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Recently, the interplay between the non-Hermitian skin effect (NHSE) and topological phases has attracted a
lot of attention. When the NHSE occurs in a topological system, the conventional bulk-boundary correspondence
(BBC) based on the Bloch band theory is destroyed. In this work, we investigate a non-Hermitian nodal-ring
semimetal with the s-wave superconducting (SC) term. We find that the SC term introduces the intrinsic coupling
between the different general Brillouin zones (GBZs) of the particle and hole subbands in our model, which
drives the total GBZ to the BZ. Furthermore, when the SC term is finite, we show a possibility that the GBZ
is the same as the BZ. We also find that the Bloch winding number of the quasi-one-dimensional model can
predict the number of Majorana zero states faithfully in this case, which implies that the conventional BBC is
reconstructed in our model. The localization strengths of the Majorana zero states are also calculated to show the
reconstruction of conventional BBC. The finite-size effect, related experimental regimes in the electric circuit,
and the fragility of this reconstructed conventional BBC are also discussed in this work.
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I. INTRODUCTION

In the past few decades, Hermitian topological materials
[1–3], including topological insulators [1,2,4–11], topologi-
cal superconductors [1,2,12–24] and topological semimetals
[25–39], have been intensively studied. For these topological
systems, one of the most important features is that they pos-
sess conventional bulk-boundary correspondence (BBC), i.e.,
the topological boundary modes can be characterized by the
bulk topological invariants based on the Bloch Hamiltonians.

Besides, recently the non-Hermiticity has been intro-
duced in many physical systems, like open quantum systems
[40–46], cold-atom systems [47–53], and condensed matter
systems [54–59]. For many non-Hermitian systems, the non-
Hermitian skin effect (NHSE) is important because it makes
the energy spectrum under open boundary conditions (OBC)
different from one under periodic boundary conditions (PBC)
[60–66]. To understand this phenomenon, the Brillouin zone
(BZ) is generalized to the generalized Brillouin zone (GBZ)
[65–69]. As long as the NHSE exists in a non-Hermitian
system, the GBZ will be different from BZ, and the energy
spectrums under PBC and OBC will be distinct from each
other [68].

For a non-Hermitian system with nontrivial topology, the
NHSE leads to the destruction of the conventional BBC,
which means that the Bloch topological invariant cannot pre-
dict the number of zero edge modes precisely. And the correct
BBC is based on the GBZ and the non-Bloch band theory
[60–63,67–76]. This conclusion motivates us that if the NHSE
is removed, the Bloch topological invariant gives the correct
phase boundary and the conventional BBC is reconstructed,
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which can be realized by making the GBZ coincide with the
BZ. To this aim, we can couple different GBZs in a model,
which means that the two different localized eigenstates due
to the NHSE are also coupled. This method has been applied
to construct models with the critical NHSE (CNHSE) very
recently [77,78]. In this paper, we consider a non-Hermitian
nodal-ring semimetal with the s-wave superconducting (SC)
pairing term. Figure 1 is the schematic for the effectively
removed NHSE, and the reconstructed conventional BBC:
Distinct from the previous CNHSE models [77,78], the cou-
pling between different NHSE localizations is intrinsic in our
model. i.e., The SC pairing term introduces the particle and
hole subbands with different NHSE localizations. Meanwhile,
since the two subbands are coupled by the SC term, the
different NHSE localizations in particle and hole parts are
also coupled. By numerically calculating the GBZ, we show
a possibility that the coupling effect of different sub-GBZs
drives them to the BZ. For the finite SC term, the GBZ will
be almost the same as the BZ, which indicates that the two
different NHSE localizations in the particle and hole parts are
perfectly canceled and the NHSE in our model is effectively
removed. In this case, we find that the Bloch winding number
can predict the topological phase transition correctly, and the
conventional BBC is reconstructed.

This work is organized as follows: In Sec. II we review
the NHSE in the non-Hermitian nodal-ring semimetal. Some
introductions about the concepts in non-Hermitian topological
physics (such as the GBZ, the NHSE, and the non-Bloch
topological invariant) are also included in this section. In
Sec. III we introduce our non-Hermitian nodal-ring semimetal
model with the s-wave pairing term and discuss its symme-
try, topological class, and the Bloch topological invariant. In
Sec. IV we show that the sub-GBZs corresponding to the
particle and hole subbands are coupled by the nonzero SC
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FIG. 1. Schematic for the effectively removed NHSE and the reconstructed conventional BBC. The blue curves and lines denote an
eigenstate. Since our quasi-1D model possesses the NHSE, after adding the finite SC pairing term, an eigenstate of the particle part tends
to be localized at one edge of the system, and the corresponding eigenstate of the hole part tends to be localized at another edge of the
system. i.e., the particle and hole parts have different localized eigenstates due to the NHSE. Meanwhile, the two parts are coupled by the SC
pairing term �. If such two NHSE localizations cancel each other, the NHSE can be effectively removed in our system. This makes the Bloch
topological invariant give the correct phase boundary again, which indicates that the conventional BBC is reconstructed.

pairing term and they are driven to BZ with an increasing
SC pairing term. We also find that the GBZ and BZ are the
same when the SC pairing term is finite, which indicates that
the NHSE is effectively removed. Then in Sec. V, we show
that the conventional BBC is reconstructed with the finite SC
pairing term by calculating the Bloch and real-space winding
numbers, the spectrum under OBC, topological edge modes,
and localization strengths of Majorana zero modes. The finite-
size effect of our model is discussed in Sec. VI. Next, we give
a possible electric circuit realization of our model in Sec. VII.
Finally, we discuss some more general cases of our model and
make conclusions in Sec. VIII.

II. REVIEW OF THE NON-HERMITIAN
NODAL-RING SEMIMETAL

In this section, we review the NHSE and GBZ in the non-
Hermitian nodal-ring semimetal [71]. During this process, we
will also introduce the important concepts in non-Hermitian
physics, including the NHSE, the GBZ, and the non-Bloch
winding number.

Let us consider the following model describing the non-
Hermitian nodal-ring semimetal:

H0(k‖, kz ) =
(

m + 2B
∑

i=x,y,z

cos kz

)
σx + (iγ + vz sin kz )σz,

(1)

where k‖ = (kx, ky), Pauli matrices σx,y,z act on the spin de-
gree of freedom, and vz is the Fermi velocity along the z
direction; m � 0 and B > 0 are model parameters about the
material. Since we focus on the BBC, we regard kx and ky

as parameters and take the OBC along the z direction, then
the non-Hermitian nodal-ring semimetal can be regraded as a
quasi-one-dimensional (quasi-1D) system. The corresponding
quasi-1D lattice model of Eq. (1) is:

H0 =
L∑
j,s

(mxyc†
j,sc j,−s + iγ sc†

j,sc j,s)

+
L−1∑

j,s

[
B(c†

j,sc j+1,−s + h.c)−1

2
i(vzsc†

j,sc j+1,s−H.c.)

]
,

(2)

where mxy = m + 2B(cos kx + cos ky), j is the lattice index
along the z direction, s = 1(−1) denotes the spin up (spin
down), and we omit the kx and ky indexes in the fermion
operators.

Then we assume a trial function of the nzth site along the
z direction ψ (k‖, nz ) = ei(kxx+kyy)(α1, α2)T βnz and substitute it
to Eq. (2). Then, we can obtain the eigenvalue equation of the
bulk part:[

E − iγ + ivz

2 (β − β−1) −mxy − B(β + β−1)
−mxy − B(β + β−1) E + iγ − ivz

2 (β − β−1)

][
α1

α2

]

= [EI − H0(k‖, β )]α = 0, (3)

where I is the 2 × 2 identity matrix and α = [α1, α2]T . We
note that H0(k‖, β ) in the second line of Eq. (3) can be ob-
tained by making the replacement eikz → β in Eq. (1). So the
eigenvalue equation of H0(k‖, β ) is exactly the second line
of Eq. (3). To ensure that Eq. (3) has nontrivial solutions, we
have

det[EI − H0(k‖, β )] = 0, (4)

where I is the 2 × 2 identity matrix. Then we have

E2 =
[

mxy + B

(
β + 1

β

)]2

+
[
vz

2i

(
β − 1

β

)
+ iγ

]2

. (5)

In this section, for simplicity we consider B = vz/2 = t , then
the equation is

2t (mxy+γ )β2+(
m2

xy − γ 2+4t2−E2
)
β + 2t (mxy − γ ) = 0,

(6)
so the two solutions of Eq. (6) β1 and β2 satisfy

β1β2 = mxy − γ

mxy + γ
. (7)

Note that this quasi-1D model has the sublattice sym-
metry (SLS) σyH0σ

−1
y = −H0, according to the results in

Refs. [67,69], the boundary conditions ψ (k‖, 0) = ψ (k‖, L +
1) = 0 lead to |β1| = |β2| in a 1D non-Hermitian system with
the SLS. Combing with Eq. (B4), we obtain that

|β| = |β1| = |β2| =
√∣∣∣∣mxy − γ

mxy + γ

∣∣∣∣, (8)
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and the the solution of β is

β(kz ) =
√∣∣∣∣mxy − γ

mxy + γ

∣∣∣∣eikz , (9)

with kz ∈ [−π, π ].
We first focus on the Hermitian case γ = 0. From Eq. (9)

we find that β(kz ) = eikz and kz ∈ [−π, π ] exactly correspond
to the Bloch wave vector and the traditional BZ for 1D sys-
tems (we have regarded the kx and ky as parameters).

Next, if mxy and γ are nonzero, then we write Eq. (9) as
β(kz ) = ei(kz−i ln r) with

r = 1

2
ln

∣∣∣∣mxy − γ

mxy + γ

∣∣∣∣, (10)

with kz ∈ [−π, π ]. We can see that the Bloch vector kz is
replaced by the “complex non-Bloch wave vector” kz − i ln r.
And the imaginary part of the complex non-Bloch vector leads
to the exponential-decay behavior, then all of the eigenstates
become localized. This localization behavior is dubbed as the
NHSE [61]. Besides, the solution β is a complex function
about the k and has a trajectory Cβ in the complex β plane.
In non-Hermitian physics, this solution β(kz ) = ei(kz−i ln r) or
its trajectory Cβ is also dubbed as GBZ [61,67,69].

Next we consider the H0(k‖, β ), if β = β0 = eikz , then we
can obtain Eq. (1) again. Since the kz is the Bloch wave
vector, Eq. (1), is a Bloch Hamiltonian. However, as we
have shown in above, the correct solution β corresponding
to the eigenenergies and eigenstates under the OBC usually
contains the non-Bloch wave vector kz − i ln r. In these cases,
H0(k‖, β ) is dubbed as the non-Bloch Hamiltonian. Based on
the Bloch (non-Bloch) Hamiltonian, we can obtain the Bloch
(non-Bloch) winding number Wkz (Wβ). However, since the
β corresponds to the eigenenergies and eigenstates under the
OBC, only the Wβ [61,67,71] or real-space winding number
(dual to the non-Bloch winding number [75]) can give the
correct BBC in this model.

In the final part of this section, we want to give several
notes: Since we have set 2B = vz, the characteristic equation,
Eq. (4), about β only has two solutions and they can be eas-
ily and analytically solved. However, in most non-Hermitian
models, there are m solutions of β with |β1| � |β2| � | · · · �
|βm−1| � |βm|. For a non-Hermitian system with the SLS,
it has been found that m is an even number and the GBZ
is given by |β| = |βm/2| = |βm/2+1| = ei[k−i ln rk ] or the corre-
sponding trajectory Cβ [67,69]. Unlike the result in Eq. (9), the
exponential-decay part in the non-Bloch wave vector is also a
function of k, and solving the rk analytically is very difficult.
To solve this β, we can straightforwardly obtain the energies
E of the lattice Hamiltonian under the OBC. After substituting
each E to the characteristic equation like Eq. (4), we can
numerically solve the β and obtain the GBZ [61]. Besides,
recently the auxiliary GBZ method has been proposed [69],
which works well for the lattice strength L → ∞ cases.

III. OUR MODEL

Then we consider the model of a non-Hermitian nodal-
ring semimetal with the s-wave SC pairing term. With the
Nambu basis ψ = (ck,↑, ck,↓, c†

−k,↑, c†
−k,↓)T , the Bogoliubov-

de Gennes (BdG) Hamiltonian is

H (k‖, kz ) =(mxy + 2B cos kz )τzσx + iγ τzσz

+ vz sin kzτ0σz − �τyσy, (11)

where k‖ is included in the mxy term, Pauli matrices
σx,y,z and 2 × 2 identity matrix τ0 act on the particle-
hole degree of freedom. In the following part, we still
set 2B = vz. (The general 2B �= vz cases are discussed in
Sec. VIII.) Now we focus on the symmetries of the system.
The Hamiltonian Eq. (11) satisfies time-reversal symmetry
(TRS) T H∗(k‖, kz )T −1 = H (−k‖,−kz ), particle-hole sym-
metry (PHS) CHT (k‖, kz )C−1 = −H (−k‖,−kz ), and chiral
symmetry (CS) 
H†(k‖, kz )
−1 = −H (k‖, kz ) with the fol-
lowing operators T /C/
:

T = iτzσxC = τx
 = T C = −τyσx. (12)

Besides, the system also has the SLS SH (k‖, kz )S−1 =
−H (k‖, kz ) with S = τzσy. According to the non-Hermitian
Altland-Zirnbauer classification [79], when the SC pairing
term is finite, the system belongs to the BDI topological class
and has SLS anti-commutating with TRS and PHS opera-
tors. Similar to Hermitian examples [80–82], when kx and
ky are treated as sole parameters, this system is reduced to
a quasi-1D model of this class and this quasi-1D model has a
line gap. Then, the topological index of our quasi-1D model
corresponds to a winding number from SLS. The Bloch wind-
ing number from SLS can be calculated from the following
integral:

ν = 1

4π i

∫ π

−π

dkzTr[SH−1(k‖, kz )∂kz H (k‖, kz )]. (13)

For mxy > 0, the result is (see Appendix A)

ν =
⎧⎨
⎩

0, if 2B < M− < M+;
−1, if M− < 2B < M+;
−2, if M− < M+ < 2B,

(14)

where M± = |mxy ±
√

γ 2 + �2|. When mxy < 0, since M− >

M+ in this case, we have ν = 0 if 2B < M+ < M−, ν = −1
if M+ < 2B < M−, and ν = −2 if M+ < M− < 2B. As we
have explained in Sec. II, the topological phase transition in a
system with the NHSE has to be investigated by the non-Bloch
winding number rather than the Bloch one. However, we will
show that the NHSE in our model is effectively removed by
the finite SC pairing term, so the Bloch winding number in
Eq. (13) can give the correct phase boundaries.

IV. INTRINSIC COUPLING BETWEEN
THE DIFFERENT GBZS

In this section, we show that the coupling effect of the two
different sub-GBZs induced by the SC term in our model, and
this effect drives the sub-GBZs to BZ. To this end, we first
rewrite the Eq. (11) as

H (kz ) =
(

hP i�σy

−i�σy hH

)
, (15)

with

hP = (mxy + 2B cos kz )σx + (iγ + vz sin kz )σz,
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FIG. 2. (a1)–(a4) The sub-GBZs corresponding to the particle block hP (green solid circle) and the hole block hH (green dash circle). Red
points denote total GBZs with different �s. The blue solid circle denotes BZ. (b1)–(b4) Complex eigenenergies under the PBC and OBC,
which correspond to (a1)–(a4). Other parameters are L = 80, γ = 0.3, vz = 2B = 1, m = 0.

hH = −(mxy + 2B cos kz )σx − (iγ − vz sin kz )σz, (16)

where P(H) denotes the particle (hole) parts in our model. We
note that hP is exactly the Hamiltonian of the non-Hermitian
nodal-ring semimetal Eq. (1). So the sub-GBZ corresponding
to hP is given by Eq. (9), i.e.,

βP(kz ) =
√∣∣∣∣mxy − γ

mxy + γ

∣∣∣∣eikz . (17)

For the hole part hH, we can also obtain (see Appendix. B):

βH(kz ) =
√∣∣∣∣mxy + γ

mxy − γ

∣∣∣∣eikz . (18)

Next, we investigate the coupling effect of the different
sub-GBZs in our model. We start with � → 0+ limit. The
numerically solved total GBZs [83] (with the different � →
0+) are shown in Figs. 2(a1)–2(a3). Unlike the examples
in Refs. [77,78], the sub-GBZs corresponding to hP and hH

are intrinsically coupled by the SC pairing term. And with
the larger �, the total GBZ becomes closer to the BZ. The
complex eigenenergies shown in Figs. 2(b1)–2(b3) also indi-
cate similar results: Although the complex energies under the
OBC are still different from those under the PBC, the bulk
parts of the eigenenergies under the OBC become closer to
those under PBC, which are quite different from the case of
the system with the NHSE. These results show that the SC
term induces coupling effects between the different sub-GBZs
of corresponding to the hP and hH, and this coupling effect
weakens the NHSE.

Then, for the finite �, Fig. 2(a4) shows that the GBZ and
BZ are almost the same. And in Fig. 2(b4) we also find that the
complex eigenenergies under PBC are almost the same as the
bulk parts of those under OBC. Both results indicate that the

NHSE has been effectively destroyed by the coupling effect
with the finite SC pairing term. In the next section, we will
show that the convectional BBC is then reconstructed.

V. RECONSTRUCTED CONVENTIONAL BULK-BBC
WITH THE FINITE �

To discuss the reconstructed BBC in our model, we still
treat kx and ky as parameters, then the lattice Hamiltonian in
the z direction is

H (k‖, kz ) =
∑

j,s

[(mxyc†
j,sc j,−s + B(c†

j,sc j+1,−s + H.c.)]

+
∑

j,s

[
isγ c†

j,sc j,s − 1

2
ivz(sc†

j,sc j+1,s − H.c.)

]

+
∑

j,s

(s�c†
j,sc

†
j,−s + H.c.), (19)

where the j is still the lattice index and the spin index is still
denoted by s = 1(−1).

We first identify the different phases by the Bloch
winding number. For our model with m = 3, 2B =
vz = 1, γ = 0.3 kx = −π , and � = 0.2. According to
the result in Eq. (14), we have ν = 0 when k− <

|ky| < π , ν = −1 when k+ < |ky| < k−, and −2 for
|ky| < k+, where k− = arccos(−√

13/10) ≈ 0.62π and k+ =
arccos(

√
13/10) ≈ 0.38π . In Fig. 3(a), we find that the phase

boundaries k = |k±| match well with the results of the OBC
spectrum, which means that the conventional BBC is effec-
tively reconstructed.

Then, to show our results more completely, we take differ-
ent kx, ky ∈ [−π, π ] and apply the real-space winding number
method (see Appendix C). The real-space winding number
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FIG. 3. (a) The OBC spectrum for our model with � = 0.2. The
red dashed lines are phase boundaries kx = ±k+ and kx = ±k− given
by the Bloch winding number. The numbers denote the number of the
zero modes. (b) The real-space winding number as a function of kx

and ky. The black solid lines are the phase boundaries given by the
Bloch winding number. (c) Density distribution of zero modes for
kx = 0.44π and ky = π . (d) βi,0 − kx curves from Eq. (21), where
each βi,0 (i = 1, 2, 3, 4) is the solution of the characteristic equation
Eq. (20) for E = 0. The two red (blue) lines denote β1,0 and β4,0(β2,0

and β3,0). The four dashed perpendicular lines are kx = ±k+ and kx =
±k−. The horizontal line is |β| = 1. Other parameters are L = 80,
γ = 0.3, vz = 2B = 1, and m = 0.

under z direction as a function of kx and ky and the phase
boundaries given by the Bloch winding number Eq. (14) are
plotted in Fig. 3(b). We find that the Bloch winding num-
ber and the real-space winding number give the same phase
boundaries, since the real-space winding number method is
dual to the non-Bloch framework and gives the correct phase
boundaries [75]. This result implies that the NHSE is removed
in our model and the conventional BBC is reconstructed. In
Fig. 3(c) we give the distribution of the edge modes along the
z direction for (kx, ky) = (0.44π, π ). According to Fig. 3(c),
this model is in a topological phase ν = −1 and has two edge
modes, which is consistent with the result in Fig. 3(b).

We also investigate the localization strength of the Ma-
jorana zero states. To this end, we still assume a trial
function of the nzth site along the z direction ψ (k‖, nz ) =

ei(kxx+kyy)(α1, α2, α3, α4)T βnz and substitute it to Eq. (19). For
E = 0, the eigenequation Hψ (k‖, nz ) = 0 leads to

det[H (k‖, β )] = [(mxy + 2Bβ )2 − γ 2 − �2]

β2

× [(mxyβ + 2B)2 − β2(γ 2 + �2)] = 0.

(20)

This equation has four solutions:

β1,0 = −mxy +
√

�2 + γ 2

2B
, β3,0 = −mxy −

√
�2 + γ 2

2B
,

β2,0 = − 2B

mxy −
√

γ 2 + �2
, β4,0 = − 2B

mxy +
√

γ 2 + �2
,

(21)

where the index 0 denotes that βi,0 corresponds to the zero-
edge modes rather than the GBZ. We note that all the solutions
are real and β1,0β4,0 = 1, β2,0β3,0 = 1. In a system with the
NHSE, the topological phase boundary should be given by
each two |βi,0| = rk [61], where rk is the radius of the k-
dependent solution about the GBZ [note that β(k) can be
written as β(k) = rkeik in Sec. II] in a complex plane. If
rk ≈ 1, this condition is the same as that in the system without
the NHSE. As we have shown in the previous parts of this
section, the SC pairing term induces the coupling between
two sub-GBZs of the particle and hole parts and this coupling
makes the rk close to 1, i.e., the total GBZ and BZ are the
same. In Fig. 3(d), the |β j,0| − kx curves show that at each
phase boundary, the intersection of two β j,0 occurs and the
corresponding |β j,0| ≈ 1, which is similar to the case with the
conventional BBC [84]. Thus this result also indicates that the
convectional BBC is constructed.

VI. FINITE-SIZE EFFECT

For a system without the NHSE, the finite-size effect
means that the coupling between zero modes on the two
ends of the chain can open an energy gap due to the finite
chain length [85]. Usually, this finite-size effect cannot change
the whole complex eigenenergies of an open chain funda-
mentally. However, in a system with the CNHSE, since the
eigenenergies under the OBC changes dramatically and the
size-dependent zero modes may occur with the increasing
size of the system [77], the meaning of the finite-size effect
changes a lot. To show these differences, we numerically
calculate the eigenenergies of the lattice Hamiltonian Eq. (19)
with the different strength of the SC pairing term and open
chain length L. The results are also plotted in Fig. 4.

We first consider the � = 0.01 case. From Figs. 4(a1)–
4(a3) we find that for the � → 0+ case, as the system size
L increases, the eigenenergies under OBC change a lot while
the ones under PBC are not sensitive to size. Besides, the
size-dependent zero modes occur. These results indicate that
for the � → 0+ case, the CNHSE exists in our model.

Then, for � = 0.2, Figs. 4(b1)–4(b3) show that the
eigenenergies under the OBC only change a little with differ-
ent size L, and zero-modes are size-independent, which means
that the finite-size effect does not change the eigenenergies
under the OBC dramatically and that the NHSE is much
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FIG. 4. (a1)–(a3) Complex eigenenergies for � = 0.01. (b1)–
(b3) Complex eigenenergies for � = 0.2. The blue (red) points
denote eigenenergies under PBC (OBC). The system length L = 10,
15, and 60. Other parameters are L = 80, γ = 0.3, vz = 2B = 1, and
m = 0.

weaker when the � is finite. This result is consistent with that
obtained from the GBZ analysis in Sec. IV.

VII. POSSIBLE EXPERIMENTAL REGIME

In this section, we consider a possible experimental set up
in the RLC circuit as illustrated in Fig. 5. Since the purpose is
to simulating our model, we can independently consider x, y,
and z directions and stimulate the corresponding Hamiltonian
Hx,y,z, as in Fig. 5(a) and 5(b). Then the total Hamiltonian H =
Hx + Hy + Hz can be simulated.

Now we discuss details. In the circuit shown in Figs. 5(a)
and 5(b), our model is divided into two parts simulating the
particle and hole bands correspondingly, and each “lattice”
is combined with four nodes (1,2,3,4), which corresponds to
the Nambu basis (ci,↑, ci,↓, c†

i,↑, c†
i,↓) for the ith lattice. The

“spin-flipping hopping term” can be realized by the capacitors
C0, C1 and inductors L0, L1 [86,87], and the capacitors C�

and the inductors L� connecting two parts play a role as the
“pairing term” [88]. As for the loss-and-gain term, we can
simulate them by the grounded resistor [89]. The operational

LgL� r C� Lg -r

L1

C� Cg

L�

(a) z-direction

1 12 2

C0 C0C1

C1

L0 L0

C1

C1

L1

L1

L1

-r L� Cg r

L�

C� C�

(b) x(y)-direction

3 4 3 4

z

z

x(y)

x(y)

+

-

R1

R2

R

R
R

R
R

(c) Operational 
amplifier

Va

Vb

Iab

Iba

1 12 2

33 44

FIG. 5. Electric circuit simulating the non-Hermitian nodal-ring
semimetal with the s-wave pairing. The circuit consists of two parts.
In this electron circuit, each unit cell has four nodes and these
nodes are labeled by 1–4. The part containing 1 and 2 (3 and 4)
nodes simulates the particle (hole) band. (a) The circuit realization
of the terms in the z direction. The operational amplifier is colored
red. (b) The circuit realization of the terms in the x(y) direction.
(c) Circuit structure of an operational amplifier shown in (a), where
R1 = R2 and the resistive parameter is R.

amplifier, which acts as the negative impedance converters
with current inversion (INIC), is also applied to this setup.
In the operational amplifier shown in Fig. 5(c), the resistance
is R for the forward current and −R for the backward cur-
rent as long as R1 = R2 [88,90]. Due to these properties, the
operational amplifier can introduce the resistor −r required
in the loss-and-gain term and the spin-conserved term like∑

s
ivzs

2 (c†
i,sci+1,s − c†

i+1,sci,s) (where s = ±1 denotes the spin
degree of freedom).

Then, according to Kirchhoff current law, when we apply a
time-dependent voltage V (t ) = V (0)eiωt to a circuit, we have
[86,87]

Ia =
∑

b

[
iωCab + 1

Rab
+ 1

iωLab

]
Vb = Jab(ω)Vb, (22)
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where Ia is the current flowing out of a node a, Vb denotes the
voltage across nodes a and b, and Cab, Rab, and Lab are the cor-
responding capacitance, resistance, and inverse conductance,
respectively. We can also rewrite Eq. (22) in the matrix form:

I =
[

iωC + R−1 + L′

iω

]
V = J(ω)V , (23)

where J(ω) is the circuit Laplacian, and the element of the
matrix L′ corresponding the conductor between nodes a and b
is L−1

ab .
For the RLC circuit shown in Fig. 5, the corresponding

Laplacian is

Jab(ω) = iω

(
j1(ω) f (ω)
f T (ω) j2(ω)

)
, (24)

with

j1(ω) =
(

C0 + 6C1 − 1

ω2Lg
+ C� − 1

ω2L�

)
I

−
(

C0 + 2C1

∑
α=x,y,z

cos kα

)
σx −

(
sin kx

R
− i

r

)
σz,

(25)

j2(ω) =
(

Cg − 1

ω2L0
− 6

ω2L1
+ C� − 1

ω2L�

)
I

+
(

1

ω0
+ 2

ω1

∑
α=x,y,z

cos kα

)
σx −

(
sin kx

R
+ i

r

)
σz,

(26)

f (ω) =
(

0 −C�
1

ω2L�
0

)
. (27)

By comparing the circuit Laplacian to the Bloch Hamiltonian
Eq. (1), we have

ω2 = 1

C0L0
= 1

C1L1
= 1

C�L�

= 1

(C0 + 6C1)Lg
= 1

Cg

(
1

L0
+ 6

L1

)
. (28)

Here the terms 6C1 and 6/L1 are induced by the spin-flipping
hopping term cos kασx in α = x, y, and z directions. With
Eq. (28), the model parameters in Eq. (27) and Eq. (11) has
the following correspondence:

C� = −�,C0 = −m0,C1 = −B,

vz = 1

R
, γ = 1

r
. (29)

Now it is possible to simulate a non-Hermitian nodal-ring
semimetal with the s-wave pairing.

VIII. DISCUSSION AND CONCLUSION

We first discuss whether the reconstructed BBC is valid
for the 2B �= vz cases. In this work, our main point is that
the coupling effect induced by the SC term makes the GBZ
very close to the BZ and the different NHSE localizations can
be perfectly canceled. Then the conventional BBC effectively
works again. For many 2B �= vz cases, the condition that the
SC term makes the GBZ very close to the BZ is usually

not satisfied well, which means that the different NHSE lo-
calizations of the subbands cannot be perfectly canceled. So
generally speaking, the conventional BBC cannot be rebuilt
in these cases, i.e, the phase boundaries given by the Bloch
winding number are different from the real phase boundaries.
This point also means the reconstructed conventional BBC is
more fragile than the original conventional BBC.

In summary, based on the knowledge of GBZ frame-
work, we investigate the BBC of a non-Hermitian nodal-ring
semimetal with s-wave SC pairing term. As long as the s-wave
pairing term is nonzero, the GBZs of particle and hole parts
will be coupled and this coupling drives them to the BZ. When
the SC term is finite, we show that the coupling effect makes
it possible to perfectly remove the NHSE in our model and
the total GBZ of our model becomes the same as the BZ. In
this case, the quasi-1D Bloch winding number predicts the
number of Majorana zero modes and the phase boundaries
faithfully, which means the convectional BBC is reconstructed
in our model. Our results may be generalized to the topolog-
ical systems with the coupled high-order NHSE [64,91]. It is
also interesting to investigate the effects of the interaction and
disorders in this reconstructed BBC.
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APPENDIX A: CALCULATION DETAILS OF THE
BLOCH WINDING NUMBER

We calculate the Bloch winding number from SLS with
SLS symmetry operator S = τzσy, which is given by Eq. (13)
in the main text. After the following unitary transformation,

U = 1

2
[τ0 ⊗ (σy + σ0) + τx ⊗ (σy − σ0)], (A1)

then it follows that

USU † = τz ⊗ σ0 H ′(k) = UH (k)U † =
(

0 h+(k)
h−(k) 0

)
,

(A2)

with

h±(k) =
(−vz sin kz ± i(� + m) ±γ

±γ vz sin kz ± i(� − m)

)
,

(A3)

where m = m0 + 2B(cos kx + cos ky + cos kz ). Next, we have

ν = 1

4π i

∮
BZ

dkTr[τzH
′−1(k)∂kH ′(k)]

= 1

4π i

∫ π

−π

d ln[Z∗(kz )] − d ln[Z (kz )]

= 1

2
(W+ − W−), (A4)
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where Z (kz ) = (vz sin kz − im)2 + γ 2 + �2. For the 2B = vz

case, the W− is given by the following integral:

W− = 1

4π i

∮
BZ

dk
−4B(mxy + 2Beikz )eikz

(γ 2 + �2) − (mxy + 2Beikz )2

= 1

4π i

∮
BZ

2(z + mxy

2B )

(z + z+)(z + z−)
(A5)

with z± = (mxy ±
√

γ 2 + �2)/(2B). Obviously this contour
integral is dependent on the number of the poles. By compar-
ing the |mxy ±

√
γ 2 + �2| and 2B, we can obtain the Eq. (14)

in the main text.

APPENDIX B: SUB-GBZ SOLUTION
FOR THE HOLE BLOCK

According to Refs. [67,69], to obtain the sub-GBZ of the
hole block hH, we have to deal with the characteristic equation
of each block:

det[EI − hH(βH)] = 0. (B1)

For the hole Block in Eq. (16) of the main text, with the
replacement eik → β, this characteristic equation leads to

E2
H =

[
mxy + B

(
βH + 1

βH

)]2

+
[
vz

2i
(βH − 1

βH
) − iγ

]2

.

(B2)

If B = vz/2 = t , we have

2t (mxy − γ )β2+(
m2

xy − γ 2 + 4t2 − E2
)
β+2t (mxy+γ ) = 0,

(B3)
so the two solutions of the equation β1 and β2 satisfy

β1β2 = mxy + γ

mxy − γ
. (B4)

According to the results in Refs. [67,69], the sub-GBZ so-
lution in this model requires |β1| = |β2|. Combing with

Eq. (B4), we obtain that

|βH| = |β1,H| = |β2,H| =
√∣∣∣∣mxy + γ

mxy − γ

∣∣∣∣. (B5)

Since a GBZ solutions can always be written as β(k) =
|β(k)|eik , we have Eq. (18) in the main text.

APPENDIX C: REAL-SPACE WINDING NUMBER
FROM SLS

In this part, we briefly review the real-space winding num-
ber method, as the example in Ref. [75], if a real-space
Hamiltonian H with N unit cells satisfies SLS. After di-
agonalizing H , one can obtain two SLS parts: H |nR,±〉 =
±ER|nR,±〉 with |nR,+〉 = S|nR,−〉, where S = τz ⊗ 1N ⊗
σy is the SLS operator and n is the band index. The corre-
sponding left eigenvectors |nL, s,±〉 can be obtained from the
columns of (T −1)† by writing H = T 
T −1 with the diagonal
matrix 
. Under the OBC we can introduce open-boundary
matrix Q,

Q =
∑

n

(|nR,+〉〈nL,+| − |nR,−〉〈nL,−|). (C1)

Here
∑

n is the sum over the eigenstates. Then the real-space
winding number is defined as:

νs = 1

4L′ Tr′(SQ[Q, X ]) + H.c., (C2)

where X is the coordinate operator, and the chain length
L = L′ + 2l includes the middle interval with length L′ and
two boundary intervals 1 � x � l and l + L′ + 1 � x � l . In
the L → ∞ limit, the ν approaches to 1 when a system is
topological and 0 for the trivial phase. And the Tr′ stands for
the trace over middle interval including sublattice and Nambu
index.
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