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Weyl point immersed in a continuous spectrum: An example from superconducting nanostructures
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A Weyl point in a superconducting nanostructure is a generic minimum model of a topological singularity
at low energies. We connect the nanostructure to normal leads thereby immersing the topological singularity in
the continuous spectrum of the electron states in the leads. This sets another simple and generic model useful
to comprehend the modification of low-energy singularity in the presence of a continuous spectrum. The tunnel
coupling to the leads gives rise to new low-energy scale � at which all topological features are smoothed. We
investigate superconducting and normal currents in the nanostructure at this scale. We show how the tunnel
currents can be used for detection of the Weyl point. Importantly, we find that the topological charge is not
concentrated in a point but rather is spread over the parameter space in the vicinity of the point. We introduce
and compute the resulting topological charge density. We also reveal that the pumping to the normal leads helps
to detect and investigate the topological effects in the vicinity of the point.
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I. INTRODUCTION

The study of topological materials has been on the front
edge of modern research in condensed matter physics for
the past decade [1–5]. These materials are appealing from
a fundamental point of view and for possible applications
[6–10], including quantum information processing [11,12].
The basis for applications is the topological protection of
quantum states, which makes the states robust against small
perturbations and leads to many unusual phenomena, e.g.,
topologically protected edge states [13–15]. The topological
superconductors [16–19] and Chern insulators [20–23] are the
classes of topological materials that are under active investi-
gation.

Most topological effects under consideration require dis-
crete quantum states, for instance, electron, photon, or phonon
bands in a Brillouin zone of a periodic structure. Topological
protection requires a gap in energy spectrum, that is, the
absence of a continuous excitation spectrum at low energies.
It is intuitively clear that immersing the discrete states in a
continuous spectrum, and compromising the energy gaps in
this way will lead to compromising the topology. One of the
goals of the present paper is to propose and investigate a
simple model for this that can be elaborated analytically to
all details.

We concentrate on those Weyl points that are most gen-
erally defined as topologically protected crossings of the
discrete energy levels in a parametric space. From general
topological reasoning, such crossing requires tuning of three
parameters, so it is natural to consider a three-dimensional
parametric space.

Recently, Weyl points—the topologically protected cross-
ings in the spectrum of Andreev bound states—have been pre-
dicted in superconducting nanostructures [24]. The specifics
of superconductivity are that these crossings may be pinned to

Fermi level. This restricts the relevant physics to low energies
and the properties of the ground state of the system. At a Weyl
point, the energy of the lowest Andreev state crosses Fermi
level, so it costs vanishing energy to excite a quasiparticle
in the vicinity of the point. A general requirement of the
realization of such crossing is at least three independent pa-
rameters. This is why the Weyl points are usually considered
in multiterminal superconducting nanostructures where the
parameters are the superconducting phase differences of the
terminals. Four terminals are thus needed to realize a Weyl
point. This prediction gave rise to related experimental and
theoretical research [25–36]. A separate set of proposals aims
to realize the Weyl points in devices combining the Josephson
effect and Coulomb blockade [37,38].

It is important that weak spin-orbit interaction splits the
energies of single-quasiparticle states [24,39]. Owing to this,
the ground state configuration is always a component of a
spin doublet in a small finite region around the point and is
spin singlet otherwise [31,39]. The topological singularity still
remains since the energies of two singlet states still cross in a
point owing to topological protection.

In [31] we have noticed that a continuous spectrum above
the gap may modify the signatures of topology leading to a
nonquantized contribution to the transconductance. The con-
tinuous spectrum at low energies shall bring more drastic
modification. The most experimentally relevant way to bring
a continuous spectrum into play is to couple a system of
discrete Andreev levels in the superconducting nanostructure
to normal leads. As we will see in detail in this paper, this
brings a new energy scale �, which is the rate of tunneling
to the leads from a discrete state. Since we are at a point of
energy crossing, this small energy scale also implies a small
scale in the parameter space: the scale at which the energy
splitting matches �.
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We have studied tunnel coupling to discrete normal states
in [40] where we propose a spin-Weyl quantum unit. Im-
portantly, we have found there that the tunnel coupling may
break isotropy in the vicinity of the Weyl point. In the con-
text of spintronics, we have recently studied [41] the charge
and spin transport in normal leads tunnel-coupled to a Weyl-
point superconducting nanostructure. This is essentially the
same setup as we consider here. However, in [41] we access
the transport in the framework of a master equation, that
is, assuming that the energy differences of Andreev states
greatly exceed the tunnel energy scale. In this approximation
the quantities characterizing the setup retain singularities: the
superconducting current has a jump at the point, the normal
currents jump at voltages corresponding to the energy levels,
and the Berry curvature diverges upon approaching the point
indicating the pointlike topological charge.

In this paper, we investigate the setup at the energy
scale � revealing how the above-mentioned singularities are
smoothed at this scale. We formulate a generic model of tun-
neling suitable for many leads that includes isotropy violation.
Since we concentrate on a close vicinity of a Weyl point, the
adequate model contains only a handful of parameters de-
scribed further in the text. Technically, the problem at hand is
a case of a nonequilibrium Green’s function technique [42,43]
for noninteracting fermions. However, we chose to present an
explicit derivation in terms of the Heisenberg equation of mo-
tion for the operators of the superconducting current and those
of the currents in the normal leads. We compute these quan-
tities for equilibrium, stationary, and adiabatic cases. Owing
to the simplicity of the generic setup under consideration, all
results are analytical.

As expected, all singularities are smoothed. We find the
maximum derivative of the supercurrent with respect to the
controlling phases, which is set by �, and the maximum
differential conductance in the tunneling currents. An experi-
mentally relevant point is the sharp dependence of tunneling
currents in the vicinity of the point in the limit of high voltages
and temperatures. This can be used for the detection of Weyl
points at temperatures that exceed the level splitting.

We redefine Berry curvature in terms of the response func-
tion in the limit of small frequencies. The divergence of the
redefined curvature gives the density of topological charge, so
we explicitly compute how the pointlike topological singular-
ity is spread over the parameter space.

In addition, we evaluate the tunneling currents generated
by an adiabatic change of the controlling phases. This is the
case of parametric charge pumping [44–46]: the result of a
change of the controlling phases along a closed contour is a
charge transferred to the leads that depends on the contour
only. We show that this is a convenient tool for exploration of
the vicinity of the Weyl point, including the smoothing of the
singularities.

The structure of the paper is as follows. We formulate the
model in Sec. II and perform necessary derivations in Sec. III.
We evaluate the superconducting currents in equilibrium in
Sec. IV. There are no tunneling currents in equilibrium. They
arise if the voltages are applied to the leads, and we evaluate
these currents for stationary voltages in Sec. V. Next, we
turn to the adiabatic case computing the response functions
in the limit of low frequency. We redefine Berry curvature,

and evaluate the response function and the density of topo-
logical charge in Sec. VI. Section VII concentrates on charge
pumping to the normal leads. We conclude in Sec. VIII.

II. THE MODEL

We start with the effective Hamiltonian in the vicinity of a
Weyl point following [24,31,39].

Three independent superconducting phase differences can
be regarded as a 3D vector �ϕ. Suppose the Weyl points are
situated at ±�ϕ0. In the vicinity of the point at �ϕ0 we expand
�ϕ = �ϕ0 + δ�ϕ, |δ�ϕ| � 1 and can describe the lowest Andreev
bound states by a 2 × 2 matrix Bogoliubov–de Gennes Hamil-
tonian

ĤW = φaτ̂a; φa = Mabδϕb, (1)

where τ̂a is a vector of Pauli matrices. This form suggests
convenient coordinates �φ especially for the vicinity of a Weyl
point that are linearly related and thus equivalent to δ�ϕ. We
will make use of these coordinates throughout the paper. We
thus use �ϕ for the whole 3D space, and �φ for the immediate
vicinity of a Weyl point. While such notations may be confus-
ing at first, they are really very compact and thus convenient.
In these coordinates of dimension energy, the spectrum is
isotropic and conical, E = ±| �φ|. The coordinates are thus
defined upon an orthogonal transform.

Weak spin-orbit interaction within the nanostructure splits
the Andreev states in spin [39], resulting in the following
Hamiltonian:

ĤW = φaτ̂a + Baσ̂a, (2)

σ̂a being a vector of Pauli matrices in spin space, and Ba

looks like an external magnetic field causing Zeeman splitting.
However, �B �= 0 even in the absence of an external magnetic
field and represents the effect of the superconducting phase
differences on spin orientation. Owing to global time re-
versibility, the vectors �B are opposite for opposite Weyl points,
�B(−ϕ0) = −�B(ϕ0). The magnitude of �B can be estimated as
the superconducting energy gap � times a dimensionless fac-
tor characterizing the weakness of the spin-orbit interaction.
For a concrete number in mind, we can take B � 0.1� �
0.2 meV, which corresponds to niobium. If there is an ex-
ternal magnetic field, it adds to �B. We note, however, that our
estimation of B is about 3T , so it requires a significant field to
change it.

To represent the Hamiltonian in the second-quantization
form, we introduce quasiparticle annihilation operators γ̂σ

and associated four-component Nambu bispinors γα , where
α = (i, σ ) combines spin and Nabmu index i = e, h, γ̄i,σ ≡
(γ̂σ ,−σ γ̂−σ ) to recast it to the standard form,

HW = 1
2 γ̄ †

α HW
αβ γ̄β . (3)

We note that γ
†
i,σ = −σγ −i,−σ . This gives an isotropic spec-

trum which depends only on φ ≡ | �φ| [see Fig. 1(a)]. The
energies are E = ±φ for two spin-singlet states, ground one
|g〉, and excited one |x〉, and E = ±B for two components of
the spin doublet | ↑〉, | ↓〉. The energies of the split doublet
exhibit no singularity or phase dependence in the vicinity of
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FIG. 1. (a) In a four-terminal superconducting heterostructure,
the Andreev states may cross Fermi level in a point—a Weyl point—
in three-dimensional (3D) parameter space of a superconducting
phase. The resulting spectrum in the vicinity of the point is isotropic
and conical for two singlet states (x and g in the figure) and flat for
doublet states. The doublet states are split by spin-orbit interaction,
and one doublet state is ground one in the mere vicinity of the
point. (b) The setup under consideration. The Andreev bound states
near Weyl point (ABSWP) are tunnel-coupled with the continuous
spectrum of the electron states in several normal-metal leads (two
are shown in the figure). The tunnel coupling results in an energy
scale � at which the spectral singularities are smoothed.

the Weyl point, while the spin-singlet states retain the conical
spectrum.

The ground state is magnetic (| ↓〉) in a narrow vicinity of
the Weyl point, namely, at |φ| < B and spin-singlet otherwise
[Fig. 1(a)].

We will need the current operators in three superconduct-
ing leads. They are given by the derivatives of the Hamiltonian
with respect to the phases [46],

Ia = 2e

h̄

∂ĤW

∂ϕa
= 2e

h̄
MabĨb; (4)

Ĩa ≡ 1
2γ †

α τ a
αβγβ. (5)

Since there is a trivial linear relation between Ia and Ĩa, we
will further concentrate on the dimensionless quantities Ĩa.

Let us bring in the coupling with the continuous spectrum
of electron states in several leads (Fig. 1). We will describe
the leads with a usual free-fermion Hamiltonian

Ĥleads =
∑

k

Ekd̂†
k,σ

d̂k,σ , (6)

where k labels the states of the quasicontinuous spectrum
in the leads, dk are the corresponding electron annihilation

operators, and Ek are the corresponding energies. The states
k are distributed over the leads; those are labeled with a. We
characterize a general nonequilibrium state of the leads with
the energy-dependent filling factors fa(E ) such that

〈d̂†
k,σ

d̂k,σ 〉 = fa(Ek ) for k ∈ a. (7)

The crucial part of the Hamiltonian is the tunneling be-
tween the electron states in the leads and the Andreev state in
the nanostructure. We will keep it in the most general form,

ĤT =
∑
k,σ

(
tk γ̂

†
σ − t ′

kσ γ̂−σ

)
d̂k,σ + H.c., (8)

not specifying the spin-independent tunnel amplitudes tk, t ′
k .

In the course of the derivation, we will see which combina-
tions of the amplitudes are relevant parameters of the model. It
is convenient to present the Hamiltonian in the form of Nambu
spinors:

2ĤT =
∑

k

γ †
α T αβ

k dα
k + H.c., (9)

where the matrix T αβ depends on the Nambu index only,

Tk =
(

t k t ′∗
k

t ′
k −t∗

k

)
. (10)

With this, we derive the operators of the current to a normal
lead a:

Ja = e
∑

k∈a,σ

i
(
tk γ̂

†
σ − t ′

kσ γ̂−σ

)
d̂k,σ + H.c.; (11)

Ja = ie

2

∑
k∈a

γ †
α (T αβ

k τ3)αβdα
k + H.c. (12)

III. DERIVATION

The derivation of expressions for the currents in supercon-
ducting and normal leads can be accomplished by standard
methods of superconducting nonequilibrium Keldysh Green’s
functions [42,43,47–50]. However, for the sake of compre-
hensibility we give here an explicit derivation from scratch.
This is easy for the system under consideration and makes
explicit the transition from a quasicontinuous to a continuous
spectrum in the leads.

Let us write down the Heisenberg evolution equations for
the operators γ̂ α, d̂α

k,σ governed by the total Hamiltonian Ĥ =
ĤW + Ĥleads + ĤT. We use boldface notations for bispinors
and “check” for the corresponding 4 × 4 matrices. In these
notations,

iγ̇ = ȞWγ +
∑

k

Ťkdk, (13)

iḋk = Ek τ̌3dk + Ť †
k γ . (14)

Here, we implicitly assume a time dependence of HW. Solving
equations for each of d̂ gives

dk (t ) = e−iEk τ̌3t d0
k +

ˆ
dt ′ǧk (t, t ′)Ť †

k γ (t ′), (15)

where

ǧk (t, t ′) = −ie−iEk τ̌3(t−t ′ )(t − t ′). (16)

104506-3



Y. CHEN AND Y. V. NAZAROV PHYSICAL REVIEW B 104, 104506 (2021)

Here, d0 describes the state of the leads. We substitute this to
Eq. (13) to obtain a closed equation for γ and express it in
terms of d0:

γ (t ) =
ˆ

dt ′Ǧ(t, t ′)
∑

k

Ťke−iEk τ̌3t ′
d0

k, (17)

where we have introduced the advanced Green’s function
defined as

[i∂t − ȞW]Ǧ(t, t ′) −
ˆ

dt ′′�̌(t − t ′′)Ǧ(t ′′, t ′) = δ(t − t ′),

(18)
where the self-energy �̌ reads

�̌(t, t ′) =
∑

k

Ťk ǧk (t, t ′)Ť †
k . (19)

We substitute expression (17) to the expressions for the
current operators (5) and average over the nonequilibrium
state of the leads using Eq. (7). This yields

〈Ĩa〉 = 1

2

ˆ
dt ′dt ′′Tr[τ̌aǦ(t, t ′)F̌ (t ′, t ′′) ˇ̄G(t ′′, t )], (20)

where ˇ̄G(t, t ′) ≡ Ǧ†(t ′, t ) and

F̌ = Ťk

(
fkeiEk (t ′−t ) 0

0 ( f̄k )eiEk (t−t ′ )

)
Ť †

k . (21)

Here and further on, f̄k ≡ 1 − fk . In a similar way, we derive
the averages of the currents in the normal leads. They read

〈Ja(t )〉 = e
ˆ

dt1dt2dt3Tr[M̌a(t, t1)Ǧ(t1, t2)

×̌F (t2, t3) ˇ̄G(t3, t )]

+
ˆ

dt1
[
Tr[Ďa(t, t ′)Ǧ(t, t ′)] + H.c.

]
. (22)

Here, we define

M̌a = −1

2

∑
k∈a

Ťkτ3e−iEkτ3(t−t ′ )Ť †
k ; (23)

Ďa(t, t ′) = −i

2

∑
k∈a

Ťkτ3

(
fkeiEk (t ′−t ) 0

0 fkeiEk (t−t ′ )

)
Ť †

k . (24)

So far, the expressions are valid for any spectrum in the
normal lead, either quasicontinuous or continuous. Let us now
specify to a continuous spectrum. For this, we define the
following combinations of tunnel amplitudes in each lead:

�a(E ) =
∑
k∈a

(|tk|2 + |t ′
k|2)δ(E − Ek ); (25)

��a(E ) =
∑
k∈a

[
2Re(t ′

kt∗
k ), 2Im(t ′

kt∗
k ), |tk|2 − |t ′

k|2
]
δ(E − Ek ).

(26)

All the constituents of the expressions for the operators can
be expressed through �a(E ), ��a(E ). Those are thus the ac-
tual parameters of our model. The continuous spectrum is
implemented by assumption that �a(E ), ��a(E ) are continuous
and smooth functions of energy. Moreover, a convenient and
relevant assumption is that these functions vary at an energy
scale that exceeds by far that of the Weyl point. In this case,

the energy dependence can be disregarded and �a, ��a are
taken at zero energy.

Let us see how �̌, F̌ , M̌a, and Ďa are simplified under
these assumptions. In energy representation, the self-energy
becomes

�̌(ε) = 1

4π

∑
±

[
�(E ) ± ��(E ) · �̌τ ] 1

ε ∓ E − i0
, (27)

where �, �� ≡ ∑
a �a, ��a. The Hermitian part of �̌ in the limit

ε adds a constant term to H and therefore describes a shift,
or renormalization of the Weyl-point position in the space of
three phases due to tunneling,

δ �φ = −
ˆ

dE
��(E )

E
. (28)

We will disregard this irrelevant redefinition of the Weyl-point
position. The anti-Hermitian part of the self-energy is more
important describing the decay of discrete states into the con-
tinuous spectrum,

�̌ = 1

4

∑
±

(
�(±ε) ± ��(±ε) · �̌τ) ≈ �

2
, (29)

where the limit of small ε has been implemented in the last
equality. The matrices F̌ , Ďa bring the information about the
filling factors in the leads and are expressed as

F̌ =
∑

a

�a f +
a + ��a · �̌τ f −

a , (30)

Ďa = − i

2

[��a · �̌τ f +
a + �a f −

a

]
, (31)

f ±(ε) ≡ fa(ε) ± f̄a(−ε)

2
. (32)

Finally, M̌a = −��a · �̌τ/2. With this, the terms with M̌a in
Eq. (22) are related to superconducting currents,

〈Ja〉 = −��a · �̃I +
ˆ

dt1
[
Tr[Ďa(t, t ′)Ǧ(t, t ′)] + H.c.

]
. (33)

From now on, we will denote the expectation values of the

currents simply as Ja, �̃I .

IV. CURRENTS IN EQUILIBRIUM

In equilibrium and stationary state, the Green’s functions
are diagonal in energy representation,

Ǧ, ˇ̄G = 1

ε − ȞW ∓ i �
2

. (34)

There is also a convenient relation

i(Ǧ−1 − ˇ̄G−1) = �. (35)

We note that in equilibrium f (ε) = f̄ (−ε) and filling factors
in all leads correspond to Fermi distribution at zero chem-
ical potential, fa(ε) = fF (ε). With this, F̌ = � fF . Invoking
Eq. (35), we prove

ǦF̌ ˇ̄G = −i fF (Ǧ − ˇ̄G) (36)
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FIG. 2. Smoothing of the superconducting current singularity at
the scale of �. Curve a corresponds to B � �, while curve b corre-
sponds to B = 5�.

and the currents are expressed as

�̃I = −i
ˆ

dε

2π
Tr[�̌τ (Ǧ − ˇ̄G) fF (ε)]. (37)

Let us first recognize that the equilibrium supercurrents
are expressed from the derivatives of free energy with respect
to �φ. For an isolated superconducting nanostructure, that is,
in the limit � � B, φ, and at zero temperature, the ground
state energy is given through the positive energies of Andreev
bound states,

Eg = −1

2

∑
i

Ei(Ei ). (38)

For the nanostructure under consideration, the Andreev bound
states are Eσ,± = Bσ ± φ and the currents in this limit read

�̃I = −�n(φ − B). (39)

The current has a cusp: that is, its derivative with respect to φ

diverges in a point. This divergence may be in principle used
for finding the Weyl point and is smoothed at the scale of �.

At finite �, the Andreev energies correspond to the poles
of the Green’s functions. Their poles are shifted by ±i�/2
from the real axis. The currents are expressed through the
phases of the pole positions ξσ,± ≡ arctan[2(Bσ ± φ)/�],

�̃I = �n
2π

∑
σ

(ξσ,− − ξσ,+). (40)

The cusps are smoothed by a finite � (see Fig. 2). The max-
imum derivative with respect to φ is now finite and is of the
order of �−1:

∂ Ĩ

∂φ
= 2

π�
for B � �,

1

π�
for B � �. (41)

In equilibrium, we expect no currents to normal leads.
Indeed, if there were currents, one could extract energy from
the equilibrium system by applying voltages to the normal
leads. Technically, two terms in Eq. (33) cancel each other
upon applying the relation (36).

V. STATIONARY CURRENTS

Now we turn to the case of nonequilibrium filling factors in
the leads still assuming a stationary Weyl-point Hamiltonian.

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10

a

b c

FIG. 3. The voltage derivative of the superconducting current.
There is a single lead; we concentrate on a simple case �� = 0 where
�̃I = �nĨ . We set φ = 3.0�. The spin splitting B is set to 0, �, 4�, for
the curves a,b,c, respectively.

The currents are given by Eqs. (33) and (20) with energy-
diagonal Green’s functions (34). To keep the formulas simple,
we will specify to differential conductances at vanishing tem-
perature. The voltages in the leads only change the filling
factors, at vanishing temperature ∂ fa/∂eVa = δ(ε − eVa), that
is, the differential conductances are contributed by the specific
energies ε = ±eVa only.

For the derivatives of supercurrents, we have

2π
∂ �I

∂eVa
= �φ�aKo(eVa) + (2 �φ · ��a) �φ

+ ( �φ × ��a)Ke(eVa) + ��aK3(eVa), (42)

where the functions Ko,e,3 are defined as [K−1
σ ≡ [(ε −

Bσ )2 − �2/4 − φ2]2 + �2(ε − Bσ )2]

Ko = 2
∑

σ

(ε − Bσ )Kσ ; Ke =
∑

σ

Kσ ; (43)

K3 =
∑

σ

[
(ε − Bσ )2 + �2/4 − φ2

]
Kσ . (44)

We note thatˆ ∞

0
dε Ko = 2[arctan(φ + B) + arctan(φ − B)]

�φ
; (45)

ˆ ∞

0
dε Ke = π

�(�2/4 + φ2)
; (46)

ˆ ∞

0
dε K3 = π�

2(�2/4 + φ2)
. (47)

The derivatives are illustrated in Fig. 3 for a single lead and a

simple case �� = 0, where �̃I = �nĨ . They peak at the positions
of resonant levels eV = φ + B, |φ − B|. The peak width is of
the order of �. For singlet ground state (the curves a, b), the
finite current at zero voltage falls to zero in one or two steps.
For the doublet ground state, the current that is small at zero
voltage rises at the first and drops at the second resonant level.
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FIG. 4. An example of zero-voltage conductances. There are two
leads, �1 = 0.7�, �2 = 0.3�, ��1 ‖ x, ��2 ‖ y; the plots are for �φ in
the z direction. The curves a,b,c, correspond to G11, G22, G12. The
transconductance is antisymmetric in this case, G12 = −G21. Left
panel:; right panel: B = 5�. The vertical scale of the curve c is
increased by a factor of 10.

The differential conductances in the normal leads are given
by

∂Ja

∂e2Vb
= − ��a · ∂ �̃I

∂eVb

+ �δab

2π

(
�a

[
K3(eVa) + 2φ2Ke(eVa)

] + (��a · �φ)Ko
)
.

(48)

We plot in Fig. 4 an example of zero-voltage conductances
G11, G22, G12 for two leads. The diagonal conductances peak
when the resonant levels are at zero energy, |φ − B| = 0. The
peak widths are of the order of the conductance quantum
GQ ≡ e2/h̄pi. An interesting feature is a Hall-like antisym-
metric transconductance G12 = −G21. It incorporates the
effects of vector parts of � in two leads, G12 ∝ �φ · (��1 × ��2)
and changes sign if �φ → − �φ.

For finite-voltage conductance, we restrict ourselves to the
case of a single lead. The example for | ��| = �/2 is given in
Fig. 5. The peaks of differential conductance are situated at
eV = |φ ± B|, their width being of the order of �. The peak
values are of the order of GQ. The vector part of � brings
anisotropy and asymmetry of conductances with respect to
voltage and �φ.

At high voltages eV � �, φ, B applied, the current in the
normal lead saturates at finite value J∞, as is expected for
the transport via resonant levels. We note a peculiar feature:
this current retains the dependence on φ and its direction, and
this dependence is smoothed at the small scale of φ � � only.
Using the relations (42),(43),(45), we obtain

J∞/e = � − (�� · �φ)2 + (��)2�2/4

�(φ2 + �2/4)
. (49)

This feature survives rather high temperatures φ � kBT �
eV at which the thermal equilibration eventually cancels the
superconducting currents near the Weyl point. This makes the
feature highly proficient for experimental detection of Weyl
points in a practical situation where the finite temperature
prevents the detection through the supercurrent. One would
look at the variation of the tunnel current under variation of φ
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FIG. 5. Differential conductance for the case of a single lead.
| ��| = �/2 was taken. The solid curves correspond to �φ ⊥ ��; the
conductance is even in V and φ. The dashed curves correspond
to �φ ‖ ��, and G(V, φ) = G(−V, −φ). The parameters are as fol-
lows: (a) B = 0, φ = 3�; (b) B = 5�, φ = 3�; (c) B = 3�, φ = 5�;
(d) B = 5�, φ = 0; (e) B = 0, φ = 0. The perpendicular and parallel
conductances coincide for the last two plots, since φ = 0.
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to find a signal that is concentrated near the point and shows
anisotropy defined by Eq. (49). The maximum derivative for
�φ ⊥ �,

∂J

∂φ
= e

h̄

��2

�2
, (50)

does not depend on the strength of the tunnel coupling; this
guarantees a big amplitude of the detection signal.

Let us note that the maximum differential conductance that
can be achieved in the vicinity of the Weyl point amounts
to 4GQ. This maximum requires single lead φ = 0, spin de-
generacy B = 0, zero voltage, and the absence of the vector
part of the tunnel coupling ��. At finite φ � � or B � � the
peaks are well separated in voltage, their maximum height
being 2GQ [see, e.g., Figs. 5(a) and 5(d)]. At φ, B → 0 they
merge into a single peak of the same width [Fig. 5(e)]. It may
seem surprising to see such high conductance. For a single
transport channel, the conductance is limited by 2GQ, which
corresponds to ideal Andreev reflection [46]. We conclude
that two transport channels are involved in the transport in the
vicinity of a Weyl point.

VI. REDEFINITION OF BERRY CURVATURE AND
DENSITY OF TOPOLOGICAL CHARGE

In this section, we consider the adiabatic case. We assume
equilibrium filling factor in the leads and concentrate on the
case of vanishing temperature. If we change the control phases
slowly, the superconducting currents acquire a correction pro-
portional to time derivatives of the phases:

Ĩα (t ) = Ĩα[ �φ(t )] + Bαβ ( �φ)φ̇β . (51)

Thereby we define a tensor response function Bαβ . The sym-
metric part of this tensor defines the dissipation in the course
of the slow change of the phases,

dE

dt
= φ̇αBαβ ( �φ)φ̇β . (52)

If the system under consideration is gapped, the dissipative
part is absent, while the antisymmetric part of the response
function gives the Berry curvature of the ground state of the
system (see, e.g., [24]):

Bαβ = 2Im〈∂α�|∂��〉. (53)

It is convenient to introduce a pseudovector of Berry curvature
Bα = eαβγ . For the superconducting Weyl point, the Berry
curvature has been evaluated in [24,31]. For the singlet ground
state, and in the coordinates in use it assumes the standard
expression �B = �φ/(2φ2). The flux of �B through a surface
enclosing the origin is 2π manifesting a unit pointlike topo-
logical charge at the origin. However, �B = 0 at φ < B where
the ground state is a doublet. The continuity of the ground
state is broken at φ = B and topological consideration that
guarantees a divergentless �B cannot be applied anymore.

We evaluate Bαβ for the setup under consideration mak-
ing use of Eq. (20). Given a modulation of the Hamiltonian
ˇδH oscillating at frequency ω, the response of the currents

0

0.5

1

1.5 

2

2.5

3

0 1 2 3 4 5

a

b x 10

c x 10

FIG. 6. Dissipative part of the response function. We assume
φ ‖ z and plot Bzz, Bxx = Byy. Curve a: B = 0, Bzz = Bxx . Curves b,c:
B = 3.

oscillating at the same frequency can be represented as

Ĩα
ω =

ˆ
dε

2π

1

2
Tr[τ̌ α (Ǧε+ω

ˇδHǦεF̌ε
ˇ̄Gε (54)

+ ǦεF̌ε
ˇ̄Gε

ˇδH ˇ̄Gε−ω )]. (55)

We obtain Bαβ by substituting Ȟ = δφατ̌ α and taking the
limit ω → 0. This is valid for ω � �. We assume vanishing
temperature when integrating over the energy.

To present the answers in a compact form, we introduce a
convenient expression K ≡ (φ2 − B2 + �2/4)2 + B2�2. The
dissipative part of the response function reads

Bαβ = �2

2πK

(
δαβ + φαφβB2

K

)
. (56)

It is plotted in Fig. 6 for two values of magnetic field. We note
that the dissipative part at small � is proportional to �2 except
φ = B. This is because the dissipation requires an excitation
of an electron-hole pair in the normal leads, which is a second-
order tunneling process [46]. At the resonance threshold φ =
B, and B � �, the dissipative part of the response function
is strongly anisotropic: it is ��−2 for the direction ‖ �φ and
�B−2 otherwise.

Following [31], we redefine Berry curvature as an asym-
metric part of the response function. For any discrete spectrum
and zero temperature, this redefinition would be exact retain-
ing all topological properties of the curvature provided the
limit ω → 0 implies ω � δ, δ being the level spacing in the
spectrum. However, in our case the spectrum is continuous,
that is, δ = 0, and the limit ω → 0 rather implies ω � �.
Nevertheless, the redefined curvature coincides with the stan-
dard expression at φ, B � �, that is, far from a close vicinity
of the point or the resonance φ = B. The general expression
reads

�B = �φ
2πφ3

[∑
±

arctan
2(φ ± B)

�
+ φ2 − �2/4 − B2

K

]
.

(57)
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FIG. 7. Redefined Berry phase ×φ2. The curves a,b,c correspond
to B = 0, 2, 5�. They quickly approach the standard expression at
φ � �.

We plot it in Fig. 7 for several B. At the origin, �B ∝ �φ, the
maximum at B = 0 is | �B| ≈ 1.2�−2 and is achieved at φ ≈
0.3�.

So-redefined Berry curvature gives rise to a continuous
density of topological charge,

ρ(φ) = 1

2π
div �B. (58)

This is the most important manifestation of embedding a topo-
logical singularity into a continuous spectrum. The point-line
unit charge is spread over the parameter space concentrating
either near the origin or, at B � � at the surface φ = B. We
evaluate

ρ(φ, B) = �3

4π2

B2 + φ2 + �2/4

K2
. (59)

At small �, the density is proportional to �3 arising from
a complex tunneling process. Its maximum value ��−3 at
B = 0 and �B−2�−1 at B � �. We plot the density at several
values of B in Fig. 8.
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FIG. 8. The density of topological charge. Curves a,b,c corre-
spond to B = 0, 2, 5�; b and c are rescaled as shown in the plot.

VII. CURRENTS IN NORMAL LEADS: PUMPING

A slow change of control phases may lead to the currents
in the normal leads proportional to the time derivatives of the
phases,

Ja = e

(
�Aa( �φ) · d �φ

dt

)
, (60)

�Aa being �φ-dependent proportionality coefficients. Let us rec-
ognize this as a case of parametric pumping, a phenomenon
that has been intensively discussed in quantum transport
[44,46], and also in the context of superconducting nanos-
tructures with normal leads [45]. An ac modulation of φ is
expected to result in an ac normal current, which is difficult
to measure. However, it can also give rise to a dc current, that
is, to pumping. If �φ is changing periodically along a closed
contour, the charge per cycle depends on the contour only,
and, by virtue of the Stokes theorem, is given by a flux of the
curl of �A through the contour,

Qa =
ˆ T

0
dt Ja(t ) =

‹
dS( �N · curl �A). (61)

We evaluate �A making use of Eq. (33) and expanding the
Green’s functions up to first order in ˇδH . We notice that the
currents, since the filling factors are in equilibrium, are only
due to the vector parts of �. Two groups of terms in Eq. (33)
that cancel each other in the stationary equilibrium case can
be rewritten as

Ja = 1
2 Tr[(��a · �̌τ )[ f̌ , Ǧ] ˇ̄G] (62)

The commutator in this expression in energy representation
can be rewritten as

[ f (ε) − f (ε − ω)]Ǧε,ε−ω. (63)

Since we are to expand to the first order in ω, this will
give a weight of ∂ε f in the integration over ε, and we can
neglect small ω in the Green’s functions. The quantities under
evaluation just sample Green’s functions in an energy interval
�kBT near zero energy, with this interval going to zero at
vanishing temperature. This is in contrast to the response func-
tions explored in the previous section; those are determined
by integration over all relevant energies. Nevertheless, the
expression of �A has qualitatively similar features, the values
being concentrated at φ � � if B � � or at φ = B:

�Aa = − �

πK

(
��a� + �φ(��a · �φ)�

4B2

K
+ (�a × �φ)

)
. (64)

Since we discuss the pumping, the curl of �A—let us call it the
effective field—is more relevant for us:

curl �Aa = − �

2πK2
{ (��a × �φ)4�(φ2 + �2/4)

+ ��a
[
(B2 + �2/4)2 − φ4

]
+ �φ( �φ · ��a)(φ2 + �2 − B2)}. (65)

The natural axis in �φ space is set by the direction of ��a. In the
above expression, we have separated the effective field into
azimuthal, axial, and radial components. The dimension of
effective field is E−2. Far from the resonance, the azimuthal
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FIG. 9. Pumping to a normal lead, ��a ‖ z. (a) Probing the axial
effective field. A circular contour with radius R in the z = 0 plane
is centered at the origin. The plot: dependence of the charge per
cycle on R for B = 0, 5�. (b) Probing the azimuthal effective field.
The contour in the x = 0 plane that goes along the axis at the scale
maxB, � encircles the whole flux in this direction. The value of the
charge per cycle does not depend on the contour details and is given
as a function of B in the plot.

field is estimated as ��3φ−5, and the axial/radial field as
��2φ−4. Thus, the typical Qa/e for the contours that do not
cross the resonance are small, (�/φ)3, (�/φ)2, respectively.
At the resonance φ = B � �, the azimuthal field is estimated
as B−1�−1, and the axial/radial field as B−2. At B � �, and
near the origin, all field components are estimated as �2. This
implies that we can achieve Qa � e for small contours with
dimension � provided they are close to the origin.

We illustrate this with the following examples (Fig. 9). For
pumping in the lead a, it is convenient to choose the coordi-
nate system such that z ‖ ��a. We probe the axial component
of the effective field by taking a circular orbit with radius R
in the plane z = 0, which is centered at the origin [Fig. 9(a)].
The axial field is positive at the origin, and changes sign at
φ =

√
B2 + �2/4. The total flux in the z = 0 plane is zero.

The charge per cycle for this orbit is given by

Qa/e = 2| ��a|�R2

(R2 + �2/4 + B2)2 − 4R2B2
. (66)

It reaches maximum that does not depend on magnetic field,

Qa = 2e
| ��a|
�

, (67)

and gets back to zero for the contours of bigger radius. To
probe the azimuthal field, one chooses a contour in, e.g., the
x = 0 plane, which follows the axis at the scale max(B, �) to
enclose the maximum positive flux. The charge per cycle in
this case does not depend on the contour details and equals

Qa = −πe
| ��a|
4�

�2/2 + B2

�2/4 + B2
. (68)

The vector parts of � are generally different in different leads,
so that the same contour is oriented differently for different
leads. We conclude that the pumping to the normal leads
provides an interesting possibility to explore the vicinity of
the Weyl point.

VIII. CONCLUSIONS

To conclude, we have investigated the properties of a
Weyl point immersed to a continuous spectrum. We take a
Weyl point in a superconducting nanostructure that is tunnel-
coupled to the electronic states in the normal leads. The tunnel
coupling gives rise to a new energy scale �, that corresponds
to a scale in parametric space. We investigate in detail how
the topological and spectral singularities of the Weyl point
are smoothed on this scale. We evaluate the superconducting
currents in equilibrium, and the superconducting and normal-
lead currents at constant voltages applied to the leads. We find
sharp features in high-voltage tunnel currents that may be used
to detect the Weyl points in experiment.

Importantly, we consider the adiabatic variation of control
phases. This permits us to redefine Berry curvature and eval-
uate the density of topological charge that is not pointlike
but rather spread around the origin as the manifestation of
coupling to the continuous spectrum.

We investigate the pumping to normal leads and find that
it witnesses the peculiarities of Weyl points at the scale of �

and opens up new perspectives for experimental exploration
of Weyl-point singularities.
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