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Anisotropic supercurrent due to inhomogeneous magnetization
in ferromagnet/superconductor junctions
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We investigate transverse charge and spin dc supercurrents in a ferromagnet coupled to a superconductor where
the ferromagnet has inhomogeneous magnetic structure. These transverse supercurrents arise from nontrivial
structure of the magnetization. The magnetic structure manifested in the transverse charge supercurrent is
essentially different from that discussed in the context of anomalous Hall effect, reflecting the dissipationless
nature of supercurrent. Possible candidates of magnetic structure to verify our prediction are also discussed.
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I. INTRODUCTION

The interplay between superconductivity and ferromag-
netism has received much attention [1–10]. In particular, gen-
eration of spin-triplet pairing in ferromagnet/superconductor
junction is of paramount importance [11]. Equal-spin triplet
pairing emerges due to spin flip scattering in ferromagnetic
multilayer or inhomogeneous ferromagnet. Spin-polarized
supercurrent, carried by equal-spin triplet pairing, is an ingre-
dient for spintronics applications. Several experiments have
successfully demonstrated the presence of spin-triplet pairing
by observing Josephson current through strong ferromagnet
[12–14]. In ferromagnetic Josephson junctions, longitudinal
Josephson current has been investigated [8,15–20]. More re-
cently, transverse (Hall) Josephson current has been predicted
in ferromagnetic Josephson junctions which stems from triplet
superconductivity [21] or spin orbit couplings [22–24].

The Hall effect in ferromagnet has been discussed in-
tensively in the context of anomalous Hall effect [25]. The
anomalous Hall effect arises from nontrivial spin structure,
which is associated with the spin Berry phase effect [26–30].
It is shown that the Hall conductivity contains the terms stem-
ming from nontrivial spin configurations such as vector spin
chirality Si × S j [31] and scalar spin chirality Si · (S j × Sk )
[29], where Si is a localized spin with position i. Nontrivial
spin structures also give rise to dissipationless spin current
[32–39]. Motivated by these studies, in this paper, we con-
sider transverse supercurrent driven by nontrivial magnetic
structure under phase gradient. Since the phase is odd in
time reversal, the magnetic structure manifested in transverse
supercurrent becomes essentially different from that in the
anomalous Hall effect.

In this paper, we study transverse charge and spin dc super-
currents in a ferromagnet coupled to a superconductor where
the ferromagnet has inhomogeneous magnetic structure. Ana-
lytic expressions of the transverse supercurrents are obtained
based on perturbative calculation. The transverse supercur-
rents arise from nontrivial structure of the magnetization.

The magnetic structure manifested in the transverse charge
supercurrent is essentially different from that discussed in the
context of anomalous Hall effect, reflecting the dissipation-
less nature of supercurrent. Possible candidates of magnetic
structure to verify our prediction are discussed.

II. FORMULATION

We consider a ferromagnet/superconductor junction (see
Fig. 1). The Hamiltonian of the superconductor and the fer-
romagnet are given by HS = H0 + H� and HF = H0 + Hex +
Hϕ , respectively. The H0, H�, and Hex represent the kinetic
energy, the superconducting order, and the exchange inter-
action between the conducting electron and the local spins,
respectively:

H0 =
∑

k

φ
†
kξτ3φk, (1)

H� =
∑

k

φ
†
k�τ2φk, (2)

Hex = −J
∑
k,q

(φ†
k−qσφk ) · nq (3)

with ξ = εk − εF ≡ h̄2k2

2m − εF and φ
†
k = (c†

k↑, c†
k↓, ic−k↓,

−ic−k↑) where σ and τ are Pauli matrices in spin and Nambu
spaces, respectively. εF , �, J , and n are the Fermi energy,
the gap function, the exchange coupling, and the unit vector
pointing in the direction of the local spins, respectively. The
localized spins can have spatial dependence, but we con-
sider only the slowly varying case compared to the Fermi
wavelength. Note that we adopt the basis in Ref. [40] such
that singlet pairing is proportional to the unit matrix in spin
space. We consider supercurrent induced by phase gradi-
ent. The phase gradient along j direction, ∇ jϕ, enters the
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FIG. 1. Schematic illustration of the ferromagnet/
superconductor junction.

Hamiltonian as

Hϕ =
∑

k

φ
†
k

h̄2

m
kj∇ jϕφk (4)

where ∇ jϕ is assumed to be spatially constant. We will treat
Hex and Hϕ perturbatively. With the above Hamiltonians, the
charge ( jc) and spin ( js) current operators in the i direction
read

jc,i = −eh̄

m
ki − δi j

eh̄

m
∇ jϕτ3, (5)

jαs,i = h̄2

2m
kiτ3σ

α + δi j
h̄2

2m
∇ jϕσα (6)

where −e is the electron charge and α denotes the direction of
spin.

III. RESULTS

Before proceeding to the explicit calculation, let us discuss
transverse supercurrents qualitatively based on the time-
reversal symmetry [41]. Consider the London equation,

jc = −e2

m
ρ · A, (7)

where jc, ρ, and A are, respectively, the charge current,
the superfluid density tensor, and the vector potential. Since
the charge current and the vector potential are time-reversal
odd, ρ describes the reversible and dissipationless flow of
the supercurrent. Thus, the transverse current can flow with-
out breaking time-reversal symmetry. Namely, the transverse
current is allowed in even-order perturbation with respect
to time-reversal breaking term Hex. This contrasts with the
anomalous Hall effect [29] where the Hall current is driven
by the electric field which is even under time reversal. Thus,
one can expect essentially different magnetic structure mani-
fested in the transverse supercurrent. Similarly, let us consider
response equation of spin current,

js = h̄e

2m
ρ ′ · A, (8)

where js and ρ ′ are the spin current and the superfluid density
tensor for spin current, respectively. Since spin current is even
under time reversal, ρ ′ relates quantities of different symme-
tries under time reversal. Thus, the time-reversal symmetry
should be broken to produce finite spin current within the
linear response. Since ρ ′ contains time-reversal breaking per-
turbation Hex, this argument indicates that spin current appears
only in odd-order perturbation with respect to the exchange
interaction.

(a)

(b)

(c)

FIG. 2. Diagrammatic representations of the current densities.
Diagrams (a) describe first order contributions in J , (b) second-order
contributions and (c) third-order contributions. The wavy lines de-
note the interaction with the local spin n and dotted lines represent
the phase gradient ∇ϕ. The last diagrams in (a), (b), and (c) corre-
spond to the second terms in Eqs. (5) and (6).

Now, we calculate transverse supercurrents and give their
analytical expressions. Our central results are Eqs. (10), (11),
(13), and (14). We consider the unperturbed advanced scalar
Green’s functions in the ferromagnet of the form ga

k,ω =
ga

0,k,ω + ga
3,k,ωτ3 + f a

k,ωτ2 where ga
0,k,ω and ga

3,k,ω are normal
Green’s functions while f a

k,ω is the anomalous Green’s func-
tion. The anomalous Green’s function in the ferromagnet
arises due to the proximity effect. We take into account Hex

up to the third order and Hϕ as a first order perturbation.
Diagrammatic representations of the transverse currents are
shown in Fig. 2. We first consider transverse charge supercur-
rent which can be represented as [42].

jc,i = ih̄2e

mV

∑
k,q

e−iq·xTrkiG
<
k−q/2,k+q/2(t, t )

+ δi j
ih̄2e

mV
∇ jϕ

∑
k,q

e−iq·xTrτ3G<
k−q/2,k+q/2(t, t ) (9)

where V is the total volume and Tr is taken over spin and
Nambu spaces. G<

k−q/2,k+q/2(t, t ) is the lesser Green’s func-
tion of the total Hamiltonian. Performing perturbation with
respect to Hex and Hϕ , we expand the lesser component using
the advanced Green’s functions by the Langreth theorem [42].
Noting that g<

k,ω = fω[ga
k,ω − (ga

k,ω )†] with the lesser Green’s
function g<

k,ω and the Fermi distribution function fω, and δi j =
∂ki
∂k j

, we can compute the transverse charge and spin supercur-
rents (see Appendix for details). The first order expansion in
J vanishes since the Green’s function is proportional to the
unit matrix in the spin space. Then, the leading term of the
transverse charge current (i �= j) is in the second order in J .

104514-2



ANISOTROPIC SUPERCURRENT DUE TO INHOMOGENEOUS … PHYSICAL REVIEW B 104, 104514 (2021)

The current reads

jc,i ∼= −eh̄

m
ρi j∇ jϕ, (10)

ρi j = δi j
512

3
J2

∑
k,ω

fωIm
(

f a
k,ω

)2{
5
(
ga

0,k,ω

)2 + (
f a
k,ω

)2 + (
ga

3,k,ω

)2} − δi j (∇2n(x) · n(x))
64h̄3

9V m
J2

∑
k,ω

fωIm

× [
ε2

k

(
f a
k,ω

)2{
15

(
ga

0,k,ω

)4 − 2
(
ga

0,k,ω

)2{
7
(

f a
k,ω

)2 − 33
(
ga

3,k,ω

)2} − {(
f a
k,ω

)2 + (
ga

3,k,ω

)2}2} + 24εk

(
f a
k,ω

)2(
ga

0,k,ω

)2
ga

3,k,ω

]
+ (∇in(x) · ∇ jn(x))

128h̄3

9V m
J2

∑
k,ω

fωIm
[
ε2

k

(
f a
k,ω

)2{
15

(
ga

0,k,ω

)4 − 2
(
ga

0,k,ω

)2{
7
(

f a
k,ω

)2 − 33
(
ga

3,k,ω

)2}

− {(
f a
k,ω

)2 + (
ga

3,k,ω

)2}2} + 12εk

(
f a
k,ω

)2(
ga

0,k,ω

)2
ga

3,k,ω

]
. (11)

If the anomalous Green’s function f a
k,ω becomes zero, then ρ = 0 as expected. We have also found by the explicit calculation

that the third order perturbation with respect to J does not contribute to the transverse current. Thus, up to the third order in J ,
only second order perturbation with respect to J remains finite as expected from the above argument based on the time-reversal
symmetry. It is also seen from Eq. (10) that the superfluid density tensor is symmetric: ρi j = ρ ji. Therefore, there is no Hall
effect in our setup.

Next, we will calculate transverse spin supercurrent. The spin current is calculated as

jαs,i = − ih̄3

2mV

∑
k,q

e−iq·xTrkiτ3σ
αG<

k−q/2,k+q/2(t, t ) − δi j
ih̄3

2mV
∇ jϕ

∑
k,q

e−iq·xTrσαG<
k−q/2,k+q/2(t, t ). (12)

In the first order in J , the spin current is represented as

jαs,i ∼= h̄2

2m
ρ ′

i j∇ jϕ (13)

ρ ′
i j = δi j

32h̄3

3V m
∇2nα (x)

∑
k,ω

fωIm

[
εk

(
1 + 8

3
εkga

3,k,ω

)(
f a
k,ω

)2{−(
ga

0,k,ω

)2 + (
f a
k,ω

)2 + (
ga

3,k,ω

)2}]

+ 32h̄3

3V m
∇i∇ jn

α (x)
∑
k,ω

fωIm

[
εk

(
1 + 8(1 + δi j )

3
εkga

3,k,ω

)(
f a
k,ω

)2{−(
ga

0,k,ω

)2 + (
f a
k,ω

)2 + (
ga

3,k,ω

)2}]
. (14)

It is seen that when the anomalous Green’s function f a
k,ω

becomes zero, then ρ ′ = 0. By the explicit calculation, we
also find that the second order term with respect to J van-
ishes, which is consistent with the above argument based on
the time-reversal symmetry. The third order expansion with
respect to J yields finite contribution to the transverse spin
current. The detailed expression is quite complicated and
hence omitted here. The transverse spin current in the third
order in J has the form,

jαs,i = J3[A′∇i∇ jnα (x) + B′(∇in(x) · ∇ jn(x))nα (x)]∇ jϕ,

(15)

where A′ and B′ depend solely on junction parameters. Also,
we find that the superfluid density tensor for spin current is
symmetric: ρ ′

i j = ρ ′
ji. Hence, there is no Hall effect for spin

supercurrent.
Therefore, under the phase gradient in the x direction, up

to the third order in J , we have the transverse charge and spin
supercurrents in the y direction driven by magnetic structure

of the form:

jc,y = −eh̄

m
J2ρc(∂xn(x) · ∂yn(x))∇xϕ, (16)

jαs,y =
[(

h̄2

2m
Jρs + J3A′

)
∂x∂ynα (x)

+ J3B′(∂xn(x) · ∂yn(x))nα (x)

]
∇xϕ. (17)

These structures contrast with the normal Hall current in the
ferromagnet: In the normal state, the Hall current is driven by
scalar spin chirality under electric field [29]

jc,y ∝
(

∂

∂x
n(x) × ∂

∂y
n(x)

)
· n(x). (18)

Equilibrium spin current driven by inhomogeneous magnetic
structure in the normal state is given by [37]

jαs,y ∝
(

∂

∂y
n(x) × n(x)

)α

. (19)

By comparing Eq. (16) and Eq. (17), and Eq. (18) and
Eq. (19), we find essentially different magnetic structures
required for transverse supercurrents, which reflects the fact
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(a) (b)

(c)

FIG. 3. (a) Magnetization vector n. (b) Vortex spin structure.
(c) Conical spin structure. The transverse supercurrents under the
phase gradient arise in these spin structures.

that supercurrent flows in response to phase gradient, the
dissipationless nature of supercurrent.

Now, we discuss possible candidates of magnetic struc-
ture to verify our prediction. First, the magnetization vector
n(x) should have both x and y dependence. To observe the
transverse charge supercurrent, ∂xn(x) and ∂yn(x), both per-
pendicular to n(x), should not be perpendicular to each other
[see Fig. 3(a)]. One possible candidate is a spin vortex struc-
ture (or magnetic skyrmions in chiral magnets [43–46]) as
shown in Fig. 3(b) where n(x) is characterized by n(x) =
1
a (x, y,

√
a2 − x2 − y2) with a real constant a. Then, we have

∂

∂x
n(x) · ∂

∂y
n(x) = xy

a2(a2 − x2 − y2)
, (20)

∂2

∂x∂y
n(x) = 1

a

(
0, 0,

−xy

(a2 − x2 − y2)3/2

)
. (21)

For xy �= 0, we obtain nonzero transverse supercurrents. A
conical ferromagnet, as illustrated in Fig. 3(c), is another
candidate ferromagnet. The magnetization vector n(x) can be
written as n(x) = 1√

1+b2 (cos(Q · x), sin(Q · x), b) where Q is
a magnetic vector and b is a real constant. Then, we have

∂

∂x
n(x) · ∂

∂y
n(x) = QxQy

1 + b2
, (22)

∂2

∂x∂y
n(x) = −QxQy

1√
1 + b2

(cos(Q · x), sin(Q · x), 0).

(23)

Therefore, for QxQy �= 0, we obtain finite transverse super
currents.

Since the Josephson junction composed of a conical fer-
romagnet Ho has been fabricated [14], our prediction could
be confirmed by junctions with this material in four-terminal
geometry. The presence of the predicted transverse spin cur-
rent could be probed experimentally by conversion into an

electrical signal via the inverse spin Hall effect (by inject-
ing the spin current into a spin-orbit coupled normal metal)
[47,48]. The transverse currents reflect a local magnetic tex-
ture. Local measurement of these currents can be used to
determine the magnetization profile.

When the proximity effect is strong such that the Green’s
functions in the ferromagnet have the same form as those in
the bulk superconductor:

ga
k,ω = ω − iγ + ξτ3 + �τ2

(ω − iγ )2 − ξ 2 − �2
(24)

where γ is the inelastic scattering rate by impurities, the
transverse charge current Eq. (16) can be reduced to

jc,y ∼= 0.06 × 64eh̄3

9m2

νε2
F

�4
J2(∂xn(x) · ∂yn(x))∇xϕ (25)

for γ � � at zero temperature where ν is the density of
states at the Fermi level. Let us estimate the transverse
current for conical ferromagnet using Eqs. (22) and (25).
For εF ∼ 1 eV, J ∼ 1 meV, b = 1/ tan(4π/9) ∼= 40, ∇xϕ ∼
(100 nm)−1, Qx

∼= Qy ∼ (1 nm)−1, ν ∼ 0.1/eV/unit cell,
� ∼ 1 meV, and the lattice constant ∼5 Å, we estimate the
magnitude of the current as jc,y ∼ 3 × 108 A/cm2.

Spin Hall effect due to the Rashba-type spin-orbit coupling
in superconductors [49] or Josephson junctions [50] has been
discussed. In this paper, we have predicted transverse super-
current driven by nontrivial magnetic structure, and hence our
results do not rely on spin-orbit coupling. In Ref. [50], spin
Hall effect is obtained by applying electric bias to the Joseph-
son junction in order to make the current time dependent.
In stark contrast, we have considered stationary supercurrent
under nontrivial magnetic structure when a phase gradient is
applied.

Generation of dissipationless spin current has been also
predicted in nontrivial spin structures such as interfaces be-
tween two ferromagnets in the normal states [32–39]. The
mechanism proposed in this paper is completely different: It
requires both a gradient in spin space and a phase gradient,
and the resulting spin current is carried by Cooper pairs.

IV. CONCLUSIONS

In summary, we have studied transverse charge and spin
supercurrents in a ferromagnet coupled to a superconductor
where the ferromagnet has inhomogeneous magnetization.
The transverse supercurrents stem from nontrivial structure
of the magnetization. The magnetic structure manifested in
the transverse charge supercurrent is essentially different from
that discussed in the context of anomalous Hall effect, reflect-
ing the dissipationless nature of supercurrent.
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APPENDIX

Here, we present some details of the calculations of charge and spin supercurrents. We focus on the off-diagonal components
(i �= j). Diagonal components can be calculated in a similar way. The charge supercurrent corresponding to Fig. 2(b) reads

jc,i = 2ih̄2e

mV

h̄2

m
J2

∑
k,q,q′,ω

e−iq·x∇ jϕnq′ · nq−q′Trki

⎡
⎢⎣

gk−q/2,ω(k − q/2) jgk−q/2,ωgk−q/2+q′,ωgk+q/2,ω

+gk−q/2,ωgk−q/2+q′,ω(k − q/2 + q′) jgk−q/2+q′,ωgk+q/2,ω

+gk−q/2,ωgk−q/2+q′,ωgk+q/2,ω(k + q/2) jgk+q/2,ω

⎤
⎥⎦

<

+ δi j
ih̄2e

mV
J2∇ jϕ

∑
k,q,q′,ω

e−iq·xnq′ · nq−q′Trτ3[gk−q/2,ωgk−q/2+q′,ωgk+q/2,ω]<. (A1)

We expand the lesser component using the advanced Green’s functions by the Langreth theorem [42]. Noting that g<
k,ω =

fω[ga
k,ω − (ga

k,ω )†] with the lesser Green’s function g<
k,ω and δi j = ∂ki

∂k j
, and expanding the Green’s functions up to the second

order of spatial gradient of the local spins, we obtain

jc,i = −4h̄2eJ2

mV

∑
k,q,q′,ω

e−iq·x∇ jϕnq′ · nq−q′ fω

×ImTr
h̄2

m
ki

[
2kik2

j qi
′q j

′( h̄2

m

)2{
4
(
ga

k,ω

)5
τ3ga

k,ωτ3 + (
ga

k,ω

)4
τ3

(
ga

k,ω

)2
τ3

−2τ3ga
k,ωτ3

(
ga

k,ω

)2
τ3ga

k,ωτ3
(
ga

k,ω

)2 − 3τ3
(
ga

k,ω

)2
τ3ga

k,ωτ3ga
k,ωτ3

(
ga

k,ω

)2}
+2

h̄2

m
kiqi

′q j
′{(ga

k,ω

)5
τ3 − τ3

(
ga

k,ω

)2
τ3ga

k,ωτ3
(
ga

k,ω

)2}]
(A2)

which reduces to Eqs. (10) and (11) by taking the trace.
The spin supercurrent corresponding to Fig. 2(a) reads

jαs,i = − ih̄5J

m2V
∇ jϕ

∑
k,q,ω

e−iq·xnα
qTrkiτ3[gk−q/2,ω(k − q/2) jgk−q/2,ωgk+q/2,ω + gk−q/2,ωgk+q/2(k + q/2) jgk+q/2,ω]

<

− δi j
ih̄5J

m2V
∇ jϕ

∑
k,q,ω

e−iq·xnα
qTr[gk−q/2,ωgk+q/2,ω]<. (A3)

In a way similar to the charge supercurrent, we have

jαs,i = 2h̄5J

m2V
∇ jϕ

∑
k,q,ω

e−iq·xnα
q fωImTr

⎡
⎣2k2

i k2
j qiq j

(
h̄2

m

)2(
τ3ga

k,ωτ3ga
k,ωτ3

(
ga

k,ω

)3 − τ3
(
ga

k,ω

)2
τ3ga

k,ωτ3
(
ga

k,ω

)2)

+k2
i qiq j

h̄2

m

(
τ3ga

k,ωτ3
(
ga

k,ω

)3 − τ3
(
ga

k,ω

)2
τ3

(
ga

k,ω

)2)

⎤
⎦ (A4)

which reduces to Eqs. (13) and (14) by taking the trace.
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