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Causal optimization method for imaginary-time Green’s functions in interacting electron systems
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We develop a causal optimization method that ensures causality in numerical calculations of Green’s functions
in interacting electron systems. Our method removes noncausality of numerical data by finding causal functions
closest to the data. By testing our method with an exactly calculable model and applying it to practical dynamical
mean-field calculations, we find that intermediate-frequency behaviors of Green’s functions are determined
solely by causality, and noncausal statistical errors are removed very efficiently. Furthermore, we demonstrate
that numerical calculations of the physical branch of the Luttinger-Ward functional can be stabilized by ensuring
causality of the noninteracting Green’s function. Our method and findings provide a basis for improving stability
and efficiency of numerical simulations of quantum many-body systems.
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I. INTRODUCTION

Causality is a profound principle that a cause should
precede its effects. In many-body physics, this principle is
embodied by the Heaviside step function θ (t ) in the definition
of the retarded Green’s function [1,2]. For a fermionic Green’s
function, the step function leads to the Lehmann represen-
tation [3] with non-negative spectral function [4]. When the
Green’s function is generalized to a matrix form, the spectral
function is required to be a positive-semidefinite matrix [4].
Moreover, quantities related to the Green’s function such as
the self-energy [5–7] and the hybridization function [8–10]
should satisfy corresponding causality conditions.

Results of practical calculations, however, often contain
noncausality. Such noncausality can be divided into two cat-
egories according to its origin. The first category is from
incomplete causality of the theory itself. For example, ex-
tensions of dynamical mean-field theory (DMFT) to consider
nonlocal correlations can induce causality violation [11–15].
The second category is from the use of numerical methods
that do not enforce the causality. A representative example of
this category is the DMFT [16–20] with the quantum Monte
Carlo (QMC) method [9,21–23]. In this case, statistical errors
induce noncausality even though DMFT itself is a causal
theory [4,24]. In addition, nonstatistical methods for DMFT
can induce the causality violation [25,26].

There have been many attempts to resolve the noncausality
issue because satisfying causality is crucial for physically
consistent calculations [10,11]. Generally, the first category
of noncausality can be solved by constructing causal theories
[4,24,27–29]. The second category of noncausality can be
solved by eliminating negative regions of the spectral func-
tion in the case of real-time calculations. However, in the
case of imaginary-time calculations, no general method has
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been reported to ensure the causality although practical finite-
temperature many-body calculations are often performed in
imaginary time [8,9].

The Luttinger-Ward functional [30,31] is the central build-
ing block for many theoretical and numerical approaches in
correlated electron systems. Recently, this functional is found
multivalued [15,32–35], having unphysical branches of solu-
tion. In practical calculations, this multivaluedness can make
programs converge to unphysical solutions [15,35], breaking
causality [15] in nested cluster DMFT simulations [13,20,28],
for instance. It was pointed out that constraining the non-
interacting Green’s function G0 to be physical can avoid
such unphysical branches [5,35–37], but general and practical
method is yet to be developed.

In this work, we develop a causal optimization method
which ensures causality of imaginary-time and imaginary-
frequency Green’s functions and investigate roles of causality
on numerical calculations in imaginary time and frequency.
We test our method using an exactly calculable model.
Then, we apply our method to DMFT simulation with the
continuous-time QMC program. Finally, we show our method
suppresses unphysical branches of the Luttinger-Ward func-
tional.

II. CAUSAL OPTIMIZATION FOR FERMIONIC
FUNCTIONS

A. Theoretical framework

As mentioned in the Introduction, the causality of the
fermionic Green’s function G(z) leads to the Lehmann rep-
resentation with the nonnegative spectral function A(x) [4]:

G(z) =
∫

A(x)

z − x
dx, A(x) � 0. (1)

In the imaginary time, Eq. (1) is represented as [38]

G(τ ) = −
∫

A(x)nF (−x)e−τxdx, A(x) � 0. (2)
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Here nF is the Fermi-Dirac distribution function [1], 0 �
τ � β, and β = (kBT )−1. Because G(τ ) is antiperiodic in
−β � τ � β [1], we consider 0 � τ � β only. Now suppose
we have some numerical data of G(τ ) obtained from, for
example, QMC simulations. Then we consider to find a causal
Green’s function Gc(τ ) that satisfies Eq. (2) and minimizes the
distance d defined as

d = 1

β

∫ β

0
[G(τ ) − Gc(τ )]2dτ

= (kBT )2
∑
iωn

|G(iωn) − Gc(iωn)|2. (3)

Here the imaginary-frequency Green’s function G(iωn) is
at ωn = (2n + 1)πkBT . If G(iωn) is causal, then Gc(iωn) =
G(iωn) trivially. If not, then Gc(iωn) is the causal function
closest to G(iωn). Once Gc is obtained, we replace G with Gc.
This procedure is equivalent to optimizing G to the closest
causal function, so we name this method as the causal opti-
mization. Since it is not straightforward to use Eq. (2) during
minimization of d , we derive constraints from Eq. (2). From
Eq. (2), the Green’s function and its derivatives G(n)(τ ) =
dnG(τ )/dnτ satisfy [15,39]

G(2k)(τ ) � 0 for k = 0, 1, 2, . . . . (4)

This is very restrictive constraints in the imaginary time. We
consider to use Eq. (4) instead of Eq. (2) during minimization
of d . Although Eq. (4) is not a sufficient but a necessary
condition of Eq. (2), we will present below that this method
can be very successful in obtaining the causal function Gc

closest to numerical data of G, in practice.
Numerical implementation of our causal optimization

method needs to consider Gc and its derivatives to satisfy
Eq. (4) while minimizing d for given values of G(τ ) or
G(iωn). To do this, we employ the cubic-spline interpola-
tion [20,40–43] at the adaptively generated grid {τi} [43] in
0 � τi � β. This interpolation yields G(1)

c (τi ), G(2)
c (τi ), and

G(3)
c (τi ) as linear combinations of Gc(τi ). Then we express

Eq. (4) as

Gc(τi ) � 0, G(2)
c (τi ) � 0,

G(3)
c (τi+1) − G(3)

c (τi ) � 0,
(5)

for all τi. Here the third inequality is from nonpositivity of
G(4)

c . Because derivatives at τi can be found by linear trans-
forms of Gc(τi ), Eq. (5) is a set of linear constraints on Gc(τi ).
Meanwhile, Gc(iωn) = ∑

i KniGc(τi ) with coefficients Kni de-
termined by the cubic-spline integration [42,44]. Then, Eq. (3)
is

d = (kBT )2
∑
iωn

|G(iωn) −
∑

i

KniGc(τi )|2. (6)

We employ the interior-point method for the quadratic pro-
gramming [45,46] to minimize d with respect to Gc(τi )
satisfying Eq. (5). Although Eq. (5) is only up to the fourth
derivative, it is successful in constraining Gc to be causal
during minimization of d . Details of the adaptively gener-
ated nonuniform grid, the cubic-spline interpolation, and the
quadratic programming are described in Appendix A.

FIG. 1. Causal optimization applied to the self-energy given at
low frequencies. (a) Real and (b) imaginary parts of the exact self-
energy �exact of the Hubbard atom given at low frequencies, shown
in green dots. Dashed lines represent the high-frequency asymptote.
(c) Real and (d) imaginary parts of the causal self-energy �c in the
entire frequency range, shown in red dots, obtained from our causal
optimization method using only �exact at low frequencies and the
high-frequency asymptote plotted in (a) and (b). In (c) and (d), �c

agrees excellently in the entire frequency range with �exact plotted in
blue dots for comparison.

Our causal optimization method can also be applied to the
hybridization function �(z) and the self-energy �(z). The
same condition as Eq. (1) applies to �(z), while �(z) satisfies
[5–7]

�(z) = �∞ +
∫

A� (x)

z − x
dx, A� (x) � 0. (7)

Here the causal optimization is applicable to the dynamic part,
�(iωn) − �∞. We can use high-frequency asymptotic coef-
ficients Mi, which satisfy G(iωn) → M0/iωn + M1/(iωn)2 +
M2/(iωn)3 + · · · as ωn → ∞, as constraints because they
can be calculated much more accurately than imaginary-
frequency values [9,47]. As for computational efficiency, our
method is a light process. So noncausality of data can be
eliminated with little additional computation cost.

B. Hubbard atom

To test our method, we first consider the Hubbard atom at
temperature T described by Hamiltonian

H = ε(n↑ + n↓) + Un↑n↓. (8)

Here U is the Coulomb interaction strength, ε is the local
level, and nσ is the electron occupation with spin σ . The exact
Green’s function is [48]

G(iωn) = n

iωn − ε − U
+ 1 − n

iωn − ε
, (9)

where n is the number of electrons per spin. Then, the
self-energy is �(iωn) = iωn − ε − G−1(iωn) from the Dyson
equation. We considered the case of kBT = 0.01, n = 0.5,
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FIG. 2. Causal optimization applied to the self-energy with sta-
tistical errors. (a) Real and (b) imaginary parts of the statistically
calculated noncausal self-energy � of the Hubbard atom which is
the exact self-energy plus statistical errors. Dashed lines represent
the high-frequency asymptote. (c) Real and (d) imaginary parts of
the self-energy �c from our causal optimization method using �

and the high-frequency asymptote plotted in (a) and (b). �c matches
excellently with the exact self-energy �exact.

ε = −1, and U = 4. To examine the role of causality in deter-
mining the self-energy in intermediate imaginary frequency,
we performed the causal optimization of the self-energy
using exact self-energy values at 25 low frequencies and
high-frequency asymptotic coefficients �∞ and �0 for the
asymptotic form of �(iωn) → �∞ + �0/iωn as ωn → ∞.
As shown in Fig. 1, the causal self-energy obtained by our
causal optimization is identical to the exact self-energy at
low frequencies, and it recovers the exact self-energy in the
intermediate-frequency range which is not supplied as the in-
put data, indicating that the intermediate-frequency behavior
is not determined by system-dependent properties but by the
general principle, causality. This is consistent with previous
work on the sparsity of the imaginary-time data [49] and
allows us to obtain the self-energy practically in the entire fre-
quency range using direct calculation at only low frequencies
only and high-frequency asymptotic coefficients.

Many of many-body calculations rely on the QMC method
[9,22]. Due to its statistical nature, statistical errors are added
to physical quantities. Since our causal optimization elimi-
nates noncausality of the data, we expect that our method can
filter out statistical errors in QMC sampled data. To examine
this idea, we consider a QMC procedure which converges the
Green’s function to the exact one Gexact of Eq. (9) with kBT =
0.01, n = 0.5, ε = −1, and U = 4. To represent a practi-
cal QMC calculation, we sample the Green’s function with
Gaussian error [50,51] so that, at each QMC step, G(iωn) =
Gexact(iωn) + �G1 + i�G2, where �G1,�G2 ∼ N (0, 0.12),
and it is averaged over 400 sampling. Then, the self-energy
�(iωn) = iωn − ε − G−1(iωn) has statistical errors increasing
at high frequency [Figs. 2(a) and 2(b)]. We applied our causal
optimization on this self-energy with statistical errors using
the first 200 frequency data and its high-frequency asymptotic

FIG. 3. Causal optimization applied to the self-energy from
DMFT. [(a) and (b)] Imaginary parts of the self-energy �low from
low-precision DMFT calculation of the half-filled single-orbital
Hubbard model with (a) U = 3 and (b) U = 7. Dashed lines rep-
resent the high-frequency asymptote from low-precision DMFT.
[(c) and (d)] Imaginary parts of the self-energy �c,low from our causal
optimization method using only fifty low-frequency values of �low

and the high-frequency asymptote shown in (a) and (b). In (c) and
(d), �c,low matches excellently with the high-precision self-energy
�high.

coefficients as an input, obtaining a smooth self-energy that
coincides with the exact self-energy [Figs. 2(c) and 2(d)].
Thus, causality filters out statistical errors. There have been,
so far, many approaches to filter such statistical errors in QMC
methods [49,52–54]. Our causal optimization method can be
used together with these methods, improving error-filtering
effect.

C. Single-orbital Hubbard model

Using the finding that causality determines the self-energy
at intermediate frequency and filters out statistical errors,
we can improve efficiency of imaginary-time simulations as
follows. First, we directly compute the low-frequency self-
energy �(iωn) and high-frequency asymptotic coefficients
�∞ and �0. Then we obtain the self-energy in other fre-
quencies with our causal optimization method. Because it is
generally difficult to obtain high precision in the intermediate
frequencies, our approach can greatly reduce computing time
compared with direct computation in wide range of ωn. To
show this, we conducted a DMFT simulation of the half-filled
single-orbital Hubbard model [55] described by Hamiltonian

H = −
∑
〈i j〉σ

ti jd
†
iσ diσ+

∑
i

Uni↑ni↓−
∑

i

μ(ni↑ + ni↓). (10)

Here d†
iσ (diσ ) is the creation (annihilation) of an electron

with spin σ at site i, niσ = d†
iσ diσ , U is the Coulomb inter-

action strength, ti j is electronic hopping parameters, and μ is
the chemical potential. We consider the infinite-dimensional
Bethe lattice that has a semicircular noninteracting density
of states [20]. This model has been extensively studied for
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FIG. 4. Causal optimization applied to the bosonic Green’s func-
tion. (a) Real and (b) imaginary parts of a bosonic Green’s function G
with statistical errors and its causal optimization Gc, shown in green
and red dots, respectively. The Green’s function G is generated by
adding Gaussian errors with the standard deviation of 0.05 to the
exact Green’s function Gexact shown in the black line. The exact
Green’s function Gexact is generated by Eq. (11) using B(x) equal
to the Gaussian distribution function with the mean of 1 and the
standard deviation of 0.8.

the Mott transition [20]. In our energy unit, noninteract-
ing bandwidth is 4. As an impurity solver, we implemented
the hybridization expansion continuous-time QMC method
[22]. At temperature of 0.02, we considered a paramagnetic
metallic (U = 3) phase and a paramagnetic insulating (U =
7) phase. For each phase, we performed two calculations.
One is a low-precision calculation, where only 6.4 × 107

QMC sampling is used for each iteration, followed by our
causal optimization of the self-energy using the low-precision
results at the first 50 frequencies and high-frequency asymp-
totic coefficients. The other is a high-precision calculation
where the QMC sampling is 3600 times the sampling in the
low-precision calculation. With the high precision, �(iωn)
is obtained at the first 200 frequencies. As shown clearly in
Figs. 3(c) and 3(d), results from our causal optimization of
low-precision data almost coincide with high-precision data,
for both metallic and insulating phases.

III. CAUSAL OPTIMIZATION FOR BOSONIC FUNCTIONS

In this section, we derive the causal optimization method
for the bosonic Green’s function. The causal bosonic Green’s
function G(iωn) satisfies

G(iωn) =
∫

B(x)x

iωn − x
dx, B(x) � 0, (11)

where ωn = 2nπkBT is the bosonic Matsubara frequency. In
the imaginary time, it is represented as

G(τ ) = −
∫

B(x)xnB(x)e(β−τ )xdx, B(x) � 0, (12)

where 0 � τ � β and nB is the Bose-Einstein distribution
function 1/(eβx − 1) [1]. Then, xnB(x) = x/(eβx − 1) and it
is always positive. As a result, Eq. (12) gives

G(2k)(τ ) � 0 for k = 0, 1, 2, . . . . (13)

Thus, the causal optimization implemented for the fermionic
case can be applied to the bosonic Green’s function, too. In

FIG. 5. Causal optimization applied to a matrix-valued Green’s
function. (a) Real and (b) imaginary parts of an off-diagonal element
G12 of a 2 × 2 matrix-valued Green’s function with statistical errors
and its causal optimization Gc,12, shown in green and red dots,
respectively. The off-diagonal element G12 is generated by adding
Gaussian errors with the standard deviation of 0.05 to the exact
off-diagonal element Gexact,12 shown in the black line. The exact
2 × 2 matrix-valued Green’s function Gexact is obtained by Gexact =
U†G0U with U = e−i π

4 σ2 , σ2 = (0 −i
i 0 ), and a diagonal matrix G0

of G0
11(iωn) = 0.5F (0, 0.1, iωn) + 0.5F (2, 0.3, iωn) and G0

22(iωn) =
F (−1, 0.5, iωn). Here F (μ, s, iωn) is the Green’s function with
the Gaussian spectral function of the mean μ and the standard
deviation s.

addition, since the correlation function χ (iωn) satisfies

χ (iωn) = −
∫

B(x)x

iωn − x
dx, B(x) � 0, (14)

which is the same with Eq. (11) except for the minus sign
in front of the integral, our causal optimization method can
also be applied to −χ . Figure 4 shows an example of the
causal optimization of the bosonic Green’s function. In this
example, we performed the causal optimization of a bosonic
Green’s function with statistical errors at kBT = 0.02 using
the first 100 frequency data and the high-frequency asymptote
G(iωn) → 1/iωn.

IV. CAUSAL OPTIMIZATION FOR
MATRIX-VALUED FUNCTIONS

Our causal optimization method can be extended to
matrix-valued Green’s functions. For a matrix-valued Green’s
function G(τ ), Eq. (4) is generalized to the definiteness con-
dition

G(2k)(τ ) 	 0 for k = 0, 1, 2, . . . . (15)

Here 	 0 means negative semidefinite. When Gi j (iωn)
is the (i, j) element of a numerically obtained matrix-
valued Green’s function, we obtain the causal optimization
Gc,i j (iωn) of Gi j (iωn) by minimizing the distance di j =
(kBT )2 ∑

iωn
|Gi j (iωn) − Gc,i j (iωn)|2. Detailed description of

our causal optimization method for matrix-valued functions is
presented in Appendix B.

As an example, we consider a two-orbital Green’s function
G(iωn). First, we find the causal optimization of diagonal
elements G11(τ ) and G22(τ ). Then, the matrix G(2k)(τ ) is
negative definite if and only if

G(2k)
22 (τ ) − G(2k)

12 (τ )G(2k)
21 (τ )/G(2k)

11 (τ ) < 0. (16)
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We find the causal optimization Gc,12(iωn) of G12(iωn) by
minimizing d12 = (kBT )2 ∑

iωn
|G12(iωn) − Gc,12(iωn)|2 under

the quadratic constraint Eq. (16). Figure 5 shows an exam-
ple of the causal optimization of G12(iωn). In this example,
we calculated the causal optimization of a matrix-valued
Green’s function with statistical errors at kBT = 0.02 using
the first 100 frequency data and the high-frequency asymptote
Gi j (iωn) → δi j/iωn.

A single-particle fermionic matrix-valued Green’s function
can be represented as G(iωn) = [iωn − t − S(iωn)]−1 for a
causal function S(iωn) [6]. Here t is a Hermitian matrix. Then,
in principle, the causality of G(iωn) is equivalent with the
causality of S(iωn) [6]. In our numerical method, Eq. (4) is
less restrictive than Eq. (2) so that G(iωn) satisfying Eq. (4)
does not guarantee S(iωn) to satisfy Eq. (4). On the other hand,
S(iωn) satisfying Eq. (4) always produces G(iωn) satisfying
Eq. (4) in every case we tested. Thus, our causal optimization
method performs better when applied to �(z) or �(z) than
applied to G(z).

V. STABILITY OF PHYSICAL SOLUTION OF THE
LUTTINGER-WARD FUNCTIONAL

Lastly, we consider the Luttinger-Ward functional [30,31].
We show below that our causal optimization method can sup-
press the unphysical branch of the Luttinger-Ward functional.
First, to reproduce unphysical branches of the Luttinger-Ward
functional as in Ref. [35], we consider the Hubbard atom
[Eq. (8)] with kBT = 0.5, n = 0.5, ε = −U/2, and various U
values, and search for unphysical branches as follows. From
the exact Green’s function G [Eq. (9)], we calculate G0, which
can be physical or unphysical but gives G correctly, using the
reverse quantum impurity solver (RQIS) method [15] where
new estimate of G0 is given by

G{i+1}
0 (iωn) = {

G−1
exact(iωn) + �(iωn)

[
G{i}

0

]}−1
. (17)

For the ith iteration, we use the interaction-expansion QMC
method [23] to calculate the self-energy from G{i}

0 . We start
the iteration with the physical solution, G{1}

0 = 1/(iωn − ε). If
converged G{i}

0 is different from this physical solution, then an
unphysical branch is found for the given Gexact, together with
an unphysical self-energy �(iωn). Figure 6 compares �(iωn)
calculated from the RQIS method and the physical self-
energy [�exact(iωn) = U/2 + U 2/4iωn]. The RQIS method
produces the exact solution for small interaction (U = 1), but
it produces unphysical solutions for larger interactions (U =
2, 4, 8) as in Ref. [35], showing instability of the physical
solution triggered by small statistical errors.

To examine the role of causality on the stability of phys-
ical solutions of the Luttinger-Ward functional, we enforced
the causality of G0(iωn) of Eq. (17) by applying our causal
optimization method to the hybridization function �(iωn)
for each iteration (see Appendix C for details). Here �(iωn)
satisfies G−1

0 (iωn) = iωn − ε − �(iωn). Then, calculational
results with our causal optimization converge to the exact
physical solution (Fig. 6), independently of starting val-
ues of G{1}

0 (iωn). So, we can follow the physical branch
of the Luttinger-Ward functional by enforcing the causality
of G0(iωn) by applying our causal optimization method to

FIG. 6. Causal optimization applied to stabilizing the physical
solution of the Luttinger-Ward functional. [(a)–(d)] Imaginary parts
of the self-energy of the half-filled Hubbard atom for (a) U = 1,
(b) U = 2, (c) U = 4, and (d) U = 8. In (b)–(d), the self-energy
calculated from the RQIS method without the causal optimization,
shown in empty diamonds, deviates from the exact self-energy,
shown in empty squares, at low frequencies. In contrast, the RQIS
method with the causal optimization, shown in red dots, reproduces
the exact self-energy.

�(iωn). In contrast, applying our causal optimization method
directly to G0(iωn) using Eq. (4) is not enough to make
G0 converge to the physical one in the RQIS method (see
Appendix C for details), which is related to the above dis-
cussion that Eq. (4) is less restrictive than Eq. (2). We also
note the causal optimization of the self-energy does not avoid
unphysical solutions in the RQIS method and it is because
unphysical self-energies in this problem are causal. The set
of physically accessible self-energies is different from the set
of causal functions [5,56]. By restricting the noninteracting
Green’s function to be causal, we constrain the self-energy to
be physical as in Fig. 6.

VI. SUMMARY

In summary, we developed a causal optimization method
that ensures the causality of the imaginary-time Green’s
function and related quantities, investigating practical con-
sequences of the causality in imaginary-time simulations.
First, we verified that ensuring the causality extends the low-
frequency self-energy �(iωn) to the entire frequency range
smoothly. This property can be useful in quantum chemistry
[57] which requires numerical data in a wide range of imag-
inary frequencies. Second, we showed the causality filters
out statistical errors in QMC simulations. Then, we used
the causality to enhance computational efficiency of practical
QMC simulation. This approach can be useful especially for
the density functional theory plus DMFT approach [10,58–
60]. Moreover, we demonstrated unphysical branches of the
Luttinger-Ward functional can be avoided by ensuring the
causality of the noninteracting Green’s function using our
causal optimization method.
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APPENDIX A: NUMERICAL PROCEDURES OF
THE CAUSAL OPTIMIZATION METHOD

In this section, we present the adaptive nonuniform grid,
the cubic-spline interpolation, and the quadratic programming
used in our causal optimization method.

1. Adaptive nonuniform grid

We use nonuniform grid points {τi} to represent Green’s
function G(τ ) in the imaginary time τ . Typically, an
imaginary-time Green’s function varies rapidly near τ = 0
and τ = β. Here β = 1/(kBT ). An example of an imaginary-
time fermionic Green’s function is shown in Fig. 7, which
corresponds to the imaginary-frequency Green’s function
G(iωn) = 1

2 ( 1
iωn−4 + 1

iωn+3 ) at kBT = 0.02. Since many grid
points are required in the range where G(τ ) varies rapidly,
we generate adaptive girds {τi} based on the equidistribution
principle [43],

∫ τi+1

τi

|G(1)(τ )|dτ = C/Nτ , C =
∫ β

0
|G(1)(τ )|dτ. (A1)

Here Nτ is the number of grid points and G(k) is the kth
derivative of G. This method requires |G(1)(τ )| after the causal

FIG. 7. Comparison between adaptive- and uniform-grid repre-
sentations of imaginary-time Green’s function G(τ ). (a) G(τ ) in the
imaginary time τ ∈ [0, β] with β = 50. Here G(τ ) corresponds to
G(iωn) = 1

2 ( 1
iωn−4 + 1

iωn+3 ). (b) G(τ ) of (a) plotted for τ ∈ [0, 2].
(c) Real and (d) imaginary parts of imaginary-frequency Green’s
function G(iωn) obtained numerically from G(τi ) plotted in (a). In
(c) and (d), G(iωn) obtained from the adaptive-grid representation of
G(τ ) matches with the exact G(iωn) excellently. On the other hand,
G(iωn) obtained from the uniform-grid representation of G(τ ) fails
to reproduce the exact G(iωn).

optimization, and strict use of Eq. (A1) may generate too-
sparse grid points except for vicinity of τ = 0 and τ = β.
Thus, we generate grid points as follows in practice. First, we
generate n equidistant grid points {τ 0

i } in [0, β] and calculate
the causal optimization Gc(τ ) using {τ 0

i }. Then we calculate

ci = ∫ τ 0
i+1

τ 0
i

|G(1)
c (τ )|dτ and mi which is the integer nearest to

nci/
∑n−1

i=1 ci. Finally, we divide each interval [τ 0
i , τ 0

i+1] into
mi + 1 intervals of the same width. As a result, we have
Nτ ≈ 2n grid points. To describe the case with particle-hole
symmetry correctly, we generate grid points symmetric with
respect to τ = β/2. With this adaptive grid, we perform the
causal optimization again. The advantage of our adaptive grid
is represented in Fig. 7, where adaptive and uniform grids are
generated with Nτ = 53 and the adaptive grid describes the
imaginary-frequency Green’s function much better than the
uniform grid.

2. Cubic-spline interpolation

When values of Green’s function are given at grid points
{τi}, we interpolate Green’s function G(τ ) at τi � τ � τi+1

using the cubic spline [20,40–43],

G(τ ) = ai + bi(τ − τi ) + ci(τ − τi )
2 + di(τ − τi )

3, (A2)

which requires 4Nτ − 4 parameters ai, bi, ci, and di. Given
values of G(τi ), and continuity of G(τi ) and its first and second
derivatives give 4Nτ − 6 conditions for ai, bi, ci, and di. Then
two more conditions are needed. Although a popular choice
is the so-called natural boundary condition [20,39] requir-
ing G(2)(0) = G(2)(β ) = 0, this condition together with the
causality condition gives G(2)(τ ) = 0 for all τ because G(2)

is concave as a result of the causality. Thus, instead, we use
two boundary conditions

G(1)(0) ± G(1)(β ) = M1, G(2)(0) ± G(2)(β ) = −M2, (A3)

as in Ref. [41]. Here two parameters M1 and M2 are high-
frequency asymptotic coefficients and the plus (minus) signs
refer to the fermionic (bosonic) Green’s function. If M1 and
M2 are not given as input data, then they are determined by
minimizing d of Eq. (6).

3. Quadratic programming

In the implementation of our causal optimization, we
find Gc which is closest to a given Green’s function G by
minimizing the distance d of Eq. (6). This minimizing pro-
cedure corresponds to a quadratic programming. In general,
a quadratic programming is to optimize Q = 1

2 xT Gx + cT x
with respect to x, with linear equality constraints Ex − f = 0
and linear inequality constraints Ax − b � 0. Here x and c
are n-dimensional vectors, G is an n × n matrix, E is an
ne × n matrix, f is an ne-dimensional vector, A is an m × n
matrix, b is an m-dimensional vector, and z � 0 for a vector z
represents that each component of z is non-negative. Thus, ne

is the number of equality constraints and m is the number of
inequality constraints. The optimal point x satisfies following
Karush-Kuhn-Tucker (KKT) conditions:

Gx − AT λ − ET ν + c = 0, Ax − b − y = 0,

yiλi = 0, y � 0, λ � 0, Ex − f = 0. (A4)
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Here auxiliary variables λ and ν are called as KKT multipliers.
The slack variable y is introduced to transform inequality con-
straints Ax − b � 0 to simple non-negativity condition y � 0.
We use the interior point algorithm that finds a solution by
traveling the interior of the feasible region. Starting from a
point (x, y, λ, ν) satisfying y � 0 and λ � 0, we find a step
(�x,�y,�λ,�ν) satisfying

G�x − AT �λ − ET �ν = −rd , A�x − �y = −rp,

λi�yi + yi�λi = −λiyi + σμ, E�x = −re. (A5)

Here μ = yT λ/m, rd = Gx − AT λ + c, rp = Ax − y − b, and
re = Ex − f . The centering parameter σ controls interiority
and can be determined heuristically [45]. Finally, we obtain
a new point (x, y, λ, ν) + α(�x,�y,�λ,�ν) by choosing α

that keeps the inequality y � 0 and λ � 0. The interior-point
method can also be used for a general nonlinear optimiza-
tion problem [45] although we explained the method for a
quadratic programming.

APPENDIX B: NUMERICAL PROCEDURE OF CAUSAL
OPTIMIZATION FOR MATRIX-VALUED

GREEN’S FUNCTIONS

As presented in the main text, the causality of the matrix-
valued Green’s function G(τ ) leads to

G(2k)(τ ) 	 0 for k = 0, 1, 2, . . . . (B1)

Because negative definiteness of a matrix A is equivalent
with the positive definiteness of the matrix −A, it is enough
to discuss the method for constraining positive definiteness.
Suppose we have an n × n Hermitian matrix Mn which is
known to be positive definite. Then, we consider a new
(n + 1) × (n + 1) matrix

Mn+1 =
[

Mn v

v† h

]
, (B2)

which is Hermitian. Here v is an n-dimensional vector and h is
a real number. Since Mn is positive-definite, Mn+1 is positive-
definite if and only if the Schur complement h − v†M−1

n v > 0
[46], which can be expressed as quadratic constraint for xi =
Re[vi] and yi = Im[vi],

ai
(
x2

i + y2
i

) + 2Re[bi]xi + 2Im[bi]yi + ci < 0. (B3)

Here ai = (M−1
n )ii, bi = ∑

j �=i(M
−1
n )i jv j , and ci =∑

j �=i,k �=i v
∗
j (M−1

n ) jkvk − h. Using these, we obtain the
causal optimization of a matrix-valued Green’s function
as follows. First, we conduct the causal optimization of
each diagonal element Gii for i = 1, . . . , n by minimizing
dii = (kBT )2 ∑

iωn
|Gii(iωn) − Gc,ii(iωn)|2 under the

inequality constraint of Eq. (4). Then, we perform the
causal optimization of Gi,i+1 for i = 1, . . . , n − 1 by
minimizing di j = (kBT )2 ∑

iωn
|Gi j (iωn) − Gc,i j (iωn)|2

for j = i + 1 under Eq. (B3) applied to the 2 × 2 matrix
Gjk with j, k = i, i + 1. Then, we perform the causal
optimization of Gi,i+2 for i = 1, . . . , n − 2 by minimizing
di j for j = i + 2 under Eq. (B3) applied to the 3 × 3 matrix
Gjk with j, k = i, i + 1, i + 2. Likewise, we perform the
causal optimization of Gi,i+3 and so on until all off-diagonal

FIG. 8. Causal optimization applied to stabilizing the physical
solution of the Luttinger-Ward functional. [(a) and (b)] Imaginary
parts of the self-energy of the half-filled Hubbard atom for (a) U = 4
and (b) U = 8 at temperature of 0.5. Empty squares represent the
exact self-energy, and empty diamonds represent the self-energy
calculated with the RQIS method without the causal optimization.
Empty circles represent the self-energy from the RQIS with our
causal optimization applied directly to G0, showing deviation from
the exact self-energy. Red dots represent the self-energy from the
RQIS with our causal optimization applied to �, showing excellent
agreement with the exact self-energy.

elements are optimized. As a result, we obtain the Green’s
function Gc(τ ) that satisfies Eq. (B1).

APPENDIX C: COMPARISON OF CAUSAL
OPTIMIZATION APPLIED TO �

AND APPLIED DIRECTLY TO G0

In the RQIS applied to the half-filled Hubbard atom,
noninteracting Green’s function G0 is updated according to
Eq. (17). Then, from G−1

0 (iωn) = iωn − ε − �(iωn), the hy-
bridization function �(iωn) is updated as

�{i+1}(iωn) = �exact(iωn) − �{i}(iωn), (C1)

where �{i}(iωn) = �(iωn)[G{i}
0 ]. From Eq. (C1), the high-

frequency asymptotic coefficient M0 of �, which satisfies
�(iωn) → M0/iωn as ωn → ∞, is calculated as M{i+1}

0 =
�exact

0 − �
{i}
0 , where �(iωn) → �0/iωn as ωn → ∞. Because

�0 depends on n and U [9] only, �
{i}
0 is the same for ev-

ery iteration and it is equal to �exact
0 , resulting in M{i+1}

0 =
0 for every iteration, and even the unphysical solution has
the same high-frequency behavior with the physical one, as
shown in Fig. 6. We note M0 = −[�(0) + �(β )], so �(0) +
�(β ) = 0. With our causal optimization applied to �(iωn),
we have �(τ ) � 0, so �(0) = �(β ) = 0. Our causal opti-
mization also restricts �(τ ) to be a concave function so that
�(τ ) � (1 − τ/β )�(0) + (τ/β )�(β ) = 0. Thus, �(τ ) = 0
in the whole range of 0 � τ � β and �(iωn) = 0 for all ωn,
which corresponds to the exact hybridization function of the
Hubbard atom. As a result, with our causal optimization, the
RQIS converges to the exact solution independent of the initial
hybridization function �(iωn). In contrast, as mentioned in
the main text, applying our causal optimization method di-
rectly to G0 is not enough to make G0 converge to the physical
one in the RQIS method. Figure 8 highlights difference in
the RQIS results with our causal optimization method applied
directly to G0 and that applied to �.
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