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We study the effects of various symmetry-breaking perturbations on the experimentally measurable signatures
(such as conductance and Josephson response) of quasi-one-dimensional (quasi-1D) spin-triplet superconduc-
tors. In the first part of the paper, we numerically compute the zero and nonzero temperature conductances of
the quasi-1D nanowires that host multiple Majorana zero modes. Following the discussion of the case of s-wave
Rashba nanowires, we shift to the main focus, i.e., multi-channel spin-triplet superconductors. Applying gate
voltages (which changes the symmetry of the spin-orbit coupling) as well as magnetic fields to the nanowire,
tunes the system between different symmetry classes by splitting the multiple Majorana zero modes. We study
how the conductance tracks the topological invariants and the spectra in all these cases. In the second part of the
paper, we study the effects of the symmetry-induced spectrum-breaking on the Andreev spectra of Josephson
junctions. Similar to the case of the conductance studies, we find that the spectrum shows multiple zero-energy
Andreev bound states in the highly symmetric case with mirror and chiral symmetries.
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I. INTRODUCTION

Majorana zero modes (MZMs) in topological supercon-
ductors [1–5] have generated significant interest because of
their potential utility in topological quantum computation [6].
For this purpose, proximity-induced topological supercon-
ductors based on semiconductors [7] have been considered
particularly convenient because of the large tunability result-
ing from the conventional nature of the constituents. However,
quasi-one-dimensional (quasi-1D) topological superconduc-
tors with the potential for harboring multiple MZMs, while
not ideal for quantum computation applications, are interest-
ing systems in their own right. According to the classification
table for topological systems [8], one-dimensional (1D) su-
perconductors can support Kramers pairs of Majoranas or
multiple Majoranas, where the systems are time-reversal
symmetric (class DIII) [9] or chiral symmetric (class BDI)
[10–12], respectively. While the proximity effect in wide
semiconductor nanowires can lead to multiple Majoranas in
class BDI for the appropriate spin-orbit coupling [13], class
DIII Majorana Kramers pairs are found to require interactions
to generate from spin-singlet proximity effect [14]. Multiple
MZMs have turned out to be particularly interesting because
of novel phenomena that can result from their interplay with
interactions. The most direct addition of interactions in this
case was shown to modify the Z invariant to Z8 [10]. Recently,
more interesting physics has been shown to arise from the
interplay of such multiple MZMs with random interactions
in the form of the Sachdev-Ye-Kitaev model [15]. From a
more pedestrian standpoint, details of experimental manifes-
tations, such as quantization of conductance or degeneracy
of Josephson spectra, are expected to be more intricate for

systems with multiple MZMs as compared to the ones with
single MZMs (that have dominated experimental attention so
far). Specifically, it has been shown [16] that the conductance
into a wire in the BDI symmetry class takes values that are
integer multiples of the quantum of conductance. Further-
more, perturbations that reduce the symmetry to class D also
reduce the conductance to the characteristic single quantum
of conductance or vanishing conductance, associated with the
Z2 topological invariant.

Quasi-1D superconductors, that may be viewed as weakly
coupled 1D chains [17] (as shown in Fig. 1), have been sug-
gested in several potential spin-triplet superconductors, such
as lithium purple bronze [18,19], Bechgaard salts [20–23], and
even possibly SrRuO4 [24]. Given the evidence for spin-triplet
pairing in these systems, in the form of high upper critical
fields, these materials have been conjectured to host MZMs
at the ends [25]. Their quasi-1D structure, composed of many
chains coupled by weak transverse hopping, suggests the pos-
sibility of one MZM from each of the chains. Recent work
shows [26] that in the cases of time-reversal (TR) invariant su-
perconductivity in the form of equal spin pairing (ESP), these
MZMs would not split, leading to the possibility of multiple
MZMs at the ends of these materials. Furthermore, spin-
triplet superconductors can support low-energy end modes
even in the absence of external perturbations such as magnetic
fields. This is different from topological superconductivity in
semiconductor systems [7], which despite being topologically
equivalent to p-wave superconductors in certain limits, cannot
realize time-reversal invariant phases without magnetic fields.
The flexibility of p-wave systems to realize highly symmetric
MZMs allows for topological superconductivity with a high
degree of symmetry. As shown earlier [26], the stability of the
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FIG. 1. Schematic representation of the generic system treated
in Sec. II. The strength of the tunnelling barrier is fixed at τ = 5 tx ,
where tx is the hopping along the chain direction. The superconduct-
ing system, as well as the leads, are quasi-1D in nature (ty << tx).

multiple MZMs depends on the variety of symmetries of the
systems and, therefore, in principle, can be split by a variety
of perturbations.

In this paper, we study the effect of various symmetry-
breaking perturbations on experimentally measurable sig-
natures of quasi-1D spin-triplet superconductors, such as
transport and Josephson response [27–30]. The fact that pris-
tine quasi-1D spin-triplet superconductors can host MZMs
with both time-reversal (class DIII) as well as chiral sym-
metry (class BDI) provides a rich playground for interaction
of multiple MZMs with different symmetries. External per-
turbations such as electric and magnetic fields can couple
the MZMs in various ways. Our study of the effect of
these perturbations on transport will lead to predictions that
experimentalists can use to establish these systems as a plat-
form for controlled multi-MZM systems. In the first part of
the paper (Sec. II), we numerically compute the zero and
nonzero temperature conductances of quasi-1D nanowires
that host multiple MZMs in the configuration depicted in
Fig. 1. For the purposes of reference, we start by review-
ing the results [16] on the conductance of the quasi-1D
s-wave Rashba nanowire, with parameters chosen such that
the system is in the BDI symmetry class. In this case,
we study how the conductance into the wire, as a func-
tion of density, tracks the band structure and the topological
invariant—it is shown to decouple into single nanowires with
modified chemical potentials that belong to the BDI class.
Following this (Sec. II B), we shift to the main focus, i.e.,
spin-triplet superconductors. We extend the class of perturba-
tions previously considered [26] and start with a model with
mirror, chiral, and TR symmetries. We systematically break
these symmetries by changing various spin-orbit coupling
terms that may be controlled by gate voltages and magnetic
fields. We study how the conductance tracks the topologi-
cal invariant and spectrum in all these cases. In the second
part of the paper (Sec. III), we study the effect of the
symmetry-induced spectrum breaking on the Andreev spectra
of Josephson junctions (JJs) [26]. Recent measurements have
demonstrated the ability to measure aspects of the Andreev
state spectrum in a JJ by two-tone spectroscopy [31,32].
Similar to the case of conductance, we show that the spec-

trum shows multiple zero-energy Andreev states in the highly
symmetric case with mirror and chiral symmetries.

II. DIFFERENTIAL CONDUCTANCE
WITH NORMAL LEADS

In this section, we analyze the behavior of the differential
conductance that can be detected using normal leads con-
nected to the first lattice sites of the system, as shown in
Fig. 1. Let tx be the hopping strength between the neighboring
sites in the same chain and ty be the hopping strength between
the neighboring sites in the neighboring chains. We consider
the limit ty � tx to model a quasi-1D chain. The leads are
modeled as having only hopping (of strength tx) and chemical
potential (μ j) terms corresponding to the single chains, and
they are represented by the Hamiltonian

Hleads = −tx

N�−1∑
i=1

Ny∑
j=1

�
†
i+1, j τz �i, j

−
(

τ tx

Ny∑
j=1

�
†
1, j τz ψ1, j + H.c.

)
. (2.1)

Here, τ is the strength of the tunneling barrier in units
of tx, and is set at 5 for the systems we analyze.
Furthermore, �

†
i, j = (d†

i, j,↑, d†
i, j,↓, di, j,↓,−di, j,↑) and ψ

†
�, j =

(c†
�, j,↑, c†

�, j,↓, c�, j,↓,−c�, j,↑) are the spinors belonging to the
lead and chain sites, respectively. The site indices (�, j) label
the fermions in the (x, y) strip, such that � ∈ [1, Nx] and j ∈
[1, Ny]. Lastly, σα and τα (α ∈ {x, y, z}) are the Pauli matrices
which act on the spin and particle-hole spaces, respectively.
In our numerics, we have taken the number of sites in each
chain (lead) to be Nx (N�) = 100, while the number of chains
is set to Ny = 3, corresponding to a three-channel lead. Energy
eigenvalues, voltages, and all the parameters in the Hamilto-
nian are expressed in units of tx. The conductance is calculated
in units of e2

h .
The zero temperature (T = 0) conductance G0(V ) has

been computed using the KWANT package [33] that uses the
scattering matrix formalism. These results are extended to
nonzero temperature (T > 0) conductance using the convo-
lution

GT (V ) =
∫

dE
dfε (T )

dε

∣∣∣
(E−V )

G0(E ), (2.2)

where fε (T ) = 1
eε/kT +1 is the Fermi function at temperature

T and energy ε, whose derivative with respect to energy is
carried out at the value (E − V ), energy being in units of
electron volts.

A. Rashba nanowire

We consider a multichannel 1D Rashba nanowire aligned
along the x axis, brought in contact with an s-wave super-
conductor, in the presence of an external magnetic field of
strength Vx applied in the x direction. This can be modeled as
an array of 1D chains coupled by a weak hopping amplitude,
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FIG. 2. We show the results for the quasi-1D Rashba nanowire described by Eq. (2.3), with 	s = 0.4, Vx = 0.8, α = 0.25, , ty = 0.1. The
first panel [including (a)–(c)] shows the correspondence between the spectrum, the invariant, and the zero-bias differential conductance, all
plotted as functions of the chemical potential μ. The remaining three panels [i.e., (d)–(f)] show the differential conductance as a function of
voltage for μ = −0.1, 0.725, and 0.8 respectively, at different temperature values (as shown in the plot legends). All the temperature values
are in units of tx .

with the Hamiltonian written below:

H =
Nx∑

�=1

Ny∑
j=1

ψ
†
�, j[{−μ + 2(tx + ty)}τz + 	sτx + Vxσx]ψ�, j

−
Nx−1∑
�=1

Ny∑
j=1

{
ψ

†
�+1, j (tx + i α σy)τz ψ�, j + H.c.

}

−
Nx∑

�=1

Ny−1∑
j=1

(
ψ

†
�, j+1 ty τz ψ�, j + H.c.

)
. (2.3)

Here, μ is the chemical potential, 	s is the magnitude of the
s-wave superconducting gap, and α is the spin-orbit coupling.
The system has a chiral symmetry operator S = σy τy, which
can used to off-block diagonalize the Hamiltonian [34] to the

form (
0 A(k)

AT (−k) 0
). The topological invariant is calculated

as [34]

Z = 1

2 π i

∫ k=π

k=−π

dθ (k), θ (k) = det (A(k))

| det (A(k))| . (2.4)

More details of this calculation are presented in the Appendix.

The topological behavior of the quasi-1D Rashba wire
described by Eq. (2.3) can be understood from the evolution of
the spectrum of the nanowire with a Zeeman field, as shown in
Fig. 2(a). The gap closures seen in this spectrum indicate the
presence of a sequence of six topological phase transitions. In
addition, for chemical potential in the range 0.75 � μ � 1.5,
one can see Andreev bound states [35–41] as states that have
peeled off below the continuum of states. These states are
similar to those obtained in single channel nanowires in the
absence of any lead quantum dot, and have an energy that
approaches zero at the phase transitions [36–41].

The topological phase transitions seen in Fig. 2(a) are not
accompanied by a change in symmetry. Rather, they corre-
spond to changes in the topological invariant that is calculated
using Eq. (2.4) and plotted in Fig. 2(b). We see that the
topological invariant changes between consecutive integer
values. As the chemical potential crosses each phase transi-
tion, we observe the corresponding gap closures in Fig. 2(a),
as expected for topological phase transitions. The range of
integer values (i.e., from zero to three) for the topological
invariant in this system can be understood from the fact
that the normal state (i.e., 	s = 0) of the isolated system
can be decomposed into a sequence of three subbands with
different wave-function profiles in the y direction. Adding
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superconductivity does not couple these bands, and hence
the Hamiltonian in Eq. (2.3) describes a stack of decoupled
topological nanowires, with their normal state bands shifted
relative to each other. The applied Zeeman field splits the
spin components of each of these subbands in a way such
that they are topological in a range of chemical potentials,
where one of these spin-split bands is occupied. Because the
Zeeman splitting of the electrons for Vx = 2 is larger than this
separation between the various subbands, changing chemical
potential can sequentially drive all of them into a topological
phase, before the lowest subband gets both its spins occupied.
This leads to a situation where the number of topological
bands can increase to three before decreasing back to zero
[42]. While the results for the topological invariant in this sub-
section can be understood from the subband decomposition of
the Hamiltonian in Eq. (2.3), in later subsections we will find
that the presence of chiral symmetry protects the topological
invariant from small perturbations that couple the subbands.

While the topological invariant, plotted in Fig. 2(b), is not
directly measurable in experiments, one can see the evidence
for this invariant in the zero-bias conductance, plotted in
Fig. 2(c). We observe that the zero-temperature zero-bias con-
ductance tracks the integer topological invariant in Fig. 2(b)
quite closely. The quantization of the conductance here rep-
resents the topological invariant, despite the fact that the
tunneling Hamiltonian from the lead [Eq. (2.1)] couples the
different channels, which we used in the previous paragraph
to understand the integer values. Thus, measuring the zero-
bias conductance at low enough temperatures can provide
insights into the topological phase diagram of such a wire.
Furthermore, the Andreev bound states (ABSs) do not appear
to affect the value of the zero-bias conductance peak (ZBCP)
for the parameters of our calculation. Figure 2(c) tracks the
change of the conductance with a rise in temperatures. We
find that the conductance values are lowered as the temper-
ature is increased. However, even at T = 4.3 × 10−3 tx, the
phase-transition points can be identified from the conductance
plots, though the conductance is significantly reduced from
the correct quantized value.

The thermal-suppression of the zero-bias conductance, as
seen in Fig. 2(c), can be understood by considering the con-
ductance as a function of voltage for different temperatures.
One sees from Fig. 2(d) (plotted for μ = 0.1) that the temper-
ature suppression arises from a broadening of the zero-bias
peak with temperature. The conductance as a function of volt-
age at two other values of μ (viz. μ = 0.725 and 0.8), plotted
in Figs. 2(e) and 2(f), shows a similar thermal suppression.
Interestingly, this thermal-suppression effect appears to be
weaker in the case of the smaller conductance peaks, which
are associated with fewer MZMs. This is accompanied by
narrower zero-bias peak widths for the case of larger number
of MZMs. These observations suggest that the extra MZMs,
that occur in the case of a larger number of modes, are coupled
to the lead with a weaker tunneling amplitude.

This behavior is found in all the cases examined in this pa-
per. The T = 0 plot in Fig. 2(e) shows sharp peaks away from
the zero voltage, which are associated with the bulk states
that are quantized by finite size effects. The width of these
resonances are suppressed because of the weak tunneling of
these states across the tunnel barrier. These narrow peaks

associated with the subgap states are washed away at higher
temperatures. Furthermore, Fig. 2(f) shows additional broad
peaks, away from zero energy but below the superconducting
gap. These peaks are associated with finite-energy ABSs, the
evidence of which is seen in the spectrum in Fig. 2(a). The
ABSs that result from splitting of the MZMs are localized near
the end of the wire and therefore couple strongly to the leads,
resulting in larger broadening compared to the subgap states.
As expected, these extra states do not change the zero-bias
conductance, which is controlled by the topological invariant.

B. p-wave superconductors

We will now consider the main focus of this paper, i.e.,
TR-invariant topological superconductors [26] that can be
realized by spin-triplet pairing, exhibiting ESP p-wave super-
conductivity. These properties are conjectured to be present
in the quasi-1D transition metal oxide Li0.9Mo6O17 and some
organic superconductors [18–23]. The hopping integrals along
the crystallographic directions of these materials vary as tx �
ty � tz, making them quasi-1D conductors.

The triplet (S = 1) superconductivity of the p-wave wire
can be represented by a matrix pair potential 	αβ (k) =
	[d(k) · σ]αβ , where k = kx is the 1D crystal-momentum.
The nature of the triplet component characterized by the vec-
tor d is odd [i.e., d(k) = −d(−k)], while 	 represents the
magnitude. Here, we choose d(k) = d (k)(0, 0, 1), i.e., along
the z direction in the spin space. The superconducting term in
real space is then of the form i 	(c†

�+1,↑ c†
�,↑ + c†

�+1,↓ c†
�,↓) +

H.c. This choice of the d vector represents a TR-invariant
superconductor containing the ESP spin-triplet p-wave state.

The bulk Hamiltonian for a p-wave superconducting chain,
with the order parameter described in the previous paragraph,
can be written in the Nambu basis (defined with the spinor
k = (ck,↑, ck,↓, c†

−k,↓,−c†
−k,↑)T ) as

H1D
k (μ,	, V, αR)

= [ ε(k) − μ + 2 tx ]σ0τz + 	 sin k σz τx + HZ + HSO.

(2.5)

Here, ε(k) = −2 tx cos k is the single-particle kinetic energy
and 	 sin k is the p-wave superconducting order parameter. In
addition to p-wave superconductivity, the above Hamiltonian
allows us to consider the effect of an electric-field-induced
inversion-symmetry breaking spin-orbit interaction (SOI)
term aligned in an arbitrary direction a in the spin space. This
is written as

HSO = αR sin k(a · σ)τz. (2.6)

The Hamiltonian also allows us to consider the breaking of TR
symmetry, through the Zeeman effect of an applied magnetic
field, that is captured by the term

HZ = (V · σ )τ0. (2.7)

The single-chain p-wave Hamiltonian described above can
be generalized to model a quasi-1D system that is more
relevant to the experimental materials (such as Li0.9Mo6O17

[18,19]) by coupling multiple copies of Eq. (2.5) into a
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multichannel Hamiltonian, that is written as

HQ1D
k; j j′ =H1D

k, jδ j, j′ + Hy
j, j′ ,

H1D
k, j =H1D

k

(
μ j,	 j, V j, α

j
R

)
. (2.8)

The different chains in this quasi-1D bundle are coupled
together with an amplitude ty, given by the y-directional
Hamiltonian

Hy
j, j′ = − ty τz(δ j, j′+1 + δ j, j′−1)

+ i α′
R σy τz(δ j, j′+1 − δ j, j′−1), (2.9)

where α′
R represents the magnitude of the interchain Rashba

SOI. As we saw in the last subsection, coupling identical
chains leads to an artificial decoupling of subbands that can
lead to nongeneric results. For this reason, we have intro-
duced a j dependence of the parameters of the single chains
O j = μ j,	 j, V j, α

j
R, which is assumed to be of the form

O j = Ō(1 − j̃ γ ), (2.10)

where Ō is the average value of the parameters, γ = 0.1, and
j̃ = j − 2.

Combining all the ingredients discussed in this subsection
so far, the total Hamiltonian in Eq. (2.8) can be explicitly
written out in the position space as

H =
Nx∑

�=1

Ny∑
j=1

ψ
†
�, j

[{2(tx + ty) − μ j}τz + V j · σ
]
ψ�, j −

Nx−1∑
�=1

Ny∑
j=1

[
ψ

†
�+1, j

{
tx τz + i 	 j

2
σz τx + i α j

R

2
(a · σ)τz

}
ψ�, j + H.c.

]

−
Nx∑

�=1

Ny−1∑
j=1

{
ψ

†
�, j+1( ty τz − i α′

R σy τz )ψ�, j + H.c.
}
.

The above Hamiltonian, in addition to obeying particle-
hole symmetry P = σyτyK (and taking k → −k) that applies
to any superconductor, obeys a TR symmetry for V = 0. The
corresponding TR operator is T = i σy K (plus performing
the operation k → −k), K here denotes complex conjugation.
In addition, depending on the presence or absence of spin
conservation (the latter caused by SOI) or inversion symmetry,
the system can possess various mirror or chiral symmetries.
This makes the p-wave system particularly interesting because
it allows, in principle, turning the various symmetries on or of
by applying electric and magnetic fields, while all the while
remaining in the topological phase.

We now study the signatures of the symmetry breaking
phenomena in this topological p-wave superconductor in the
subsubsections below. Specifically, we will compute the re-
sults for the spectrum, topological invariant, and conductance,
similar to what we reviewed in the more familiar and sim-
pler case of the Rashba nanowire in the previous subsection
(illustrated in Fig. 2). For our numerics, we will choose the
superconducting pairing amplitude to be 	 = 0.5 (in units
where tx = 1), in addition to other parameters specified in the
relevant subsubsection.

1. Time-reversal and chiral symmetric case: V = α′
R = 0

The p-wave system of Eq. (2.8), with the restriction V =
α′

R = 0, is in the BDI symmetry class, similar to the Rashba
nanowire studied in Sec. II A. This has a chiral symmetry
operator S = σz τy, which is different though, compared to the
Rashba nanowire case.

The spectrum of the model as a function of μ is shown
in Fig. 3(a). This illustrates a sequence of bulk-gap clos-
ings, together with a set of zero-energy states, similar to the
Rashba nanowire case of Sec. II A. However, in this case,
we do not see significant subgap ABSs associated with the
ends. The evolution of the spectrum can again be understood

in terms of changing of the filling of subbands. Unlike the
Rashba nanowire case, both spin components of a subband
with p-wave filling are topological, with the same sign of the
topological invariant. This can be understood from the chiral
topological invariant, which is calculated analogous to the
Rashba nanowire case and is plotted in Fig. 3(b). From this
plot, we see that the topological invariant jumps from zero to
two as μ increases from μ ∼ 0. This regime corresponds to
both spin components of the lowest subband starting to fill.
The fact that the topological invariant increases from zero
to two indicates that both spin components of the subband

FIG. 3. For quasi-1D p-wave superconductors of Eq. (2.8), de-
scribed by the parameters ty = 0.1, αR = 0.25, α′

R = 0.0, V = 0,
and a = (0, 0, 1), the figure shows the correspondence between the
spectrum, the BDI invariant (associated with the chiral symmetry
operator σz τy), and the zero-bias differential conductance, all of
which have been plotted as functions of the chemical potential μ.
All the temperature values are in units of tx .
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contribute the same value to the topological invariant, which is
different from the case of the Rashba nanowire. The difference
can be understood in the simpler case with αR = 0, where the
Hamiltonian and the chiral symmetry S commute with the
mirror symmetry operator M = i(d̂ · σ )τ0 = σzτ0. M can thus
be used to define a mirror-invariant as well [43]. Thus a chiral
topological invariant can be computed for each σz = ±1. Fur-
thermore, the two sectors σz = ±1 can be mapped into each
other by σx, which commutes with S . This explains why the
two sectors have the same topological invariant. The inclusion
of nonzero αR does not break the chiral symmetry (though it
breaks the mirror symmetry), and therefore it cannot change
the topological invariant. In fact, numerical results for αR = 0
(not included here) appear qualitatively identical to Fig. 3.
The topological invariant begins to decreases at μ � 4, as the
Fermi level crosses the tops of the bands.

The topological invariant indicates the number of MZMs
that appear at each end of the system, which appear as
zero-energy states in the spectrum shown in Fig. 3(a). The
even-parity of the topological invariant can be understood
to be a consequence of the TR symmetry, which constrains
the MZMs to appear in Kramers pairs. The even number of
MZMs appear as zero-bias conductance, plotted in Fig. 3(c).
Similar to the case of the Rashba nanowire, the zero-bias
conductance closely tracks the number of MZMs and pro-
vides a measurable indication of the change of the topological
invariant (that cannot be measured directly). As in the case
of the Rashba nanowire, the temperature dependence of the
zero-bias conductance provides a sense of the energy scale
with which the MZMs couple to the leads. As before, we
find that the higher conductance peaks are more sensitive to
temperature.

2. Time-reversal broken chiral symmetric case: |a × ẑ| = α′
R = 0

The TR symmetry of the system, discussed in the pre-
vious subsubsection, can be broken by applying a Zeeman
field V = (0, 0.2, 0). The nanowire, however, still has chiral
symmetry, encoded by the operator S = σzτy. The breaking
of the TR symmetry splits the Kramer’s degeneracy of the
bulk states near the phase transitions seen in Fig. 4, such that
the three phase transitions for μ < 1 [seen in Fig. 3(a)] are
now split into six phase transitions [see Fig. 4(a)]. For the
parameters chosen, the splitting of some of the higher chem-
ical potential (μ > 3) transitions are too small to resolve. As
seen in Fig. 4(b), these split transitions are indeed topological
phase transitions, as they are accompanied by a change of
the topological invariant. The topological invariant, which is
identical to the one calculated in the last subsubsection, shows
integer jumps for μ < 1, as opposed to the double jumps seen
in the TR symmetric case discussed in the last subsubsection.

The MZMs that appear at the end because of the nontrivial
topological invariant are no longer required to be Kramers
degenerate. This allows both an even and odd number of
MZMs. This is apparent from the numerical result for the zero
bias conductance shown in Fig. 4(c), where we see that many
of the conductance steps that are multiples of 4e2/h split into
steps with height 2e2/h associated with individual MZMs.
Unfortunately, many of the smallest steps are washed out at
the lowest temperature of T ∼ 10 K.

FIG. 4. For quasi-1D p-wave superconductors of Eq. (2.8),
described by the parameters ty = 0.1, αR = 0.25, α′

R = 0, a =
(0, 0, 1), and V = (0, 0.2, 0), the figure shows the correspondence
between the spectrum, the BDI invariant (associated with the chiral
symmetry operator σz τy), and the zero-bias differential conductance,
all of which have been plotted as functions of the chemical potential
μ. All the temperature values are in units of tx .

3. Superconductors without symmetry

Changing the electric field symmetry of the system such
that either the intrachain Rashba coupling picks up a nonzero
component (causing |a × ẑ| 
= 0), and/or generates an inter-
chain α′

R 
= 0, breaks all the chiral symmetries of the system.
This places the system in symmetry class D [8], which is
the minimal symmetry for a superconductor, showing only
particle-hole symmetry. As seen from the spectrum plotted
in Fig. 5(a), this leads to a structure of bulk-gap closings
that is similar to Fig. 4(a) in the sense of showing six phase

FIG. 5. For quasi-1D p-wave superconductors of Eq. (2.8),
described by the parameters ty = 0.3, αR = 0.25, α′

R = 0, a =
(1, 1, 0), and V = (0, 0.1, 0.1), the figure shows the correspondence
between the spectrum, the Pfaffian invariant (as the system belongs
to class D), and the zero-bias differential conductance, all of which
have been plotted as functions of the chemical potential μ. All the
temperature values are in units of tx .
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transitions at low chemical potential values (μ < 2). In this
case, we also find six phase transitions above μ > 2.

However, unlike Fig. 4(a), the zero-energy states in
Fig. 4(a) both appear or disappear at the subsequent phase
transitions. This is consistent with the fact that the topological
invariant for class D is in group Z2 and therefore it takes only
two values given by [44] Q = 1−ν

2 , where

ν = sgn[P f (Q1) P f (Q2)],

Q1 = HQ1D(k)
∣∣∣
k=0

σy τy,

Q2 = HQ1D(k)
∣∣∣
k=π

σy τy. (2.11)

Here, P f (A) represents the Pfaffian of the matrix A [45].
The resulting topological invariant Q is plotted in Fig. 5(b),
which shows that the system alternates between a topological
phase (with one MZM at each end) and a trivial phase. Most
of the trivial phases, seen in Fig. 5(b), correspond to the
chemical potential range of Fig. 5(b) with an even value of
the chiral topological invariant. These regions in the spectrum
of Fig. 5(a) contain subgap states that result from splitting the
even number of MZMs by the breaking of chiral symmetry
with SOI.

As in the earlier cases, the plot of the zero-bias conduc-
tance shown in Fig. 5(c) indicates the topological invariant.
The topological region with invariant Q = 1 shows a conduc-
tance of 2e2/h, corresponding to a single MZM at each end
of the wire. The zero-bias conductance in this case shows a
stronger suppression with temperature compared to its chiral
symmetric counterpart in Fig. 4(c). This indicates that the
residual MZM is the one that couples weakest to the lead.

4. Time-reversal preserving case

Applying an electric field to generate an interchain Rashba
SOI (α′

R 
= 0), as well as an intrachain SOI (αR 
= 0), in the ab-
sence of a Zeeman field breaks all chiral and spin symmetries
without breaking TR symmetry. This leads to a supercon-
ductor in the symmetry class DIII. The symmetry class of
the system becomes apparent from the spectrum shown in
Fig. 6(a), which exhibits three phase transitions for μ � 1,
similar to the spectrum of the TR symmetric superconductor
shown in Fig. 4(a). However, the chiral symmetry present in
the case of Fig. 4(a) is broken here by the applied electric field.
As a result, the MZMs disappear at alternate phase transition
points, similar to the spectrum of the class D nanowires shown
in Fig. 5(a). Similar to the case of Sec. II B 3, the alternating
presence of MZMs can be understood from the topological in-
variant for this case, which can take two values [see Fig. 5(b)].
As in the other cases, the topological invariant only changes at
the phase transitions. The topological invariant for symmetry
class DIII, shown in Fig. 6(b), is calculated as Q = 1−ν

2 [46],
where

ν = det
(
UK

) P f
(
θ̂ (0)

)
P f

(
θ̂ (π )

) . (2.12)

Here, θ̂ (0) and θ̂ (π ) represent the matrix elements of the TR
operator T , in the basis of the occupied states, at k = 0 and
k = π , respectively. The matrix UK in this basis is given by

FIG. 6. For the quasi-1D p-wave superconductors of Eq. (2.8),
described by the parameters ty = 0.3, αR = 0.25, α′

R = 0.1, a =
(1, 1, 0), and V = 0, the figure shows the correspondence between
the spectrum, the DIII invariant (Q), and the zero-bias differential
conductance, all of which have been plotted as functions of the
chemical potential μ. All the temperature values are in units of tx .

the so-called Kato propagator [46],

UK (0, π ) = lim
n→∞

n∏
λ=0

Po(kλ), (2.13)

where Po(kλ) is the projector into the occupied bands (nega-
tive energy) and kλ = λ π

n .
The zero-bias conductance as a function of μ, which is

plotted in Fig. 6(c), provides a measurable indication of the
topological invariant. Similar to the previous subsubsection,
this correspondence is apparent from the fact that the zero-bias
conductance takes two values in the tunneling limit, corre-
sponding to the two values of the topological invariant. The
conductance in the topologically nontrivial regime takes a
value 4e2/h corresponding to two MZMs at each end. The
doubled value of the quantized conductance, in contrast with
the case in Sec. II B 3, is a result of the Kramers degeneracy
associated with TR symmetry. Relative to the spectrum of the
multiple Kramers pairs of MZMs shown in Fig. 3(a) (for the
chiral and TR symmetric p-wave superconductor), Kramers
pairs of ABSs or MZMs can be seen in the spectrum in
Fig. 6(a). Thus the DIII class topological invariant and the
structure of ABSs in Fig. 6 can be understood from the chiral
symmetric topological invariant at the corresponding values
of chemical potential in Fig. 3(b).

III. SIGNATURES OF MULTIPLE MZMS
IN ANDREEV SPECTROSCOPY

In this section, we focus on the effect of the symme-
try breaking on the ABS spectra of JJs of superconducting
nanowires. A JJ is created by introducing a weak link with
tunneling amplitude γ , which has negligible conductance
compared to the rest of the superconducting wire. We can
therefore assume that the supercurrent has a negligible con-
tribution to the superconducting phase drop around the wire,
which can be controlled by a flux loop [47]. The ABS
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FIG. 7. ABS spectrum of a quasi-1D Rashba nanowire with the
same parameters as in Fig. 2, as a function of the flux across a
Josephson junction. The ends of the multichain ring has a weak
coupling strength of γ = 0.1. The three panels have different values
of the chemical potential: μ = 0.1 (top), μ = −0.52 (middle), and
μ = 0.4 (bottom). The spectrum shows degeneracies of 6, 4, and 2,
at flux � = �0/2. These correspond to 3, 2, and 1 MZM(s) at each
end of the nanowire in the open boundary case, as seen in Fig. 2.

spectrum of a JJ generates features in the ac absorption that
can be measured by several techniques such as microwave-
spectroscopy [48] and two-tone spectroscopy [31,32].

Following the argument in the last paragraph, the super-
conducting phase difference φ across the JJ, generated by
the magnetic flux loops, is introduced through a modified
Hamiltonian corresponding to Eq. (2.8):

H =
Nx∑

�=1

Ny∑
j=1

ψ
†
�, j

(
(−μ + 2(tx + ty)) τz + 	s τ �

x + Vx σx
)
ψ�, j

−
Nx−1∑
�=1

Ny∑
j=1

{
ψ

†
�+1, j (tx + i α σy)τz ψ�, j + H.c.

}

−
Nx∑

�=1

Ny−1∑
j=1

(
ψ

†
�, j+1 ty τz ψ�, j + H.c.

)

− γ

Ny∑
j=1

(
ψ

†
Nx, j τz ψ1, j + H.c.

)
, (3.1)

where τ �
x = ( 0 ei � φ/Nx

e−i � φ/Nx 0 ). Furthermore, the phase differ-
ence φ across the JJ is controlled by the magnetic flux � in
the superconducting loop through the relation φ = 2 π �/�0,
where �0 = h c

2 e is the superconducting flux quantum. The �

dependence of the matrix τ �
x can be understood as a winding of

the superconducting phase around the loop, which is needed
to ensure that the superconducting phase difference between
the ends � = 1 and � = Nx of the JJ is equal to �.

The ABS spectrum of the above Hamiltonian is plotted
in Fig. 7 for several chemical potential values and it shows
zero-energy crossings at φ

2 π
= 1/2. The class BDI topological

invariant for the bulk Hamiltonian, with the same parameters
as used to plot the spectrum in Fig. 2, shows clearly that the
number of zero-energy ABSs at φ

2 π
= 1/2, for the different

chemical potentials, is twice the topological invariant. This

can be understood by noting that, prior to introducing the
tunnel coupling (i.e., at γ = 0), the topological invariant in
the BDI symmetry class equals the number of MZMs at each
end of the JJ. Introducing the tunnel coupling γ across the
JJ splits the pairs of MZMs into ABSs with energies that are
typically nonzero, except at φ = π .

We can understand the above argument more explicitly by

applying a gauge transformation, U = e
i � φ τz
2 Nx , to each site � of

the lattice. This eliminates the � dependence of the SC phase
in τ �

x , in favor of introducing a phase ei φ τz/2 into the tunneling
term proportional to γ [in Eq. (3.1)]. Then this term becomes
proportional to i γ for phase φ = π . Since this term commutes
with the chirality operator S = σy τy (see Sec. II A) and the
MZMs for the BDI class are eigenstates of S with eigenvalues
S = ±1 in the absence of tunneling (i.e., γ = 0), these MZMs
cannot be hybridized by the coupling γ at phase φ = π . As a
result, they appear as zero-energy ABSs, as shown in Fig. 7.

We now analyze the p-wave system treated earlier in
Sec. II B. Introducing a JJ into the system with a phase differ-
ence φ [similar to Eq. (3.1) leads to the modified Hamiltonian,

H =
Nx∑

�=1

Ny∑
j=1

ψ
†
�, j

[{(−μ j + 2(tx + ty)}τz + V j · σ
]
ψ�, j

−
Nx−1∑
�=1

Ny∑
j=1

[
ψ

†
�+1, j

{
tx τz + i 	 j

2
σz τ �

x

+ i α j
R

2
(a · σ )τz

}
ψ�, j + H.c.

]

−
Nx∑

�=1

Ny−1∑
j=1

{
ψ

†
�, j+1(ty τz − i α′

R σyτz )ψ�, j + H.c.
}

− γ

Ny∑
j=1

(
ψ

†
Nx, j τz ψ1, j + H.c.

)
, (3.2)

with τ �
x having the same meaning as in Eq. (3.1). We consider

the same parameters as in Sec. II B 4. Similar to the case
of the s-wave superconductor with Rashba SOI studied in
Fig. 7, the tunnel coupling proportional to γ splits the end
MZMs into finite-energy ABSs, as seen in Fig. 8. However,
unlike the s-wave case, we see the ABSs cross zero energy at
two points: at � = �0/4 and 3 �0/4. The number of ABSs
merging at zero energy varies with the chemical potential,
as shown in the three different panels of Fig. 8. Comparison
of the values of the chemical potential with the topological
invariant in Fig. 3 shows clearly that the number of zero-
energy ABSs at � = �0/4 and 3�0/4 is twice the topological
invariant, similar to the case of the Rashba nanowire. The
middle panel also shows low-energy ABSs in addition to the
zero-energy crossings associated with the MZMs.

The results shown in Figs. 7 and 8 for the highly symmetric
cases show that the Andreev spectra also show multiple zero-
energy ABSs similar to the corresponding conductance plots.
Therefore, we expect these results to be somewhat fragile in
the sense that breaking the symmetries will lower the number
of Andreev crossings (similar to what is seen for ZBCPs).
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FIG. 8. ABS spectrum of a quasi-1D p-wave superconductor,
with the same parameters as in Fig. 6, as a function of the flux
across a Josephson junction. The ends of the multichain ring have
a weak coupling strength of γ = 0.1. The three panels have different
values of the chemical potential: μ = 0.0 (top), μ = 2.0 (middle),
and μ = 5.0 (bottom). The spectrum shows degeneracies of 0, 4, and
4 at flux � = �0/2. These correspond to 0, 2, and 2 MZMs at each
end of the nanowire in the open boundary case, as seen in Fig. 6. The
middle panel shows additional states due to the presence of ABSs
[also seen in Fig. 6(a)], which also exist in the open boundary case at
low energies.

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the effect of symmetry-
breaking field for multichannel p-wave superconductors that
have a high degree of symmetry. These symmetries allow
the possibility of topological superconductivity with integer
topological invariants with an integer number of MZMs. We
find that the ZBCP reflects this topological invariant, as both
vary synchronously with the chemical potential. Breaking the
symmetries systematically by applying strain and magnetic
fields leads to reducing the conductance to lower integer val-
ues by splitting some of the MZMs. The integer topological
invariants also appear to manifest as zero-energy crossings
of Andreev spectra for the highly symmetric topological su-
perconductors. For the examples we consider, the number of
zero-energy crossings of ABSs corresponds to the topological
invariant, similar to the zero-bias conductance. The crossings
of the Andreev spectra in topological JJs are expected to be
measurable through recent advances in Andreev spectrocopy
[48–50]. The changes in the signatures (such as zero-bias
conductance and Andreev spectroscopy) of the topological
invariant can elevate the fingerprints of the MZMs to a rich
structure, where the observables vary over several quantized
values in a multidimensional phase space.

While the signatures for integer topological invariants ap-
pear to be quite robust to variations in the Hamiltonian, the
numerical examples we considered so far do not include dis-
order. How far these predictions hold up to realistic disorder
in these systems will be an interesting direction for future
work. In addition, it will be interesting to see if the zero-bias

conductance with normal leads translates to a robust signature
for superconducting leads, as with the case of nondegenerate
Majorana modes [51]. Explicit computation of the detection
of the ABSs through a cavity-response experiment is also left
for future work.

While realization of quasi-1D triplet superconductors
[18–24] is in a preliminary state relative to semiconductor
systems (which have seen rapid progress), the possibility of
multiple MZMs with the chiral and time-reversal symmetry
makes them a rich playground for controlling splitting of
MZMs with external perturbations. Additionally, synthetic
platforms have been proposed for realizing class DIII MZMs
in semiconductor systems [14,52]. We expect the transport
signatures described in this paper will apply to these platforms
as well.
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APPENDIX: COMPUTATION OF THE BDI INVARIANT

Following the treatment of Ref. [43], we can show that
the system in Sec. II A decouples into independent channels
with modified chemical potentials. To see this, we write the
Hamiltonian in the chain index basis as

Hchain =
⎡
⎣ H0 −ty σ0 τz 0

−ty σ0 τz H0 −ty σ0 τz

0 −ty σ0 τz H0

⎤
⎦, (A1)

where H0 represents the single chain Hamiltonians. It is to be
noted that each of the elements in the matrix above are them-
selves 4Nx × 4Nx matrices. The Hamiltonian can be rewritten
as

Hchain = H0 +
⎡
⎣ 0 −tyσ0τz 0

−tyσ0τz 0 −tyσ0τz

0 −tyσ0τz 0

⎤
⎦. (A2)

Rotating the Hamiltonian by the unitary matrix

U = σ0τz

⎡
⎣−1 1 1

0
√

2 −√
2

1 1 1

⎤
⎦,

where U is constructed using the eigenvectors of the second
term in Eq. (A2), decouples it into three sectors with modified
chemical potentials of (μ′ ± √

2 ty, μ′). Each of these sectors
has a chiral symmetry operator of the form σy τy, which can
be used to define an invariant,

Z = 1

2 π i

∫ π

−π

dk
d

dk
ln

[
− 4 α2 sin2 k + (μ′ + 2 tx cos k)2 − (

V 2
x − 	2

s

) + 4 i 	s α sin k
]
, (A3)
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for each sector, where μ′ = μ − 2(tx + ty). These sectors belong to class BDI with chiral symmetry, S = σyτy. Figure 2(b)
exhibits the sum of the invariants for the three sectors.
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