [33]. For g =0, in the
decoupled rung limit we get a degenerate ground state with
(r7) = £1 (see Appendix C), so we get a static configuration
of B,,. Turning on a small positive value of J;, an antiferromag-
netic configuration of the & spins is favored, which is through
the U, coupling transmitted to the T spins. Therefore, in this
case we get a static configuration with B, = —1.

We can also introduce a local magnetic quantity o'z},
which reveals the entanglement of the impurities with the a
particles such that (z7) < 1. In Fig. 4, we study its behavior
including small (but finite) values of (Jy, J;) and including
a small magnetic field. We compare the numerical findings
with analytical results of Appendix C where we detail the
calculation of (o/t/) related to Fig. 4. We verify that for
the impurities we obtain (o77f)> + (t7)* = 1 with (t]) =0
since the Hamiltonian is invariant under the transformation
riy — —tiy . Here, from the definition of the Hilbert space with
two spins-1, we have (r7) = (I ® 77*) witha = x, y, z where
7 is the identity operator or identity 2 x 2 matrix acting on the
Hilbert space of a ¢ spin.

Invoking a mean-field approximation for the correlations
necessary to compute the parallel current in Eq. (7b), we
obtain

(Jn = —2Jx sin ;i1 (14)

Ua/ /2 2
1 ( &+gr )
This result can again be verified by comparing to the re-
sults from ED simulations, which is shown in Fig. 4. As the
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impurities here are dynamic quantum objects, they do not play
the role of a static disorder but rather enter in the evalua-
tion of the ground state through an extension of the Hilbert
space of the spin system. Consequently, Fig. 4 does not show
an average over disorder configurations, but the expectation
value of the parallel current operator in the ground state.
For gr = 0, we also verify through Figs. (3) and (4) that the
current (density) is identical for periodic and open boundary
conditions.

The form of Eq. (14) suggests that the current localizes in
a similar fashion as for a static f particle configuration, but
a large value of g, protects the current against the effects of
strong coupling between a and f particles. This confirms our
previous conclusion that due to the conservation of G;, the g
term hinders the localization of the current. In any case, the
current in Eq. (14) still follows a power-law profile. Note that
at U, = 0, all curves for the current in Fig. 4 show a small dif-
ference between the ED result and the theoretical prediction.
This is due to the fact that in the derivation of Eq. (14) we
considered the rungs completely decoupled for the evaluation
of the ground state. In the simulations, we included J;, and
J. with small values. When increasing Uy, this difference
decreases. This can be ascribed to the fact that U,y and g act
on the spin like an external field whose magnitude increases
with increasing Uy, therefore reducing the influence of J,,
and J;. As described above, a large parameter g protects the
o spin current from the localization induced by U, as it tends
to align the T spins in x direction, which in turn reduces the
influence of the U,; term, as seen from the inset in Fig. 4.
However, the dynamics of the & spins is still determined by
the competition between g, J;, and Jy,. This explains why for
large values of g, in Fig. 4 the deviation of the current be-
tween ED and theoretical results persists for increasing values
of Uaf.

In summary, we have seen that in the decoupled rung
limit, which is achieved for weak coupling along the legs of
the ladder localization occurs on each rung due to a strong
interaction of the a particle with the f particle in the form of
a power law, which corresponds to a one-rung localization.

Hereafter, we will now keep the quantum property of the
impurities, and in the derivation of an effective spin model
from the bosonic model in Eq. (2) turn to the limit where U, ¢
is not small compared to U,, and V|, but of the same order
referring to strong interactions with the impurities.

C. Strong Interactions with Impurities

Here, we will show that when increasing further the in-
teraction strength with impurities, as long as we address the
weakly-coupled rungs limit then the sinusoidal response with
the U(1) gauge field remains with a power-law form of the
prefactor. In this strong-interaction limit, we derive a four-
body spin model showing that the current can keep a similar
power-law form. We also describe the effect of the 1 < 2
symmetry for this situation.

When U,y is of the same order as U,, and V| in Eq. (2) and
we allow for hopping of the f particles in all directions (and
not only along the rungs), we have to account for this when
doing the perturbation theory. If we consider the Hamiltonian
without any hopping and at half filling, the ground state is on

FIG. 5. A fourth-order correlated hopping of a and f particles,
shown with the different colors blue and red, respectively, leading to
an effective parallel current.

each rung two-fold degenerate with one a and one f particle
on different sites of each rung.

Reintroducing the hopping of a particles perturbatively
again produces second-order Ising interactions such as
Jiofof  with J¢ different from J; in the previous sec-
tions. Now, introducing a hopping for the impurities (spinless
fermions) along both legs and rungs with —z; Y owi fi v —

tyf Zi f;ifn + H.c. with @ = 1, 2, we get a similar term

Tt . (15)
The hopping term t}f can be identified with the parameter gs
in the spin language of Sec. III B.

The interchange of an a and an f particle along a rung is
accounted for by a term

—g g T + He., (16)

where g%/ is defined differently than g in the previous sections.
Interestingly, the correlated limit with large U, s produces a 4-
particles correlated hopping term to respect all the interaction
terms, as shown exemplarily in Fig. 5. This gives a contribu-
tion, which reads —J, e Aot 1m0 T + Hee.

The expressions for the new parameters J¢, sz , g, and J)Dy
and their derivation can be found in Appendix D for the sake
of clarity. We write the effective Hamiltonian as

_ gl ia(Al i —A ) gt — g ot
H=—J, ) "ot 0,11, +He.

l
+J: Z ofof, +J! Z T T
i i
—gv Z eMigt T 4 He.. 17)
i
The parallel current operator can be evaluated from the Hamil-

tonian as:

iJ]
Xy ( ia(Al.  —A2, ) . .y
T(e’“(A'«'+' A (o)t + ol t) — o) +iolT)

X X DA N P e s S
x (i + ol Tyy — o), Ty + ol T)

Ji=-

7ia(A}, 7A12i V(XX Y.y s XY R 4
— e i1 AL (O'i[i + 0/t +ioj't; —l(Ti‘[l-)
X X y oy L S S P S, |
x (08T + ol Ty, il Thy — ol T))

18)

When g"f is the dominant term, in the ground state we have
on each rung

cos(a’A ;)
2

sin(a’AL,»)

X_x Y.y
(it + o))+ >

o'ty — ol = 1.
< 2 1 1 1
(19)
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Current as function of phase

2 x ED
—— theory
1.
=5
=
S o

0 1 2 3 4
(Azl7,+1 A%,Hl)

FIG. 6. Meissner current in the limit of large U, with the theory
from Eq. (21) compared to ED data (crosses) in the ground state of
the combined system of G and 7 spins. The ED data was obtained for
a chain with six sites with periodic boundary conditions. The cho-
sen parameters were J!| = J¢ = J/ = 0. 01 g"f =10and dA, ; =

a(Al,,, — A%, foralliso that ;. = —a(Al, — A2, ).
This suggests to write
(o)1 4+ 01)) = 2cos(@'ALy). (20a)
(o7t —ol't) = 2sin(d’A L), (20b)

such that the expectation value of the parallel current reads
() = =27} sin @; ;1. 1)

This form agrees with a perfect superfluid in agreement with
ED from Fig. 6. In this limit, we observe a renormalization
(reduction) of the prefactor J)‘C‘y (see Appendix D). The equal-
ities (19) and (20) respect the 1 <> 2 symmetry between the
two legs (or wires) of the ladder. On the other hand, in the
strong-interaction limit, the physics is also similar as if both
the a and f particles participate to the screening of the applied
U(1) gauge field through the JJV term. More precisely, setting

J¢ = sz = 0 in Eq. (17), which can be realized adjusting ap-
propriately the interactions, we can redefine a spin variable so
that 6" =017 =0, ®17, 6, =0, 1, =0, ®71;"

67 = ot} such that the 1 <> 2 transformation is identical to
o+ < &, with &} unchanged and [6;", 6, ] = 67 or equiva-
lently [o , 6 = —[0 6 1= -6}

With this transformatlon in that case the Hamiltonian of
two different particle species can be reduced to a Hamiltonian
of one spin-degree of freedom for each rung. We observe here
that even though we cannot differentiate the impurities from
the particles (matter) the current yet takes a similar sinusoidal
form.

For a strong value of g*/, then the ground state satisfies
(67) = cos(d’A’)) and (67') = — sin(a’A’)) such that the sys-
tem will remain in the xy plane even in the presence of a
finite (small) perturbation J or sz . If we develop the partition

function to second-order in (J{J; / ), then we may have correc-
tions to the Hamiltonian proportional to 667, ; similarly as
an XXZ spin chain with a U(1) gauge ﬁeld and a transverse
magnetic field g/. The model takes a similar form as the

rung-Mott phase Hamiltonian [7], which then gives another

interpretation to the current in Eq. (21). This analysis then
shows that as long as we consider weakly-coupled rungs, the
system can be described through local observables as a result
of the transverse magnetic field in the spin representation.

IV. STRONGLY-COUPLED RUNG MODEL

Here, we study the regime of strong inter-rung interac-
tions for the situation with a telegraph potential or two-peak
disorder. To have strongly-coupled rungs, we adjust Jy, > g
for the a particles in Eq. (4) comparing different distribu-
tions (configurations) for the impurities, and for simplicity
start with g = 0. Here, we can anticipate a persistent current
going along the chain with periodic boundary conditions in
the ground state due to the magnetic field, which entered
through the Peierls substitution into Eq. (4) [52]. We study
the localization regime for the a particles driven by a large U, ¢
interaction for specific configurations of the static impurities.
The objective is to compare with the situation of a one-
dimensional Gaussian disorder potential [13]. The situation
with finite g will be addressed in Sec. V related to many-body
localization.

A. The persistent current limit

If we assume the 7} variables to be statically fixed to %1
and randomly distributed, the model corresponds to a XXZ
chain with a U(1) gauge field and random magnetic field in z
direction:

U,
H:Z( 2J, e O’ olH—i—Hc +J.0f05, 2f £ f).

(22)

Here, we define aA!'l+1 = —® = ¢ on all rungs i. The 1 <
2 transformation defined in Sec. II A is also equivalent to
¢ < —¢ with o;" <> o,”. This model without the U(1) gauge
field has been studied in relation with many-body localization
and remains an active area of research [16]. Numerically, the
model (22) has been considered with ¢ = 0 and —J,, = J, =
0.25 and a random field of the form #;0, where h; are drawn
from a uniform distribution [46,53,54]. A transition to a many-
body localized phase has been found for strong disorder. The
same model was used in a recent study suggesting the use
of bipartite entanglement and fluctuations to characterize this
transition [23]. Here we study the model with a peaked dis-
order (characterized by t¥ = £1) with the energy scale given
by Uy,r. We could for example assume that the 77 are at each
site independently drawn Bernoulli variables with a universal
or site-dependent probability to give £1 depending on the
physical situation. Considering the ¢ spin current between
two sites, it varies depending on the configuration of 7 spins
on these two sites. This is also confirmed by simulations, as
shown in Fig. 8.

In order to make progress analytically, now we study two
particular cases of configurations, which are in this setup
ferromagnetic and antiferromagnetic order for the impurities
and we will compare the results to those obtained when av-
eraging over various disorder configurations. This will reveal
that localization indeed occurs in a steep manner. The word
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FIG. 7. The band is shifted by ¢/a in k direction and by U,s
in the energy, the latter thus has the effect of a chemical potential.
The occupied states are shown in blue. The Fermi momenta change
accordingly.

steep also refers to an insulating phase for the a particles, with
a zero current.

B. Jordan-Wigner Transformation

Assume that on all rungs, we start with a uniform or fer-
romagnetic t7 = t° = %1 situation, so that all f particles live
on one leg of the ladder. For J, = 0, the ground state can be
found using a mapping to spin-less fermions due to Jordan and
Wigner [55]. The Jordan-Wigner transformation

o — ¢l exp (in Zn;), o = 2m—1, (23)

I<i

Current vs Uy

254 TEH Ty 77 ferromagnetic
T
++++ + 77 anti-ferromagnetic

= 2.0 1 +, +  average all 77
g
J‘é} 1.5 4
3
L
= 1.0
=

0.5 1

0.0 1

Uay

FIG. 8. Current averaged over all sites of the system from ED
as a function of U, for a ferromagnetically (orange crosses) and
an antiferromagnetically (green crosses) ordered configurations of 7
variables. The blue crosses show an average ({j;)) over all possible
configurations of 77 (here the number of sites N = 10, so there are
219 = 1024 possible configurations). We further used J,, = 1.0, J, =
g = 0.0, ¢ = 0.01, and periodic boundary conditions. The analytical
formula (36) obtained for a ferromagnetic configuration is the orange
solid line, while Eq. (42) is shown by the green solid line.

maps the Hamiltonian (22) to

H=-2J, Xi:el"f’c}cm +He. + U;f Xi:(zn,- — )7l

(24)
It can easily be verified that the ¢; and ¢ fulfill fermionic
anticommutation relations, which is ensured by the string
term exp(izw »_,_;n;). Some care needs to be taken about
the boundary conditions of the spin chain model: For open
boundary conditions, Eq. (24) holds true, but if we want to
incorporate periodic boundary conditions, we need to add
a term e'?of o, + H.c. in the spin chain Hamiltonian (22).
After the Jordan-Wigner mapping, it reads

el e Liawtic) 4Tl T Xian ey
= /=Dl el + Hee, (25)

where m denotes the total number of fermions, which is still
constant, but according to its parity, we get periodic or an-
tiperiodic boundary conditions in the free fermion model. We
can then write the full Hamiltonian as

N
H=-2Jy |:Z e[¢cjci+1 + H.c.

i=1

o . o+ Ua Vd
— (€™ 4+ 1)(e®cley +H.c.):| + 2f Xi:(zni — Dr?.

(26)

The 1 <> 2 transformation now corresponds to ¢; <> ¢ with
¢ — —¢. We can then go on and diagonalize the Hamiltonian
by Fourier transforming separately in the sectors where m is
even and odd.

This can be done by introducing Fourier transformed oper-
ators:

1 kai
Ci = — E e_l a]C . (27)
T UN 4 ‘

with k = 2n/(Na) if m is even and with k = 2 (£ — 1) if
m is odd to account for the antiperiodicity of the boundary
conditions, withn =0, 1, ..., N — 1. In the following, we as-
sume that m is odd and keep in mind that the calculations
can easily be generalized to the case where m is even. The
Hamiltonian (24) can then upon performing the summation
and neglecting a constant term easily be brought to the form

H = Za)(k)c}:ck, (28)
k

with w = —4J,, cos(ka — ¢) + U,rt* and a the lattice spac-
ing of the spin chain.

The current calculated from the time derivative takes the
form:

T o 4+ _— g _— A+ i+ _—
Ji=4iy(e¥o 0 —e a0, —e¥ol0;

+ eii"sai:laiJr). 29)
The spin current in this basis at a site i is calculated by
I; = —i[H,of]| = —ilH, 2n; — 1]

= 4iJ o (e?c]_ci —e?cleiny — Hee). (30)
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We call the current flowing out from one side j;, therefore
I; = j; — j;—1 and we can conclude from this and Eq. (30) that
in the ground state (in equilibrium):
. 20H
J= ﬁ@
In the ground state, negative energy states will be occupied,
ie.,

€1y

4J,y cos(ak — @) > UysT?,

which is fulfilled for k between ky = ¢/a & arccos(%ffz) /a.

This is shown in Fig. 7.
The current reads

_20H 2 @k )l )
:——:—X—Esma— C, C.
= N g "N £ Kk

For large N, we can write the expectation value of the current
operator as

. 4ny ke .
(j)y=—""= dk sin (ak — ¢)
T Jk
Jey ke
= —=cos(ak — )| =0, (33)
T k

which vanishes in the continuum limit. To explain the current
in a finite-size system, we have to stay with the noncontinu-
ous case: the allowed momentum values in the first Brillouin
zone (for the case where the fermion number m is odd)
are k =2nn/(Na) —w/a withn =0, 1, ..., N — 1 (or equiv-
alently 27r/L withr = —N/2, —N/2 + 1, ...N/2 — 1), so the
momenta are spaced with 27 /L, according to Fig. 7. In order
to get a better approximation to the sum in Eq. (32), we can
attempt to do the integration as in Eq. (33) exactly between the
outermost two occupied states. We therefore have to change
the integration boundaries to

3 2
o=k — <k mod —”>,
L

- 2
k+ = k+ — <k+ mod T) (34)
‘We obtain the current

4J. | Uyrt? . .
A~ #(—2s1n¢s1na)
T 47,y

Ui\
+ 1—(%) (2sin¢cosa) |, (35)
xy

U,rtt
where o = arccos (:Ji) mod ZT”
ey
Assume L is large, therefore o is small and if further-

more we consider only small phases, the first term becomes
|

—4J,y cos(ak — @)

H=Y,_ C/tﬂ)( U

negligible and in the second term we can write coso ~ 1,
therefore obtaining

N S A
() =821 (—%)cb. (36)

This result can be compared to the results from ED simula-
tions, which can be seen from the solid orange curve in Fig. 8,
which shows Eq. (36). The orange crosses show ED results for
a setup where on all sites 77 = 1, where we averaged over all
sites of the system to make the connection with the calculation
in momentum space. Even though in this case, the current has
the same sign as in the decoupled rung limit, it is clear by
comparing the form of Eq. (11) to Eq. (36) that both regimes
are very different, which is also confirmed by simulations.
From Fig. 8 (in orange), we see that the simulation results and
Eq. (36) agree for the steep localization of the current when
U,r ~ 4Jyy, i.e., the current now goes to zero. The step-like
behavior in ED represented through orange crosses reflects
Fig. 7.

When taking an average over many different realizations of
7} (the blue curve in Fig. 8), this behavior is changed, but we
see that there is still a strong localization effect for the same
value of U,y. It is interesting to observe that the insulating (or
localized) regime also occurs in this case.

In order to make more precise statements, we have to
consider also other configurations. Precise results can be ob-
tained for the opposite case of alternating 7 spins, as shown
hereafter. We will show that interaction effects through U,r
favor a strong localization effect similar as in the situation of
a Gaussian disorder, as also shown through the green curve of
Fig. 8.

C. Alternating 77 variables

First, we address the situation of an alternating or stag-
gered potential and solving the model in the reciprocal space
directly. If we set J, = 0 for now, we have

H=—2Jy Y e?cfeiy+He + Uy Yy (=1Vni,  (37)
i i
after a Fourier transform with x; = aj
H = —4J,, ) " cos(ak — ¢)ciei
k
+Uqz Z Z kR chk/,
j kK

= —4Jy Z cos(ak — q&)c}:ck + Uyy Z cch%, (38)
k k

or in a Bogoliubov-de-Gennes form,

Uas Cr
—4J,, cos(ak — ¢ + n)) (ck+2>' (39)
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This can easily be diagonalized to obtain the eigenenergies

Ey = i\/Uz + 16J2, cos?(ak — ¢). (40)

In the ground state, all states giving rise to a negative en-
ergy contribution will be occupied in the diagonal basis. The
ground-state energy is thus

-y \/U + 1672, cos?(ak — ). (41)
k

Here the domain of k should have an extension of 7 /a. Due
to the symmetry of the squared-cosine function appearing in
Eq. (41), we can sum over any connected region with ex-
tension 1 /a equivalently, in particular we can choose ¢/a +
7 /(2a) as summation boundaries, which corresponds to those
used in Eq. (32) with U,r = 0. The current can readily be
evaluated as a derivative of Eq. (41) with respect to ¢ and
using Eq. (30). It reads

16J3, cos(ak — ¢) sin(ak — ¢)

=—= Z . (42)

\/ + 16ny cos?(ak — @)

For U,y = 0, we get back Eq. (32). This result can be com-
pared to the results from ED simulations, which can be seen
from the solid green curve in Fig. 8, which shows Eq. (42) for
10 sites. The green crosses show ED results for an alternating
configuration [ttt 1] 1) of the 77 spins. To make the
connection with the calculation in momentum space leading
to Eq. (42), we averaged over all sites of the system.

However, Eq. (42) holds only for J, = 0.0. To depart from
this special case, we need to resort to different methods, which
we will describe in the following.

D. Bosonization

We now attempt to investigate the special case of disorder
treated in the previous section while including the interaction
term proportional to J;. Our goal is to understand how the sum
on momenta evolves in the presence of interactions between
fermions mediated by the J, term here. For this purpose, we
will develop a bosonized theory, which simplifies the under-
standing of these four-body terms. In the next section, we will
then apply renormalization group (RG) arguments. To develop
this framework, start with the interacting fermion-model:

H=-2J, Zc ciy1 +He. + /. Z(2n, — D@niyy — 1)

”f Z 220 — 1), (43)

which resembles the Hamiltonian (4) in fermionic language
with ¢ = 0 and without the Peierls phases. For simplicity here,
we set the U(1) gauge field ¢ — 0 and we will comment on
the effect of ¢ at the end of Sec. IVE.

As we described in Sec. IV B, the Jordan-Wigner transfor-
mation maps between spin operators and fermionic operators
on a chain. We can identify the spin raising and lowering
operators with creation and annihilation fermion operators

cl‘ = s;."ei” Lj<iti, (44)

We can decompose the bosonic operator into a density and a
phase [12,56]:

st = Jpie”. (45)

If we only consider low-energy excitations, we can linearize
the spectrum around the Fermi momenta and define left- and
right-moving fermions according to the side of the spectrum
at which they arise [45]. This corresponds to the description of
the free fermion model as a Luttinger liquid [44,45]. Passing
to the continuum limit and using the relations (44) and (45),
while changing the sum to an integral over an infinite chain,
we can write for the left- and right-moving fermions upon
linearizing the spectrum [12,57]:
oy ~

C;Q/L (x) = «/5 «/E

We decompose the continuous density operator into a mean
and fluctuations p(x) = (po + p) with py = akyp /7. Quantum
mechanics imposes the commutation relation [6(x), p(y)] =
i6(x —y) between the density and the phase [12]. We can
write

eié(x)e:l:irr ffoc p(x)dx. (46)

p) = o+ 22, @7)
where we introduced the field ¢(x) by p= 8x¢(x)/7r we
introduce the phase ¢ and accordingly @ to distinguish with
the phase ¢ from Eqs. (7)]. Then the above commutation re-
lation is achieved for [0(x), ¢(y)] = iZsgn(x — y). Plugging
the form of p into Eqs. (46) gives upon accounting for the
normalization imposed by Eq. (47)

PO
() = == ere, (48a)
| O
)= meﬁ(”e—'kF-‘e—l‘f’. (48b)

In order to retain fermionic commutation relations, we
need to multiply the right-hand sides of the equations (48) by
the respective Klein factors Ug,; where UpU; =i [57]. The
total density is

px) = = cher + cjop + e chep 4+ e e ep,
(49)
and we can write the density fluctuations as
= hr% Cp(x + a)cr(x) + ¢; (x — a)ep (x). (50)

Regarding the hopping part of the initial Hamiltonian (43)
and going to the continuum limit, we get

H=-2J, / dxc'(x)e(x + a) + Hee. (51)
Splitting into the right- and left-moving branches and taking

the limit of @ — 0, we obtain after an integration by parts the
Hamiltonian in the Dirac form,

H = iv / dx(cj(x)Ver(x) — ¢} (x)Ver (x)), (52)
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with vg = 4aJy,. The Hamiltonian in terms of the fields ¢ and
0 reads

H=2" / dx((8,0)* + (3:4)%). (53)
27

The interaction term in Eq. (43) takes the form 4J. ) ,(n; —
%)(niH — %). As we consider the system at half-filling, we
can replace terms like n; — % directly by the density fluctua-
tions and then write in the continuum limit and omitting the
rapidly oscillating parts:

2\ 2
adl, / (8”5) _ a8/ / dx(3,4)°, (54)
T 2

so that the interacting Hamiltonian can be written upon in-
troducing the Luttinger parameter K and renormalizing the
velocity v as

1 - -
H=" / dx— (3,87 + K(3,0). (55)
2 K
with v/a=/(4]y)* +32]. 0y /7 and K=
AT G,y T8I0,

Ugf
2
gered configuration rj? = (—1)/. In the fermionic language

this reads

Now, we include the disorder term > ; af tj with a stag-

U, ‘
2f ;(—1)12@, (56)

where we neglected a constant. In the continuum limit, we
write (—1)/ — ¢™/¢ with x = aj and thus obtain

Uaf/ e .
' dxe™i(clep + che
2a ( LCL R R)

U, .
+ﬁ / dx ™ jelrx o2 4 H e, (57)

The first integral can be neglected as it is oscillating rapidly.
Since kr = 7~ and x = aj,

eir[%eizk,:x — (_1)2 =1 (58)

and we can write the second integral as

wa

_Yas / dx sin(2$). (59)

Then the full Hamiltonian reads

LR PN Y S
H=o- /dx(K(ax@ +K<axe))

! / axZ sin(2). (60)
b4 a
From Eq. (60), it is evident that if U, is large, the sine-
Gordon term dominates and we can anticipate a pinning of ¢
to 7w /2, so the system acquires a gap in the energy spectrum.
Hereafter, we will look at the opposite case of small Uy,
such that we can treat the sine-Gordon term as a perturbation.
The pinning of the phase ¢ also engenders an exponential
suppression of the current through the conjugate phase 6.

E. Renormalization group analysis

From now on, we assume that U,s < J,, so that we can
do a perturbative analysis in the matter-impurities interaction.
Our objective here is to write down the RG equation for
U,y using the standard methodology [45]. Assume we change
the lattice parameter a — o' = ae?’ ~ a(1 + dl). From this
it follows that di = log(a’/a). We demand that the partition
function remains unchanged under this transformation, i.e.,
Z(a") = Z(a). Here, this gives the equation:

2 2
Uip@ 5 Uy @)
2 4= a4

(61)

a a

It is useful to redefine the dimensionless quantity g,y =
U,ra/v such that

g§f02K74 — gif (a/)a/2K74.

Upon scaling the lattice constant @’ = ae“! we obtain
dga
==Ky (62)

Now for the simple case of J, = 0 we have K = 1. Therefore,

upon increasing /, we also enhance g,r. Define g,r(I*), at
which this term is for general K of the same order as the hop-
ping term. Solving the differential equation (62) by integrating
from a to [ we get

) _ () @
gaf(a) B a '

We fix [* at which the impurities-matter term is strongly
renormalized and becomes comparable to the kinetic energy,
which gives

Jwa
Gar(I*) = :) , (64)

and therefore

1
v \ =K
[* ~ . 65
a(fanf) (©)

In fact, for weak Gaussian disorder, an RG equation similar
to (62) can be found following Ref. [45] and reads translated
to our setup

dgaf
—— = (3 —2K)guy, 66

TR )8af (66)

leading to an estimation of the localization length
1
v 3-2K
I* ~ a( ) . 67)
alUqg

The expressions (65) and (67) quantify the gap opened by a
sine-Gordon term, which arises from a staggered magnetic
field or a Gaussian disorder in the original model. It is in-
teresting to observe that for J, = 0 the localization lengths
for the setup with the telegraph potential and with Gaussian
disorder are very similar, which supports our conclusion that
a well-pronounced localization occurs for various forms of
random potentials in the strongly-coupled rungs regime.
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Current vs Uy, N=10, J, = 0.0, J,, = 1.0
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FIG. 9. A comparison of results from ED for ferromagnetic, anti-
ferromagnetic and average over all 77 configurations with ¢ = 0.001,
Joy = 1.0, J; = 0.0 a system with N = 10 sites and periodic bound-
ary conditions. The theoretical description (36) for a ferromagnetic
configuration and the fitting of a truncated sum (69) for the antiferro-
magnetic and averaged setup, respectively, are shown as solid lines.
To obtain the fit, we sum over 4000 states to obtain a smooth curve.
The fitting parameter C in Eq. (70) was evaluated to C = 0.1624
for the antiferromagnetic configuration and to C = 0.3993 for the
average over all disorder configurations. Details on the numerical im-
plementation and the fitting procedure can be found in Appendix A.

For J, = 0 and without disorder, the spectrum can be found
in momentum space in a similar fashion as Eq. (28)

H = —4J,, ) " cos(ak — ¢)cjcx. (68)
k

from which the current is easily evaluated as

j= %% = —4@% Xk:sin (ak — ¢)cfer.  (69)
In both equations, the sum ranges over accessible momen-
tum states, spaced depending on the boundary conditions
(see the discussion in Sec. IV B) up to the Fermi momenta
kr = 7 /(2a). Disorder will open a gap quantified by /*. We
therefore account for its effect by introducing a cut-off of the
sum (69) so that it ranges only over momenta with absolute
values smaller than |kr — (I*)~!|. This can be done numer-
ically to obtain a prediction for the behavior of the current
with a staggered magnetic field and the disorder averaged cur-
rent expectation value. The approximative nature of Egs. (65)
and (67) can be accounted for by fitting a free prefactor C, i.e.,

for K = 1 we fit C in

* v
= Ca(aUaf). (70)

In this case, up to this prefactor both cases show the same
effects for small U, . This can be confirmed for a small system
using numerics, which is shown in Fig. 9. Here, the orange
and the green crosses show the current expectation value for
a ferromagnetic and an antiferromagnetic configuration of the
7} variables respectively. The blue crosses show an average of
the current expectation value over all possible configurations

Current vs U,y, N=10, J,,, = 1.0

1)/ (= Juy sin @)

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 10. Current from ED as a function of U,s with a staggered
magnetic field (antiferromagnetic configuration of 7;) in comparison
to the sum (69) truncated at |ky — (I*)7!| (fitted for C). The results
are shown for the noninteracting case and for a small positive and
negative interaction J, = +0.1. We set J,, = 1.0, g =0.0, and ¢ =
0.001 with periodic boundary conditions. The ED data (crosses) was
obtained for a chain with ten sites. The truncated sum (solid lines)
was evaluated on a large system with scaled lattice constant in order
to get a smooth result (see Appendix A for details) and using a fitting
for C.

of 7. Since in Fig. 9 J; = 0, the ED results are the same as
in Fig. 8, but with a smaller range of U,y. We see in Fig. 9
that for U,y = 0 there is an offset between the ED results
and the theoretical curves. For the orange curve representing
Eq. (36) and the orange crosses this can be ascribed to the fact
that the ED data was obtained for a small system (N = 10),
while in the derivation of Eq. (36) we replaced the summation
by an integration between the two occupied states closest to
the Fermi momentum (see Fig. 7). In a similar way, for the
truncated summation over momentum states shown by the
blue and green curves representing equation (69), we took
a large number of sites in order to obtain a smooth curve.
Additionally, for the bosonization approach described in this
section, we linearized the spectrum in order to obtain Eq. (46).

We see that Eq. (42) could account for the full range of
U,y values in agreement with ED results, while the approach
described here holds only for small values of U,s. The ad-
vantage of the latter is however, that thanks to the bosonized
framework in which we developed it, it is applicable also in
the presence of Ising interactions proportional to J,. We will
exploit this in the following.

As we see from Eq. (65), decreasing K (corresponding to
an antiferromagnetic coupling J, > 0) leads to a decrease in
I*, therefore the gap increases and there are more terms, which
are cut off from the sum in Eq. (69). This effect is stronger
than the increase in v coming from an antiferromagnetic cou-
pling J;, as can be seen from simulation results in Fig. 10.
This means that an antiferromagnetic coupling of the o*-spins
in this regime supports the localization of the current, which is
seen in Fig. 10 from ED and from the bosonization approach
for an antiferromagnetic configuration of the disorder. A fer-
romagnetic coupling (J; < 0) tends to hinder the localization
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Current as a function of ¢, N=10
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FIG. 11. Current for an antiferromagnetic configuration of z; in
a system with N = 10 sites, result from ED as a function of ¢ and for
a range of U,y values. We set J,, = 1.0, J. = 0.0, and g = 0.0 with
periodic boundary conditions.

in this setup, which is in that sense also consistent with the
result from the bosonization approach.

To end this section, we remark that for our evaluation
of the localization length /* we assumed for simplicity that
¢ — 0. To include the effects of a finite ¢ perturbatively,
one has to add back the Peierls phases to the hopping part of
Hamiltonian (43) and rewrite them in terms of the sine and the
cosine of ¢. Considering the cosine part only, we see that this
changes J,, — J,, cos ¢, so for small phases one can consider
the correction Jy, — Jy, (1 — ¢?). This would modify both
v and K. On a more general note, for the small systems
considered and with an antiferromagnetic configuration of
the 7} variables the current depends on ¢ in a periodic way
depending on the number of sites. This is shown for J; = 0 in
Fig. 11. The ED result presented there agrees with Eq. (42),
from which also the dependence of period on the number of
available momentum states and thereby on the number of sites
can be understood.

In the following, we will discuss the possibility of a many-
body localized phase for strong disorder.

V. MANY-BODY LOCALIZATION

We emphasize here the recent interest at the interface be-
tween localization effects and gauge theories and especially
in quantum spin models [23,29-31,53]. We will then study
the link with many-body localization starting directly from
the XXZ model in Eq. (22) for the specific situation of a
two-peak random potential. It is also relevant to mention
here that many-body physics related to two-fluids models has
recently been studied in the specific situations of two-peak or
binary random potentials with possible applications in cold
atoms [42,43]. From Refs. [23] and [53], a disordered po-
tential drawn from a box distribution and J, = —J,, drives
a many-body localized phase for g = 0. In our case, we are
considering a peaked disorder and stability of this phase upon
adding a small transverse field g. To make a link with the re-
sults in Ref. [23], we will study the entanglement entropy and
bipartite fluctuations upon tracing a region of the system [26].
In Ref. [58] the entanglement entropy has also been used as an

Spin fluctuation as a function of [

200 % by =01
Uss = 0.5
1.5 X Uy =10
Usy = 2.0
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0.5

l

FIG. 12. ED results (crosses) for the bipartite fluctuation as a
function of the subsystem size in the weakly-coupled rungs limit
for a range of U,; values. The size of the full system is fixed to
N =28 and we use J,, =J. =0.01, g=1.0, ¢ =0.01 and open
boundary conditions. The bipartite fluctuation F was evaluated as an
average over all possible configurations of z7. The solid line shows a
comparison to Eq. (72). The bipartite fluctuation grows linearly with
the subsystem size.

indicator for localization in an XXZ model for different values
of the interaction J, with a disordered potential drawn from
a box distribution and with antiferromagnetically ordered
impurities.

We will first present some results for the bipartite fluctua-
tion in the ground state in the decoupled rung limit with large
g (Sec. VA) and with g = 0 (Sec. VB). In order to detect a
many-body localized phase, we will finally depart from the
ground state and consider the time evolution after a quench
from an initially prepared pure state of the & spins in the
rung-Mott phase, which in our case will be the Néel state in
z direction (Sec. V C). There we will consider g = 0 and the
effect of a small value for g.

The bipartite fluctuations of the spin in a state |y) read for
a subsystem of size / [26],

F) = (Y1) 1) — (I Si1v)?, (71)
with §§ = Zfz 1 %of. First, for a comparison we address the
situation of the weakly-coupled rungs limit where we can also
solve the dynamics.

A. Weakly-Coupled Rungs limit

In the weakly-coupled rungs limit with g > J,,, J;, in the
ground state evaluated as in [III A] we can readily calculate

the bipartite fluctuation in the ground state, which reads

l 1

F0 41+ (Uyr /297

Up to a prefactor, it is equal to the parallel current and it
scales linearly with the subsystem size. This is independent
of the disorder configuration since the localization occurs on
each rung independently. In Fig. 12, we show the scaling of
the bipartite fluctuation with the subsystem size as an average
over disorder configurations, which we call F. In this section,

(72)

115113-14



LOCALIZATION DYNAMICS FROM STATIC AND MOBILE ...

PHYSICAL REVIEW B 104, 115113 (2021)

Spin fluctuation, J,, =-0.25, N = 8
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FIG. 13. Bipartite fluctuations averaged over all realizations of
7 for N =8 with periodic boundary conditions, the bipartition
boundary being in the center of the chain (i.e., [ = N/2). Here, we
setJy, = —0.25 and g = 0.0, so that the curve with J, = 0.25 bridges
with the results in [23]. We furthermore set ¢ = 0.001.

expectation values are implicit through the definition (71) of
the bipartite fluctuation.

B. XXZ-chain

When deriving the Hamiltonian (4) from the bosonic ladder
model (see Sec. I A), we have J,, > 0 or —J;, < 0. Here, we
redefine J,, — —J,, in Eq. (22) corresponding now to ferro-
magnetic transverse spin J, couplings such that we can apply
results from Ref. [59] and compare in Sec. V C with results
from Ref. [23]. Note that both cases can be mapped onto each
other by rotating around the z axis for every second spin. In the
model of Eq. (4), we can set J,, = —0.25,/J, = 0.25and g =0
to make the connection with Ref. [23]. Here, we study the bi-
partite fluctuations and entanglement measures when tracing
half of the system, from the ground state, which will enable us
to compare with the situation of a quench studied in the next
section. In the ground state, the bipartite fluctuations can then
be evaluated numerically and for a range of J, we obtain the
results shown in Fig. 13. The gapless phase of the XXZ model
in Eq. (22) is realized for —1 < —J;/J,, < 1 In this phase,
the low energy physics without disorder is described by the
Luttinger liquid theory [45]. In the region —1 < —J;/J;, < 1,
the scaling of the fluctuations with the subsystem size can be
evaluated when U,y — 0 and reads [26,59]

K f2 (1)
.7:(1)=Pln(l)+P—Alm, (73)
where the Luttinger parameter K is now determined from the

Bethe ansatz solution

1 “TA\
K=-(1-2"2) | (74)
2 T

with here A = —J,/Jy,. The form in Eq. (55) is only valid in
the perturbative region |J;| < |Jyy|. The In/ behavior comes
from gapless modes in the effective fermions theory achieved
by the Jordan-Wigner transformation. We will therefore refer

Spin fluctuation as a function of [

J. =01
e JL.=00
e L=01
© e J.=025
R

0.14

0041 X x X X x X X X X X X

6
l
FIG. 14. Scaling of the average bipartite fluctuations with the
subsytem size for different values of J, and U,s. The dots show
simulation results in the gapless phase with U, = 0.1. The crosses
show results for U, = 4.0. Different values of J, are represented
by different colors. The bipartite fluctuation was evaluated for 1000
randomly chosen configurations of 77 and consequently averaged
over. These simulations were performed for a chain with 12 sites
and periodic boundary conditions. We set J,, = —0.25, g = 0.0, and
¢ = 0.001. For the results in the gapless phase (dots), we fit Eq. (73),
the results are represented by solid lines.

to this phase at weak-coupling with impurities, i.e., starting
from U,y = 0, as gapless phase. The A; term describes Friedel
oscillations of the particle densities from the boundary. As
can be seen from Eq. (74) and the blue curve in Fig. 13,
the Luttinger parameter diverges for A — —1 traducing an
instability or a gap opening for the sound modes fluctua-
tions in the ferromagnetic region J, < Jy, (with J, < 0) when
U,y = 0 [26,45]. In that limit, Eq. (73) is not valid. Instead,
the ferromagnetic Ising phase shows a classical order and
the bipartite fluctuations should then be zero when U,s =
0. When switching on U,y, it is interesting to observe that
certain configurations such as the antiferromagnetic situation
for impurities produce quantum fluctuations restoring gapless
modes for the fluctuations, which leads upon averaging to the
behavior shown in Fig. 14 for J; = —0.25 and J, = —0.3. An-
alytically, the occurrence of a gapless phase at small U,; can
be understood using a mapping similar to the one of Sec. IV
in Ref. [60] for the specific case of an antiferromagnetic
ordering of the impurities. The Heisenberg point A = 1 is also
special since in the bosonized framework there is a marginal
operator at this point so that the spin correlations acquire a
correction [45,59] and for A > 1 the system becomes gapped
and Eq. (73) needs to be modified [26,45].

Including the effects of disorder through U, , a phase tran-
sition to a localized phase is anticipated while for small values
of disorder the scaling (73) of the bipartite fluctuation with
subsystem size (for the disorder-free case) should still hold
(at least qualitatively) as long as we are in the gapless phase
with visible (bipartite) fluctuations. We verify that disorder or
equivalently U, induces a transition to a localized phase by

plotting the disorder-averaged bipartite fluctuation F against
the disorder strength U, for different values of J; in Fig. 13.
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FIG. 15. Entanglement entropy (left column) and bipartite fluctuation (right column) for the half chain (i.e., I = N/2) with U,y = 1.0
(upper line) and U,y = 10.0 (lower line). Here we show an average over all possible configurations of disorder (for number of sites N, there
are 2V possibilities) with open boundary conditions. Here we set J,, = —0.25, J, = 0.25, g = 0.1, and ¢ = 0.01.

For —1 < —J./J,y, < 1, the behavior is qualitatively the same
with a sharp transition to the localized phase for a critical
value of disorder strength U, depending on J.. The curve
with J, = —0.25 is in the ferromagnetic phase, consequently
its behavior is different for U,r = 0 and the bipartite fluctu-
ation vanishes. It is interesting to observe in Fig. 13 that for
increasing values of disorder the behavior of this curve can
still be compared to the other curves qualitatively.

In the gapless phase (i.e., at small disorder), interestingly
already for small systems sizes, we can fit the parameters f,
and A; in Eq. (73) to the results from the simulation, which
is shown in Fig. 14. The simulation results for the gapless
phase are here represented by dots, the results from fitting
to Eq. (73) for U,r = 0.1 are shown by solid lines. In the
strongly localized regime, results for a large value of disorder
U,y lead to a vanishing bipartite fluctuation for all values of J,
(represented by crosses in the figure). For the considered situ-
ation, we observe that the curve with J, = 0.25 corresponding
to the Heisenberg point could be also fitted with Eq. (73) in
Fig. 14 even though corrections are present in the form of the
A term [59].

The entanglement entropy S between two subsystems is
defined from the von Neumann entropy,

S = —Trpaln pa, (75)
where ps = Trp(|¥) (¥|) is the density matrix of the ground

state with the degrees of freedom of the composite subsystem
traced out. We have verified that the entanglement entropy of

the half chain (i.e., for [ = N/2) shows a similar transition as
the bipartite fluctuations in Fig. 13.

C. Long time evolution

We now turn towards a time-dependent protocol. If we
prepare the system of & spins in the Néel state in z direction
[T ... 1)) and evolve in time with the Hamiltonian (4)
with Jy, = —0.25, J; = 0.25, and ¢ = 0.01, we can evaluate
the bipartite fluctuations and the entanglement entropy of the
half chain (i.e., [ = N/2) as an average over all configurations
of disorder (details on the numerical implementation can be
found in Appendix A). We can then qualitatively compare
to the results obtained in [23] for the time evolution of the
bipartite fluctuations and the entanglement entropy.

For g = 0, we observe a similar behavior as with a box dis-
order in Ref. [23]: With weak disorder, both the entanglement
entropy and the bipartite fluctuation of the half chain saturate
to a finite value after a rapid growth. In the localized phase,
both the bipartite fluctuations and the entanglement entropy
of the half chain show a rapid growth at short times, after
which the bipartite fluctuations saturate and the entanglement
entropy shows a logarithmic growth with time at strong inter-
actions, in agreement with a many-body localization.

This situation remains qualitatively similar with g = 0.1. In
Fig. 15, we show the results for the entanglement entropy (left
column) and the bipartite fluctuation (right column) at g =
0.1 with relatively weak disorder U,s = 1.0 (upper line) and
with strong disorder in the localized phase with U = 10.0
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FIG. 16. Distribution of the entanglement entropy (left) and the bipartite fluctuations (right) vs U, for/ = N/2 and J,, = —0.25,J, = 0.25,
g=0.1,¢ = 0.01,and N = 8 aftert = 10'. We sampled over all 28 = 256 possible configurations of the t} variables. The color scheme shows
the absolute number of disorder configurations leading to a result in the respective range. The respective average S and F over all disorder

configurations is shown by green dots.

(lower line). There we considered the time-evolution starting
from the Néel state for all possible configurations of disorder,
evaluated the bipartite fluctuation and the entanglement and
consequently averaged over all possible configurations of the
disorder. We consequently call the evaluated quantities F and
S, respectively.

The evolution after a long time shows the localization with
disorder in Fig. 16, which is then different from the strongly-
localized regime when tracing half of the system from the
ground state. In these plots we show the result for all possible
configurations of disorder as a distribution in order to facilitate
a comparison with the results obtained in Ref. [23]. The color
of a small square inside the plot signifies the absolute number
of disorder configurations leading to such a result for the bi-
partite fluctuation and the entanglement entropy, respectively.
The averages over all disorder configurations F and S are
shown by green dots. Fig. 16 shows the results for g = 0.1,
which are similar to the results for g = 0.0 in a qualitative
sense. We therefore conclude that the many-body localization
phase is stable against a small transverse field g.

VI. CONCLUSION

In this article, we have studied a bosonic ladder system
populated by two different types of particles and analyzed its
response to an applied magnetic field forming a U(1) space-
dependent gauge field. We considered one particle species
as impurities (f particles) and analyzed the effects of their
dynamics or disorder on the other boson particle species (a
particles). The impurities are described as two-state systems,
e.g., as spinless fermions with a total density one per rung,
forming a telegraph potential. In the Mott phase with one
delocalized a particle per rung, this model can be mapped
to an effective spin model with two different types of spin-%
operators (¢ and T spins). We assumed a density dependent
coupling between a and f particles, which gave rise to a two-
spin operator ¢777. The model and the current are invariant
after a flip of all z spin components o7 and 77 (referring
here to a classical Ising Z, symmetry), which reflects the
1 < 2 symmetry for the two legs of the ladder. The quantum

impurities when moving also induce a Z, gauge theory from
the decoupled rungs limit and we have studied its backac-
tion or screening effects on the U(1) gauge field. We have
identified two distinct profiles of localization from the spin-
superfluid response of the a particles, i.e., a power-law form
in the weakly-coupled rungs limit and a steep localization
(or insulating) behavior for strongly-coupled rungs where the
current becomes strongly suppressed at a critical value of
the impurities-matter coupling, and tested various forms of
disorder configurations. We have formulated analytical and
numerical arguments to justify these conclusions and for the
strongly-coupled rungs situation we have shown that the steep
localization occurring, e.g., in the antiferromagnetic case is
similar to the case of fermions with a Gaussian disorder
potential. For other forms of disorder configurations, the lo-
calization profile is distinct but we observe that in all studied
cases the current goes to zero for the same critical value of
the impurities-matter coupling, which then justifies the word
steep localization for all these cases assuming the strongly-
coupled rungs limit. Finally, we have shown the possibility
of many-body localization for the present situation of a tele-
graph signal formed by the impurities when deviating from a
pure ground state, applying a quench and following the time
evolution from a Néel state in the strong-interaction limit.

Our article opens further perspectives on the role of
multiparticles couplings, gauge theories and many-body
localization, which can be tested with current quantum tech-
nology [21,22,32].
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APPENDIX A: NUMERICAL IMPLEMENTATION

The effective spin Hamiltonians (4), (17), and (22) were
implemented numerically using the QuTip package for
Python [61]. In the case of a static f particle configuration,
the Hilbert space for a chain of length L is 2 dimensional
and the operators constituting the Hamiltonian are realized by
their actual form in this Hilbert space,

070, =11®..01L_1®0; ®0,,®1,Q..®1,.

In this framework, it is simple to implement the f particle
dynamics using quantum spins as well, in order to check
Eq. (14) or to explore the model (17) featuring a four-body
interaction. The Hilbert space for a chain of length L is then
2%t _dimensional and the operators take the following form:

U,'ZT,'Z = ]la,l ® ]]-r,l ®..Q® j]-tr,i—l ® j]-t,i—l
® Uiz ® T,'Z ® ﬂa,i+1 ® ]]-r,iJrl ®..Q :H-O',L & ]]-'L',L-

In the implemented program, once the Hamiltonian is defined,
the ground state is evaluated numerically. We evaluate the ex-
pectation values of the currents by evaluating the expectation
values of the spin operators and correlations in Eq. (7).

For certain specialized setups, we can diagonalize the
Hamiltonian in momentum space after mapping to free
fermions and hence evaluate the current as a sum over oc-
cupied momentum states [see Egs. (32), (42), and (69)]. In
these cases, the current can be evaluated directly by evaluating
occupied momenta (respecting the discretization and bound-
ary conditions, see Sec. IV B) and summing numerically. This
procedure has then also been used to evaluate the current
in the interacting case with a staggered magnetic field after
bosonization. In this case, the sum was truncated to account
for the gap opened by the staggered field. Note that due to
the numerical simplicity of this approach, significantly larger
systems can be analyzed than with the ED approach. The
downside is of course that it can only be applied if a mapping
to the momentum space is at all possible.

In Sec. IVE, we described how the sum over momentum
space can be truncated in order to account for the localization
with increasing disorder strength. In Eq. (70), we introduced a
fitting parameter C, which we evaluated numerically to make
the connection between data from ED and the truncation of
the sum in momentum space. The results of this procedure can
be seen in Figs. 9 and 10. For the evaluation of the truncated
sum in momentum space, we used a large system to approach
the continuum limit, necessary for our RG analysis to hold.
The ED data can be obtained only for small systems. When
comparing the currents without the disorder, there is a small
offset between both results, which is getting larger for smaller
systems in ED. In order to fit C in the localization length,
we neglect this offset (i.e., shift both curves onto each other).
For the fitting, we use a least square optimizer for the desired
range of disorder strength to evaluate C.

In Sec. V, we investigate bipartite spin fluctuations and
entanglement entropy. We firstly consider both quantities in
the ground state. For that, we evaluate the ground state for

each possible configuration of disorder at a certain disor-
der strength, evaluate the bipartite fluctuation (71) and the
entanglement entropy (75) by taking expectation values for
each disorder configuration and finally averaged over disorder
configurations. When we study the long time evolution in
Sec. VC, we prepare the system initially in the Néel state
(for the a particles) and in a certain configuration of disorder.
We consider the evolved state after a time ¢ using the (time)
evolution operator expressed as a matrix exponential as

[W(1)) = el |9(0)) . (A1)

Here, we wrote Hy;, to underline the static disorder in the
7} variables in the Hamiltonian. We then evaluate the bipar-
tite fluctuation (71) and the entanglement entropy (75) using
|\W(z)). Finally, we average over all disorder configurations.

APPENDIX B: CALCULATIONS IN THE
DECOUPLED-RUNGS LIMIT WITH STATIC IMPURITIES

Here, we detail the calculations from Sec. III A, which lead
to Eq. (11). To evaluate the ground state in the decoupled-
rungs limit, we set Jy, =J, = 0. Using the Bloch sphere
representation (9), we can write for the energy:

U.,
E= Z (—gCOS(a’AJ_,- + pi)cos ®; + Taffiz sin @i)‘

(BI)

Here, ©; and p; are defined as in Eq. (9) with ©; € [-7, 5
and p; € [0,27). As we are considering static impurities,
77 = £1. Minimization of the energy demands

JE JE 0
00,  dp
We obtain
sin(@'A1; + p;) =0, (B2)
U,
tan ©; = —17 =L (B3)
2g

This shows why it is beneficial to choose the inclination angle
as ®; € [-7, 7] (instead of, e.g., the more frequently used
form with ®; — ©; + 7 /2), since its range coincides with
the image of arctan (x) being (—m /2, 7 /2). We can therefore
safely and without complications use the arctan-operation and
obtain Eq. (10) from

Utl
sin ®; = sin(tan~! (— Zaf rf)) (B4)
2g
-1 Uaf z
cos ®; = cos(tan —2—1'1» ). (BS5)
g

Equations (10) designate indeed a minimum, as can be seen

from the second derivative test with

PE E  (’E \’ (0co0s O, cos@i L 4+ o))

— = — | —=p0i = COS B¥; cos(a i i

002 9p7  \ 902" 8 e
(Uay /2)

T Wy gy i)

(B6)
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From here and Eq. (B2) we see that p; = —a’A; describes a
minimum.
To calculate the current expectation value from Eq. (7b),

we approximate expressions of the form (ai"‘oﬁl) A

(o) (oi’il) since we are considering the decoupled rung limit.
The current then reads using Egs. (9)

(ji) = 2/ €08 ©; cos O sin(@A! ., | + pi — pis1).
Plugging in the results from Egs. (10), we obtain Eq. (11).

APPENDIX C: CALCULATIONS IN THE
DECOUPLED-RUNGS LIMIT WITH MOBILE IMPURITIES

Here we detail the calculations leading to the results pre-
sented in Sec. IIIB with mobile impurities. As described
there, this corresponds to the model in Eq. (4) with an ad-
ditional term —g,7;*, which allows the f particles to hop
between the legs of the ladder. We assume that g > J,,, J; to
approximately decouple the rungs from each other. Using the

notation [11); = |1)4: ® 1)z, in the basis [11), [1]), [{ 1),

|4}, the Hamiltonian of one rung can then be written as

Uay /2 —gr  —geh 0
H— —g5 _ af/2 0 _geia’AU
= _gefia’Al,,- 0 _ af/2 —gs
0 —geiia,AL”' —&r Uaf/z

(ChH

If g7 = 0, the ground-state energy E = —v/g* + (5£)* is
twofold degenerate and is attained by the states

[4) = Ny @A+ pg 111) + [L1),
=) = Ny (€Y py 114) + 114D,

/402 2
where p§ = VUl and NOi =1/V1+ (pﬁ)z. Those

2
two states correspond to the distinction of 77 = %1 in the

case of static impurities and yield () = %1 respectively. The
problem is then the same as in Sec. III A. The o} variables
have eigenvalues of (o7) = —(t°)Uss/V 42 + U azf_ The cor-
relation (o7 7;) takes the value

(€2

Uur

402 2
4g° + U,
If g >0, there is a nondegenerate ground state

N( 44011 1) 4+ 1) + pe A [14) +141))) with energy
E = _%\/m, where

(€3)

4g+gr + Uz + Uy
2(g+g5)
N =1/y2+2p%

In this ground state, o7 and 77 now have expectation value 0,
whereas the correlation (o7 t}) takes the value

p:

z.2 l—p2 Uaf

(oiti)zl 5 = .
T Mg+ U

(o))

This result has been confirmed by comparing to results of
ED simulations, which are shown in the inset of Fig. 4. The
expectation values of 77 and o} change to zero for g; > 0,
whereas they are nonzero for g = 0. We also identify (z;') =
Tt = % and 7 is the identity operator or 2 x 2 iden-
tity matrix acting on the Hilbert space of the & spin.

In a similar way, the expectation values of ;' and o; can
be calculated. Invoking a mean field approach and plugging
the results into Eq. (7), the result in Eq. (14) can be found.
Eq. (14) goes to Eq. (11) for g — 0, soitis continuous in g;.

APPENDIX D: DERIVATION OF FOUR-BODY
HAMILTONIAN

As described in Sec. IIIC, if we include the hopping of
the impurities in all directions, we have to enhance Hamilto-
nian (2) by these new processes and potentials constraining
this mobility. We therefore consider the following Hamilto-
nian:

a iaA?; ¥ a —iad'Ay; t
H = —t] E e“iivia) a, i1+ He. — 1 E e Yayay;
i

- t;ZfJifa,iH - fy.fo;ifli +H.c.
Uﬂa a a U
+ 2 ;nai(nai - 1) + % ;n(};i(ngi — 1)

+ Vi Z (nfins; + n{ingi) — MK Z Ng;+Uay Z ”Zzniz
i ol ol

(D1

With respect to the setup (2) where the impurities were con-
sidered as static, we added the hopping of the f particles in
x and y direction with the amplitudes t/ and tyf , respectively.
Furthermore, we added potentials penalising two f particles
sitting on the same site (Uyss) and on the same rung (V) in
completely analogous to the a particle dynamics in Sec. II.
While the on-site repulsion (Uys) can be chosen freely, we
constrain V for simplicity to be the same for both a and f par-
ticles. In the following, we will consider only the limit where
formally Ugy — oo is the biggest parameter and therefore two
impurities cannot occupy the same site. They thus behave like
spinless fermions. As in Sec. II, we aim to derive an effective
spin model at half-filling of both particle species while now
considering U,y of the same order as U,, and V| and much
larger than the hopping amplitudes. The ground state without
hopping is now that with an a and an f particle on opposite
legs on each rung, there is a Z, gauge freedom on each rung.
Restoring the hopping along the legs perturbatively, it gives
rise to second-order processes for both a and f particles in an
analogous way as in Sec. II, which can be written as

Jlojoi, + Jéffizftzﬂ (D2)

with

J“—(t”)2<2 1 )
¢ Uaa VJ_+Uaf '

2
Jf = (t){)

z

= - D3
© VL+Uaf (D3)
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Due to the mobility of the impurities and the large inter-
species interaction Uy, the hopping along the rungs also
enters through a second order process, which accounts for
exchange of the two species along a rung, which reads

g Mgt T+ He., (D4)
with
af
1t
=2 D5
g Usy (DS5)

To evaluate the current along the legs, processes need to be
considered, which interchange the a particle states between
two neighboring rungs. Due to the large interspecies potential
U,y, these interchange also the states of the f particles so
that the relevant processes interchange completely the state
between two rungs. Such processes arise to fourth order in
perturbation theory for neighboring rungs with initially differ-
ent configuration. Therefore, all of the resulting terms contain
either the four-body operator o;” rﬂ'aiil 7;,, or its Hermitian
conjugate. We can distinguish such processes where the a
particles hop only along the legs (one of them is shown ex-
emplarily in Fig. 5), which bear a phase factor ™Al —4%i1)
ot its Hermitian conjugate, and such processes where the a
particles hop only along the rungs, therefore having a phase
factor ¢’ “1i—A1i+1) or its Hermitian conjugate. Note that we
consider a setup where the f particles are not affected by

the magnetic field and therefore do not acquire a phase upon

hopping. Altogether and with our assumptions we can identify
88 fourth-order processes leading to an exchange of two ini-
tially different configurations between neighboring rungs on a
plaquette. We can write the arising term as

_ (J)g~e*ia(A,'l,i+1*A:'2,i+l)
+ ije_"“/(Ai"_Ai"“))ai_ tfoiilri;l +H.c, (D6)
with
a\2 . f\2
8(r%) (¢ 1 1 1
s B (_ N )

, = +
> Uy +VL Ua2f Uiy (Uar +V1) 2(Uaf+VJ_)2

8(rf)2(rf)2( L1 ! )
(Uap + VL2 \2U,p 2V 2U,p 42V )’
2 2 N2 2
g )W)
Ul Ui +V.
af af s

1 1 1
x| — + + . (DD
(Uazf Ui (Uar +V1) Z(Uaf +VJ_)2)

As we are mainly interested in the parallel current and we
assume that the term (D4) is dominant, the terms proportional
to Jj; in (D6) can be neglected as in that case as the total phase
vanishes there. We therefore consider only the term

gl —iaAl  —AZ D) o
Jyye w i g T o + H.c.

i+1 01 (D8)
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