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Optical vortex manipulation for topological quantum computation
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Topological quantum computation based on Majorana bound states may enable new paths to fault-tolerant
quantum computing. Several recent experiments have suggested that the vortex cores of topological supercon-
ductors, such as iron-based superconductors, may host Majorana bound states at zero energy. However, quantum
computation with these zero-energy vortex bound states requires precise and fast manipulation of individual
vortices, which is difficult to do in a scalable manner. To address this issue, we propose a control scheme based
on local heating via, for example, scanning optical microscopy to braid vortex-bound Majorana zero modes in
a two-dimensional topological superconductor. First, we derive the conditions required for transporting a single
vortex between two defects in the superconducting material by trapping it with a hot spot generated by local
optical heating. Equipped with critical conditions for the vortex motion, we then establish the ideal material
properties for vortex braiding and describe how transition errors resulting from finite speed and/or temperature
can be minimized. Our work paves the way toward optical or microscopic control of zero-energy vortex bound
states in two-dimensional topological superconductors.
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I. INTRODUCTION

Topological quantum systems utilizing superpositions of
quantum states encoded in so-called qubits may enable
fault-tolerant quantum computing [1,2]. State-of-the-art qubit
platforms include superconducting Josephson junctions [3],
trapped ions [4], and photonic networks [5]. These qubit
technologies have matured sufficiently that small scale quan-
tum computations, albeit with significant noise present, have
already been performed. However, a sizable physical qubit
overhead is needed to scale architectures and suppress logical
error rates for a fault-tolerant architecture.

An alternative route to encoding high-fidelity logical
qubits is to utilize topological modes realized naturally in
condensed-matter platforms. For example, emergent Majo-
rana zero modes (MZMs) possessing non-Abelian exchange
statistics are naturally immune to local decoherence effects
due to their fundamentally nonlocal nature [1]. The vor-
tex cores of topological superconductors, such as iron-based
superconductors [6–8], may host such MZMs appearing as
zero-energy vortex bound states [9–11]. Topological quantum
computation then relies on manipulating the positions of the
zero-energy vortex bound states to braid or fuse [12] the
MZMs.

The generation and manipulation of individual supercon-
ducting vortices has been demonstrated using a range of
experimental techniques. Magnetic fields, thermal gradients,
and electrical currents have been used to tune the averaged
properties of vortex matter [13,14]. Optical quenching-
assisted fast switching of vortex cores has been demonstrated
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and visualized in situ by Lorentz electron microscopy [15].
Vortex motion has been manipulated by Lorentz forces
using electrical currents [16–18], by altering the pinning
landscape [19–21], by magnetic forces in magnetic force
microscopy [22–26] and scanning superconducting quantum
interference device microscopy [27–29], and by local heating
using a scanning tunneling microscope [30] or a far-field
optical method [31]. Despite all these efforts, a theoretical
framework for analyzing the dynamics of an individually con-
trolled superconducting vortex is still critically needed.

Here we propose a scheme for the use of local heating,
based on a scanning laser excitation, to manipulate individual
superconducting vortices by picking them up from defects in
the material, transporting them across the superconductor, and
delivering them to other defects (see Fig. 1). We establish the
critical conditions required for each step of the process by
solving the vortex equation of motion in the presence of a
time-dependent thermal field, a stationary pinning potential,
and a viscous drag force. Using these universal critical con-
ditions, we provide guidelines for the optimal properties of
potential candidate materials and describe how spurious tran-
sitions resulting from finite vortex speeds can be minimized.

II. GENERAL SETUP

We consider a thin slab of type-II superconducting mate-
rial in a perpendicular magnetic field H . In this geometry,
magnetic vortices are present below the lower critical field
Hc1. However, for H � Hc1, the mean separation between the
vortices, R ∼ √

�0/H (where �0 = h/(2e) is the flux quan-
tum), is much larger than the penetration depth λ. We assume
that, in the absence of optical heating, these well-separated
vortices are localized at appropriate pinning sites at which
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FIG. 1. General scheme for using a localized optical heating to transport a single superconducting vortex between two stationary defects:
(a) picking up the vortex from a defect, (b) transporting the vortex across the superconductor, and (c) delivering the vortex to another defect.
At each step, the vortex motion is governed by at most three forces: a time-dependent thermal force resulting from optical heating (Fthermal), a
stationary pinning force due to the defect (Fpinning), and a viscous drag force (Fdrag).

superconductivity is suppressed within a region of size r. The
pinning sites may be intrinsic defects of the material, such as
vacancies or impurities, corresponding to r ∼ a (where a is
the lattice constant), or artificial defects, such as cylindrical
voids or electrically gated regions, corresponding to r � a.
We hypothesize that a single vortex can be moved between
different pinning sites by dragging it around with a hot spot
resulting from localized optical heating. With such elementary
control of magnetic vortices hosting MZMs, one can then
implement the Clifford gate set on the topological qubits
encoded in these MZMs.

To understand the feasibility of the vortex manipulation
process, we aim to establish the general conditions required
for the three important steps depicted in Fig. 1: (a) picking
up the vortex from its initial pinning site, (b) transporting the
vortex across the bulk of the superconductor, and (c) deliv-
ering the vortex to its final pinning site. Assuming the hot
spot moves with a constant speed v and meets each pinning
site head on, the position of the vortex, x(t ), satisfies a one-
dimensional equation of motion during each step:

0 = −ηẋ − dU (x)

dx
+ γ

dT (x − vt )

dx
. (1)

The three terms on the right-hand side describe a viscous
drag force, a stationary pinning force, and a time-dependent
thermal force resulting from the hot spot, respectively, while
the left-hand side is set to zero because the inertial mass of the
vortex [32] is negligibly small at the experimentally relevant
length and speed scales. We note that all forces are defined per
unit length along the vortex line piercing through the super-
conducting slab. Using the Bardeen-Stephen model [33,34],
the viscous drag coefficient is η = �2

0/(2πξ 2ρn), where ξ is
the coherence length and ρn is the normal-state resistivity.
The pinning potential U (x) has a characteristic length scale d
and a single minimum at x = 0 corresponding to the pinning
energy per unit length along the vortex line: U0 ≡ −U (0).
For a pinning site of radius r, the length scale is expected to
be d ∼ max(ξ, r), while the pinning energy (per unit length)
for a cylindrical void is shown in Appendix A to be U0 ∼
�2

0/(μ0λ
2ξ 2) min(r2, ξ 2), where μ0 is the vacuum perme-

ability. This result is also consistent with Ref. [35], which
considers larger magnetic fields (H > Hc1). To estimate the

thermal force coefficient γ , we recognize that the energy of
a vortex decreases as a function of the temperature T due
to the weakening of superconductivity [31]. For a strongly
type-II superconductor (λ � ξ ), the vortex energy is pro-
portional to the density of Cooper pairs and grows linearly
with Tc − T [36,37], where Tc is the superconducting crit-
ical temperature. The thermal force coefficient is then γ =
�2

0/(4πμ0λ
2
0Tc)ln(λ0/ξ0), where λ0 and ξ0 are the values of

λ and ξ at zero temperature, respectively. Finally, the temper-
ature profile of the hot spot, T (x − vt ), is calculated from a
two-layer heat diffusion model (see Appendix B) where we
assume that (i) a thin superconducting layer is grown on top
of an infinitely thick substrate and (ii) the superconducting
layer is subject to an optical heating source of diameter D0

moving with a constant speed v. This calculation gives a
hot-spot temperature profile with a single maximum 	T (with
respect to the bulk temperature) and a characteristic length
scale D ∼ D0.

To make the subsequent analysis simpler, we introduce a
dimensionless vortex position, x̃ = x/d , a dimensionless time,
t̃ = vt/d (where v is the hot-spot speed), and dimensionless
numbers comparing both the pinning force and the thermal
force to the viscous drag force. In terms of these dimension-
less variables, the equation of motion can be written as

˙̃x = α fp(x̃) + β fth

(
x̃ − t̃

D̃

)
, (2)

where D̃ = D/d is the dimensionless hot-spot size, while
α ∼ U0/(dηv) and β ∼ γ	T/(Dηv) are dimensionless ratios
of the maximal pinning and thermal forces to the viscous
drag force at the hot-spot speed v, respectively. The di-
mensionless functions fp,th(z) are antisymmetric, fp,th(−z) =
− fp,th(z), have a single zero, fp,th(0) = 0, a single maximum,
fp,th(−1) = 1, and a single minimum, fp,th(1) = −1. We take
a Lorentzian shape for the pinning potential, corresponding to
fp(z) = −16z/(3 + z2)2, while the temperature profile of the
hot spot is found to resemble a Gaussian shape (see Fig. 5).
We emphasize, however, that our main results do not depend
on the precise forms of these functions.
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III. CRITICAL CONDITIONS

We now establish the general conditions required for the
three steps of the vortex manipulation process in terms of
the dimensionless parameters α, β, and D̃. This condition is
the simplest for the second step when the vortex is travel-
ing with the hot spot [see Fig. 1(b)]. In this case, there is
no pinning force, and the first term on the right-hand side
of Eq. (2) vanishes. Then, since the steady-state solution of
Eq. (2) must be of the form x̃ = t̃ + x̃0, where x̃0 is a constant
displacement of the vortex with respect to the center of the
hot spot, we can use ˙̃x = 1 and fth(x̃0/D̃) < 1 to establish that
the vortex can only travel with the hot spot if β > 1. This
result has a simple physical interpretation: the maximal ther-
mal force must exceed the viscous drag force at the hot-spot
speed.

For the first and third steps [see Figs. 1(a) and 1(c)], the
conditions are more complex because all three terms of Eq. (2)
are present. In each case, the main question is whether the
vortex is eventually trapped by the pinning site or carried
away by the hot spot. We first show that the vortex always
ends up at the pinning site for δ ≡ β − α < 0 and at the
hot spot for δ > 1. Indeed, regardless of its initial condition
(i.e., if it is originally at the pinning site or the hot spot),
the vortex can only be carried away by the hot spot if, at
some point, it goes through position x̃ = 1 with a positive
speed ˙̃x > 0. According to Eq. (2), the speed of the vortex at
this critical position is ˙̃x = −α + β fth[(1 − t̃ )/D̃] < −α + β.
Therefore, the vortex is necessarily trapped by the pinning
site if α > β. Similarly, regardless of its initial condition,
the vortex can only end up trapped by the pinning site if,
at some point, its relative position with respect to the hot
spot, x̃ − t̃ , becomes smaller than −D̃ which, in turn, requires
a negative relative speed, ˙̃x − 1 < 0 at this critical relative
position. From Eq. (2), the critical relative speed is ˙̃x − 1 =
α fp(t̃ − D̃) + β − 1 > −α + β − 1. Therefore, the vortex is
necessarily carried away by the hot spot if β > α + 1. We
emphasize that the statements derived in this paragraph are
completely exact.

For the intermediate regime, 0 < δ < 1, the simple analyt-
ical arguments above do not determine the fate of the vortex.
In this case, we solve Eq. (2) numerically using an adaptive
stepsize Runge-Kutta integration scheme [38]. Our first main
result is that there is a well-defined critical value δc such that,
regardless of its initial condition, the vortex ends up at the
pinning site for δ < δc and at the hot spot for δ > δc. This
critical value δc is plotted as a function of α and D̃ in Fig. 2.
While its behavior is generally complex for D̃ ∼ 1, we find
two universal limits, corresponding to D̃ � 1 and D̃ � 1, in
which the critical values are δc � 1 and δc ≈ 1, respectively.

These two universal limits have simple physical interpreta-
tions. In the D̃ � 1 limit, the drag force is negligible, and the
fate of the vortex is determined by the balance of the maximal
pinning and thermal forces. Therefore, the critical condition
simply reduces to β = α. In the D̃ � 1 limit, the drag force
takes a constant value, corresponding to the hot-spot speed,
and maximally supports the pinning force against the thermal
force. Therefore, the critical condition becomes β = α + 1.
In the following, we derive these limiting critical conditions,
along with their lowest-order corrections for finite D̃.

FIG. 2. Critical value δc of the dimensionless excess thermal
force, δ = β − α, at which the vortex is carried away by the hot spot
rather than being trapped by the pinning site; δc is plotted against
D̃ = D/d for dimensionless pinning forces α = 100 (blue solid line),
α = 10 (red dashed line), and α = 1 (green dash-dotted line).

In each of the D̃ � 1 and D̃ � 1 limits, as the hot spot
overlaps with the pinning site, the equilibrium position be-
tween the pinning and the thermal forces is largely determined
by whichever one of them has a much smaller length scale
(see Fig. 1). Therefore, if D̃ � 1, it is largely determined by
the stationary pinning force, corresponding to ˙̃x � 1, while,
if D̃ � 1, it is largely determined by the time-dependent
thermal force, corresponding to ˙̃x ≈ 1. Indeed, by assuming
an approximately constant vortex speed ˙̃x, and differentiating
Eq. (2) with respect to time,

α ˙̃x f ′
p(x̃) + β

˙̃x − 1

D̃
f ′
th

(
x̃ − t̃

D̃

)
= 0, (3)

the vortex speed is found to be

˙̃x = β f ′
th

(
x̃−t̃
D̃

)
αD̃ f ′

p(x̃) + β f ′
th

(
x̃−t̃
D̃

) . (4)

We then immediately recover ˙̃x � 1 for D̃ � 1 and ˙̃x ≈ 1
for D̃ � 1, thereby also confirming our initial assumption of
approximately constant ˙̃x. For ˙̃x � 1, the drag force is negli-
gible, and the critical condition becomes β ≈ α. In contrast,
for ˙̃x ≈ 1, there is an approximately constant drag force that
supports the pinning force against the thermal force, and the
critical condition becomes β ≈ α + 1.

Next, we derive these critical conditions in the D̃ � 1 and
D̃ � 1 limits up to O(D̃−1) and O(D̃) corrections, respec-
tively. We assume that, if the critical condition is satisfied,
the vortex reaches a critical event, corresponding to x̃ = 1 and
x̃ − t̃ ≈ −D̃, at which point the pinning and thermal forces
are simultaneously maximal. Importantly, this assumption is
exact for both D̃ → ∞ and D̃ → 0. Then, if the vortex goes
through the critical event with speed ˙̃xc, we can expand Eq. (2)
up to second order in x̃ − 1 ≈ ˙̃xc	t̃ and x̃ − t̃ + D̃ ≈ ( ˙̃xc −
1)	t̃ to obtain an approximate expression for the speed of the
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FIG. 3. Final state of the vortex after the hot spot moves over the pinning site if the vortex is initially (a) at the pinning site or (b) at the
hot spot. Red lines separate different final states and correspond to critical conditions in terms of the dimensionless pinning (α) and thermal
(β) forces. The shading gives the maximal speed of the vortex during the entire process, while the hatching indicates that the initial state of the
vortex is unphysical.

vortex at time 	t̃ after the critical event:

˙̃x = −α

[
1 −

˙̃x2
c	t̃2

2
| f ′′

p (1)|
]
+β

[
1 − ( ˙̃xc − 1)2	t̃2

2D̃2
| f ′′

th(1)|
]

= (β − α) + 	t̃2

2

[
α ˙̃x2

c | f ′′
p (1)| − β

( ˙̃xc − 1)2

D̃2
| f ′′

th(1)|
]
. (5)

If the coefficient of the 	t̃2 term is positive (negative), the
vortex accelerates (decelerates) until it matches the speed of
the hot spot (becomes stationary at the pinning site). There-
fore, the critical speed of the vortex, corresponding to the
critical condition, is obtained by setting the coefficient of the
	t̃2 term to zero. Also, by definition, ˙̃x = ˙̃xc for 	t̃ = 0, and
Eq. (5) then gives ˙̃xc = β − α = δc. Thus, the critical speed ˙̃xc

or, equivalently, the critical force difference δc = β − α must
satisfy the following cubic equation:

αD̃2| f ′′
p (1)|δ2

c − | f ′′
th(1)|(δc + α)(δc − 1)2 = 0. (6)

For any α > 0, this cubic equation has exactly one physical
root with 0 < δc < 1. Expanding this physical root up to
O(D̃−1) in the D̃ � 1 limit and up to O(D̃) in the D̃ � 1 limit,
the critical conditions in the two universal limits then become

δc = β − α = D̃−1

√
| f ′′

th(1)|
| f ′′

p (1)| + O(D̃−2) (D̃ � 1),

δc = β − α = 1 − D̃

√
α| f ′′

p (1)|
(α + 1)| f ′′

th(1)| + O(D̃2) (D̃ � 1).

(7)

We note that the analytical results for the critical condition
in Eqs. (7) have been numerically confirmed as shown in
Fig. 2. We also remark that, while it is tempting to identify
the physical root of Eq. (6) with the critical condition for
arbitrary D̃, the underlying assumption of the critical event
is only justified in the D̃ � 1 and D̃ � 1 limits.

For a diffraction-limited scanning laser excitation, the first
universal limit with D̃ � 1 is the experimentally relevant one.
Our results for the critical conditions in this limit are summa-
rized in Fig. 3. If the vortex is originally at the pinning site

[see Fig. 3(a)], it can be picked up by the hot spot if (i) β > α

so the maximal thermal force exceeds the maximal pinning
force and (ii) β > 1 so the thermal force can keep the vortex
trapped while moving it. If the vortex is originally at the hot
spot [see Fig. 3(b)], its initial condition is only physical for
β > 1 in the first place. The vortex can then be delivered to the
pinning site if α > β so the maximal pinning force exceeds
the maximal thermal force. The simplicity and universality
of these critical conditions facilitates the design of concrete
experimental schemes for optical vortex manipulation in topo-
logical superconductors.

IV. MATERIAL PROPERTIES AND DIABATIC ERRORS

To establish the ideal material properties for our scheme,
we recognize that the pickup condition β > α and the de-
livery condition β < α are mutually exclusive. Therefore, we
must be able to tune at least one of the parameters α and β.
For example, β can be tuned by adjusting the laser power,
while α can be tuned in the case of electrically gated pinning
sites. Nevertheless, to minimize the amount of tuning and
any disruptions it may cause, it is important to keep the two
parameters close to each other: β ≈ α. Using the definitions
of α and β, and neglecting all O(1) and logarithmic factors,
this condition immediately translates to

β

α
∼ γ	T

U0

d

D
∼ max(ξ 3, r3)

r2D

	T

Tc
∼ 1. (8)

Because of 	T < Tc and the large size of the hot spot, D ∼
1 μm, we need sufficiently small pinning sites, r � ξ , to
satisfy Eq. (8). In this regime, the ideal pinning-site radius
is then r ∼

√
ξ 3	T/(DTc). Moreover, since r � a for any

reasonable pinning site, we need a sufficiently large coherence
length:

ξ � ξc ∼
(

a2D
Tc

	T

)1/3

. (9)

In particular, we need ξ ∼ ξc to use the intrinsic defects of the
material, such as vacancies or impurities, and ξ � ξc to use
artificial defects that are much stronger than these intrinsic
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defects. For a ∼ 1 nm and D ∼ 1 μm, the critical coherence
length is ξc ∼ 10 nm (assuming 	T ∼ Tc).

In addition to satisfying the critical conditions, it is im-
portant to make the vortex manipulation process as smooth as
possible to maximize the topological protection for the MZMs
hosted by the vortices. Generally, the “diabatic errors” [39,40]
resulting from nonadiabatic (finite-speed) operation are ex-
pected to be small as long as the typical timescale τ

characterizing the operation is much larger than the inverse
of the superconducting gap 	 [41]. Using τ ∼ ξ/v and ξ ∼
vF /	, where vF is the Fermi speed, this condition translates
to v � vF . For realistic hot-spot speeds, v ∼ 1 cm/s, this
condition is then easily satisfied for any reasonable material
while the vortex is traveling in the bulk of the superconductor.
However, as shown by Fig. 3, the speed of the vortex can be
orders of magnitude larger when it is picked up by the hot
spot or delivered to a pinning site. To minimize these maximal
speeds during the vortex manipulation process, it is important
to keep β as close to 1 as possible (see Fig. 3), which requires

β ∼ γ	T

Dηv
∼ ξ 2

λ2

	T

Tc

ρn

μ0Dv
� 1. (10)

For D ∼ 1 μm, v ∼ 1 cm/s, and ρn ∼ 10−7 �m, we ob-
tain ρn/(μ0Dv) ∼ 107. Therefore, we need to minimize β

as much as possible by using an extreme type-II supercon-
ductor (λ/ξ � 1) with a small normal-state resistivity ρn.
Importantly, however, even for small speeds, v � vF , the di-
abatic errors resulting from finite speed are not exponentially
suppressed by any kind of topological protection [40]. Their
precise effect on the MZMs during our vortex manipulation
process will be investigated in a future work.

V. CONCLUSION

We have presented a scheme for the use of local heating
by a scanning laser excitation to manipulate Majorana bound
states emergent in the vortex cores of topological supercon-
ductors. In the practically relevant regime, the conditions
required for transporting a single vortex between two de-
fects in the material are universal and surprisingly simple.
In particular, the vortex can be moved across the bulk of
the superconductor if the maximal thermal force exceeds the
viscous drag force, while it can be picked up from (delivered
to) a defect if the maximal thermal force is larger (smaller)
than the maximal pinning force. We have established the ideal
material properties for the implementation of our scheme by
considering both intrinsic and artificial defects.

Although our formalism does not explicitly account for the
Majorana bound states inside the vortex cores, the nonlocal
encoding of quantum information guarantees its topological
protection. Specifically, the decoherence rate is exponentially
suppressed as long as the separation between any two vortices
is much larger than the coherence length ξ and the maximum
temperature due to local laser heating is much smaller than the
bulk gap 	. While localized states may exist inside the gap,
it is known that transitions into such localized states are not
detrimental to the quantum information encoded in the Majo-
rana bound states [42]. We have also argued that the vortex
motion is close to adiabatic for realistic speeds of the laser
excitation and that any diabatic errors resulting from finite

speed are minimized for extreme type-II superconductors.
The results of our work provide much-needed theoretical
guidance on optimizing control over superconducting vor-
tices using local heating and will facilitate the design of
concrete experimental protocols for precise and rapid vortex
manipulation.
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APPENDIX A: PINNING ENERGY

To estimate the magnitude of pinning potential due to a
defect, we follow the derivation in Ref. [35]. We start with
time-independent Ginzburg-Landau equations for a supercon-
ductor [34],(∇

i
− 2πA

�0

)2

� = 1

ξ 2
�

(
1 − |�|2

|�∞|2
)

, (A1)

J = c

4π
∇ × ∇ × A = e∗

m∗ |�|2
(

h̄∇φ − e∗

c
A

)
, (A2)

where A is the vector potential, �0 the flux quantum, �

the order parameter, �∞ the order parameter in an infinite
domain, ξ the coherent length, and e∗ and m∗ the Cooper pair
charge and mass, respectively, while φ denotes the phase of
the order parameter and J represents the current density.

Placing a vortex line at the origin, and assuming cylindrical
symmetry, we have � = |�∞| f (r)einθ with n denoting the
number of the flux quanta located at the origin and A = A(r)θ̂
with A(r) = (1/r)

∫ r
0 r′H (r′)dr′, where H is the magnetic

field, and (r, θ ) are the polar coordinates in the cylindri-
cal coordinates. The Ginzburg-Landau parameter is defined
as κ = λ/ξ , where λ2 = m∗c2/4πe∗2|�∞|2 is the magnetic
penetration depth. By defining the nondimensional quantities
z = r/λ and Q(z) = 2πξA(z)/�0 − n/(zκ ), the dimension-
less Ginzburg-Landau equations become

− 1

κ2

(
d2 f

dz2
+ 1

z

df

dz

)
+ Q2 f = f (1 − f 2), (A3)

d2Q

dz2
+ 1

z

dQ

dz
− Q

z2
= f 2Q. (A4)

with boundary conditions

df

dz

∣∣
z=d̃

= 0, Q|z=d̃ = 0, (A5)

df

dz

∣∣
z=ã = 0, Q|z=ã = − 1

ãκ
, (A6)

where ã = a/λ and d̃ = d/λ. a is the defect radius and d is
the distance of about one half the typical separation of the
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FIG. 4. Dimensionless pinning energy as a function of a/ξ when
the applied magnetic fields Ha = 0.4Hc (blue solid line) and 0.02Hc

(green dashed line).

vortices at a given magnetic field Ha [35]. The inner boundary
conditions imply an insulating defect.

The boundary value problem described by Eqs. (A3)
and (A4) is solved numerically with a combination of a shoot-
ing method and an adaptive step size Runge-Kutta integration
scheme.

To compute the pinning energy of a vortex by a columnar
defect, we need to consider the energy of a superconductor,
either with or without columnar defects, in the presence of
vortex arrays [35]. The Gibbs free energy density in terms of
f and Q is given by

G = FNO + 1

16π

[
f 4 − 2 f 2 + 2

(
f ′2

κ2
+ Q2 f 2

)]

+
( H (z)√

2Hc
− Ha√

2Hc

)2

8π
, (A7)

where FNO is the free energy at normal state and Hc =
�/(2πλ2) is the critical field.

The energy for a vortex is obtained by integrating Eq. (A7)
in z over (0, d̃ ). The pinning energy is calculated as

Ep = −E0 + Evortex + Edefect − Evortex+defect, (A8)

where E0 is the energy of the pure superconductor, Evortex

(Edefect) is the energy of the superconductor with a single
vortex (defect), while Evortex+defect is the energy of the super-
conductor with both a vortex and a defect at the same position.

Figure 4 shows the dimensionless pinning energy, e∗
p as

a function of a/ξ at various applied magnetic fields. Here,
Ep = φ2

0/(2π2μ0λ
2)e∗

p. We find that the pinning energy has
negligible dependence on the applied magnetic field when the
field strength is small, e.g., around the critical field. In the
limit of a/ξ � 1, e∗

p is proportional to a2/ξ 2.
Below we give a brief analytical derivation on Ep ∝ a2/ξ 2

in the limit of a/ξ � 1. We consider a two-dimensional super-
conductor with coherence length ξ = 1 and penetration depth
λ � 1, and calculate the pinning energy between a magnetic

vortex and a circular insulating defect of radius a � 1. Ex-
ploiting circular symmetry in each case, the superconducting
order parameter f as a function of the radial coordinate r is
given by the Ginzburg-Landau equation

d2 f

dr2
+ 1

r

df

dr
− n2

r2
f + f (1 − f 2) = 0, (A9)

where n = 0 (n = 1) in the absence (presence) of a vortex.
Note that the magnetic field (i.e., the vector potential) can be
neglected for radii r � λ. While the outer boundary condi-
tion is always f (r → ∞) = 1, the inner boundary condition
varies:

f0(0) = 1, fvortex(0) = 0,

dfdefect (r)

dr

∣∣∣∣
r=a

= dfvortex+defect (r)

dr

∣∣∣∣
r=a

= 0. (A10)

In the absence of a vortex, the solution for the order parameter
is trivial:

f0(r) = fdefect (r) = 1. (A11)

In the presence of a vortex, the asymptotic solution of
Eq. (A9) for small radii r � 1 (i.e., within the vortex core)
takes the general form

f (r) = Ar + B

r
. (A12)

The inner boundary condition in Eqs. (A10) gives B = 0 in
the absence of a defect and B = Aa2 in the presence of a
defect, while A is determined by the outer boundary condition
(i.e., the matching with the r � 1 solution). Since the term
proportional to B is very small at large radii, it is reasonable
to assume that A is approximately the same in both cases. The
asymptotic solutions for the order parameter are then

fdefect (r) = Ar, fvortex+defect (r) = A

(
r + a2

r

)
, (A13)

where A ∼ 1 is an unknown constant. Finally, the energy of
the superconductor in each case is obtained by integrating the
Ginzburg-Landau energy density:

e = − f 2 + 1

2
f 4 +

(
df

dr

)2

+ n2

r2
f 2. (A14)

The difference between Edefect and E0 becomes

Edefect − E0 = 2π

∫ �

a
dr r edefect (r) − 2π

∫ �

0
dr r e0(r)

= 2π

∫ a

0
dr

r

2
= πa2

2
, (A15)

where � ∼ 1 is an upper cutoff (whose precise value does not
matter), while the difference between Evortex and Evortex+defect

is given by

Evortex − Evortex+defect

= 2π

∫ �

0
dr r evortex − 2π

∫ �

a
dr r evortex+defect

= πa2(2A2�2 − A4�4) + O(a4). (A16)
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The pinning energy in Eq. (A8) then takes the form

Ep = πa2

2
(1 + 4μ − 2μ2) + O(a4), (A17)

where μ ≡ A2�2 ∼ 1 is an unknown constant. Therefore, at
the lowest order, the pinning energy is proportional to the
second power of the defect radius a.

APPENDIX B: THERMAL MODELING

The temperature distribution at the surface of a super-
conducting thin film/substrate system is calculated using a
two-layer heat diffusion model subject to a moving heating
source with a velocity, Vl , and a Gaussian diameter, D0. The
heat transport equations in the finite thin film and semi-infinite
substrate are written as

Cv1
∂T1

∂t
− kx1

∂2T1

∂x2
− kz1

∂2T1

∂z2
= Q(x, z, t ), z ∈ [0, d ),

(B1)

Cv2
∂T2

∂t
− kx2

∂2T2

∂x2
− kz2

∂2T2

∂z2
= 0, z ∈ [d,∞], (B2)

where Cv is the volumetric heat capacity and kx,z are the in-
plane and cross-plane thermal conductivities. Indices 1 and 2
represent thin film and substrate, correspondingly. The heat
source, Q(x, z, t ), is given by

Q(x, z, t ) = Q0 exp

[
− (x − Vlt )2

2D2
0

]
exp

(
− z

δ

)
, (B3)

where Q0 is the amplitude of heat source and δ is the skin
depth or optical penetration depth. Here x and z represent
coordinates in the in-plane and cross-plane directions corre-
spondingly. To solve Eqs. (B1) and (B2), we first perform
Fourier transform in t and x and obtain two first-order ordinary
differential equations, which can be solved analytically. The
analytical expressions of the temperature profiles in the two
layers are given as

T1(z, ω, qx ) = a1 exp(ζ1z) + a2 exp(−ζ1z)

− δ2Q̃

kz1
(
1 − δ2ζ 2

1

) exp
(
− z

δ

)
, (B4)

T2(z, ω, qx ) = b1 exp(ζ2z) + b2 exp(−ζ2z), (B5)

where ζ 2
1,2 = (iωCv1,2 + kx1,2q2

x )/kz1,2. Q̃ is the Fourier-
transformed function of Eq. (B3), written as

Q̃ = Q0D2
0 exp

[
−D2

0q2
x

2

]
δ(ω + Vlqx ). (B6)

Coefficients a1, a2, b1, and b2 are found by applying the
boundary conditions given as

− kz1
∂T1

∂z
(z = 0) = 0, (B7)

− kz1
∂T1

∂z
(z = d ) = −kz2

∂T2

∂z
(z = L), (B8)

− kz2
∂T2

∂z
(z = d ) = G[T1(z = d ) − T2(z = d )], (B9)

− kz2
∂T2

∂z
(z = ∞) = 0, (B10)

TABLE I. All the constants appearing in the thermal model are
given in the following table.

Thermal properties

Thin film heat capacity Cv1 (MJ/m3-K) 1.5
Thin film thermal conductivity kx1 = kz1 (W/m-K) 1
Substrate heat capacity Cv2 (MJ/m3-K) 2.6
Substrate thermal conductivity kx2 = kz2 (W/m-K) 10
Interface conductance G (MW/m2-K) 10

Other constants
Optical penetration depth δ (nm) 10
Laser 1/e2 diameter D0 (μm) 1
Vortex coherent length ξ0 (nm) 10

where G is the interface conductance between thin film and
substrate. The surface temperature is then given by

T1(z = 0, ω, qx ) = a1 + b1 − δ2Q̃

kz1
(
1 − δ2ζ 2

1

)
= Q̃(ω, qx )G̃(ω, qx ), (B11)

where G̃(ω, qx ) is the impulse response at the surface. By per-
forming an inverse Fourier transform, the real-space solution
is written as

T1(z = 0, x − Vlt )

= Q0D2
0

∫ ∞

−∞

∫ ∞

−∞
G̃(ω, qx ) exp

[
−D2

0q2
x

2

]
δ(ω + Vlqx )

× exp(−iωt ) exp(−iqxx)dqxdω

= Q0D2
0

∫ ∞

−∞
G̃(Vlqx, qx ) exp

[
−D2

0q2
x

2

]
× exp[−iqx(x − Vlt )]dqx. (B12)

FIG. 5. The temperature distribution and temperature gradient at
the surface of a superconducting thin film/substrate system subject to
a moving heating source with a velocity, Vl , and a Gaussian diameter,
D0. The x axis is scaled by the vortex coherent length, ξ0.
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Here we use the materials’ thermal properties tabulated
in Table I to simulate the surface temperature and tem-
perature gradient as shown in Fig. 5. The length scale

of both temperature distribution and temperature gradi-
ent along x direction are on the order of the laser
diameter, D0.
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