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Momentum-resolved conductivity of strongly interacting bosons in an optical lattice
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Motivated by the recent advancements in experimental techniques in the cold atomic systems, we study the
dependence of the conductivity on momentum in a system of strongly interacting bosons in an optical lattice. By
employing the quantum rotor approach to the Bose-Hubbard model we calculate the current-current correlation
function and subsequently obtain the analytic formula for the momentum-dependent longitudinal conductivity.
We analyze the behavior of the conductivity for the square and cubic lattices in both, the superfluid and Mott
insulator phases. As a consequence of the particle-hole symmetry, the conductivity for a uniformly filled lattice
in the superfluid phase exhibits a linear dependence for a surprisingly wide range of momenta around k = 0.
This allows us to predict the value of the group velocity of the particle excitations. We also consider the impact
of finite temperature and discover that it leads to an additional conductivity channel, which is aligned along the
direction of the probe field and located within the energy gap.
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I. INTRODUCTION

In recent years ultracold atomic systems have become very
popular and intensely studied. Owing to their high control-
lability and lack of nonintentional defects they can serve
as versatile platforms for quantum simulations of solid-state
systems [1–4]. Lately, a lot of effort has been made to pro-
pose and develop experimental setups which allow the study
of transport phenomena of ultracold atoms [5–7]. The most
prominent transport measurements were conducted at ETH
Zürich. A series of experiments with the flow of atoms be-
tween two reservoirs with a narrow constriction between
them allowed for verification of quantized conductance in
accordance with the Landauer theory [8,9]. This setup, which
can be thought of as a cold atomic equivalent of a quantum
point contact device, was also used to study the effects of
temperature, disorder, dissipation, and interaction on parti-
cle transport [10–13] as well as spin-splitting effects [14].
Another new technique is scanning probe microscopy. It is
analogous to scanning gate microscopy in semiconducting
systems and allows for obtaining high-resolution maps of
transport in cold atomic systems [15]. A single-site-resolved
measurement protocol has also been proposed, which could
provide a way to measure the current statistics of the interact-
ing bosons in an optical lattice [16].

Another way to investigate the transport properties of the
system is to study the current-current correlation function,
which is directly proportional to the conductivity. In 2011
Tokuno and Giamarchi [5] proposed an experimental setup
in which the current-current correlation function could be
obtained from the energy absorption rate in a periodically
modulated optical lattice. This idea was further developed
by Wu et al. [6] to extract the conductivity as a linear re-
sponse of the gas in an optical lattice to a time-dependent
displacement of the harmonic trapping potential. This can be
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thought of as an analog of an external electric field acting on a
condensed-matter system. Recently, this proposal was experi-
mentally realized in a fermionic optical lattice [17].

The transport properties of strongly correlated lattice sys-
tems have also been studied theoretically in many contexts,
e.g., in Josephson junction arrays [18–20], superconduc-
tors [21], granular superconductors [22], one-dimensional,
dissipative bosonic systems [23–26], and optical lattices with
ultracold bosonic gases [27–31]. However, the optical lattice
system provides the best and most direct comparison between
the theoretical predictions and experimental results. Thus,
it is our goal to analyze the momentum-resolved conduc-
tivity of strongly interacting bosons in a lattice. We derive
the momentum-resolved conductivity as a response func-
tion of the system to a small, spatially nonuniform electric
field. In order to obtain the spatial current-current correlation
functions, which are directly related to the conductivity, we
rely on the quantum rotor approach (QRA) applied to the
Bose-Hubbard (BH) model [32]. A great advantage of this
approach is that it takes into account the spatial fluctuations;
thus, it is especially useful to describe systems in spatially
dependent gauge potentials and analyze direction-dependent
observables, which is crucial to accomplish our goal [31,33].

The remainder of this paper is organized in the following
way. In Sec. II, we briefly present the quantum rotor approach
applied to the Bose-Hubbard model. Section III is devoted to
the derivation of the momentum-resolved conductivity and the
analysis of its behavior in the ground state (Sec. III A) and at
finite temperatures (Sec. III C). The details of the calculation
are relegated to the Appendix. The paper is summarized in
Sec. IV.

II. BOSE-HUBBARD MODEL IN THE QUANTUM
ROTOR APPROACH

A. Hamiltonian

In order to describe the system of strongly interacting
bosons in an optical lattice we employ the Bose-Hubbard
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model [34,35]:

Ĥ = − t
∑
〈l,l ′〉

[
exp

(
2π i

�0

∫ rl

rl′
A(r, t ) · ds

)
â†

l âl ′ + H.c.

]

+ U

2

∑
l

n̂l (n̂l − 1) − μ
∑

l

n̂l . (1)

In the standard notation, t is the bare tunneling coefficient of
the atoms between the neighboring sites, U is the energy of the
on-site repulsive interaction, and μ is the chemical potential.
The symbol 〈l, l ′〉 refers to the set of pairs of neighboring
lattice sites, with l defined as a vector of the position coordi-
nates (lx, ly, lz ). The operators â†

l and âl denote the processes
of creation and annihilation of bosons, respectively, and the
operator n̂l is the number operator on the lth lattice site.

To account for the presence of the external electric field,
the hopping term includes a phase factor dependent on the
vector potential A(r, t ), which is known as the Peierls substi-
tution [36]. The quantity �0 denotes the flux quantum, and
the integral is calculated along the trajectory of a particle
tunneling between neighboring lattice sites.

B. Longitudinal conductivity

In the present paper, we restrict our considerations to the
longitudinal conductivity. The transverse response vanishes
for the considered square and cubic lattice systems when
the external gauge potentials (except for the probe electric
field) are not present [19]. It should be noted that arbitrary
gauge potentials leading to a “synthetic” magnetic field can
be realized in optical lattices [37] and can also be described
within the framework of the quantum rotor approach on which
we are relying; however, they are not considered in the present
paper.

To obtain the conductivity in the linear response regime,
we first represent the partition function of the Bose-Hubbard
system as a path integral in Matsubara “imaginary time” 0 �
τ � β = 1/kBT , where kB denotes the Boltzmann constant
and T is the temperature. With the help of the coherent state
representation we are able to rewrite the BH Hamiltonian (1)
in terms of the complex bosonic fields al (τ ) and al (τ ) instead
of the creation and annihilation operators while keeping its
original form [38].

The partition function of the system is given as

Z =
∫

[DaDa] e−S[a,a], (2)

where the action consists of two terms:

S[a, a] =
∫ β

0
dτ

(
H[a, a] +

∑
l

al (τ )
∂al (τ )

∂τ

)
. (3)

The first term includes the Hamiltonian (1) of the system in the
coherent state representation, while the second term is the so-
called Berry term, which appears because the system acquires
a geometric phase during the evolution from time τ = 0 to
τ = β. For simplicity of the notation, we assume that h̄ = 1.

Within the linear response theory [39] the momentum-
resolved conductivity σi j (k, ων ) is defined as a response of
the system to an infinitesimally small external electric field,

here represented by its vector potential A(r, τ ):

σi j (k, ων ) = − 1

Nβων

∑
l,l ′

∫ β

0
dτ dτ ′

× δ2 ln Z

δAj (rl ′ , τ ′) δAi(rl , τ )

∣∣∣∣
A=0

× ei[k(rl −rl′ )−ων (τ−τ ′ )], (4)

where indices i, j = x, y, z refer to the direction in space and
ων = 2πν/β (ν = 0,±1,±2, . . . ) is the bosonic Matsubara
frequency.

Substituting the partition function (2) in formula (4) and
performing the second-order functional derivative yield the
longitudinal conductivity in the x direction in the following
form:

σxx(k, ων ) = 1

(Nβ )3ων

{
4π2t2

�2
0

∑
q,m

[sin(qx ) + sin(qx + kx )]2

× 〈aq+k,m+νaq+k,m+ν〉〈aq,maq,m〉

+ 8π2t

�2
0

∑
q,m

[sin2(qx ) + sin(qx ) sin(qx + kx )]

× 〈aq,maq,m〉2

}
, (5)

where we have restricted our considerations to the systems
defined on the simple square and cubic lattices (although
the method can be generalized to other lattices). A detailed
derivation of formula (5) is presented in the Appendix.

C. Quantum rotor approach

In order to obtain the current-current correlation func-
tion of the BH model, we employ the quantum rotor
approach [32]. This technique is based on earlier methods
of slave rotors [40,41] and quantum rotors developed for
fermionic systems [42] (for differences in these approaches,
see Ref. [43]). The QRA relies on a basis change from the
particle-number representation to the conjugate phase rep-
resentation of the bosonic fields. This is especially useful
for studying the superfluid (SF)–Mott insulator (MI) phase
transition, which is driven by the quantum phase fluctua-
tions. As a result, the system of strongly interacting bosons
in a lattice is transformed to an effective phase model of
interacting quantum rotors [32]. The QRA allows us to take
into account the spatial fluctuations and thus to capture the
influence of the lattice geometry and external gauge po-
tentials on the phase diagram of the SF-MI transition and
other properties of the system. Moreover, it is consistent with
Mermin-Wagner theorem; that is, it properly captures the
phase transitions in two-dimensional (2D) systems at zero
temperature and in three-dimensional (3D) systems at finite
temperatures [44]. Also, its predictions are comparable with
the quantum Monte Carlo results [32]. The QRA was suc-
cessfully applied to describe quantum phase transitions [45];
magnetic and superconducting systems [42,46,47], includ-
ing systems of Josephson junction arrays [48]; and phase
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transition in spin glasses [49] and in ultracold atomic systems
in optical lattices [31–33,50–52].

The crucial step in the quantum rotor approach is the gauge
transformation of the complex fields al (τ ) and al (τ ). More
precisely, it is a rotation in the complex plane with the φl (τ )
phase:

al (τ ) = bl (τ )eiφl (τ ),

al (τ ) = bl (τ )e−iφl (τ ). (6)

This transformation allows us to express the variables by the
amplitude bl (τ ) and phase φl (τ ) degrees of freedom. The
former is related to the superfluid density, while the latter is
related to the phase of the condensate.

The superfluid order parameter �SF can now be factorized:

�SF = 〈al (τ )〉 = 〈bl (τ )〉 〈eiφl (τ )〉, (7)

which indicates that not only is a nonzero amplitude of the
condensate required for the system to be in the ordered phase
but also the system must exhibit a long-range phase coher-
ence, 〈eiφl (τ )〉 �= 0, related to the spontaneous U(1) symmetry
breaking.

As the SF-MI phase transition is driven by the phase fluctu-
ations, the amplitude fluctuations can be neglected to simplify
the calculations [22]. This allows us to take the value of the
on-site amplitude as an average, bl (τ ) = 〈bl (τ )〉 + δbl (τ ) ≈
〈bl (τ )〉 = b0, with

b0 =
√

t (tz + μ)

U
, (8)

where z is the number of nearest neighbors and μ = μ + U/2
is the shifted chemical potential. This approach is justified
because at low temperatures the considered system is uniform.
Equation (8) naturally dictates the range of the validity of
the QRA. The approach works well for the finite values of
the ratio t/U , which corresponds to the average and strong
coupling limits.

Nonetheless, the amplitude fluctuations can also be in-
cluded in the QRA via the Bogoliubov method. This enables
the study of the spectral functions and momentum distribution
of the atoms, which exhibit very good agreement with the
results of time-of-flight experiments [50,51].

The gauge transformation (6) allows us to express the parti-
tion function of the system only in terms of the phase variables
φl (τ ) by means of the cumulant series expansion [32]

Z =
∫

[Dφ] e−S[φ], (9)

where the action S[φ] is the action of the interacting quantum
rotors:

S[φ] =
∫ β

0
dτ

{
−2J

∑
〈l,l ′〉

cos[φl (τ ) − φl ′ (τ )]

+
∑

l

[
φ̇2

l (τ )

2U
+ iμφ̇l (τ )

U

]}
. (10)

In Eq. (10) the effective coupling J = tb2
0, while φ̇ = ∂τφ

denotes the partial time derivative. As a consequence, the
system of strongly interacting bosons has been transformed

into a system of weakly interacting bosonic particles (note that
J ∼ t/U ) submerged in a fluctuating U(1) gauge field [32]. As
a result, the linear response theory in Sec. II B is technically
applied to a weakly interacting system; thus, its range of
applicability is not violated. It is important to note that the
phase variables φl (τ ) are defined up to an integer multiple
of 2π ; thus, the path integral in (9) must be performed with
the boundary conditions φl (β ) = φl (0) + 2πνl , where νl =
0, ±1, ±2, . . . are the winding numbers.

Next, we introduce the unitary fields ζl (τ ) = eiφl (τ ) and
subsequently relax the constraint for the unit modulus of
these fields to be fulfilled only on average, thus introducing
a Lagrange multiplier λ [32,42]. This procedure allows us to
obtain the analytic formula for the partition function in the
form of a Gaussian integral:

Z =
∫

dλ eNβλ
∏
k,m

(dζ k,mdζk,m) exp

(
− 1

Nβ
ζ k,m�−1

k,mζk,m

)
,

(11)

where we have performed the Fourier transform to the wave
vector k and Matsubara frequency ωm domain.

The propagator �k,m is defined as

�−1
k,m ≡ �−1(k, ωm) = λ + γ −1

m + Jε(k), (12)

where ε(k) is the dispersion of the lattice and γm ≡ γ (ωm) is
the Fourier transform of the single-site phase-phase correlator
γ (τ − τ ′) = 〈eiφl (τ )−iφl (τ ′ )〉. In the low-temperature limit β →
∞ the correlator can be written as

γ −1
m = U

4

{
1 − 4

[
v
( μ

U

)
+ iωm

U

]2}
. (13)

The function v(x) = x − �x� − 1/2, where �x� denotes the
floor function, which gives the greatest integer less than or
equal to x. The periodicity of v(x) is a direct consequence of
the periodicity of the phase variables on each lattice site.

The spatial correlation function 〈ak,mak,m〉 in Eq. (5), cru-
cial to determine the transport properties of the system, can be
calculated from the partition function (11):

〈ak,mak,m〉 = b2
0〈ζ k,mζk,m〉 = Nβ b2

0 �k,m. (14)

The equation of state for our system reads

1 − ψ2 = 1

Nβ

∑
k,m

�k,m(λ = λ0), (15)

where ψ2 = 〈e−iφl (τ )〉2 denotes the phase order parameter [see
Eq. (7)]. The Lagrange multiplier λ takes the stationary point
value λ0, which at the critical line and in the SF phase equals

λSF
0 = λc

0 = −Jε0 − γ −1
0 , (16)

while in the MI phase λMI
0 = λSF

0 + δλ. The correction δλ

needs to be determined directly from Eq. (15).
Performing the summation over the Matsubara frequencies

in Eq. (15) yields the equation of state in the following form:

1 − ψ2 = 1

N

∑
k

f +
k + f −

k

4�k
, (17)
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where the function

1

�k
=

[
J

U
[ε(k) − ε0] + δλ

U
+ v2

( μ

U

)]−1/2

(18)

can be interpreted as the ground-state distribution of the inter-
acting bosons over the single-particle states and the functions

f ±
k ≡ f±(β,�k ) = coth

(
βU

2

[
�k ± v

( μ

U

)])
(19)

are the thermal distributions of the excitations, with + for the
holelike excitations and − for the particlelike excitations.

III. MOMENTUM-RESOLVED CONDUCTIVITY

We can now turn our attention to the derivation of the
momentum-resolved conductivity. Substituting the explicit
form of the spatial correlation function (14) into the Kubo
linear formula for conductivity (4) yields

σxx(k, ων ) = 1

Nων

π2J2

�2
0U

∑
q

{
[sin(qx ) + sin(qx + kx )]2F + [sin2(qx ) + sin(qx ) sin(qx + kx )]

[
f +
q + f −

q

�3
q

+ βU

2

g+
q + g−

q

�2
q

]}
,

(20)

where g±
q ≡ g±(q) = csch2[ βU

2 (�q ± v)] and the function F is defined as

F = 1

�q

[
f −
q(

�q + iων

U

)2 − �2
q+k

+ f +
q(

�q − iων

U

)2 − �2
q+k

]
+ 1

�q+k

[
f −
q+k(

�q+k − iων

U

)2 − �2
q

+ f +
q+k(

�q+k + iων

U

)2 − �2
q

]
. (21)

Next, we perform the analytic continuation to the real frequency domain, ων = ε − iω, where ε → 0+. We will focus on the real
part of the conductivity, where two types of terms can be distinguished, singular and regular:

Re σxx(k, ω) = Re σ sing
xx (k, ω) + Re σ reg

xx (k, ω). (22)

The singular part takes the form:

Re σ sing
xx (k, ω) = π3J2

N�2
0U

δ(ω)
∑

q

{
[sin(qx ) + sin(qx + kx )]2

g−
q+k( f +

q+k − hq+k ) − g−
q ( f +

q − hq)

2�q(�2
q − �2

q+k )

+[sin2(qx ) + sin(qx ) sin(qx + kx )]

[
f +
q + f −

q

�3
q

+ βU

2

g+
q + g−

q

�2
q

]}
, (23)

with hq = cosh[ βU
2 (v − 3�q)]csch[ βU

2 (�q + v)], while the regular part is given as

Re σ reg
xx (k, ω) = π3J2

N�2
0U

∑
q

[sin(qx ) + sin(qx + kx )]2

2�q�q+k

[
f −
q+k − f −

q

�q − �q+k
δ(ω + U [�q − �q+k])

+ f +
q+k − f +

q

�q − �q+k
δ(ω − U [�q − �q+k]) + f +

q+k + f −
q

�q + �q+k
δ(ω + U [�q + �q+k])

+ f −
q+k + f +

q

�q + �q+k
δ(ω − U [�q + �q+k])

]
. (24)

The singular part of the conductivity involves the ballistic
transport of thermal excitations with momentum k. Due to the
nondissipative nature of the system this behavior is present
even in the disordered phase at nonzero temperature [19]. Ad-
ditionally, the singular part contains the superfluid response,
which is proportional to the order parameter �SF [19,31].
The regular part gives us insight into the possible types of
excitations in the system. We will elaborate on that in the
following sections.

A. Zero temperature

At zero temperature the formula for the regular part of the
conductivity can be significantly simplified, as the first two
terms in Eq. (24) vanish due to the vanishing difference of the
thermal distributions f ±

q .

As the conductivity is symmetric with respect to ω = 0,
we can restrict our analysis to only positive frequencies ω and
further simplify formula (24):

Re σ reg
xx (k, ω) = π3J2

2N�2
0U

∑
q

[sin(qx ) + sin(qx + kx )]2

× f −
q+k + f +

q

�q�q+k(�q + �q+k )

× δ(ω − U [�q + �q+k]). (25)

The contribution to the regular part of the conductivity comes
from the generation of a particle-hole pair with energy ω and
momentum k.
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FIG. 1. Momentum-resolved conductivity for the square (2D)
lattice at T = 0. Each row corresponds to one of three values of
the chemical potential, (a) and (b) μ/U = 0.1, (c) and (d) μ/U =
0.25, and (e) and (f) μ/U = 0.5. The hopping integral t/U was
chosen to be at a fixed distance �(t/U ) from the critical line. In
the SF phase �(t/U ) = 0.001, (a) t/U = 0.0341, (c) t/U = 0.0595,
and (e) t/U = 0.0787. In the MI phase �(t/U ) = 0.01, (b) t/U =
0.0231, (d) t/U = 0.0485, and (f) t/U = 0.0677.

The dependence of the conductivity on the frequency and
momentum for 2D and 3D lattices is presented in Figs. 1
and 2, respectively.

The conductivity profile corresponds to the excitation spec-
tra of the system. This is particularly evident in the different
behaviors of conductivity in the superfluid and Mott insulator
phases. In the MI phase, the conductivity channel becomes
narrower, and the energy gap increases as a consequence of
the smaller ratio of the hopping integral and repulsive energy
t/U . Moreover, the conductivity values are smaller than in the
SF phase because fewer particle-hole pairs can be created.

For small values of the chemical potential, μ/U = 0.1 [as
in Figs. 1(a), 1(b), 2(a), and 2(b)], the energy gap becomes
more uniform in the momentum space as a consequence of
the flattening of the energy bands (see Fig. 3).

On the other hand, for half-integer values of the chemical
potential the lattice is uniformly filled with particles, and the
energy gap closes at the � point of the first Brillouin zone,
when the system is in the superfluid state [see Figs. 1(e)
and 2(e)]. Moreover, the conductivity exhibits a linear de-
pendence for small values of the momentum k. This results
from the particle-hole symmetry present in the uniformly
filled system. The lowest edge of the conductivity displays
significantly different behaviors for the 2D and 3D lattices

FIG. 2. Momentum-resolved conductivity for the cubic (3D) lat-
tice at T = 0. The values of the chemical potential and hopping
integral were chosen in the same manner as in Fig. 1. In the SF
phase (a) t/U = 0.0226, (c) t/U = 0.0364, and (e) t/U = 0.0415.
In the MI phase (b) t/U = 0.0116, (d) t/U = 0.0264, and (f) t/U =
0.0315.

(along the �-X and �-M lines). From Eq. (25) we can deduce
that the integrand is singular at �q+k = 0 and is defined on
a one-dimensional manifold for the 2D lattice. This leads
to a logarithmic singularity at the edge of the spectrum. In
contrast, for the 3D lattice, the integration is performed over a
2D manifold, which results in a finite jump at the edge of the
spectrum, similar to the behavior of the 2D lattice density of
states.

In the square lattice (the 2D system) at μ/U = 0.5, the
value of the conductivity at k = 0, ω = 0 becomes universal;
that is, it does not depend on the microscopic parameters of
the model [18–20,53,54]. This effect is not present in the MI

FIG. 3. Energy of the particle- and holelike excitations for the
2D lattice. The values of the hopping integrals correspond to the ones
considered in Fig. 1.
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phase. The energy gap remains open, and the conductivity
exhibits quadratic dependence around k = 0.

B. Group velocity

From the behavior of the momentum-resolved conductivity
in a uniformly filled lattice, we can deduce the value of the
group velocity of the excitations. Around the � point the
energy gap behaves linearly with the momentum k,

ωg

U
= αkx, (26)

where α is the slope of the line and the wave vector k was
chosen to lie on the �-X line. The group velocity can be
expressed in SI units as

vg = Ua

2h̄
α. (27)

We can estimate the value of the group velocity in a typical
experiment. Taking as an example the celebrated experiment
by Greiner et al. [55], in which 87Rb atoms were placed
in a 3D cubic optical lattice, we calculate the momentum-
resolved conductivity for the system deep in the SF phase,
t/U ≈ 0.227. This corresponds to the potential depth V0 =
7Er , where Er is the recoil energy. The slope α, determined
from the conductivity map, is approximately 0.719, which
yields a group velocity of the excitations of the order of
104 μm/s.

There are experimental techniques which allow for extrac-
tion of the group velocity of the excitations from the atomic
momentum distribution in ultracold bosonic systems [56].
Nevertheless, the rapid development of experimental meth-
ods of transport measurements [13] and momentum-resolved
spectroscopy [57,58] could provide another way to determine
the group velocity by studying the linear dependence of the
energy gap of the conductivity in the long-wavelength limit.

C. Temperature effects

At nonzero temperature types of excitations other than
just the creation of a particle-hole pair are available, i.e., the
transition of a particle (or a hole) within the same band to a
state with momentum shifted by k [see Eq. (24)]. A direct
consequence of these new types of excitations is an additional
channel of conductivity, which lies within the energy gap (see
Figs. 4 and 5).

As the two-dimensional system (square lattice) exhibits
only a zero-temperature phase transition, in agreement with
Mermin-Wagner theorem [44], here we look at the three-
dimensional (cubic) lattice because it allows us to observe the
behavior of the conductivity in both ordered and disordered
phases. In the normal phase (finite-temperature analog of the
MI phase) the main conductivity channel shifts towards higher
energies. This is a consequence of the additional phase deco-
herence introduced by thermal fluctuations, which leads to the
increase in the energy gap. In the SF phase we can observe a
sharp line along the edge of the energy gap. This effect is most
pronounced for k along the direction of the conductivity (we
investigate the x component of the longitudinal conductivity
σxx), while it vanishes for perpendicular k, and it stems from

FIG. 4. Momentum-resolved conductivity for the 3D lattice at
finite temperature T/U = 0.04 in the SF phase (μ/U = 0.25, t/U =
0.04).

the fact that the external probe field acts only along the x
direction.

IV. SUMMARY

In the present paper we have studied the momentum-
resolved conductivity of strongly interacting bosons in the
square (2D) and cubic (3D) lattices. The linear response
theory combined with the quantum rotor approach to the
Bose-Hubbard model allowed us to obtain the analytic for-
mula for the conductivity. We have analyzed the behavior
of the conductivity in both the superfluid and Mott insulator
phases for chosen values of the chemical potential.

For the uniformly filled lattice the conductivity in the SF
phase exhibits linear behavior in the vicinity of k = 0, which
is a direct consequence of the particle-hole symmetry present
in the system. From the slope of the linear part we were able
to estimate the group velocity of particle (or hole) excitations.
We have also studied the influence of finite temperature on the
current response and found that the thermal excitations lead to
an additional channel in the conductivity spectrum.

The formalism presented in this paper can be applied to in-
vestigate the longitudinal and transverse conductivity in other
types of lattices, including in the presence of artificial gauge
fields. Growing interest in the physics of ultracold atomic

FIG. 5. Momentum-resolved conductivity for the 3D lattice at
finite temperature T/U = 0.04 in the normal phase (μ/U = 0.25,
t/U = 0.03).
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systems and rapid development of measurement techniques
for transport properties [13] and correlation functions [57,58]
could make it possible to verify the results presented in this
work.
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APPENDIX: GENERAL FORMULA FOR
MOMENTUM-RESOLVED CONDUCTIVITY

In the following we present derivation of the general
formula for the momentum-resolved conductivity in the
Bose-Hubbard system. Starting with the formula for the con-
ductivity in the linear response regime (4), we first perform the
functional derivatives of the BH model partition function (2)
over the vector potential A(r, τ ). This yields

σxx(k, ων ) = − 1

Nβων

∑
l,l ′

∫ β

0
dτ dτ ′ ei[k(rl −rl′ )−ων (τ−τ ′ )]

× π2t2

�2
0

({[〈
al ′+ex (τ ′)al ′ (τ

′)
〉 + 〈

al ′ (τ
′)al ′−ex (τ ′)

〉] − c.c.
}{[〈

al+ex (τ )al (τ )
〉 + 〈

al (τ )al−ex (τ )
〉] − c.c.

}
+ 〈{[

al ′+ex (τ ′)al ′ (τ
′) + al ′ (τ

′)al ′−ex (τ ′)
] − c.c.

}{[
al+ex (τ )al (τ ) + al (τ )al−ex (τ )

] − c.c.
}〉)

+ 1

Nβων

∑
l,l ′

∫ β

0
dτ dτ ′ ei[k(rl −rl′ )−ων (τ−τ ′ )]

× π2t

�2
0

δ(τ − τ ′)
{[〈

al+ex (τ )al (τ )
〉 + c.c.

](
δl ′,l + δl ′,l+ex

) + [〈
al−ex (τ )al (τ )

〉 + c.c.
](

δl ′,l + δl ′,l−ex

)}
, (A1)

where ex denotes the unit vector in the x direction and the index l + ex = (lx + 1, ly, lz ) denotes the site neighboring site l .
Next, we perform the Fourier transform to the Matsubara frequency and momentum domains with the assumption that the

system is defined on a square or cubic lattice:

σxx(k, ων ) = 1

(Nβ )3ων

4π2t2

�2
0

∑
q,q′

∑
m,m′

[sin(qx ) + sin(qx + kx )][sin(q′
x ) + sin(q′

x + kx )]

× [〈aq+k,m+νaq,m〉〈aq′,maq′+k,m+ν〉 − 〈aq+k,m+νaq,maq′,maq′+k,m+ν〉]

+ 1

(Nβ )2ων

4π2t

�2
0

∑
q,m

[cos(qx ) + cos(qx + kx )]〈aq,maq,m〉. (A2)

The application of Wick’s theorem [59], as well as the fact that within the QRA the averages 〈â†â〉 are diagonal in momentum
and Matsubara frequencies [see Eq. (14)], allows us to write the conductivity in a more concise form:

σxx(k, ων ) = 1

(Nβ )3ων

4π2t2

�2
0

∑
q,m

[sin(qx ) + sin(qx + kx )]2〈aq+k,m+νaq+k,m+ν〉〈aq,maq,m〉

+ 1

(Nβ )3ων

8π2t

�2
0

∑
q,m

[sin2(qx ) + sin(qx ) sin(qx + kx )]〈aq,maq,m〉2. (A3)
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