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Magnetic phases from competing Hubbard and extended Coulomb interactions
in twisted bilayer graphene
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We implement a self-consistent Hartree-Fock approximation based on a microscopic model in real space,
which allows us to consider the interplay between the Hubbard and the extended Coulomb interaction in twisted
bilayer graphene at the magic angle. These two interactions tend to favor different symmetry-breaking patterns,
therefore having complementary roles in the regimes where one or the other dominates. We show that, for
sufficiently large values of the on-site Hubbard repulsion, magic angle graphene has an antiferromagnetic ground
state at the charge neutrality point, while at half filling of the lowest valence band the state becomes fully
spin-polarized. In general, a suitable screening of the extended Coulomb interaction is required to observe the
magnetic state in either case, as otherwise the instabilities take place in the charge sector, preferentially in the
form of time-reversal, chiral, or valley symmetry breaking.
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I. INTRODUCTION

The discovery of superconductivity and correlated phases
in twisted bilayer graphene (TBG) at the so-called magic
angle [1,2] has opened a new era in the investigation of strong
electron correlations in layered materials [3–33]. There is
indeed evidence that those phenomena may arise as a con-
sequence of the strong electron-electron interaction, drawing
a possible connection with the unconventional behavior of the
copper-oxide superconductors [34,35].

Some of the most prominent effects in TBG have to do
with the opening of a gap in the electronic spectrum at integer
fillings of the lowest valence and conduction bands [1,2,6].
It has been remarkable the observation of ferromagnetism at
three-quarter filling of the lowest conduction band, with the
concomitant breakdown of the spin and valley symmetries of
the bilayer [36]. The gap seen at the charge neutrality point
(CNP) is also likely to arise from a dynamical breakdown of
symmetry, by which the strong electronic interaction would
destabilize the Dirac nodes in the spectrum.

There have been experimental [37–39] as well as theo-
retical [31,37,40–52] studies showing the feasibility that the
electron interactions may induce different symmetry-breaking
patterns in TBG at the magic angle, although these have been
mainly limited to the charge sector. Magnetic instabilities
have also been analyzed [53–57] but focusing the discussion
on the spin sector, perhaps due to the difficulty in dealing with
a microscopic model discerning spin-dependent versus spin-
independent interactions. In this regard, the relative strength
of the spin-dependent Hubbard interaction (as compared to
that of the extended Coulomb interaction) is the key element
which governs the possibility of having a spin instability at
different filling factors in TBG.

In this paper, we implement a self-consistent Hartree-Fock
approximation based on a microscopic model in real space,

which allows us to consider the interplay between the Hub-
bard and the extended Coulomb interaction in TBG. These
two interactions tend to favor different symmetry-breaking
patterns, therefore having complementary roles in the regimes
where one or the other dominates. We show, in particular, that,
for sufficiently large values of the on-site Hubbard repulsion
and close to the magic angle, TBG has an antiferromagnetic
ground state at the CNP, while at half filling of the lowest va-
lence band the state becomes fully spin polarized as predicted
by a general theorem on the flat-band Hubbard model [58–61].
In general, a suitable screening of the extended Coulomb
interaction is required to observe the magnetic state in either
case, as otherwise the instabilities take place in the charge
sector, preferentially in the form of time-reversal, chiral, or
valley symmetry breaking.

II. HARTREE-FOCK APPROXIMATION

We are going to focus our discussion on a twisted bilayer
belonging to the set of commensurate superlattices with twist
angle θi = arccos[(3i2 + 3i + 0.5)/(3i2 + 3i + 1)] [62,63],
taking, in particular, the representative with i = 28 (twist an-
gle θ ≈ 1.16◦). The Hamiltonian H can be written as the sum
of a noninteracting piece H0 and the term Hint containing the
Hubbard and Coulomb interactions:

H = H0 + Hint. (1)

We represent H0 in the form of a tight-binding Hamiltonian,
adopting the parametrization described in the Appendix. In
the moiré superlattice with electrons sitting at lattice sites
ri with spin σ =↑,↓, the matrix representation (H0)iσ, jσ

can be exactly diagonalized, leading to eigenvalues ε0
aσ and

eigenvectors φ0
aσ (ri ). In the zero-frequency (static) limit, the

noninteracting electron propagator G0 is just the inverse of H0
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and can be written as

(G0)iσ, jσ = −
∑

a

1

ε0
aσ

φ0
aσ (ri )φ

0
aσ (r j )

∗ . (2)

The Hartree-Fock approximation relies on the assumption
that the full electron propagator G can be represented in terms
of a modified set of eigenvalues εaσ and eigenvectors φaσ (ri ),
in such a way that in the static limit

(G)iσ, jσ = −
∑

a

1

εaσ

φaσ (ri )φaσ (r j )
∗ . (3)

Furthermore, the relation between G and G0 is given by the
electron self-energy � according to the Dyson equation:

G−1 = G−1
0 − � . (4)

In the Hartree-Fock approximation, the many-body diagram-
matics implies that � can be expressed in terms of the set of
φaσ (ri ). It turns out that, in the static limit,

(�)iσ, jσ = 2Ii j

∑
a

′ ∑
l,σ ′

vσσ ′ (ri − rl )|φaσ ′ (rl )|2

− vσσ (ri − r j )
∑

a

′
φaσ (ri )φaσ (r j )

∗ , (5)

where vσσ ′ (r) is the interaction potential between electron
densities with spin σ and σ ′ and the prime means that the sum
is to be carried over the occupied levels [64].

The problem of finding the set of εaσ and φaσ (ri ) amounts
then to solving the self-consistent equation given by Eqs. (4)
and (5). This can be achieved in practice by means of a recur-
sive procedure, in which the self-energy is built at each step
from the approximate eigenvectors obtained in the previous
iteration (see the Appendix for details of the computation).

One of the advantages of applying the Hartree-Fock ap-
proximation in real space is the possibility to discern the
contribution of different interactions to the potential vσσ ′ (r).
We have, for instance, a term HC in the interaction Hamil-
tonian corresponding to the extended Coulomb interaction,
which we will take as suitably screened by nearby metallic
gates to make contact with typical experimental setups. Thus,
we can express in terms of electron creation (annihilation)
operators a+

iσ (aiσ ),

HC = 1

2

∑
i, j,σ,σ ′

a†
iσ aiσ vC(ri − r j ) a†

jσ ′a jσ ′ , (6)

where we take the potential appropriate to the case of top and
bottom metallic gates [65], each at a distance d = ξ/2 from
the twisted bilayer:

vC(r) = e2

4πε

2
√

2 e−πr/ξ

ξ
√

r/ξ
. (7)

Moreover, we also take into account the interaction com-
ing from the on-site repulsion of electrons sitting at the
same carbon atom. This contributes to Hint with the Hubbard
term

HU = U
∑

i

a†
i↑ai↑ a†

i↓ai↓ . (8)

The term HU can be viewed as a prescription to define
the Coulomb interaction in the limit r → 0, which cannot be
obtained from Eq. (7). The on-site repulsion U is actually a
very relevant parameter in the subsequent discussion since the
Hubbard term is the spin-dependent part of the interaction.
The prevalence of the magnetic phases turns out to be dictated
then by the value of U , as we see in what follows.

III. SYMMETRY BREAKING AT THE CHARGE
NEUTRALITY POINT

The most distinctive experimental feature observed at the
CNP of TBG at the magic angle is the opening of a gap in
the electronic spectrum. This can be attributed to the effect of
dynamical symmetry breaking which, for sufficiently strong
electron-electron interaction, destabilizes the Dirac nodes at
the K points of the moiré Brillouin zone. Such an effect typi-
cally proceeds through the development of a staggered density
in the charge or the spin sector. The different symmetry-
breaking patterns can be built from the matrix elements

h(σ )
i j =

∑
a

′
φaσ (ri )φaσ (r j )

∗ , (9)

where the prime means again that the sum is only over oc-
cupied states. In TBG, we have sublattices A1, B1 for the top
carbon layer and A2, B2 for the bottom layer. Thus, we have
the order parameters:

C±σ =
∑
i∈A1

h(σ )
ii −

∑
i∈B1

h(σ )
ii ±

(∑
i∈A2

h(σ )
ii −

∑
i∈B2

h(σ )
ii

)
. (10)

The condensation of a staggered spin density (signaling anti-
ferromagnetic order) may be characterized by a nonvanishing
value of C+↑ − C+↓, while the prevalence of a nonzero value
of C+↑ + C+↓ is instead the signature of staggered charge
order, with the consequent chiral symmetry breaking.

As already pointed out, the Hubbard term is the only source
of spin-dependent interaction in our model, so the balance
between the charge and the spin order is governed by the
relative strength of the on-site repulsion U . This quantity is
assumed to have a value of the order of ∼8 eV in graphene,
but in TBG it may be significantly reduced due to internal
screening from the narrow bands. We have estimated this
effect by taking into account the relevant electron-hole excita-
tions in the random-phase approximation (RPA), finding that
a realistic coupling is given in our model by U ≈ 4 eV (see
the Appendix for a detailed evaluation). We will consider this
effective value in what follows, but comparing also the results
with the instance of a much smaller (unrealistic) coupling
U = 0.5 eV, just for the sake of discerning the role played by
the Hubbard interaction to trigger the magnetic instabilities.

For the effective value U = 4 eV, we find that the devel-
opment of a staggered spin density (antiferromagnetic order)
prevails over chiral symmetry breaking, regardless of the
strength of the Coulomb interaction. This is shown in the
phase diagram of Fig. 1(a), where the x axis represents the
strength of the potential Eq. (7), for a setup with ξ = 10
nm. We observe that the antiferromagnetic phase is preserved
down the limit of a pure Hubbard interaction (ε → ∞).
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(a)

(b)

FIG. 1. Phase diagrams showing the order parameters of the
dominant symmetry-breaking patterns at the charge neutrality point
of twisted bilayer graphene with i = 28 (twist angle θ ≈ 1.16◦) for
two different values of the on-site Hubbard coupling U = 4.0 eV
(a) and 0.5 eV (b). The x axis corresponds to the coupling of the
Coulomb potential (in units where a is the C–C distance).

When the antiferromagnetic signal decreases to the right
of the diagram in Fig. 1(a), we find, however, the onset of a
different order parameter corresponding to valley symmetry
breaking in TBG. This may be characterized by the circu-
lation of the matrix elements hi j along the loop of the three
nearest-neighbors i1, i2, and i3 of each atom i, with clockwise
orientation. We may have a nonvanishing flux inside each loop
indicating the breakdown of time-reversal invariance (TRI)
but with opposite sign in the two sublattices A and B. This
condensation is measured by the order parameters:

S±σ = Im

(∑
i∈A1

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3 −

∑
i∈B1

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3

±
∑
i∈A2

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3 ∓

∑
i∈B2

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3

)
. (11)

The phase realized to the right of the diagram in Fig. 1(a) cor-
responds to nonvanishing S+σ for the less populated spin σ .
In the continuum theory of Dirac fermions, this breakdown of
symmetry translates into the generation of a term proportional
to the identity in pseudospin space. This does not open a gap
in the Dirac cones at the K point but instead leads to a different
shift in the energy of the cones in the two valleys of the twisted
bilayer, with the consequent valley symmetry breaking.

On the other hand, if we take an effective value of U =
0.5 eV, the phase diagram shows a different competition be-
tween symmetry-breaking patterns as seen in Fig. 1(b). For
that value of U , we observe that there is no magnetic in-
stability in the limit of a pure Hubbard interaction ε → ∞.

However, there is still an antiferromagnetic phase in the weak-
coupling regime of the extended Coulomb interaction, where
this is presumably reinforcing the Hubbard interaction to pro-
duce the staggered spin order.

For larger extended Coulomb interaction, we find next a
mixed phase where there is chiral symmetry breaking (stag-
gered charge order) for one of the spin polarizations, while
for the other polarization the state corresponds to a Chern
insulator with the order parameter

P+σ = Im

(∑
i∈A1

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3 +

∑
i∈B1

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3

+
∑
i∈A2

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3 +

∑
i∈B2

(
h(σ )

i1i2
h(σ )

i2i3
h(σ )

i3i1

) 1
3

)
. (12)

For a yet stronger Coulomb interaction, we turn into a
phase with chiral symmetry breaking in the two spin polar-
izations. This phase as well as the preceding Chern insulating
phase are already present in the phase diagram obtained for
spin-independent interactions in TBG [47]. We may therefore
interpret that those two phases reflect the regime of prevalence
of the extended Coulomb interaction. In any case, we observe
that there is still a residual effect of the Hubbard interaction
to the right of the phase diagram in Fig. 1(b), leading to a
slight spin polarization and a concomitant phase with valley
symmetry breaking.

Finally, for the smallest values of the dielectric constant
ε, there is no signal of symmetry breaking in the phase di-
agram of Fig. 1(b). Nevertheless, this is a consequence of
the fact that, for such a strong-coupling regime, the Fermi
level departs at charge neutrality from the neighborhood of the
Dirac nodes at the K points of the moiré Brillouin zone. This
explains the apparent discrepancy with the phase diagrams
in Ref. [47], where the phases have been always found by
constraining the Fermi level to fall between the upper and
lower Dirac cones.

IV. SYMMETRY BREAKING AT HALF FILLING
OF THE LOWEST VALENCE BAND

As the magic angle is approached and the low-energy
bands flatten, the one-particle density of states becomes pro-
gressively higher in the lowest valence and conduction bands
of TBG. The question of symmetry breaking then becomes
relevant and, in particular, whether a spin-polarized state may
arise due to interaction effects. In this regard, the key role is
played by the effective value after internal screening of the
Hubbard coupling U . As in the previous section, we are going
to consider again a realistic effective value of the Hubbard
coupling U = 4 eV, but comparing also with the instance
of a much smaller coupling (U = 0.5 eV) to show how the
Hubbard interaction leads to important changes in the phase
diagram, inducing a kind of rotation between SU(2)-spin and
valley symmetry breaking.

For an effective on-site repulsion U = 4 eV, the Hubbard
interaction is strong enough to produce a full spin polarization
in the ground state of the system. This is shown in the phase
diagram of Fig. 2(a), which represents the different phases
for growing strength of the extended Coulomb interaction.
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(a)

(b)

FIG. 2. Phase diagrams showing the order parameters of the
dominant symmetry breaking patterns at half filling of the lowest
valence band of twisted bilayer graphene with i = 28 (twist angle
θ ≈ 1.16◦) for two different values of the on-site Hubbard coupling
U = 4.0 eV (a) and 0.5 eV (b). The x axis corresponds to the cou-
pling of the Coulomb potential (in units where a is the C–C distance).

The full spin polarization is localized around the AA-stacked
region of the moiré unit cell, see Fig. 3, and takes place along
with the complete splitting of the low-energy bands for spin

up and spin down. This means that, at half filling, the polar-
ized electrons populate the states up to the level of the Dirac
nodes of the filled band. These are then susceptible of being
destabilized by the electronic interaction, as actually happens
with the development of chiral symmetry breaking seen in
the phase diagram of Fig. 2(a). The diagram also shows a
clear competition between the effects of the Hubbard and the
extended Coulomb interaction, which leads to the suppression
of the spin polarization for sufficiently small values of the
dielectric constant ε.

The same effect of full spin polarization is found for U =
2 eV in the limit ε → ∞, but for U = 0.5 eV the magnetic
ground state is lost, as shown in Fig. 2(b). For that value
of U , we also observe that the main signature of symmetry
breaking corresponds to the prominent growth of the order
parameter S+ defined in Eq. (11). Therefore, the main physical
effect is that of valley symmetry breaking, which is driven by
the extended Coulomb interaction and grows large for small
values of the dielectric constant.

V. CONCLUSION

In this paper, we have reported self-consistent Hartree-
Fock calculations for magic angle TBG, including both on-site
Hubbard and extended Coulomb interactions. We have found
that the former favors an antiferromagnetic ground state at the
CNP, except in cases with relatively small Hubbard coupling,
where the dynamical generation of a gap would be mainly
due to the extended Coulomb interaction. Let us remark that
we have carried out the calculations without allowing for the
breakdown of the threefold rotational symmetry of the twisted
bilayer. Nevertheless, the presented conclusions are relevant
because a nematic instability does not usually open a gap
at the Dirac cones. This means that some of the symmetry

(a)

(b)

FIG. 3. Spin density at the neutrality point (a) and at half filling of the lowest valence band (b) in the hexagonal moiré unit cell of twisted
bilayer graphene with i = 28 (twist angle θ ≈ 1.16◦) for an on-site Hubbard coupling U = 4.0 eV. We show the spin densities separately for
the X -lattice sites of layer n (Xn) with X = A, B and n = 1, 2, in units of the density 1/Ai of one electron inside the moiré unit cell with
Ai = (3i3 + 3i + 1)ā2 (ā being the lattice constant of graphene).
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breaking patterns discussed in the paper must be at work to
produce the opening of the gap observed at the CNP.

We have been mainly interested in magnetic phases, and
we have found a crossover from antiferromagnetic to ferro-
magnetic order when doping the system from the CNP to
half filling of the first valence band for sufficiently large
Hubbard interaction, i.e., for values beyond the semimetal to
antiferromagnetic Mott insulator transition. The resulting spin
densities are localized around the AA-stacked regions and
for the half-filled valence band, they can be as large as ten
times the density of one electron per moiré unit cell. We thus
believe that this magnetic lattice should be detectable in future
experiments, providing a way of testing the balance between
Hubbard and extended Coulomb interactions in the twisted
bilayer.
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APPENDIX

1. Geometry of twisted bilayer graphene

In TBG, a Moiré pattern appears which exhibits the same
hexagonal lattice structure as single layer graphene. Depend-
ing on the twist angle between the two layers, the length of the
lattice vectors of this superstructure might be largely enhanced
as compared to a ≈ 2.42 Å, the length of the lattice vec-
tors a1,2 = a(±1/2,

√
3/2) of graphene monolayer. Strictly

speaking, not all twist angles are allowed but only a commen-
surate set [66] θmn which map the lattice point (ma1, na2) onto
(na1, ma2), m, n ∈ N. However, the set of possible angles
is dense in [0, 2π ] such that that spectral properties at low
energies depend continuously on the value of the angle only
and not on the integers n, m. In the following, we focus on
m − n = 1, obtaining a discrete set of twist angles θi which
are labeled by only one integer i through

cos(θi ) = 1 − 1

2Ai
, Ai = 3i2 + 3i + 1 . (A1)

An arbitrary small twist angle can be achieved by increasing
the integer i keeping in mind that all intermediate angles
can be approximated to arbitrary accuracy by allowing two
integers. The lattice vectors of the superlattice are

t1 = ia1 + (i + 1)a2 , t2 = −(i + 1)a1 + (2i + 1)a2,

(A2)
spanning a super unit cell with an area, which is Ai times large
than the unit cell of single layer graphene. Likewise, the area
of the reciprocal superlattice spanned by the vectors

g1 = 1

Ai
((2i + 1)b1 + (i + 1)b2) ,

g2 = 1

Ai
(−(i + 1)b1 + ib2) , (A3)

FIG. 4. Sketch of the twisted bilayer in k space for a large angle
i = 3. The Brillouin zones of the two layers (dashed green and blue)
are rotated by an angle θ3 ≈ 9.14◦. The Dirac points K and Kθi

are the two inequivalent Dirac points of the Brillouin zone of the
superlattice (small dashed grey hexagon). The lattice vectors b1,2

of the reciprocal lattice of graphene monolayer (brown arrows) are
related to the lattice vectors of the reciprocal superlattice (red arrows)
by b1 = ig1 − (i + 1)g2.

is Ai times smaller than the area of the reciprocal lattice of
graphene, spanned by b1,2 = 2π (±1/a, 1/(a

√
3)). The Bril-

louin zones of the two monolayers are twisted by the angle
θi, such that the Dirac points Kφ , φ = 0, θi, (K ≡ K0) at
the positions Kφ = (4π/3)(cos φ, sin φ) are connected by the
vector 
K ≡ Kθi − K = (2g1 + g2)/3, which shrinks as the
twist angle θi becomes increasingly smaller |
K| = |K|/√Ai.
The two points K and Kθi are the vertices of the Brillouin zone
of the reciprocal superlattice with the � point at Kθi + (g1 +
g2)/3 and one M point at M = (K + Kθi )/2. The geometry in
momentum space is summarized in Fig. 4.

2. Tight-binding model for twisted bilayer graphene

Modeling TBG in a tight-binding approach, we take as the
starting point the noninteracting Hamiltonian:

H0 = −
∑
〈i, j〉

t‖(ri − r j ) (a†
iσ a jσ + H.c.)

−
∑
(i, j)

t⊥(ri − r j ) (a†
iσ a jσ + H.c.) . (A4)

The sum over the brackets 〈...〉 runs over pairs of atoms in the
same layer (1 or 2), whereas the sum over the curved brackets
(...) runs over pairs with atoms belonging to different layers.
t‖(r) and t⊥(r) are hopping matrix elements which have an
exponential decay with the distance |r| between carbon atoms.
A common parametrization is based on the Slater-Koster for-
mula for the transfer integral [67],

−t (d) = Vppπ (d )

[
1 −

(
d · ez

d

)2]
+ Vppσ (d )

(
d · ez

d

)2

(A5)

with

Vppπ (d ) = V 0
ppπ exp

(
−d − a0

r0

)
,

Vppσ (d ) = V 0
ppσ exp

(
−d − d0

r0

)
, (A6)
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(a) (b)

FIG. 5. Dispersion of the first valence and conduction bands [zoomed out in (b)] about the charge neutrality point of a twisted graphene
bilayer with twist angle θ ≈ 1.16◦, computed in a tight-binding approach with parameters given in the text.

where d is the vector connecting the two sites, ez is the
unit vector in the z-direction, a0 is the C-C distance and
d0 is the distance between layers. A typical choice of pa-
rameters is given by V 0

ppπ = −2.7 eV, V 0
ppσ = 0.48 eV, and

r0 = 0.319a0 [67]. In practice, we have taken these values to
carry out the analysis reported in the main text, but restricting
within each layer the hopping to nearest-neighbor atoms, as
a way to get closer to the magic angle condition. This leads
to sensible results for the commensurate lattice studied in the
main text with twist angle θ ≈ 1.16◦, whose first valence and
conduction bands are shown in Fig. 5. The reduced bandwidth
allows us to address the problem of symmetry breaking cover-
ing the regimes of both strong and weak electron correlation,
as done in the paper by varying the screening of the Coulomb
interaction.

Regarding the Hartree-Fock approximation, the construc-
tion of the self-energy in Eq. (5) of the main text demands the
knowledge of the eigenvectors of the Hamiltonian. That self-
energy implies a sum over the occupied states of the electronic
bands, but in practice one has to impose some kind of trun-
cation when carrying out the calculation. In this respect, we
have retained the first 64 valence bands below those hosting
the Dirac nodes in the self-consistent resolution for the two
values of U taken at the CNP, as well as for U = 0.5 eV at half
filling of the first two valence bands. When computing in this
latter instance with U = 4 eV, we have extended the number
of valence bands retained up to 128. In all cases, we have
computed the self-energy taking a grid with 300 momenta
(plus the gamma point) covering the Brillouin zone. We have
checked that such a content of filled states is safe to capture the
different symmetry-breaking patterns in the phase diagrams,
for the interaction strength considered in the paper. We stress
that the choice of a sufficiently large Fermi sea of filled states
is particularly crucial to unveil the antiferromagnetic order at
the CNP, which does not appear when computing with a small
number of valence bands but certainly becomes the dominant
pattern in any sensible calculation at large U , as shown in the
main text.

3. Continuum model for twisted bilayer graphene

For the continuum model, we follow Refs. [62,63] and take
into account interlayer hopping only between the two sites
in each layer which are closest to each other. The hopping
amplitude t (R, δ) between a lattice site R on the first layer

and site R + δ + de3 of the second one is much smaller than
the intralayer hopping amplitude t0 ≈ 2.78 eV. In principle,
t (R, δ) has a rather complicated space dependence but its pe-
riodicity with respect to the superlattice allows an expansion
in Fourier components t̃σσ ′ (g). These depend on a recipro-
cal vector of the superlattice g and on whether the hopping
takes place between a σ = A, B sublattice of the first layer
and a σ ′ = A′, B′ sublattice on the second layer. Using the
Dirac cone approximation for single layer graphene, the tight-
binding Hamiltonian for twisted graphene reads close to the
Dirac point K [68,69] Ĥ = ∑

k Ĥ (k) and

Ĥ (k) = h̄vF

∑
φ=0,θi

â†
φAkσ̂

φ

AB · (k + M − Kφ )âφBk

+
∑

σ,σ ′,g

â†
0σk+gt̃σσ ′ (g)âθiσ ′k + H.c. (A7)

Here â†
φσk creates an electron on a single layer with twist angle

φ on the sublattice σ with lattice momentum k + M − Kφ .
Moreover, in Eq. (A7) the 2D-spin vector operator σ̂φ =
eiφσ̂z/2σ̂e−iφσ̂z/2, σ̂ = (σ̂x, σ̂y) was defined, with Pauli matrices
σx, σy, and σz. The Fermi velocity of a graphene monolayer
is vF = √

3at0/(2h̄) ≈ 9 × 105 ms−1. The Dirac cone ap-
proximation is expected to be a good one for values of k
much smaller than |K| = 4π/(3a), respectively for energies
much smaller than h̄vF|K| ≈ 10.1 eV. In practice, we will
consider frequencies in a range ω < , where  ∼ 0.8t0/h̄
corresponding to a cutoff wave vector k ≈ a−1.

The interlayer hopping was investigated in detail in
Refs. [62,68] and with a different but equivalent approach in
Ref. [69]. In Ref. [62], it was pointed out that the modulus of
the interlayer hopping matrix element is independent of the
sublattice index t⊥(g) = |t̃σσ ′ (g)|. Moreover, t⊥(g) decreases
algebraically with aAi|
K + g|. Thus, it is well justified to
consider only these values for n, m ∈ Z, g = ng1 + mg2 for
which this quantity is minimal and neglect all others. There
exist three pairs of integers (n, m) = (0, 0), (−1, 0), (−1,−1)
yielding the same minimal value t⊥ = t⊥(0). Note the asym-
metry in these pairs of integers, which breaks translation
invariance in k–space. The phases of t̃σσ ′ (g) were worked out
in Refs. [62,69] utilizing geometric arguments (ξ = 2π/3),

t̃ (0) = t⊥

(
1 1

1 1

)
, t̃ (−g1) = t⊥

(
eiξ 1

e−iξ eiξ

)
, (A8)
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and t̃ (−g1 − g2) = t̃∗(−g1). We choose for the interlayer hop-
ping strength the value t⊥ ≈ 110 meV in agreement with
Refs. [69,70]. Note that the Hamiltonian Eq. (A7) is only a
valid approximation close to the Dirac point K and breaks
TRI. In a full calculation, one has to take into account both
inequivalent Dirac points. Let us call Ĥ ′(k) the Hamiltonian
close to the second Dirac point K′ = −K. Applying the
same approximations to Ĥ ′(k) as to Ĥ (k), we find Ĥ (k) =
(Ĥ ′(−k))T and therefore TRI is conserved in the full Hamil-
tonian. Thus, it suffices to focus on a single Dirac point. Note
that the Hamiltonian Eq. (A7) breaks particle–hole symmetry
in contrast to the one employed by Moon et al. [67]. Let us
finally note that the magic angle corresponds to i = 31.

4. Dynamical response function

The dynamical density–density response function is de-
fined as

χ (r, r′, t ) = 1

ih̄
�(t )〈[n̂(r, t ), n̂(r′)]〉 . (A9)

We denote χ (q, ω) its Fourier transform in space and time.
Denote Em(k) and |m(k)〉 eigenvalues and eigenfunctions of
the Hamiltonian Eq. (A7). Then χ (q, ω) can be expressed in
the long wavelength limit as [70,71]

χ (q, ω) = gS

V

∑
k

∑
σ=±

∑
m,n

|〈n(k + q)|m(k)〉|2

× nβ (Em(σk)) − nβ (En(σ (k + q)))

h̄ω − En(σ (k + q)) + Em(σk) + iη
. (A10)

Here nβ (x) = (eβ(x−μ) + 1)−1 is the Fermi function, β =
(kBT )−1. Moreover gS = 2 is the spin degeneracy. Note that
the expression Eq. (A10) comprises eigenvalues and eigen-
states at both inequivalent Dirac valleys, such that χ (q, ω)
manifestly fulfills the usual symmetries of a response function
Imχ (q, ω) = −Imχ (q,−ω), Reχ (q, ω) = Reχ (q,−ω) and
χ (q, ω) = χ (−q,−ω) due to time reversal invariance.

For frequencies ω � t⊥/h̄, the effects of the interlayer
coupling become negligible and the result for two decoupled
graphene monolayer at zero temperature and zero chemical
potential [72]

χ0(q, ω) = −igLgVgS

16h̄

q2√
ω2 − v2

Fq2
(A11)

must be recovered (gL = 2 and gV = 2 are the layer and
the valley degeneracies). This result holds for vanishing cou-
pling strength t⊥. On the other hand, in the limit θi → 0,
the response function of AA-stacked graphene double layer is
recovered [73].

5. Static susceptibility and permittivity at charge neutrality

Since limω→∞ χ (q, ω) = χ0(q, ω), for the first moment of
the frequency m(1) = ∫ ∞

0 dωImχ (q, ω)ω the rather general
f –sum rule [74] holds true m(1) = E q2 + O(2

E ). However,
the static susceptibility χ (q, 0) = m(−1)/π is independent
of the cutoff frequency and the complicated low-frequency
spectrum of twisted graphene bilayers causes significant de-
viations to the result of two decoupled bilayers χ0(q, 0) =

FIG. 6. Static susceptibility χ (q, 0) for different twist angles as
a function of the momentum transfer q.

q/(2h̄vF). This is seen in Fig. 6, where χ (q, 0) is plotted in
a density plot as a function of momentum transfer q. The
domain of q covers the whole unit cell of the reciprocal
superlattice. For large twist angles θ10, the static susceptibility
is isotropic and monotonously increasing with q. However,
for twist angles close to the first magic angle this behavior
changes dramatically. For θ30, a marked maximum is visi-
ble for q vectors with length q � |
K|. This maximum is
isotropic and at the magic angle related to the size of the
moire cell. Right at the magic angle, the maximum is at a q
vector with modulus q � |
K|. For q vectors q > |
K|, the
static susceptibility becomes significantly anisotropic with a
marked minimum at q = g1. In Fig. 7, the static susceptibility
is plotted as a function of the modulus q along the direction

K of the connection of the two Dirac points (i.e., along the
y axis in Fig. 6).

The maxima are most pronounced for angles close to the
magic angle. The position of the maximum depends only
weakly on the twist angle. The maximum of χ (q, 0) at finite
momentum is also manifested in the permittivity ε(q, 0) of the
material. In the RPA, the dielectric function is given by

ε(q, ω) = 1 − 2παg
h̄vF

εMq
χ (q, ω), (A12)

where αg = e2/4πε0 h̄vF ≈2.2 is the fine structure constant
of single layer graphene. εM is the dielectric constant and
depends on the substrate, i.e., we have εM ≈ 1.0 for suspended
graphene and εM ≈ 5.0 for a BN substrate.

6. Estimates for the internally screened Hubbard interaction

We can estimate the value of the Hubbard interaction at
charge neutrality in the following way. For an uncoupled
bilayer, the dielectric function is a constant with εBL = 1 +
παg/εM . We further choose an upper band-cutoff as  =
2π/1.75 Å as obtained for single layer graphene [75]. With
vq = e2

2ε0εM q , we have for the Hubbard parameter the following
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FIG. 7. Static susceptibility (a) and permittivity (b) for different twist angles θ10 ≈ 3.14◦ (black), θ20 ≈ 1.61◦ (blue), θ30 ≈ 1.08◦ (red),
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expression:

U = 1

2π

∫ 

0
dqq

vq

ε(q, 0)
= αg

εM + παg
h̄vF . (A13)

For freestanding bilayers, taking h̄vF = 5.85 eV Å, we then
have U = 5.5 eV. Notice that this is approximately half the
value of single-layer graphene, because internal screening in
single layer graphene is given by εSL = 1 + παg/2/εM .

The value for U is now reduced by the internal screening of
TBG due to the extreme maxima of ε(q, 0) up to εm ∼ 1000.
However, the short-ranged potential is composed of larger
wave numbers and the reduction can be neglected. Including
the dielectric constant of BN with εM ∼ 5 will further reduce

the nominal value and we obtain U ∼ 3.9 eV, which leads
to the value used in the main text. We expect that even for
finite doping close to a van Hove singularity, this value will
not significantly change.

Let us finally comment on the screening of the long-ranged
interaction. At the magic angle, the maximal screening is at
wave number qa ∼ 0.02 which corresponds to an intrinsic
screening length of ξi ∼ 12.5 nm and thus approximately to
the moiré lattice length. Since we assume a top and bottom
gate with screening length ξg ∼ 10 nm, we did not include
this effect in our calculations. However, we predict an up-
per limit of an intrinsic screening length for certain gate
distances.
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