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The concepts of deconfinement and topological order are of great current interest for quantum informa-
tion science and for our understanding of quantum materials. Here, we introduce a simple model of three
antiferromagnetically coupled Kondo impurities, a Kondo triangle, which can be used to further extend the
application of these concepts to electronic systems. We show that, by tuning the magnetic frustration, the Kondo
triangle undergoes a quantum phase transition between two phases of unbroken symmetry, signaling a phase
transition beyond the Landau paradigm. We demonstrate that the frustrated spin liquid phase is described by
a three-channel Kondo (3CK) fixed point and thus displays an irrational ground state degeneracy. Using an
Abrikosov pseudofermion representation, this quantum state is categorized by an emergent U(1) gauge field
and its projective symmetry group. The gauge theory is deconfining in the sense that a miniature Wilson loop
orders and topological defects (instantons in the gauge field) are expelled. This phase persists in the presence
of moderate Kondo screening until proliferation of topological defects leads to a quantum phase transition to an
unfrustrated Fermi liquid phase. Based on this evidence, we propose that the 3CK phase displays topological
order in a similar sense as gapless spin liquids.
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I. INTRODUCTION

Recent discoveries in quantum materials have urged us
to generalize Landau’s notion of broken symmetry by intro-
ducing classes of quantum order without symmetry breaking.
The prime example is quantum magnetism in which strong
frustration can give rise to quantum spin liquids (QSLs) [1,2]
with fractionalized quasiparticles, patterns of long-range en-
tanglement, and topological order [3]. Similar physics occurs
at continuous phase transitions between ordered phases with
different symmetries which require a fractionalized descrip-
tion (deconfined criticality) [4].

These ideas are of particular relevance to doped QSLs
in the vicinity of Mott delocalization, a topic of potential
importance for cuprate [5], organic salts [6,7], and iron-based
[8] high-Tc superconductors. A closely related topic is the in-
teraction of electrons and spin liquids via a Kondo interaction,
as in geometrically frustrated heavy fermion compounds (e.g.,
CePdAl [9,10]), transition metal dichalcogenides (e.g., 4Hb-
TaS2 [11]), and in engineered van der Waals heterostructures
of graphene and RuCl3 [12].

A significant component of this intriguing physics is
thought to involve the fractionalization of spins [13,14] into
spinons, fractionalized particles interacting with an emer-
gent gauge field. Fractionalization is a useful concept if the
emergent gauge theory is in the deconfining phase. In two-
(2D) plus one-dimensional (1D) compact quantum electro-
dynamics (QED3), deconfinement is lost via a proliferation
of instantons in the gauge field [15], but the presence of
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fermions [16–20] counteracts this mechanism allowing for a
confinement-deconfinement quantum phase transition. It has
been argued that transitions out of spin-liquid phases via par-
tial Mott delocalization, e.g., in heavy-fermion materials, lead
to a Fermi surface reconstruction that may be understood in
these terms [21–23].

In addition to its importance for quantum materials, de-
confinement of anyonic quasiparticles is of prime importance

FIG. 1. (a) An antiferromagnetic triangle, where each spin is
coupled to its own conduction bath, caricatures a spin-liquid com-
peting with a Fermi liquid (FL). (b) When TK/JH is large, each
spin is individually Kondo screened [local FL (LFL), right inset].
In contrast, at the smallest TK/JH , the ground state manifold of the
impurity forms an effective spin (left inset), and the system develops
a three-channel Kondo (3CK) phase, in which instantons of the emer-
gent gauge theory are irrelevant. Analogously to confinement in two-
plus one-dimensional quantum electrodynamics (QED3), instantons
proliferate beyond a critical TK/JH (red star) and restore an ordinary
(L)FL.
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for topological quantum computation [24], which may be
realized in materials (as discussed above) or by artificially
interweaving nontopological qubits into robust, macroscopic
logical qubits, e.g., within the surface code. As it appears
particularly desirable to electronically manipulate and braid
the emergent excitations, a natural important question regards
when and how topological order is destroyed by the coupling
to electronic leads.

Related phenomena appear in the context of magnetic im-
purities, as in the overscreened Kondo effect [25–29], and in
magnetically frustrated Kondo screened impurities [30–34].
The frustration leads to the fractionalization of the spin and an
irrational residual entropy suggestive of non-Abelian anyons
[35] which is potentially useful as a platform for topolog-
ical quantum computation [36,37]. The common theme of
these systems is an abundance of competing patterns of spin
entanglement and their rearrangement at a quantum critical
point (QCP).

Here, we investigate a Kondo triangle model involving
three antiferromagnetically coupled spins at the vertices of a
triangle, each independently coupled to its own conduction
sea [Fig. 1(a)] [38,39]. The solvable limits of this model
enable us to demonstrate a transition between two distinct
ground states (phases) without any symmetry breaking. In one
of these two phases, each spin is Kondo screened separately,
and the spins are not mutually entangled. In the other phase,
the spins are strongly entangled and the coupling to the leads
results in an irrational impurity entropy. To gain a better
insight, we have explored the physics of a Kondo triangle
near the large N limit of spins with an SU(N) symmetry. Our
procedure contains three steps:

(i) We prefractionalize spins in terms of Abrikosov fermion
“spinons” [40]. (ii) Decoupling of interactions leads to a
quadratic Hamiltonian [41] with a U(1) flux � through the
triangle. (iii) We go beyond mean-field theory by studying
1/N corrections and the nonperturbative effects of instantons
(i.e., phase slips � → � ± 2π ).

The presence of these phase slips makes the problem
distinct from the two-impurity Kondo problem discussed
extensively in the past [28,42–44] and allows us to draw
analogies to the confinement mechanism in QED3 and to
fractionalization in 2 + 1D quantum materials in general.

We conclude this introduction with an overview of pre-
vious works on confinement-deconfinement quantum phase
transitions in Kondo lattice systems. Senthil et al. [21,45]
introduced the concept of fractionalized Fermi liquid (FL∗)
phases, in which the Kondo screening of lattice spins breaks
down at the expense of establishing a QSL in the spin system.
When the latter is a Z2 QSL, the FL∗ is particularly robust, but
FL∗ and ordinary Fermi liquid (FL) are separated by a super-
conducting phase which breaks particle number conservation.
In contrast, the transition from an FL∗ with U(1) QSL to the
Kondo screened FL may be direct, does not involve the break-
ing of any microscopic symmetries, and is governed by a QCP
[45–47]. To study this phase transition in low-dimensional
Kondo problems, a study of fermionic degrees of freedom
coupled to compact gauge fields seems essential to stabilize
deconfinement.

The remainder of this paper is structured as follows:
In Sec. II, we define the model under consideration and

summarize the main results. Section III contains a mapping
of the triangle model to a three-channel Kondo (3CK) model
which is independent of the approximate large-N treatment
introduced in Sec. IV. Fluctuation corrections beyond the
N → ∞ limit are discussed in Sec. V, while the conclusions,
Sec. VI, contain a discussion of the relationship to topological
order and of the experimental implications of this paper.

II. MODEL AND SUMMARY OF RESULTS

A. Model Hamiltonian

The Kondo triangle Hamiltonian [Fig. 1(a)] H = Hc +
HH + HK consists of three terms:

Hc =
3∑

m=1

∑
p

c̃†
α,m(p)ε(p)c̃α,m(p), (1a)

HH = JH

N

3∑
m=1

Ŝa
mŜa

m+1, (1b)

HK = JK

N

3∑
m=1

Ŝa
mc†

α,m(0)σ a
αβcβ,m(0). (1c)

The operators c†
m(x) [c̃†

m(p) =∑x e−ip·xc†
m(x)] create elec-

trons on lead m, with a dispersion ε(p). The σ a (a =
1 . . . N2 − 1) are generators of the fundamental representation
of SU(N), and Ŝa

m are the corresponding spin operators. Sum-
mation convention over repeated spin indices α, β = 1, . . . , N
is implied, but summations over the lead index m are written
explicitly. In this paper, we will mainly use the Abrikosov
fermion representation of spins Ŝa

m = f †
α,m(σ a)αβ fm,β , with

the constraint f †
α,m fα,m = Q, where Q = Nq.

B. Comparison to previous works

For a large Kondo temperature TK = De−1/JKρ � JH, the
model yields a local FL (LFL), see Fig. 1(b), in which each
spin is magnetically screened by its own conduction band. The
situation is more intricate for small TK � JH. For SU(2) spins,
Ferrero et al. [38] employed a combination of conformal field
theory and numerical renormalization group to demonstrate
that the LFL phase is stable at all values of the ratio TK/JH.
Recently, we investigated the ferromagnetic version [48] of
Eq. (1) which has a FL ground state for all parameters.

However, C3 symmetric models of spin- 1
2 triangles, which

are Kondo coupled [49] to a single 2D or 3D electronic bath,
were considered by Lazarovits et al. [32] using a renormaliza-
tion group approach. Contrary to Eq. (1), this setup features
substantial intersite correlations 〈c†

α,m(τ )cα,m+1(0)〉 which can
lead to an exotic non-FL fixed point. The model was studied
numerically by Paul and Ingersent [50] and analytically by
Ingersent et al. [30]. Very recently, Eickhoff and Anders [51]
have revisited the model with the goal of developing a cluster
dynamical mean-field theory.

Finally, a vast amount of literature is devoted to asym-
metric triangles in which Kondo coupling to the leads is site
selective and/or the Heisenberg interaction is not homoge-
neous, see, e.g., Refs. [33,52,53].
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C. Summary of results

In this paper, we generalize this model beyond SU(2) to
the case of spins forming an antisymmetric representation of
SU(N), described by vertical Young tableaux with Q boxes.
In Sec. III, we show that, for a sequence of (N, Q), our
model at smallest TK/JH maps onto a single composite spin,
overscreened by three conduction channels, denoted here as
3CK. This solvable limit corresponds to a phase with a non-
trivial ground state degeneracy, differing from the LFL at large
TK/JH. However, neither phase breaks any symmetries of the
model.

Within the large-N approach, the appearance of spinons is
accompanied by an emergent U (1) gauge field on the links
of the triangle, with a gauge invariant flux

∮ 	A · d	x = � that
threads the triangle. The 3CK phase [Fig. 1(b)], is character-
ized by the ordering of the symmetric ring exchange operator

Os ≡ dabcŜa
1 Ŝb

2Ŝc
3 ∝ cos(�), dabc ≡ tr[σ a{σ b, σ c}], (2)

which preserves time reversal, spin SU(N), and crystalline C3v

symmetries.
By contrast, in the FL, phase slips proliferate, confining

the spinons to each lead, and in this sense, the two phases are
separated by a confinement-deconfinement transition. Both
(FL and 3CK) phases are robust against deformations of the
triangle (i.e., unequal JH), which make them suitable for future
experimental realizations.

Finally, we comment on special values of Q and N . First,
the particle-hole symmetric representation Q/N = 1

2 , which
is related to SU(2) spins, has mean-field solutions for which
some of the links are missing and the flux is ill defined [see
Fig. 3(a), below]. Moreover, the order parameter Os of the
3CK phase vanishes for N = 2 since dabc = 0 for SU(2) spins.
These arguments explain the persistence of the FL phase down
to TK/JH → 0 for the SU(2) triangle [38].

Second, at commensurate representations Q = N/3, or
Q = 2N/3, the spins form a singlet at small TK/JH, and
the competition between Heisenberg and Kondo interactions
is analogous to the SU(2) two-impurity two-channel Kondo
problem, i.e., the two limiting phases are FLs with conduction
electron phase shift of δc = 0, π . For these commensurate
representations, instead of the 3CK phase, we have a FL∗, i.e.,
a gapped spin-liquid which is robust to the Kondo interaction
up to a threshold coupling, and a FL∗-to-FL transition.

III. MAPPING TO 3CK MODELS

We first highlight a subset of models, with N = 3Q + 1,
of which the simplest is the fundamental representation of
SU (4). In these special cases, we can show that 3CK be-
havior develops at large JH. To see this, we first solve HH at
JK = 0. It is convenient to employ the previously introduced
Abrikosov fermion representation of the spin, and we em-
phasize that, here, no approximations are made (for details,
see Appendix A). The antiferromagnetic coupling JH favors
the formation of a maximally antisymmetrized combination
of 3Q spinons. Since 3Q = N − 1, this system is one spinon
short of an overall SU(N) singlet. Indeed, if one of the spins,
say m, had a larger representation, i.e., Q + 1 (rather than Q)

vertical boxes, the three spins could form a singlet, denoted
by |singlet, m〉. When all spins have representation Q, the
ground state of the Heisenberg Hamiltonian HH can be shown
(Appendix A 2) to be

|α〉 = 1√
3

∑
m

fm,α|singlet, m〉, (3)

where α = 1 . . . N and states {|α〉} form a basis for the con-
jugate representation of SU(N). The corresponding matrix
elements of spin operators in the ground state manifold are
given by 〈α|Ŝa

m|α′〉 = −σ a
α′,α . Since the ground state of the

triangle is given by a spinon hole, it is suggestive to also
represent the conduction band in terms of holes cα,m(x) →
h†

α,m(x), c†
α,m(x) → hα,m(x). In the limit of large JH, we thus

find a Kondo coupling

HK = JK

N

3∑
m=1

(Ŝa)T h†
m,α (0)(σ a)T

αβhm,β (0), (4)

between the spin and a Fermi sea of holes. Thus, at large JH,
the model in Eq. (1) is equivalent to the 3CK problem in the
conjugate representation of SU(N), which is equivalent to the
3CK Kondo model, an exactly solvable model (see Appendix
A 2). From this mapping, we know that the ground state has
an irrational degeneracy of [54–56]

gN = 1 + 2 cos

(
2π

N + 3

)
. (5)

Note that limN→∞ gN = 3. We now develop an approximate
field theoretical technique which connects the two limits of
the phase diagram, Fig. 1.

IV. LARGE-N TREATMENT

A. Hubbard-Stratonovich decoupling

Representing the spins using Abrikosov pseudofermions
leads to four-fermion interactions, which we decouple using
Hubbard-Stratonovich transformation in the leading channels,
selected by the large-N limit [see Fig. 2(a) for illustration]:

S = Sc +
∫

dτ
∑

m

[
f †
α,m(∂τ + λm) fα,m

− λmqN + N |Vm|2
JK

+ N |tm|2
JH

+ (Vm f †
α,mcα,m − tm f †

α,m fα,m+1 + H.c.)

]
. (6)

Here, tm = |tm|eiAm , Vm = |Vm|eiam , and the Lagrange multipli-
ers λm enforce the constraint (for details, see Appendix B).

B. Mean-field solution

1. Mean-field Ansätze

In the limit N → ∞, the bosonic path integrals can be
evaluated at the saddle point level for static configurations
of the fields. At TK = Vm = 0, Fig. 3(a) demonstrates the
stability of homogeneous solutions with tm = teiAm and zero
or π flux � =∑m Am away from half-filling. In the reverse
limit JH = tm = 0, the equality of Kondo couplings at each

115103-3



KÖNIG, COLEMAN, AND KOMIJANI PHYSICAL REVIEW B 104, 115103 (2021)

FIG. 2. (a) Pictorial representation of the mean-field Hamilto-
nian. (b) Schematic mean-field phase diagram. (c) Zero temperature,
mean-field behavior of t , 
 = πρV 2 as a function of the Do-
niach parameter (here, J4 = 0.3JH, Js ∼ 0.29JH). The position where
tc, defined in Eq. (21) below, crosses t defines the confinement-
deconfinement quantum phase transition at which phase slips
proliferate (red star; here, N = 4 and q = 1

4 ).

of the three sites implies the same hybridization |Vm| for all
m. In Read-Newns gauge, the phase of Vm is absorbed into
λm, which also takes the same mean-field value at each site.
Motivated by this, we concentrate on rotationally symmetric
solutions Vm = V , |tm| = t , and λm = λ, all real, and q < 1

3 .
In this case, the spectrum can be found by Fourier transforma-
tion, leading to a spinon spectrum λh = λ − 2t cos(h + �/3),
see Fig. 3(b). Here, we introduced the helicity h = 0,±2π/3
(the crystal momentum of the periodic three-site chain). Using
this solution, the fermionic path integral can be taken exactly
and leads to a free energy

F

N
= −T

∑
εn,h

ln
[−G−1

h (εn)
]
eiεnη + 3

(
t2

JH
+ 


πρJK
− λq

)
.

(7)

Here, G−1
h (εn) = iεn − λh + i
sgn(εn) in the wide bandwidth

limit, where 
 = πρV 2 is the hybridization energy related to
V and the density of states ρ. The variation of the free energy
with respect to the parameters �, λ,
, and t leads to a set of
mean-field equations of which we discuss the solutions below.

FIG. 3. (a) Ground state energies at TK = 0 as a function of
filling q, comparing rotationally symmetric solutions (labeled by
their flux �) with symmetry broken states with one (two) nonzero
tm [graphically labeled by triangles with one (two) thick bonds].
(b) Single particle spectra of spinons at TK = 0 with helicity quan-
tum numbers h ∈ {0, ±2π/3} for different flux configurations � =
0, ±2π . Instantons map � → � ± 2π and thereby reshuffle the
wave functions but leave the spectrum unaltered.

2. Finite temperature phase diagram

Before presenting details about these equations at zero
temperature, we discuss the finite temperature mean-field
phase diagram, Fig. 2(b) (a calculation of mean-field transi-
tion temperatures is presented in Appendix B 3).

(i) At the highest temperature, the spinons are decou-
pled, both from each other (t = 0) and from their respective
conduction band (V = 0), so the impurity spins are neither
entangled nor screened. This is characterized by decoupled
spins showing Curie susceptibility behavior.

(ii) For T < TK and large TK/JH, all moments are individ-
ually screened (LFL), i.e., t = 0, but V > 0.

(iii) At smallest TK/JH � 1 and finite temperature, t > 0,
but V = 0; here, a miniature spin-liquid behavior develops.
Since the phase shift for all conduction bands is zero, we
denote this phase LFL∗ [21] in Fig. 1(b).

(iv) Finally, the mean-field phase n, for which both V > 0
and t > 0, is the focus of the rest of the paper. We will show
that there is a deconfinement transition inside this mean-field
phase.

Next, we derive the mean-field transition between these
zero temperature phases to map out the mean-field phase
diagram.

3. Zero temperature mean-field equations

We now investigate the two zero temperature phases. We
readily find that � = 0 is a solution to the mean-field equa-
tions, and we concentrate on this solution for q < 1

2 . It is
convenient to replace the three other variational parameters
(λ,
, t ) by (δ0, δ2π/3, t ), where δh = δ−h = arccot(λh/
) is
the phase shift in the helicity channel h. The variation of the
free energy with respect to the Lagrange multiplier λ enforces
a sum rule

3πq = δ0 + 2δ2π/3, (8a)

while the variation with respect to t connects the difference
d = δ2π/3 − δ0 of phase shifts with the spinon hopping

3πt = −JHd. (8b)

Note that t > 0 implies d < 0. The third saddle point equation
follows from the variation of the action with respect to 
. We
exploit the previous equation and obtain[

sin(d )

d

πTK

JH

]3

= sin

(
3πq + d

3

)
sin2

(
3πq − 2d

3

)
. (8c)

Note that there is only one variational parameter d in this
equation, while q and πTK/JH are fixed externally. For a
graphical solution of Eq. (8c), see Fig. 4. It demonstrates that,
for q = 1

3 , a state where both t �= 0 and V �= 0 is never the
ground state, while for q < 1

3 , of prime interest in this paper,
there is a phase with t �= 0 and V �= 0 which persists to the
smallest TK/JH and is separated from the LFL by a first-order
phase transition (an artifact of the mean-field approach).

C. Symmetries

Here, we summarize the underlying symmetry breaking
using the language of conventional phase transitions. We em-
phasize, however, that no physical symmetry is broken in
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FIG. 4. Graphical illustration of mean-field solutions. (a)–(c) Each point on the black curves corresponds to a solution of Eq. (8c) for a
given value of the Doniach parameter πTK/JH. For q < 1

2 (q > 1
2 ), we concentrate on d < 0 (d > 0) (other solutions are “false vacua” indicated

as thin lines). For comparison, we include analogous curves of solutions in the limit TK = 0 [t > 0,V = 0 (red) and t < 0,V = 0 (blue)] as
well as JH = 0 [t = 0,V > 0 (green)]. The vertical gray dashed lines indicate the position of q = 1

4 , 1
3 . For q = 1

4 , there are up to two nontrivial
solutions with −π < d < 0 (orange and pink circles, denoted d< and d>, respectively), while for q = 1

3 , there is only one nontrivial solution
(pink circle) in addition to the solution d = −π corresponding to complete Kondo breakdown (V = 0). The corresponding mean-field energy
is plotted with the same color code in (d) and (e) and compared with the solutions where either V = 0 or t = 0.

either the 3CK or LFL phase. A parallel discussion in terms
the projective symmetry groups (PSGs) is therefore included
in Sec. IV E, below.

In the UV (t = V = 0), Eq. (6) displays a symmetry
Uf (1)⊗3 × Uc(1)⊗3 (i.e., fm → eiφm (τ ) fm, cm → eiϕm cm), of
which Uf (1)⊗3 is a gauge symmetry. The Kondo effect on
each site m (Vm �= 0) breaks the symmetry as Uf (1)⊗3 ×
Uc(1)⊗3 → Uc f (1)⊗3≡ G, fixing ϕm = φm for each spin/bath
m separately. The three Goldstone modes are eaten by the
Lagrange multiplier λm within the Read-Newns gauge [57].
Most interesting for this paper is the establishment of a spin
liquid, in which |t | > 0 fixes φm = φ + j(m − 1) 2π

3 with j ∈
{0, 1, 2} = Z3. Thus, the remaining symmetry H = Uc f (1) ×
Z3 is generated by the total phase φ and the insertion of a
total flux of 2π j, i.e., a large gauge transformation which
leaves the spectrum unchanged, but rearranges the eigenstates,
Fig. 3(b). The symmetry breaking G → H is apparent within
the Landau free energy, which we derived (see Appendix B 4)
at T = 0, V > 0, and small t̄ = |tm|/TK:

F

N
= TK[αt̄ 2 − β t̄ 3 cos(�) + γ t̄ 4+O(t̄5)], (9)

where α = 3TK/JH − sin(πq)/π . The flux � =∑m Am ∈
[0, 6π ), but Eq. (9) is 2π periodic in the total flux, pointing
to the emergent Z3 gauge symmetry of the problem.

D. Bilinear coupling and ring exchange

The Landau free energy illustrates the first-order nature of
the mean-field transition: The cubic term is a consequence of
the threefold symmetry of the impurity, and additionally, the
microscopic parameters in Eq. (1) imply γ < 0 near the tran-
sition, reinforcing the first-order behavior. A negative quartic
term is typical in the large-N treatments and can be cured by
inclusion of a biquadratic interaction [22]:

H4 = −π3J4

2N3

∑
m

(
Ŝa

mŜa
m+1

)2
, (10)

leading to γ = 3[J4 sin(πq)4/TK − sin(3πq)]/(2π ). The
first-order jump is further weakened by the addition of a

totally symmetric ring exchange:

H3 = −π2 Js

N
dabcŜa

1 Ŝb
2Ŝc

3, (11)

so that microscopically β = [sin(2πq) − Js sin(πq)3/TK]/π
after integration of fermions. A similar integration is the origin
of the relation Os ∼ cos(�) presented in Eq. (2).

Ring exchange terms can be employed to physically access
the emergent gauge flux �. An adiabatic flux insertion can be
achieved by adiabatically tuning θ (t ) in


H (t ) = − J

N
[dabc cos θ (t ) + fabc sin θ (t )]Ŝa

1 Ŝb
2Ŝc

3,

where dabc and fabc are symmetric and antisymmetric structure
factors of SU(N). A mean-field decoupling of H + 
H leads
to 
F∝ −J cos(� − θ ).

E. A study of PSGs

We now return to the emergent gauge invariance in the
problem and employ the method of PSGs, introduced [58] to
categorize gapless spin liquid states which do not break any
microscopic (e.g., crystalline) symmetries. To recapitulate the
procedure:

(i) Consider a mean-field tight-binding model of spinons
fα,m, in our case Eq. (6). Because spinons carry an emergent
gauge charge, mean-field tight-binding models which can be
transformed into each other by means of a gauge transforma-
tion are equivalent.

(ii) The group of microscopic symmetry operations fol-
lowed by a gauge transformation which leave the tight-
binding model invariant form the PSG of the model.

(iii) The subgroup of gauge transformations which leave
the tight-binding Hamiltonian invariant form the invariant
gauge group (IGG).

(iv) The actual symmetry group (SG) of the model is thus
SG = PSG/IGG. Hence, the PSG can be seen as an extension
of the SG.

The IGG also places constraints on Wilson loop operators
PC [2], which are products of Peierls gauge fields along closed
contours on links of the lattice (PC =∏3

m=1 eiAm in our simple
three-site lattice). Wilson loops are a particularly useful def-

115103-5



KÖNIG, COLEMAN, AND KOMIJANI PHYSICAL REVIEW B 104, 115103 (2021)

inition for gapless topological quantum states when standard
signatures (such as a degenerate ground state manifold) are
less obvious.

As mentioned, in our case, the infrared gauge transforma-
tions are fα,m → eiφm fα,m, cα,m → eiφm cα,m, and Am → Am +
φm − φm+1 and imply an IGG which is U(1). The crystalline
symmetries group of the triangle is generated by 120◦ rota-
tions R, R3 = 1, and an involutory mirror operation M = M−1

exchanging sites m = 1 ↔ m = 2. They do not commute;
instead, MRMR = 1. We may then proceed with the analysis
of the PSG assuming deconfining gauge fields. To projectively
represent the rotation, we perform a gauge transformation
fm → GR(m) fm, cm → GR(m)cm with GR(m) = eiAm after ap-
plication of the crystalline symmetry operation. Analogously,
the mirror exchanging sites 1 ↔ 2 are projectively repre-
sented by employing GM (m) = ei(A3−A2 )δm,3 . Since we assume
time-reversal symmetry, there is a gauge in which all hopping
matrix elements are real, i.e., Am ∈ {0, π}. Then the alge-
bra of projective symmetry operations is (GRR)3 = ei� = ±1,
(GMM )2 = 1, (GMM )(GRR)(GMM )(GRR) = 1. Thus, the two
mean-field states associated with � = 0, π in Fig. 3(a) are
categorized by different algebraic PSGs. On the mean-field
level, these two states are separated by multiple symmetry
broken states—this is reminiscent of the transition between
2D quantum phases with different PSGs coupled to fermionic
matter [59].

V. FLUCTUATIONS AND GAUGE FIELDS

In the previous section, we discussed the mean-field solu-
tion to Eq. (1), which is valid at N = ∞. Here, we consider
fluctuation corrections beyond this limit.

A. Dynamics of low-energy excitations

The bosonic low-energy excitations in the model are the
phases Am, whose action may be derived microscopically by
a lengthy but straightforward integration of fermionic de-
grees of freedom, see Appendix C, leading to S(Am) = Sdiss +
SMaxwell:

Sdiss =
∫

dω

2π

η

4π
�(ω)�(−ω)|ω|, (12a)

SMaxwell =
∫

dτ
∑

m

ε

2
Ȧ2

m, (12b)

where

η � 3N
t2

T 2
K

sin2(πq), [for t � TK cos(πq)], (13a)

ε = 2N

9JH

[
1 + JH sin(δ2π/3)2

2π


]
(1 + 2ρ
). (13b)

Here, we presented the microscopic expression for the low-
energy (|ω| � TK) dissipative dynamics of � in the limit t �
TK [near the QCP, see Fig. 2(c)]. For a more comprehensive
expression, see Eq. (C16) of the Appendix.

Before discussing the features of this emergent gauge the-
ory, we analyze the fluctuations using the more conventional
language of Goldstone bosons.

B. Goldstone bosons

When t/tK > 0, two combinations of A phases,
parametrized by Am = −2	x · êm/3, where ê1,2 = (±√

3, 1)/2,
ê3 = (0,−1), and 	x = (x1, x2), are zero modes of the free
energy Eq. (9) and parametrize the manifold of Goldstone
bosons (see Sec. IV C):

G

H
= U (1) × U (1) × U (1)

U (1) × Z3
. (14)

In contrast, the third linear combination of phases � =∑
m Am is gapped. For JH � TK, the two brackets entering

ε in Eq. (13b) are approximately one, so we omit them for
simplicity. The effective action of Goldstone bosons is thus

SGoldstone(	x) =
∫

dτ
mx 	̇x2

2
, (15)

where mx = 8N/(27JH). This action describes a free particle
with position 	x and mass mx living on the flat, yet compact
manifold in Eq. (14). The ground state is an 	x-independent
wave function and, due to the compactness of G/H , detached
from the first excited state at energy ∼1/mx.

As a consequence, despite the mean-field value t > 0,
intersite Green’s functions 〈c†

mcm+1〉 ∼ 〈eiAm〉 vanish upon
integration of Goldstone modes. Therefore, the absence of
charge transfer between different leads is ensured by the
fluctuations beyond the N → ∞ limit. Equivalently, this can
be interpreted as a consequence of gauge symmetry which
impedes charge fluctuations on the impurity sites.

C. Confinement-deconfinement transition

So far, we incorporated leading terms in a 1/N series.
Now we address processes with Boltzmann weight � ∼ e−N

(instantons). Naively, these are strongly suppressed, yet we
demonstrate a proliferation of instantons at sufficiently large
TK/JH. Instantons in gauge theories are nontrivial gauge field
configurations which are bound to be a pure gauge at infinity.
In the present case, these are phase slips, i.e., configurations
of the field �(τ ) such that �(∞) − �(−∞) = ±2π , and we
estimate their bare tunneling action � ∼ e−Nt̄ for β � t̄ in
Appendix C 3.

Considering Eq. (6) with static fields t,V , we can artifi-
cially introduce [29] an additional Hilbert space associated
to � = 0, 2π, 4π . To manifestly illustrate the effect of phase
slips, we define ω = ei2π/3 and the following two matrices in
the space of groundstate manifold:

σ� =
⎛
⎝1

ω

ω2

⎞
⎠, τ� =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (16)

Here, τ� are clock matrices σ�τ� = ωτ�σ�, τ 3
� = 1. The

phase slips accompanying spinon hoppings are considered by
replacement t → tσ�.

The infinite resummation of phase slips of the latter in
the partition sum leads to an effective Hamiltonian derived
in Appendix D 2:

Heff =
[

Hc +
∑

m

λ( f †
α,m fα,m − Q)

]
1� − �

(
τ� + τ−1

�

)
+
∑

m

(V f †
α,mcα,m1� − t f †

α,m fα,m+1σ� + H.c.). (17)
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In the formulation of Eq. (17), two limiting cases become ap-
parent. First, �/t → 0, representing the 3CK phase. Second,
perturbation about �/t → ∞ demonstrates that t is renormal-
ization group irrelevant, and the LFL is restored.

To study the transition between these two limiting phases,
we consider the helical (i.e., Fourier transformed) basis f̃α,h =∑

m e−ihm fα,m/
√

3. A phase slip t → ωt is equivalent to
the instantaneous jump of the spinon energy (t,−2t, t ) →
(t, t,−2t ) for h = (−2π/3, 0, 2π/3), Fig. 3(b). Due to hy-
bridization with conduction electrons, a phase slip triggers an
Anderson orthogonality catastrophe and thereby logarithmic
attraction of opposite phase slips, 
τ apart, with an effective
action

Sslips = κ ln |
τ |. (18)

Here,

κ = 2N

π2

[
arctan

(
3t



2 + λ2

)]2

, (19)

is the stiffness of interaction as determined by the perturbative
inclusion of a single pair of opposite phase slips at distance

τ in the fermionic partition sum, see Appendix D 1. Integra-
tion over 
τ leads to the free energy

F = − ln(gN )T − C
(

�2

λ

)(T

λ

)κ−1

, (20)

where we included the effect of the ground state degeneracy
gN , Eq. (5), and C is a constant. This signals a quantum phase
transition when the phase slips overpower the first term at κ =
2, corresponding to, Fig. 2(c),

tc ∼ TK sin(πq)√
N

. (21)

The residual entropy at the QCP is enhanced to S = ln(gN ) +
C�2/λ2 + O(�4/λ4) by the instanton contribution, in con-
sistency with the g theorem [60]. The present model of
logarithmically interacting particles on a ring of circumfer-
ence 1/T can be cast into renormalization group language
[61]: � renormalizes to infinity (zero) for t < tc (tc <

t). However, contrary to the Berezinskii-Kosterlitz-Thouless
transition, the stiffness κ does not flow.

So far, the deconfinement transition was studied by first
locking � into one of the minima of Eq. (9) and subsequent
perturbative inclusion of phase slips. The same transition may
also be studied in a dual language [approaching the red star of
Fig. 1(b) from the right]. In this case, � is free to fluctuate, and
β � 1 is considered as a perturbation. From this perspective,
the 3CK (FL) is the phase where β is relevant (irrelevant).
Crucially, near the transition, the dynamics of the � field is
overdamped due to the interaction with the conduction bath,
see Eqs. (12a) and (13a). The problem of dissipative tunnel-
ing, i.e., S = Sdiss − ∫ dτNTKβ cos[�(τ )], for small β yields
a scaling equation

dβ

d�
=
(

1 − 1

η

)
β, (22)

where d� = − log D in terms of the running cutoff [62,63],
while the nonanalytical nature of the kinetic (i.e., damping)
term is believed to prevent a renormalization of η to all orders
[61]. The condition η > 1 for relevant β is parametrically
equivalent to t > tc, with tc given in Eq. (21). In the dual
language, it is manifest that Goldstone bosons 	x do not affect
the nature or position of the transition because they are by
construction perpendicular to �.

D. 3CK phase in fractionalized language

Before concluding, we briefly reiterate the connection to
the 3CK problem for TK � JH in fractionalization language.

In this limit, it is convenient to evaluate Eq. (17) in a gauge
in which t is real and positive. Since � is irrelevant in this
phase, σ� is conserved. We project on the ground state (zero
helicity h = 0) of the f electrons [Fig. 3(a)] and obtain the
effective Kondo Lagrangian

LKondo =
∑

m

[
( f̃ †

α,0Vmcα,m + c.c.) + |Vm|2
JK

]
, (23)

with constraint f̃ †
α,0 f̃α,0 = 3Q. As anticipated previously, three

channels of conduction electrons are screening a single spin,
and 3CK physics is expected. The soft modes associated
with rotations of |Vm| are gapped for TK/JH > 0 enforcing
Vm = Veiam . Based on this observation, we conjecture that the
physics discussed here for the 3CK phases of our Kondo tri-
angle applies more generally to single-impurity 3CK systems
and more generic overscreened Kondo problems.

VI. CONCLUSIONS

We conclude with a discussion of multichannel Kondo
phases as representatives of topological order and of possible
experimental and numerical implications of our findings.

A. Signatures of topological order

While there is no magnetic ordering in any of the phases,
the symmetric ring exchange operator Os = dabcŜa

1 Ŝb
2Ŝc

3 dis-
plays order in the 3CK phase. The ordering of such a
composite operator is like order by disorder [64–66] or
vestigial order [67] phenomena and would suggest a charac-
terization of the 3CK phase in terms of a generalization of
spontaneous symmetry breaking.

However, we here propose a different interpretation and
put forward the hypothesis that multichannel Kondo states
display a form of topological order which is like the quantum
order in gapless QSLs. For the 3CK phase scrutinized here,
the evidence is as follows.

First, as mentioned, the 3CK phase does not break any of
the physical symmetries in the original model in Eq. (1), even
when the Os orders. This invalidates any interpretation of the
3CK in terms of spontaneous symmetry breaking—instead,
we have presented a categorization using the PSG. Second,
regarded as an operator in the gauge theory, Os ∼ Re(ei

∑
m Am )

is a miniature Wilson loop. In macroscopically extended sys-
tems, this would be taken as a clear signal of deconfinement.
Third, the order of Os is destroyed by the proliferation, or
condensation, of monopoles in the FL, which on the other
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hand are gapped in the 3CK phase. This is reminiscent of
the situation in QED3, while the expulsion of topological
defects is generically a defining characteristic of topological
states [68]. Finally, the 3CK displays an irrational ground state
degeneracy indicating gapless anyonic excitations, another
striking signature of topological order.

At the same time, multichannel Kondo states are often
unstable toward anisotropic coupling to the leads (see, e.g.,
Refs. [69,70] for exceptions). As mentioned, while the 3CK
phase studied here is stable for unequal JH, it is unstable if
JK are unequal. This suggests the interpretation of the 3CK
phase as a symmetry-protected topological state of matter or
as a deconfined quantum critical fixed point.

B. Relevance for experiment and numerics

Beyond its purpose as an analytically tractable toy
model, our investigations are relevant to the simplest cluster-
dynamical mean-field theory [71,72] approaches to Hubbard
models on triangular lattices, which have enjoyed increased
interest in recent times [73,74]. The SU(4) case studied here
might be of importance for twisted bilayer graphene [75,76]
with approximate valley symmetry. Emergent SU(4) symmet-
ric spin interactions [77–79] were also recently predicted in
spin-orbit coupled transition metal trihalides with low-lying
Jeff = 3

2 quartets [80]. Here, SU(N) symmetric interactions of
strongly correlated fermions with large flavor number N have
moreover been realized in cold atomic quantum emulators
[81,82]. We conclude with the prospect of directly probing the
presented theory in quantum dot experiments: Recent advance
on SU(4) impurities [83], triangle [84], and 3CK [85] physics
may allow us to artificially fabricate the setup, Fig. 1(a), and

thereby conduct an experimental study of the deconfinement
transition.
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APPENDIX A: MAPPING TO A 3CK PROBLEM

This section is devoted to the mapping of the frustrated
triangle to a 3CK problem and contains details for Sec. III
of the main text. This mapping is possible for the sequence
of models with SU (4), SU (7), SU (10) . . . (i.e., N ∈ 3N + 1)
symmetry at filling q = 1

4 , 2
7 , 3

10 , . . . [i.e., Q = (N − 1)/3]
and is valid when JH is the largest scale.

1. Solution of the triangle alone

We represent a given spin configuration with fixed particle
number per site Q = (N − 1)/3 by

|α1 . . . αQ; αQ+1 . . . α2Q; α2Q+1 . . . α3Q〉
= f †

1,α1
. . . f †

1,αQ
f †
2,αQ+1

. . . f †
2,α2Q

f †
3,α2Q+1

. . . f †
3,α3Q

|0〉 .

(A1)

In this manifold, the spin is faithfully represented as

Ŝa
m = f †

α,mσ a
αβ fm,β . (A2)

We next act on Eq. (A1) with the Hamiltonian

HH = JH

N

3∑
m=1

(
f †
m,α fm,β f †

m+1,β fm+1,α − f †
m,α fm,α f †

m+1,β fm+1,β

N

)
. (A3)

The last term yields a mere shift of energy 3Q2JH/N2 for any of the states Eq. (A1), so we omit it. The action of the first term is
the sum of permutations of two spin indices from adjacent sites:

HH |α1 . . . αQ; αQ+1 . . . α2Q; α2Q+1 . . . α(N−1)〉

= JH

N
{|αQ+1 . . . αQ; α1 . . . α2Q; α2Q+1 . . . α(N−1)〉

+ |α1, αQ+1 . . . αQ; α2, αQ+2 . . . α2Q; α2Q+1 . . . α(N−1)〉 + (similar perm. between sites 1,2)

+ |α1 . . . αQ; α2Q+1 . . . α2Q; αQ+1 . . . α(N−1)〉 + (similar perm. between sites 2,3)

+ |α2Q+1 . . . αQ; αQ+1 . . . α2Q; α1 . . . α(N−1)〉 + (similar perm. between sites 3,1)}. (A4)

Therefore, eigenstates |ψ〉 are obtained by sums over symmetric/antisymmetric permutations (Einstein summation conven-
tion is employed):

|ψ〉 = tα1,...,αQ;αQ+1...α2Q;α2Q+1+α3Q |α1, . . . , αQ, αQ+1 . . . α2Q, α2Q+1 + α3Q〉 . (A5)

We concentrate on the ground state, where the tensor has the following antisymmetry properties:

tα1,α2...,αQ;αQ+1...α2Q;α2Q+1+α3Q = − tα2,α1...,αQ;αQ+1...α2Q;α2Q+1+α3Q (Fermi-Dirac statistics within a given site), (A6)

tα1,α2...,αQ;αQ+1...α2Q;α2Q+1+α3Q = − tαQ+1,...,αQ;α1...α2Q;α2Q+1+α3Q (HH favors pairwise antisymmetry across sites). (A7)
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To get the total number of states, we start by overcounting allowed possibilities. There are N options to place α1, N − 1 to
place α2, etc., leading to

N!

(N − 3Q)!
, (A8)

states. However, we overcounted 3Q! different permutations, so the actual number of states is just(
N
3Q

)
=
(

N
N − 1

)
= N. (A9)

Thus, the following completely antisymmetrized eigenstates are the ground state of the triangle at filling Q:

|αN 〉 = εα1...αN√
N

|α1 . . . αQ; αQ+1 . . . α2Q; α2Q+1 . . . α(N−1)〉 . (A10)

Here and in the following, we label numerical normalization factors by N . This concludes the derivation of Eq. (3). There,
we use the notation

|singlet, m = 1〉 =εα1...αN√
N

|α1 . . . αQ+1; αQ+2 . . . α2Q+1; α2Q+2 . . . αN 〉 , (A11)

and analogously for m = 2, 3.

2. Effective low-energy Hamiltonian

As a next step, we project the Kondo-triangle Hamiltonian onto the ground state manifold spanned by the N states Eq. (A10).
We begin by determining the spin representation within the manifold of states Eq. (A10):

〈αN |Ŝa
m|α′

N 〉 =σ a
ββ ′εα1...αN εα′

1...α
′
N

N 〈α1 . . . αQ; αQ+1 . . . α2Q; α2Q+1 . . . αN−1| f †
m,β fm,β ′︸ ︷︷ ︸

δββ′− fm,β′ f †
m,β

∣∣α′
1 . . . αQ′ ; α′

Q+1 . . . α′
2Q; α′

2Q+1 . . . α′
(N−1)

〉

= − Ñσ a
α′

N αN
. (A12)

This result immediately follows from the consideration that
all spin quantum numbers except αN (α′

N ) have been used in
the ket (bra). Thus, the index of the creation operator β = α′

N
(β ′ = αN ) unless β = β ′. We further used tr(σ a) = 0. Instead
of explicitly calculating the positive proportionality constant,
we show that Ñ = 1 by

∑
N,N ′

∣∣〈αN |Ŝa
m|α′

N 〉∣∣2 = tr[(σ a)2]

= Ñ 2tr[{(σ a)T }2]. (A13)

Here, the first equality follows from the completeness of
{|αN 〉} and the second equality from the evaluation of the
matrix element. Therefore, the effective Hamiltonian has the
form

Heff = Hc − JK

N

3∑
m=1

(Ŝa)T c†
mσ acm. (A14)

As a final step, we reverse particle and hole operators cm →
h†

m, c†
m → hm, then

Heff = Hc + JK

N

3∑
m=1

(Ŝa)T h†
m(σ a)T hm. (A15)

This is the origin of Eq. (4) in the main text. To see that
Eq. (4), in which spin operators are transposed, is equivalent

to the standard 3CK model

H3CK = Hc + JK

N

3∑
m=1

Ŝah†
mσ ahm, (A16)

it is sufficient to realize that the SU(N)-invariant interaction
can be reexpressed using the Fierz identity

(σ a)αβ (σ a)γ δ = δαδδβγ − 1

N
δαβδγ δ, (A17)

which is invariant under simultaneous transposition operation
(α, γ ) ↔ (β, δ).

3. Robustness against inhomogeneity

At strong coupling, the triangle is robust against moderate
inhomogeneities in JH, as can be seen by the following evalu-
ation of matrix elements of δH = δJHŜa

1 Ŝa
2:

〈αN |δH |α′
N 〉 = δJH

∑
α̃N

〈αN |Ŝa
1 |α̃N 〉 〈α̃N |Ŝa

2 |α′
N 〉

= Ñ 2
∑

a

∑
α̃N

(σ a)α′
N α̃N (σ a)α̃N αN ∝ δα′

N αN .

(A18)

Thus, inhomogeneities projected to the ground state manifold
are proportional to the unit matrix and do not lift the degener-
acy of states |αN 〉.
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APPENDIX B: IMPURITY PARTITION SUM, STATIC
EVALUATION

In this section, we present technical details on the evalua-
tion of the partition sum. Throughout this paper, we consider
the partition sum (and thus, free energy and effective ac-
tion) of the impurity alone. This is defined as Zimpurity =
Ztotal/Zno impurity, where Ztotal is given by

Ztotal =
3∏

m=1

∫ ∞

0
DVmVm

∫ i∞

−i∞
Dλm

∫
C2

D(tm, t∗
m)

×
∫

D(cm, fm)e−S(Vm,λm,tm,cm, fm ). (B1)

Note that we employ Read-Newns gauge (Vm > 0)
throughout this section. The partition sum Zno impurity is the
same partition sum of the three wires but without any Kondo
impurities.

1. Diagonalization of spinon Hamiltonian

The spinon Hamiltonian, see also Eq. (6) of the main text,
has the form

Ht = −t f †

⎛
⎝ 0 eiA1 e−iA3

e−iA1 0 eiA2

eiA3 e−iA2 0

⎞
⎠ f , (B2)

where we use the three-component notation f = ( f1, f2, f3),
and similarly for c(x) = [c1(x), c2(x), c3(x)] on each site of
the wires. We rotate f = U f̃ and c = Uc̃ electrons by U =
diag[ei(A1−�/3), 1, e−i(A2−�/3)], leading to

Ht = −t f̃ †

⎛
⎝ 0 ei�/3 e−i�/3

e−i�/3 0 ei�/3

ei�/3 e−i�/3 0

⎞
⎠ f̃ . (B3)

This rotation appears at the expense of a vector potential

(c†, f †)∂τ (c, f )T = (c̃†, f̃ †)(∂τ + iA)(c̃, f̃ )T , (B4)

where

A = −iU †∂τU = diag

[
Ȧ1 − �̇

3
, 0,−
(

Ȧ2 − �̇

3

)]
. (B5)

It is furthermore useful to expand f̃ , c̃ in eigenstates with
instantaneous energy εk = −2t cos[k + �(τ )/3]:

|ψk〉 = 1√
3

⎛
⎝e−ik

1
eik

⎞
⎠, k = 0,±2π

3
. (B6)

In this basis, the Berry connection is Ak′k = [(Ȧ1 −
�̇/3)ei(k′−k) − (Ȧ2 − �̇/3)e−i(k′−k)]/3. In summary, the total
Lagrangian under consideration is [we employ the notation
Dτ = ∂τ + iA and λk = λ + εk (�)]

L =
∑
k,k′

[· · · c†
α,k (p) · · · f †

α,k

]⎡⎢⎣ (Dτ )k,k′ + ε(p)δp,p′δkk′ V δkk′

V δkk′ (Dτ )k,k′ + λkδkk′

⎤
⎥⎦
⎡
⎢⎢⎢⎣

...

cα,k′ (p′)
...

fα,k′

⎤
⎥⎥⎥⎦

+3

(
N

t2

JK
+ N

V 2

JK
− λqN

)
. (B7)

2. Static fields and mean-field solution

We begin by studying the mean-field solution. At this level,
we consider all bosonic fields V > 0, t > 0,� =∑m Am as
constant variational parameters, and A = 0. The fermionic
integral yields Eq. (7). The mean-field equations involve the
following two integrals:

nF ≡ I1

(
λ




)
= T
∑

n

eiεnη

iεn − λ + i
s
(

εn
D

)
� arccot

(
λ



)
π

=:
δ
(

λ



)
π

, (B8a)

I2(λ + i
) = T
∑

n

is
(

εn
D

)
eiεnη

iεn − λ + i
s
(

εn
D

)
� − ln(|λ + i
|η) + γEM

π
. (B8b)

Here, γEM is the Euler Mascheroni constant {with our
regularization scheme TK = exp[−1/(ρJK ) − γEM]/η} and �
implies a zero temperature calculation. Note that δ becomes a
step function (from π down to 0) as 
 → 0.

Having established these prerequisites, we are now in the
position to impose the mean-field equations

1

N

∂F

∂λ
=
∑

k

[
I1

(
λk




)
− q

]
!= 0, (B9a)

1

N

∂F

∂

=
∑

k

[
−I2

(
λk




)
+ 1

πρJK

]
!= 0, (B9b)

1

N

∂F

∂t
=
∑

k

[
∂εk

∂t
I1

(
λk




)
+ 2t

JH

]
!= 0, (B9c)

1

N

∂F

∂�
=
∑

k

∂εk

∂�
I1

(
λk




)
!= 0. (B9d)

We readily see that ground state solutions are given by � ∈
2πZ. Then the first three equations yield cf. Eqs. (8):

3πq =
∑

k

δk = δ0 + 2δ2π/3, (B10a)

T 3
K =
∏

k

√
λ2

k + 
2 = 
3

sin(δ3) sin(δ2π/3)2
,

(B10b)
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2(δ0 − δ2π/3) = 3
2πt

JH
= 2π

JH
(λ2π/3 − λ0)

= 2π


JH
[cot(δ2π/3) − cot(δ0)]

= 2 sin(δ0 − δ2π/3)
πTK

JH

3

√
1

sin(δ2π/3) sin2(δ0)
.

(B10c)

We readily recognize the Kondo solution t = 0, δk =
πq,
 = TK sin(πq), which is present for any TK/JH. The last
equation is the origin of Eq. (8c).

3. Finite temperatures

Of the presented finite temperature phases in Fig. 1(b) of
the main text, the presence of the LFL and local moment
phase is obvious. The existence of an LFL∗ and of the 3CK

phase is discussed now by showing that there is a mean-field
transition TSL = JHq(1 − q) below which t develops a vacuum
expectation value and a lower transition T eff

K at which V spon-
taneously develops. For the perturbative solution in 
 at finite
T , we use

n f (λ) = I1 = nFD(λ) = 1 − tanh
(

λ
2T

)
2

, (B11)

and perturbatively in 
,

I2(λ) = T
∑
εn>0

( i

iεn − λ
+ i

iεn + λ

)

� ln
(

D
T

)
π

−
ψ (0)
( iλ

T +π

2π

)
+ ψ (0)

(
π− iλ

T
2π

)
2π

. (B12)

The mean-field equations (perturbative in 
) are then

nFD(λ − 2t ) = q + 2t

JH
= q + λ

JH
− λ − 2t

JH
, (B13)

nFD(λ + t ) = q − t

JH
, (B14)

3 ln
(TK

T

)
=
∑

k

⎡
⎢⎣ψ (0)

( iλk
T +π

2π

)
+ ψ (0)

(
π− iλk

T
2π

)
2

−
ψ (0)
( iλt=0

T +π

2π

)
+ ψ (0)

(
π− iλt=0

T
2π.

)
2

⎤
⎥⎦, (B15)

with λk = (λ + t, λ + t, λ − 2t ) and λt=0 = 2T artanh(1 −
2q) the solution without t . The mean-field spin-liquid tran-
sition temperature is obtained by expanding the first two
equations in t :

q = nFD(λ) ⇔ λ = 2T artanh(1 − 2q), (B16)

1

JH
= −∂nFD

∂λ
= 1

4T cosh2
(

λ
2T

)
= 1

4T cosh2[artanh(1 − 2q)]
. (B17)

Thus, for 0 < q < 1
3 :

TSL

JH
= 1

4π cosh2[artanh(1 − 2q)]
= q(1 − q). (B18)

For the solution of T eff
K < TSL, it is more convenient to use

nk = nFD(λk ), (B19)

and insert this into

3q = 2n2π/3 + n0, (B20)


n ≡ n0 − n2π/3 = 3t

JH
= T

JH
(λ̄2π/3 − λ̄0). (B21)

We use

λ̄t=0 = λt=0

T
= 2artanh(1 − 2q), (B22)

λ̄2π/3 = λ2π/3

T
= 2artanh(1 − 2n2π/3)

= 2artanh

(
1 − 2q + 2
n

3

)
, (B23)

λ̄0 = λ0

T
= 2artanh(1 − 2n0)

= 2artanh

(
1 − 2q − 4
n

3

)
, (B24)

to replace temperature in Eq. (B15):

T = TK

∏
k

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣ψ (0)

( iλk
T +π

2π

)
+ ψ (0)

(
π− iλk

T
2π

)
2

−
ψ (0)
( iλt=0

T +π

2π

)
+ ψ (0)

(
π− iλt=0

T
2π

)
2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

−1/3

≡ TK g[λt=0, λ2π/3(
n), λ0(
n)]︸ ︷︷ ︸
:= f (
n)

. (B25)
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We thus reduced the finite temperature Kondo transition in the
presence of finite t , i.e., finite 
n to a single equation for 
n:


n = TK

JH
f (
n)(λ̄2π/3 − λ̄0). (B26)

Numerical solution of this equation demonstrates the exis-
tence of 0 < T eff

K < TSL for sufficiently small TK/JH.

4. Landau free energy (perturbative in t)

We consider the case of small t and employ ξ = λ + i
 =
TKeiπq [86]:

V (�) = N

π

∑
k

Im

{
(λk + i
) ln

[
(λk + i
)

eTKeiπq

]}
(B27)

= N

π

∑
k

Im

(∑
k

ε2
k

2ξ
− ε3

k

6ξ 2
+ ε4

k

12ξ 3

)

= TKN

π

[
−3t̄2 sin(πq) − cos(�)t̄3 sin(2πq)

− 3t̄4 sin(3πq)

2

]
. (B28)

Up to the effect of biquadratic and ring exchange terms (see
the following section), as well as the Hubbard-Stratonovich
term 3t2/JH, this expression yields Eq. (9) of the main text.

5. Ring exchange and biquadratic terms

In the large N limit, the transition between LFL and 3CK
appears to be first order. Here, we consider additional terms
which ultimately overcome the first-order behavior. We need

〈 fm f †
m+1〉 � −

∫
(dε)

tm
[iε + λ + i
sign(ε)]2

= tm
πTK

sin(πq). (B29)

We first study ring exchange terms of the form

H3 = −π2 Js

N
dabcŜa

1 Ŝb
2Ŝc

3 − π2 Jχ

N
fabcŜa

1 Ŝb
2Ŝc

3. (B30)

These terms can be evaluated on mean-field level as (Tabc =
Jsdabc + Jχ fabc, and we use tm = tei�/3)

H3 � −π2 Tabc

N
〈 f †

1 σ a f1 f †
2 σ b f2 f †

3 σ c f3〉

= Tabc(sin πq)3

πT 3
K N

[t1t2t3tr(σ aσ bσ c) + t̄3t̄2t̄1tr(σ aσ cσ b)]

= Js(sin πq)3 dabc

πT 3
K N

tr[σ a(σ b, σ c)]︸ ︷︷ ︸
dabc

t3 cos(�)

+ Jχ (sin πq)3 i fabc

πT 3
K N

tr[σ a(σ b, σ c)]︸ ︷︷ ︸
i fabc

t3 sin(�)

= N
Js(sin πq)3

πT 3
K

t3 cos(�) + N
Jχ (sin πq)3

πT 3
K

t3 sin(�).

(B31)

We used

dabcdabc = N2 − 4, fabc fabc = N2. (B32)

This term enters β in Eq. (9) of the main text.
We furthermore introduce biquadratic interactions:

H4 = −π3J4

2N3

∑
m

(Ŝa
mŜa

m+1)2. (B33)

Their mean-field decoupling leads to

H4 = −π3J4

2N3

〈∑
m

f †
mσ a fm f †

m+1σ
a fm+1 f †

mσ b fm f †
m+1σ

b fm+1

〉

= 3t4 J4 sin(πq)4

2N3πT 4
K

⎧⎨
⎩tr[σ a(σ a, σ b)σ b]︸ ︷︷ ︸

dabcdabc/2

+ tr(σ aσ a)2︸ ︷︷ ︸
=(N2−1)2

⎫⎬
⎭

� N
3J4 sin(πq)4

2πT 4
K

t4. (B34)

This term enters γ in Eq. (9) of the main text.
For the plot of Fig. 2(c), we used Jeff

Ring = 0.3 and Jeff
4 = 0.1

in the effective replacement JH → JH(1 + dJeff
ring − d2Jeff

4 ) in
the numerator of Eq. (8c), left.

The replacement is related to the microscopic Hamiltonian
as follows. From the mean-field evaluation

〈 fm f †
m+1〉 =

∑
k

Gk (0)
3

3
= − d

3π
. (B35)

Therefore, on Hartree-Fock level,

H3 → −NJs
(

d
3

)3
π

= Nπ2Js

( t

JH

)3

, (B36)

H4 → NJ43
(

d
3

)4
2π

= NJ43π3
(

t
JH

)4
2

. (B37)

For small t/JH, this can be reinterpreted as a renormalization:

t2

JH
→ t2

JH

[
1 − π2Jst

J2
H

−
3π2
(

t2

J3
H

)
J4

2

] = t2

JH
[
1 + πJs

JH

d
3 − J4

JH

d2

3

] .

(B38)

Hence, we identify

Jeff
Ring = πJs

3JH
, Jeff

4 = J4

3JH
. (B39)

APPENDIX C: DYNAMICS OF GOLDSTONE MODES
AND TOTAL FLUX

In this section, we derive the kinetic terms for Goldstone
bosons and �(τ ), Eq. (12) of the main text.

1. Goldstone bosons

Before turning to the effective action of Goldstone bosons,
we comment on the structure

G

H
= U (1) × U (1) × U (1)

U (1) × Z3
, (C1)
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of the Goldstone manifold. Smooth transformations of the
large group G are represented by three phases χm:

fm → Umm′ fm′ ; cm → Umm′cm′ (Umm′ = δmm′eiχm ), (C2)

and per definition χm(τ = 1/T ) = χm(τ = 0) + 2π j.
Following Appendix B, a convenient form of U =
diag(eiA1−�/3, 1, e−iA2+�/3), as it cancels the fluctuating
gauge fields on the links. To make the quotient group G/H
apparent, we factorize

U = eiφV, with det V = 1. (C3)

The naïve derivation of the Goldstone action implies the ab-
sorption the V [i.e., the SU (3) part of G] into f , c at the
expense of a Berry curvature term A = −iV †∂τV . The inte-
gration of fermions then leads to an effective action in terms
of A, and thus implicitly in terms of A1,2,3.

However, certain care is needed for this procedure. The
quotient group introduces an emergent Z3 redundancy which
is manifested in noncontractable loops ( j = 0, 1, 2):

exp

[
iφ

(
1

T

)]
= ω jeiφ(0), (C4)

V

(
1

T

)
= ω̄ jV (0). (C5)

The absorption of f (τ ) = V (τ ) f̃ (τ ) changes the boundary
conditions [ f̃ (1/T ) = −ω j f (0)], i.e., f̃ (τ ) is generically not
a fermionic field. We conjecture that the topological nature of
π1(G/H ) = Z3 is at the root of the ground state degeneracy
of the 3CK phase.

To remedy this problem, we choose a parametrization of
U (τ ) such that the topological winding is manifest, i.e.,

U (τ ) = exp

[
iφ̄(τ ) + 2π iτT

3

]

×
⎡
⎣exp
(− 2π iτT

3

)
0 0

0 exp
(− 2π iτT

3

)
0

0 0 exp
(− 4π iτT

3

)
⎤
⎦

× V̄ (τ ), (C6)

where both eiφ̄(τ ) and V̄ (τ ) are periodic in imaginary time.
In this parametrization, it is apparent that the three different
Z3 sectors correspond to the 2π winding of one of the χm.
To derive the effective action of V (τ ) fluctuations even for
nonzero j, we thus absorb e−iφ̄(τ )U (τ ) into fermionic fields
(without changing their statistics) and integrate fermions sub-
sequently (with Gc f , Gc f ,k the full Green’s function of c and f
space, Gc, Gc,k the Green’s function of conduction electrons,
and G, Gk the Green’s function of f electrons):

S(A2,3)

N
= −Tr ln

(−G−1
c f + iA

)+ tr ln
(−G−1

c + iA
)

(C7)

� iTr(Gc f A) − itr(GcA) − 1

2
Tr[(Gc f A)2] + 1

2
tr[(GcA)2].

(C8)

The symbol “tr” denotes a trace in the space of the three sites
and in time, “Tr” additionally includes the 2 × 2 space of c

and f electrons. Specifically, we employ a gauge in which

Ak′k = 2π jT

3
+ (Ȧ2 − Ȧ1)δkk′ + [Ȧ1ei(k′−k) − Ȧ2e−i(k′−k)

]
3︸ ︷︷ ︸

=:Āk′k

.

(C9)

The leading term is fixed by the constraint
∑

k δk = 3πq
(this result is true beyond mean field):

S(1) = i
∫

dτ
∑

k

Gk (τ, τ+)Akk (τ )

= iQ
∫

dτ
∑

k

Akk (τ )

= iQ2πm. (C10)

Note that, since Q ∈ Z, this expression is invariant, yields a
trivial phase 2π , and can be omitted.

Next, we switch to the term of second order in gradients,
which can be expressed as

S(2) = −N

2

∫
dτ
∑
kk′

Ikk′ |Akk′ |2. (C11)

The polarization operator under consideration is

Ikk′ =
∫

dε

2π
trc f [Gc f ,k (ε)Gc f ,k′ (ε)] − Gc,k (ε)Gc,k′ (ε)

= [1 + 2(πρV )2]
∫

dε

2π
Gk (ε)Gk′ (ε)

= −1 + 2ρ


JH

⎡
⎢⎣

JH sin(δ+ )2


π

JH sin(δ+ )2


π
1

JH sin(δ+ )2


π

JH sin(δ+ )2


π
1

1 1 JH sin(δ0 )2


π

⎤
⎥⎦

kk′

.

(C12)

We here used the short-hand notation δ+ = δ2π/3 and that∫
dε

2π
Gk (ε)Gk′ (ε)

= − 1

π

⎧⎨
⎩





2+λ2
k
, λk = λk′

π+arctan ( 

λk

)−arctan
(



λk′

)
λk′−λk

, λk < 0, λk′ > 0,

(C13)

as well as the mean-field equations, Eq. (B10). It is impor-
tant to realize that remnant U (1) terms and SU (3) terms in
Eq. (C11) decouple

S(2) = −N

2

∫
dτ
∑
kk′

[
Ikk′ |Ākk′ |2 + Ikk

(
2πmT

3

)2

δkk′

]
.

(C14)

The second term yields a vanishing contribution to the
weight in the limit T → 0 and is disregarded. We further use
that

|Ākk′ |2 =
∑

m Ȧ2
m

18
. (C15)
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Here, we have used a gauge transformation to return to the
generic gauge. The combination of Eqs. (C12), (C14), and
(C15) results in the final result, Eq. (12b) in the main text.
To obtain Eq. (15), we employ the parametrization in terms of
unit vectors êm and

∑
m êmêT

m = 31.

2. Total flux

To obtain the dynamics of the total flux �(τ ), we use the
notation δλk = −2t[cos(k + �/3) − cos(k)] and expand the
fermionic determinant to second order in δλk .

S(2)
eff � N

2

∑
ωm,k

δλk (ωm)δλk (−ωm)
∑
εn

Gk (εn)Gk (εn + ωm)

T →0� N


2πT

∑
ωm,k

δλk (ωm)δλk (−ωm)
ln
[

λ2
k+
2

λ2
k+(
+|ω|)2

]
|ω|(2
 + |ω|)

= N


2πT

∑
ωm,k

δλk (ωm)δλk (−ωm)

×

⎧⎪⎨
⎪⎩
[
− 1


2+λ2
k
+ |ω| 


(
2+λ2
k )2

]
, |ω| � λ2

k + 
2,

−
ln
(

ω2

λ2
k +
2

)
ω2 , |ω| � λ2

k + 
2.

(C16)

The equation substantially simplifies for small t � λ and
leads to the kinetic energy of � fluctuations:

Skin(�) = N
3t2TK sin(πq)

4πT

∑
ωm

�(ωm)�(−ωm)

×

⎧⎪⎨
⎪⎩

|ω| sin(πq)
T 3

K
, |ω| � T 2

K ,[
1

T 2
K

−
ln
(

ω2

T 2
K

)
ω2

]
, |ω| � T 2

K .
(C17)

The |ω| term in the first line is the origin of the damped ki-
netic term presented in the main text and leads to logarithmic
correlators.

3. Estimate of tunneling time and tunneling action

As demonstrated in the main text, details of the tunneling
rate � are irrelevant for the transition. We therefore constrain
ourselves to merely estimate �, based on a tunneling event

�(τ ) = π

2
+ 2πτ

τ0θ
(
τ 2

0 − 4τ 2
)

⇒ |�(ω)|2 =
[
ωτ0 cos

(
ωτ0

2

)− 2 sin
(

ωτ0
2

)]2
(ωτ0)4

. (C18)

In terms of dimensionless parameters t̄ = t/TK and τ̄0 =
τ0/TK, ω̄ = ωτ0,�(ω) = �̄(ωτ0), we obtain

Stun(τ̄0)

N
∼ βτ̄0 + t̄2 sin(πq)τ̄0

∫ ∞

0
|�̄(ω̄)|2

(
1 − ln{[sin(πq) + ω̄]2τ̄ 2

0 }
ω̄2τ̄ 2

0

)

∼ βτ̄0

[
1 + t̄2 sin(πq)

β

(
π

6
− 1

τ̄ 2
0

{
π ln
[

sin(πq)2τ̄ 2
0

]
60

+ 0.7

})]
. (C19)

To obtain the optimal tunneling time, we use that t̄ ∼ β/γ at
the mean-field first-order transition. We thus obtain, for any q
such that sin(πq) ∼ 1:

τ
optimal
0 ∼ 1

TK

{
1, γ � 1,√

ln(γ )
γ

, γ � 1,
(C20)

Stun

N
∼ β

{ 1
γ

+ 1.4, γ � 1,√
ln(γ )

γ
, γ � 1,

(C21)

as quoted in the main text.

4. Implications for interwire correlations

Using ψ = (c, f )T , the generating functional at mean-field
level, but including fluctuations of the Goldstone modes, is
Z =∏k Zk:

Zk (η) =
∫

Dψkexp

[
−
∫

dτ ψ̄k (−Ĝ−1 + iA)ψk

+ ψ̄kUηk + η̄kU
†ψk

]

= exp

[∫
dτ η̄kĜηk + S(A2,3)

]
. (C22)

Here, U is the diagonal matrix introduced after Eq. (B2).
Intersite correlators (obtained by differentiation with respect
to η) thus contain averages like the following:

〈eiAm (τ )e−iAm′ (0)〉 = tr[e−(β−τ )H e−iAm e−τH eiAm′ ]

T →0=
∑

p

∫
d2x
∫

d2x′ψ∗
0 (	x)e−iAm (	x)

×ψ 	p(	x)e−iτε 	pψ∗
	p (	x′)eiAm′ (	x′ )ψ0(	x′)

= δmm′exp(−iε−2êm/3). (C23)

We used the notation ψ 	p(	x) for eigenstates of (−i∇	x )2/(2mx )
with eigenenergy 	p2/(2mx ). Thus, only intrasite terms sur-
vive.

5. Ordering of Os = dabcŜa
1Ŝb

2Ŝc
3.

For t > tc (i.e., in the 3CK phase), the effective action of �

fluctuations can be obtained by expansion about the minimum
of cos(�) leading to

S(�) =
∫

dω

2π
�(ω)�(−ω)

(
η

4π
|ω| + M�

2

)
, (C24)
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where M� = NβTK. The correlator of phase fluctuations thus
decays as

〈�(τ )�(0)〉 ∼
∫ ∞

0
dω

cos(ωτ )

η|ω| + 2πM�

∼ −η sin(2πM�τ )

(M�τ )2
,

(C25)

and therefore leads to long-range correlations:

〈Os(τ )Os(0)〉 ∼ t6

T 6
K

exp

[
−η sin(2πM�τ )

(M�τ )2

]
→ t6

T 6
K

. (C26)

APPENDIX D: PHASE SLIPS

Here, we include phase slips of weight � and time τ0,
which is assumed to be smaller than all other time scales of
the effective theory. We now consider a single kink in � with
shift 2π , which is associated with an amplitude [87]

A(0)
(−τ/2,�)→(τ/2,�±2π ) = �

∫ τ/2

−τ/2
dτc. (D1)

1. Instanton interactions

We consider the full partition function (generating func-
tional) to second order in �:

Z (η) = Z0(η) + �2
∑
±

∫ β

0
dτ f

∫ τi

0
dτiZ2,±(η; τ f , τi ),

(D2)
where a phase slip (antiphase slip) is introduce at τi (τ f ), and
the sum over ± indicates the direction of the slip. The partition
function is

F = −T ln Z (0)

� −T ln Z0(0)︸ ︷︷ ︸
=F0

−T �2
∑
±

∫ β

0
dτ f

∫ τi

0
dτi

Z2,±(0; τ f , τi )

Z0(0)
.

(D3)

We use that, before and after a phase slip, h labels the
same quantum states; however, their energy has been shuf-
fled around cyclically εh → εh+1. We can thus express the
partition function in the helicity basis, Z0(η) =∏h Z0,h(ηk ),
Z2,±(η; τ f , τi ) =∏h Z2,±,h(ηh; τ f , τi ), where (h index from
now on suppressed unless explicitly restored)

Z0(η) =
∫

D(c, f )exp

[
−
∫

dτ (c̄, f̄ )(∂τ + HMF)(c, f )T + η̄ f + f̄ η

]
, (D4a)

Z2(η) =
∫

D(c, f )exp

{
−
∫

dτ (c̄, f̄ )[∂τ + Hslips(τ )](c, f )T + η̄ f + f̄ η

}
, (D4b)

and

Hslips(τ ) =
[
ε(p) V
V λ(τ )

]
, (D4c)

where λ(τ ) = λ + δλχτi,τ f (τ ) and χτi,τ f (τ ) = 1 for τi < τ < τ f , and χτi,τ f (τ ) = 0 otherwise. Note that λ = λh = λ − εh; for
the ground state, δλ = 3t ; for one of the excited states, δλ = −3t ; and for the third state, δλ = 0 (k = ±2π/3 are degenerate).

Thus, the instantons generate an x-ray edge problem in each helicity channel. We follow Ref. [88] and employ the long-time
f-electron Green’s function:

G f (τ ) ∼ − g

τ
, (D5)

with g = 
/π (
2 + λ2) for the Kondo/resonant level problem. This leads to

Sslips(τ f − τi ) = (τ f − τi )δλG f (0, 0+)+
(

δx

π

)2

ln
(τ f − τi

λ

)
, (D6)

where δx = − arctan(πgδλ). The first (classical) term cancels upon taking the product of h, leaving only the logarithmic
repulsion. This concludes the derivation of κ = 2N (δx/π )2, Eq. (19), as presented in the main text.

2. Infinite order resummation of phase slips

We now switch to the full resummation of phase slips. We consider an amplitude for � → � + N�2π and denote n and n̄ the
number of kinks/antikinks (i.e., n − n̄ = N�) and their center of mass time τ1, . . . τn+n̄. Different instanton sequences correspond
to the integral over these variables. Then the amplitude is

A(0,�)→(β,�+N�2π ) =
∞∑

n=0

∞∑
n̄=0

δn−n̄,N�
�n+n̄

∑
perm. of
n̄, n kinks

(∫ β

0
dτn+n̄ · · ·

∫ τ3

0
dτ2

∫ τ2

0
dτ1

× tr

{
exp

[
−
∫ β

τn+n̄

dτ ′ĤMF(� + N�2π )

]
. . . exp

[
−
∫ τ2

τ1

dτ ′ĤMF(� ± 2π )

]
e− ∫ τ1

τ0
dτ ′ĤMF (�)

})
. (D7)
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In the second line, the ± refers to the sign of the first kink. We can now use that the Hamiltonian between two kinks is time
independent, and the evolution operator between two kinks is

T exp

[
−
∫ τl+1

τl

dτ ′ĤMF(� + k2π )

]
=
∏

τ

[1 + 
τ Ĥ (� + k2π )]

=
∏

τ

{
τ k
�[1 + 
τH (�)]τ−k

�

}

= τ k
�

∏

τ

{[1 + 
τH (�)]}τ−k
�

= τ k
�T
{

exp

[
−
∫ τl+1

τl

dτ ′HMF(�)

]}
τ−k
� . (D8)

Thus, a kink at time τ is represented by the operator insertion τ� at time τ into the partition sum

A(0,�)→(β,�+N�2π ) =
∞∑

n=0

∞∑
n̄=0

δn−n̄,N�
�n+n̄ (n + n̄)!

n!n̄!

1

(n + n̄)!

× T

⎧⎨
⎩
∫ β

0
dτn· · ·

∫ β

0
dτ1

∫ β

0
d τ̄n̄· · ·

∫ β

0
d τ̄1tr

⎡
⎣ n∏

j=1

n̄∏
j̄=1

τ�(τk )τ−1
� (τ̄ j̄ )exp

(
−
∫ β

0
dτ ĤMF

)⎤⎦
⎫⎬
⎭

=1

3

∑
θ

e−iθN� tr

{
exp

[∫ β

0
dτ�eiθ τ�(τ )

]
exp

[∫ β

0
dτ�e−iθ τ−1

� (τ )

]
exp

[
−
∫ β

0
dτ ĤMF

]}
. (D9)

We used the Fourier transform on �3 with periodic
boundary conditions (i.e., with possible wave vectors θ =
0,±2π/3) such that

∑
θ eiθN = 3δN,0 and

∑
n einθ = 3δθ,0.

Here, (n+n̄)!
n!n̄! is the number of possibilities to arrange the n

upsteps if there are n + n̄ steps in total. The factor 1
(n+n̄)!

accounts for the fact that the integration domain has been
increased from an explicitly time-ordered n + n̄-dimensional
integral in Eq. (D7), to an n + n̄-dimensional hypercube.

The total partition sum is given by (we use
∑

N�
e−iN�θ =

3δθ,0 for N� = 0,±1)

Z =
∑
Nφ

A(0,�)→(β,�+N�2π )

= tr
(
exp
{− β
[
ĤMF − �

(
τ� + τ−1

�

)]})
. (D10)

We now restore the matrix space of different vacua. In total,
we obtain

Heff =
∑

x

[−tcc†
αm(x)cαm(x + 1) + H.c. − μc†

αm(x)cαm(x)]1�

+ (tσ� f †
α,m fα,m+1 + H.c.) + λ f †

αm fαm1�

+ (V f †
α,mcα,m + H.c.)1� − �

(
τ� + τ−1

�

)
. (D11)

This concludes the derivation of Eq. (17) of the main text.

3. Orthogonality catastrophe using bosonization

We start from the effective Hamiltonian derived in the
previous section

H = H0 + H�, H� = −�Ô, Ô = τ� + τ−1
� . (D12)

We are going to treat this problem perturbatively to the second
order in � and diagonalize H0 in the helicity h basis. Then
considering that λh(�) is different for � = −2π, 0, 2π , we
have

H0 =
∑
�=0

∑
h

|�〉 H0h(�) 〈�| ,

H0h(�) =
(

c
f

)†

h

[
εc V
V λh(�)

](
c
f

)
h

. (D13)

Note that c electrons have another momentum k along the
wires, which is implicit here. This problem as is, is difficult
to treat. We are forced to (i) go to the scattering basis ψhσ and
(ii) assume that the phase shift is independent of the energy,
i.e., the electrons in scattering basis experience a potential
scattering Ṽh(�), which depends on the flux �. In that case,
we can unfold the conduction electrons to right movers only
and write

H0h(�) = H0h +
√

2πṼh(�)ψ†
hσ

(0)ψhσ
(0),

H0h = −ivF

∫
dxψ†

hσ
∂xψhσ

, (D14)

where the relation between the potential scattering Ṽh(�) and
the phase shift is shown below in Eq. (D18), and the factor of√

2π is introduced for future convenience. Next, we bosonize,
i.e., express the fermions as

ψh(x) ∼ ei
√

2πϕh (x), [ϕh(x), ϕh′ (y)] = i

2
sgn(x − y)δhh′ .

(D15)
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The Hamiltonian becomes

H0h(�) = H0h + (∂xϕh)Ṽh(�), H0h = vF

2

∫ ∞

0
dx(∂xϕh)2. (D16)

It is easy to see that the potential scattering term can be eliminated

H0h(�) ≡ vF

2

∫
dx

[
∂xϕh + δ(x)Ṽh(�)

vF

]2

, i.e., ϕh(x) → ϕh(x) + θ (x)Ṽh(�)

vF
. (D17)

By plugging this into ψ ∼ ei
√

2πϕ , we can see that this corresponds to the phase shift:

ψout,h = ψin,he2iδh , δh =
√

π

2

Ṽh

vF
. (D18)

Each flux configuration corresponds to a different phase shift in a given helicity sector, and these configurations are related to
each other via the so-called Schotte-Schotte transformation [89]:

Uh(�,
�) = exp

{
− iϕ(0)

[
Ṽh(� + 
�) − Ṽh(�)

]
vF

}
. (D19)

Using the commutation relation of bosons and the fact that esXYe−sX = Y + s(X,Y ), for (X,Y ) c number, we can check that

H0h(� + 
�) = U †
h (�,
�)H0h(�)Uh(�,
�) (D20)

= H0h + (∂xϕ)Ṽh(�) − i[Ṽ (� + 
�) − Ṽ (�)]
∫

x
∂xϕ[ϕ(0), ∂xϕ]

= H0h + Ṽ (� + 
�)(∂xϕ)|x=0. (D21)

Going to the interaction picture with regard to H0 and expanding the partition function in �, we have

Z

Z0
=
〈
Tτ exp

[
−
∫ 1/2T

−1/2T
dτH� (τ )

]〉
0

= 1 + �2

2

∫
dτ1dτ2 〈Tτ exp(τ1H0)Ôexp[(τ2 − τ1)H0]Ôexp(−τ2H0)〉0

= 1 + �2

2

∫
dτ1dτ2 〈Tτ exp[(τ1 − τ2)H0]exp[(τ2 − τ1)ÔH0Ô]〉0

= 1 + �2

2

∑
�

∑
α=±1

∫
dτ1dτ2

∏
h

〈Tτ exp[(τ1 − τ2)H0h(�)]exp[(τ2 − τ1)H0h(� + 2πα)]〉0 , (D22)

where Ô = τ+1 + τ−1, we used that the linear-in-� term vanishes due to trace and used the cyclic property of the trace with the
Boltzmann factor e−βH0/Z0 to shuffle the time-evolutions. Using Eq. (D20),

exp[τH0h(� + 
�)] = U †
h (�,
�)exp[τH0h(�)]Uh(�,
�), (D23)

we can write

〈Tτ exp[−
τH0h(�)]U †
h (�,
�)exp[τH0h(�)]Uh[�,
�]〉0

= 〈TτU †
h (�,
�; τ )Uh(�,
�)〉0

=
〈
Tτ exp

[
iϕ(τ )
Vh(�,
�)

vF

]
exp

[−iϕ(0)
Vh[�,
�]

vF

]〉
∼ |τ |−[
Ṽh (�,
�)]2/2πv2

F , (D24)

where we used that

〈eiγ ϕ(τ )e−iγ ϕ(0)〉 = 1

|τ |γ 2/2π
. (D25)

As a reminder, 
Ṽh can be related to the phase shift


Ṽh(�,
�) ≡ Ṽh(� + 
�) − Ṽh(�)

= vF

√
2

π
[δh(� + 
�) − δh(�)], (D26)
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which leads to

Z

Z0
= 1 + 1

T
�2
∑
�

∑
α=±1

∫ 1/2T

−1/2T
d
τ |
τ |−κ ,

κ =
∑

h

[
δh(� + 
�)

π
− δh(�)

π

]2

. (D27)

Up to subleading terms in small t (which are not important
near the transition), this exactly reproduces Eq. (D6). The time
integral leads to

Z

Z0
= 1 + C ′�2T κ−2, (D28)

where C ′ is a constant. The correction to free energy F0 =
−T log Z0 is

F − F0 = −C ′�2T κ−1. (D29)

4. 〈σ�(τ )σ�(0)〉 correlation function

In this section, we compute the correlator 〈σ�(τ )σ�(0)〉,
which is related to the order parameter 〈Os(τ )Os(0)〉 or
〈�(τ )�(τ )〉 in this paper, within the t − � Hamiltonian H =
H0 + H� . In the �/t � 1 regime (FL phase), this is exponen-
tially decaying. This can be seen easily in a basis in which the
−�O term is diagonal. In the limit of large �, we can use a
unitary transformation UO to diagonalize O:

O = τ� + τ−1
� =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠→ U †

OOUO =
⎛
⎝−1

−1
2

⎞
⎠, (D30)

and go to the interaction picture with regard to −�τ x. In this picture, σ (τ ) is time dependent and is given by

ρ� = exp
(−�

T

)
2exp
(−�

T

)+ exp
(

2�
T

)
⎡
⎣1

1
exp
(

3�
T

)
⎤
⎦→
⎡
⎣0

0
1

⎤
⎦,

σ� (τ ) = ω2

2

⎛
⎜⎜⎝

1 i −x−1
√

2

i −1 ix−1
√

2

−x
√

2 ix
√

2 0

⎞
⎟⎟⎠, (D31)

in terms of x = e3τ� . With this density matrix tr(ρ�O) = o33. Therefore, to the leading order in tunneling t ,

〈σ�〉 = 〈Tτ σ� (τ )σ� (0)〉 = 0,

〈Tτ σ� (τ )σ †
� (0)〉 = 〈Tτ σ

†
� (τ )σ� (0)〉 = e−3|τ |�. (D32)

This is the origin of the fact that t is irrelevant in the �/t � 1 regime, within the t − � Hamiltonian. In the opposite regime of
�/t � 1, we can use the same technique as in the previous section to compute the correlators. Since σ� commutes with H0, to
zero order in �, we have

〈σ�(τ )σ †
φ (0)〉 = 1

3 tr(σ�σ
†
φ ) = 1. (D33)

To second order in �, we have (we have neglected the disconnected part since it does not depend on τ )

〈σ�(τ )σ †
φ (0)〉 = 1 + �2

∫ 1/2T

−1/2T
dτ1dτ2〈Tτ σ�(τ )σ †

�(0)Ô(τ1)Ô(τ2)〉. (D34)

We can divide the integration range into six configurations (assuming τ1 > τ2):

θ1 ≡ θ (τ1 > τ2 > τ > 0) :
∑
αα′

〈eτ1H0τα
�e(τ2−τ1 )H0τα′

� e−τ2H0σ�σ
†
�〉 = G(
τ ), (D35)

θ2 ≡ θ (τ > 0 > τ1 > τ2) :
∑
αα′

〈σ�σ
†
�eτ1H0τα

�e(τ2−τ1 )H0τα′
� e−τ2H0〉 = ωG(
τ ), (D36)

θ3 ≡ θ (τ > τ1 > τ2 > 0) :
∑
αα′

〈σ�eτ1H0τα
�e(τ2−τ1 )H0τα′

� e−τ2H0σ
†
�〉 = G(
τ ), (D37)

θ4 ≡ θ (τ1 > τ > 0 > τ2) :
∑
αα′

〈eτ1H0τα
�e−τ1H0σ�σ

†
�eτ2H0τα′

� e−τ2H0〉 = ω̄G(
τ ), (D38)

θ5 ≡ θ (τ > τ1 > 0 > τ2) :
∑
αα′

〈σ�eτ1H0τα
�e−τ1H0σ

†
�eτ2H0τα′

� e−τ2H0〉 = G(
τ ), (D39)

θ6 ≡ θ (τ1 > τ > τ2 > 0) :
∑
αα′

〈eτ1H0τα
�e−τ1H0σ�eτ2H0τα′

� e−τ2H0σ
†
�〉 = G(
τ ). (D40)
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Here, α, α′ = +1,−1, and we have used the σ�τ� = ωτ�σ�

and similar commutation relations to eliminate σ� and τ� and
express the correlators in terms of a single correlator (
τ ≡
τ1 − τ2):

G(
τ ) =
∑

α

∑
�

∏
h

〈exp[
τH0(�)]

× exp[−
τH0(� + 2πα)]〉, (D41)

which is the correlator that was computed in the previous
section. The integration over these ranges appears with an
integrand that is only a function of τ1 − τ2. Denoting

Ii ≡
∫

dτ1dτ2θiG(τ1 − τ2), (D42)

we have typical integrals of the form

I ∼ τ

∫ τ

0
d
τG(
τ ), G(
τ ) ∼ |
τ |−κ , (D43)

in terms of κ defined before, which gives us

〈σ�(τ )σ †
�(0)〉 ∼ 1 + C ′′�2τ 2−κ , (D44)

where C ′′ is another constant. This demonstrates that the
〈σ�(τ )σ�(0)〉 correlator disorders at the deconfinement quan-
tum phase transition, defined by κ = 2.
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