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Anisotropic magneto-Seebeck effect in the antiferromagnetic semimetal FeGe2
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We have investigated thermoelectric properties of the antiferromagnetic semimetal FeGe2. As temperature
decreases from 340 K, the Seebeck coefficient takes a maximum around the Néel temperature and then decreases
to show a sign change from positive to negative <50 K. When a strong magnetic field is applied perpendicular
to the sample plane, the sign change disappears, and the positive Seebeck coefficient is observed in the whole
temperature range. This large magneto-Seebeck effect is anisotropic since the Seebeck coefficient is insensitive to
in-plane magnetic fields. Based on the Mott formula, we discuss the origins for this anisotropic magneto-Seebeck
effect.
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I. INTRODUCTION

Thermoelectric conversion is one of the important key
technologies for solving environmental issues since it en-
ables the generation of electricity from waste heat without
gas emission [1]. Extensive efforts have therefore been made
to explore materials and physical mechanisms toward high-
performance thermoelectric properties [2,3]. Investigating the
magnetic field dependence of thermoelectric properties is an
important issue since, although there is a possibility of the
enhancement of thermoelectric properties by magnetic field,
not many examples are reported, and its mechanism is not well
understood. For example, it was recently found that the See-
beck coefficient in a chiral magnet is dramatically enhanced
by an unconventional carrier scattering originating from criti-
cal spin fluctuations associated with a magnetic-field-induced
topological phase transition of spin textures [4]. Furthermore,
an anisotropic magneto-Seebeck effect can be used for a
thermoelectric cooling and heating device [5]. Thus, it is
important to explore materials that show a large anisotropic
magneto-Seebeck effect and understand its mechanism.

To further deepen the understanding of magnetothermo-
electric phenomena, we here focus on FeGe2. The crystal
structure of FeGe2 belongs to the space group I4/mcm [in-
set to Fig. 1(a)] [6–9]. FeGe2 exhibits two magnetic phase
transitions: a paramagnetic-to-incommensurate spin-density
wave (SDW) transition at TN1 ∼ 289 K and incommensurate-
to-commensurate SDW transition at TN2 ∼ 264 K [10]. In the
SDW states, magnetic moments lie on the ab plane [9,11–
13]. The system shows a good metallic conduction with the
residual resistance ratio >50 [11]. A large magnetoresistance
(MR) >1000% is observed at low temperatures [11]. This
large MR is only observed when the magnetic field is applied
perpendicular to the electric current regardless of its direction
against the crystal structure, suggesting that this is caused not
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by magnetic origins but by the Lorentz force acting on high-
mobility carriers. Consistent with the high-mobility transport
at low temperatures, Shubnikov–de Haas oscillations have
also been observed in magnetic fields stronger than 8.4 T at
0.3 K [11]. According to a band calculation [14], FeGe2 can
be classified as a semimetal due to the overlap of the Fe 3d and
Ge 4p bands at the Fermi level. The flat Fe 3d band pocket
constitutes a high peak in the total density of states (DOS)
near the Fermi level. This large change in DOS near the Fermi
level is promising for an efficient thermoelectric conversion.
Additionally, the presence of high-mobility carriers at low
temperatures [11] seems to contradict heavy mass presumed
for Fe 3d carriers with the flat band, and thus, the Seebeck
effect sensitive to carrier types should be a useful probe to
elucidate the transport properties of FeGe2.

In this paper, we investigate the Seebeck effect in FeGe2

single crystals with and without external magnetic fields. Un-
der zero magnetic field, the Seebeck coefficient of positive
sign shows a maximum at around the antiferromagnetic tran-
sition temperatures. With decreasing temperature, the sign
of the Seebeck coefficient changes from positive to neg-
ative, showing two-carrier transport in FeGe2. The power
factor reaches 60 μW cm−1K−2 at low temperatures (see Ap-
pendix). When the magnetic field is applied perpendicular
to the temperature-gradient direction, the negative Seebeck
coefficient is suppressed, and the sign changes from negative
to positive under strong magnetic fields. Such a pronounced
magneto-Seebeck effect is not observed when the magnetic
field is applied parallel to the temperature-gradient direction.
We discuss the anisotropic magneto-Seebeck effect based on
the Mott formula.

II. EXPERIMENT

Single crystals of FeGe2 were prepared by a slow-cooling
method from high-purity iron and germanium powders. The
powders were mixed and heated in an evacuated quartz tube
at 800 ° in 15 h. After keeping the temperature for 4 d, the
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FIG. 1. (a) Powder x-ray diffraction pattern and Miller indices
of FeGe2. The crystal structure of FeGe2 is shown in the inset. (b)
Temperature dependence of resistivity. The two transition tempera-
tures (TN1 and TN2) are denoted by the dotted lines. (c) Temperature
dependence of magnetization measured in the magnetic field of 0.1
T applied parallel to the c axis. (d) Magnetic field dependence of the
Hall resistivity at selected temperatures. (e) Temperature dependence
of the inverse of the Hall coefficient 1/(RHe). Below 60 K, the data
of −3 to 3 T are used to determine RHe (see text).

temperature was raised to 900 ° in 5 h and kept for 1 d. Then
the temperature was cooled to 800 ° in 50 h and kept for 1 d,
followed by cooling down to room temperature in 12 h. The
single-phase FeGe2 was obtained, as confirmed by powder
x-ray diffraction in Fig. 1(a).

The obtained ingots were easily cleaved in the ab plane.
For measurements of magnetization and transport properties,
two platelike samples (sample1 and sample2) with the ab
plane as the largest surface were prepared. Here, these two
samples were prepared by dividing a plate-shaped sample into
two. Hence, the difference in qualities and physical properties
between sample1 and 2 was expected to be minimum. The
sample sizes were 3.5–4.0 mm (length) × 1.75 mm (width)
× 0.41 mm (thickness) and 3.5–4.0 mm (length) × 1.0 mm
(width) × 0.41 mm (thickness). The longitudinal resistivity
and Hall resistivity were measured using the Physical Property
Measurement System (PPMS; Quantum Design). The See-
beck coefficient and thermal conductivity were measured by
a steady state method using a homemade sample holder in
PPMS [15]. In all the transport measurements, electric and
heat currents were applied within the ab plane. The mag-
netization of the sample was measured using the Magnetic
Property Measurement System (Quantum Design) by apply-
ing 0.1 T of magnetic field perpendicular to the ab plane.

III. RESULTS AND DISCUSSION

First, temperature dependence of resistivity ρxx is shown
in Fig. 1(b). The resistivity is metallic with the residual resis-
tance ratio of 58 and shows a hump structure around room
temperature. This hump structure is attributed to the SDW

transition. The two transition temperatures are defined from
the temperature derivative of the measured resistivity; the first
transition temperature TN1 (paramagnet-to-incommensurate
SDW transition) is the temperature at which the differential of
the resistivity is minimum, and the second transition tempera-
ture TN2 (incommensurate-to-commensurate SDW transition)
is where the differential of the resistivity changes discontinu-
ously. The transition temperatures in our sample (TN1 = 284 K
and TN2 = 264 K) are in fair agreement with previous research
(TN1 ∼ 289 K and TN2 ∼ 264 K) [11]. The resistivity takes a
maximum just below TN1. Similar behavior is also observed at
the paramagnetic-to-SDW transition temperature in Cr [16],
resulting from the formation of an energy gap near the Fermi
level due to the SDW transition [17,18]. The temperature
dependence of the magnetization is shown in Fig. 1(c). The
apparent change of the magnetization at TN2 can be seen,
consistent with the previous report [19].

The magnetic field dependence of Hall resistivity at various
temperatures is shown in Fig. 1(d). Here, magnetic field (H)
was applied perpendicular to the ab plane. The slope of the
Hall resistivity is positive in the entire temperature range. This
suggests that the dominant carriers of FeGe2 are holes. Above
80 K, the Hall resistivity is H linear in the whole field range,
while that <60 K is clearly nonlinear >3 T. The nonlinear-
ity of the Hall resistivity indicates the presence of multiple
carriers, as suggested from the band calculation [14]. In the
case of two carriers, the Hall resistivity is expressed with four
parameters [20]: carrier mobilities (μh and μe) and carrier
densities (nh and ne). The subscripts h and e refer to holes
and electrons, respectively. At low temperatures, electrons
also contribute to the transport properties, as can be confirmed
from the nonlinearity of the Hall resistivity.

We assume that the Hall resistivity is linear with the
magnetic field in the low-field regime from −3 to 3 T, and
the Hall coefficient is estimated by RH = ρyx/B. At each
temperature, 1/(RHe) is plotted in Fig. 1(e). The magni-
tude at 300 K is ∼ 5 × 1021 cm–3. This magnitude of carrier
density is lower than conventional metals (∼ 1023 cm–3), con-
sistent with semimetallic transport in FeGe2. With decreasing
temperature, 1/(RHe) decreases and then starts to increase
< 40 K.

The temperature dependence of the Seebeck coefficient
measured under zero magnetic field is shown in Fig. 2. The
Seebeck coefficient S is defined with the following equa-
tion: E = S∇T , where E is the generated electric field and
�T the temperature gradient. In the single-carrier model, the
following relation stands according to the type of carriers:
S > 0 for hole carriers and S < 0 for electrons. The observed
sign of S is positive at room temperature, consistent with
the dominant hole conduction observed in the Hall effect.
As temperature decreases from 340 K, S takes a maximum
at 250 K, just below TN2. A similar peak is observed in a
typical SDW system Cr as well and attributed to the formation
of an energy gap upon the SDW transition [21]. We note
the Seebeck coefficient does not show a large change at the
paramagnetic-to-incommensurate transition temperature TN1.
This is probably because the incommensurate SDW has little
effect on the band structure in the case of FeGe2. With fur-
ther decreasing temperature, S decreases and notably shows a
sign change from positive to negative at 50 K. The Seebeck
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FIG. 2. Temperature dependence of the Seebeck coefficient
under zero magnetic field. The paramagnetic-to-incommensurate
spin-density wave (SDW) transition temperature (TN1) and the
incommensurate-to-commensurate SDW transition temperature
(TN2) determined by the resistivity measurement are shown with
the dotted lines. A simplified band structure near the Fermi level is
schematically illustrated in the inset.

effect at low temperatures is dominated not by holes but by
electrons.

As mentioned in the introduction, the band structure of
FeGe2 was calculated in previous research, in which the Ge
4p band lies from −6 eV to the Fermi energy (EF), and
the flat Fe 3d band is dominant near EF [14]. Hence, we
adopt the following two-band model: holes with small ef-
fective mass, thus leading to high mobility, are provided by
the Ge 4p band with wide band width, and electrons with
large effective mass, thus low mobility, are provided by the
shallow Fe 3d band with narrow band width, as illustrated
in the inset to Fig. 2. This simple model explains well the
observed temperature dependences of both the Hall resistivity
and the Seebeck effect. Since the Hall resistivity depends on
carrier densities and mobilities for holes and electrons [20],
the holes with high mobility mainly contribute to the Hall
effect over the whole temperature range. The electrons with
heavy mass are not important in the Hall transport. As for
the Seebeck effect, in contrast, since the flat Fe 3d band is
shallow and a large change in DOS is expected in the energy
range between EF ± kBT , where kB is the Boltzmann constant,
Fe 3d electrons with low mobility can also contribute to the
Seebeck effect through the Mott formula [Eqs. (1) and (3)].
At high temperatures, holes of the Ge 4p band are dominant
in the Seebeck effect, while at sufficiently low temperatures
where the Seebeck coefficient from Ge 4p holes is reduced,
electrons in the narrow, shallow Fe 3d electron band gain a
larger influence on the Seebeck effect, and thus, the Seebeck
coefficient becomes negative.

Next, we have measured the Seebeck coefficient under
magnetic fields. The temperature dependence of the Seebeck
coefficient under the magnetic field applied perpendicular to
the ab plane is shown in Fig. 3(a). Above TN2, the Seebeck
coefficient is almost independent of the magnetic field. In
contrast, below TN2, the Seebeck coefficient becomes larger
with increasing magnetic field, and the change is especially
pronounced at low temperatures. Notably, while the Seebeck
coefficient at 0 T turned negative at low temperatures, the
Seebeck coefficient at 9 T is positive for the whole temper-
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FIG.3. Temperature dependence of the Seebeck coefficient under
selected magnetic fields applied (a) perpendicular to the ab plane
(H��T) and (c) parallel to the temperature gradient (H//�T). Mag-
netic field dependence of the Seebeck coefficient at low temperatures
(b) for H��T and (d) for H//�T. Error bars correspond to the
standard deviation of two measurements.

ature range. We also measured the isothermal magnetic field
dependence of the Seebeck coefficient [Fig. 3(b)]. Again, the
Seebeck coefficient increases and becomes positive with mag-
netic field at low temperatures. On the contrary, the change
in the Seebeck coefficient with the magnetic field is small
and the field-induced sign change is not observed when the
magnetic field is applied parallel to the temperature-gradient
direction [Figs. 3(c) and 3(d)]. We note that a difference in
the value of the Seebeck coefficient at zero magnetic field
between H⊥�T and H//�T is simply due to uncertainty
in measuring the electrode distance. In addition, the Seebeck
coefficients for S-T curves at zero magnetic field are in good
agreement with those for S-H curves, indicating the reliability
of the measurement.

To analyze the magnetic field dependence of the Seebeck
coefficient, we bring out the Mott formula. The Mott formula
describes the Seebeck coefficient and is given by [20,22]

S = π2k2
BT

3e

(
σ 2

σ 2 + σ 2
xy

∂lnσ

∂E

∣∣∣∣
E=EF

+ σ 2
xy

σ 2 + σ 2
xy

∂lnσxy

∂E

∣∣∣∣
E=EF

)
. (1)

Here, kB, σ , and σxy are the Boltzmann constant, elec-
trical conductivity, and Hall conductivity, respectively. The
contribution from the transverse responses [the second term
in Eq. (1)] is one possible origin of the magneto-Seebeck
effect. When σxy and ∂lnσxy

∂E are not small compared with the
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FIG. 4. (a) Magnetic field dependence of resistivity [magnetore-
sistance (MR)] at 2 K for the magnetic field perpendicular to the
ab plane (H�I) and parallel to the current (H//I). For the definition
of MR, see text. (b)Temperature dependences of �S = S(9 T) −
S(0 T) and �ρ = ρ(9 T) − ρ(0 T) measured with H//c axis (H�I,
H��T).

longitudinal responses (σ and ∂lnσ
∂E ), the second term in Eq. (1)

also contributes to the Seebeck coefficient. In this case, the
observed anisotropic magneto-Seebeck effect and magnetic-
field-induced sign reversal can be explained by Eq. (1), if
the signs of ∂lnσ

∂E and ∂lnσxy

∂E are negative and positive, respec-
tively; at zero magnetic field, since σ 2

xy is zero, the first term
originates the negative S. With increasing the magnetic field
parallel to the c axis, the second term becomes dominant over
the first term, leading to positive S.

Other possible origins of the observed magnetic field pro-
file of the Seebeck effect are the magnetic field dependence
of the DOS and the magnetic field dependence of the energy
derivative of the mobility. When there are both holes and elec-
trons as transport carriers [23], the overall Seebeck coefficient
is described as

S = σhSh + σeSe

σh + σe
= σh

σh + σe

(
π2k2

BT

3e

σ ′
h

σh

)

+ σe

σh + σe

(
π2k2

BT

3e

σ ′
e

σe

)
= π2k2

BT

3e

σh
′ + σe

′

σh + σe
, (2)

where σh = neeμe, σh = nheμh. Here, we ignore the trans-
verse responses (i.e., σxy and ∂lnσxy

∂E ). This suggests that the
Seebeck coefficient is proportional to resistivity 1/(σh + σe)
if the energy derivative of conductivity is constant.

To discuss the magneto-Seebeck effect based on Eq. (2),
we first examine the MR measured with the magnetic field ap-
plied perpendicular to the ab plane and parallel to the current
direction. The MR = [ρ(B) − ρ(0 T)]/ρ(0 T) measured in
the two magnetic field conditions at 2 K is shown in Fig. 4(a).

When the magnetic field is applied perpendicular to the plane,
the MR increases with increasing the magnetic field, and
the positive MR reaches 250% at 9 T. In contrast, when the
magnetic field is applied parallel to the current direction, the
MR is ∼0 at 9 T. These results are consistent with the previous
report [11].

In Fig. 4(b), we compare �S = S(9 T) − S(0 T) and �ρ =
ρ(9 T) − ρ(0 T) for the magnetic field applied perpendicu-
lar to the ab plane. Above 70 K, �S and �ρ are found
to be almost proportional to each other. From Eq. (2),
if σ ′(= σ ′

h + σ ′
e) is constant with the magnetic field, i.e.,

σ ′(9 T) = σ ′(0 T), �S can scale with �ρ. In contrast, <70 K,
temperature dependence of �S deviates from that of �ρ; as
seen from Fig. 4(b), �S/�ρ < 70 K is larger than that >70 K.
This suggests σ ′(9 T) > σ ′(0 T) < 70 K. In other words, the
σ ′ term plays an important role in the magnetic field depen-
dence of S at low temperatures. In the semiclassical transport
theory, σ ′ can be decomposed to

σ ′ = σ ′
h + σ ′

e = ∂

∂E
(σh + σe)|EF = ∂

∂E
(nheμh + neeμe)|EF

= ∂nh

∂E
|EF eμh + nhe

∂μh

∂E
|EF + ∂ne

∂E
|EF eμe + nee

∂μe

∂E
|EF .

(3)

Hence, the magnetic field dependence of σ ′ results from
the magnetic field dependence of the DOS Dh/e = ∂nh/e

∂E |EF

and/or the energy derivative of the mobility ∂μh/e

∂E |EF . The mag-

netic field dependence of ∂μh/e

∂E |EF is caused by the magnetic
field dependence of the energy derivative of scattering rate τ ,
which was previously observed in MnGe [4].

IV. SUMMARY

In conclusion, we investigated the temperature and mag-
netic field dependence of the Seebeck effect as well as other
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transport effects for FeGe2 single crystals. The sign of the
Seebeck coefficient is positive >50 K, while it is negative <50
K under zero magnetic field. The sign change in the Seebeck
coefficient at 50 K is explained by competition between the
positive Seebeck coefficient from a Ge 4p light hole band and
the negative one from a Fe 3d heavy electron band with a
large DOS change near the Fermi level. The effect of electron
transport at low temperatures is also observed in the Hall
effect. Furthermore, when the magnetic field is applied per-
pendicular to the temperature gradient, the low-temperature
Seebeck coefficient significantly depends on the magnetic
field, and the sign change is suppressed down to the lowest
temperature. Based on the Mott formula, we have discussed
the three possible origins for the observed magneto-Seebeck
effect: the contribution of the transverse response, the mag-
netic field dependence of the DOS, and the magnetic field
dependence of the energy derivative of the scattering rate τ .
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APPENDIX

The power factor (PF) is one of the factors to evalu-
ate the performance of a thermoelectric device. The PF is
proportional to the electric power generated per unit temper-
ature gradient and given by PF = S2/ρxx. The PF calculated
from the resistivity and Seebeck coefficient measured under
zero magnetic field is shown as a function of temperature
in Fig. 5(a). The PF exhibits two peaks and notably exceeds
60 μW cm−1K−2 at the lower peak. The very low resistivity
due to high-mobility holes and the Seebeck coefficient due to
electrons give rise to the relatively large PF at low tempera-
tures. The thermal conductivity κ for this material under zero
field is shown in blue in Fig. 5(b). Using κ as well as S and ρxx,
we calculate the figure of merit ZT = S2T/κρxx and plot ZT
as a function of temperature in Fig. 5(b) (red color). Like the
PF, the ZT shows two peaks. The peak amplitude at 250 K is
0.0045 and larger than that of the low-temperature peak owing
to the higher temperature and smaller κ .
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