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Quantitative and interpretable order parameters for phase transitions from persistent homology
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We apply modern methods in computational topology to the task of discovering and characterizing phase
transitions. As illustrations, we apply our method to four two-dimensional lattice spin models: the Ising, square
ice, XY, and fully frustrated XY models. In particular, we use persistent homology, which computes the births
and deaths of individual topological features as a coarse-graining scale or sublevel threshold is increased, to
summarize multiscale and high-point correlations in a spin configuration. We employ vector representations of
this information called persistence images to formulate and perform the statistical task of distinguishing phases.
For the models we consider, a simple logistic regression on these images is sufficient to identify the phase
transition. Interpretable order parameters are then read from the weights of the regression. This method suffices
to identify magnetization, frustration, and vortex-antivortex structure as relevant features for phase transitions
in our models. We also define “persistence” critical exponents and study how they are related to those critical
exponents usually considered.
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I. INTRODUCTION

Given an unknown condensed matter system sitting in
front of you, the zeroth order question you may ask is as
follows: What is its phase structure? With sufficient technical
ability, one may vary the various coupling constants, exter-
nal temperature, etc., and measure its ensuing equilibrium
configurations. One way to understand the phase structure is
to carefully search through the entire parameter space and
deduce for which parameter regimes the system looks sim-
ilar (i.e., the system remains in the same phase). In doing
so, one may occasionally encounter boundaries where some
symmetry is broken or some specific heat diverges, indicating
a new phase. Having identified these phases, a natural next
question is how to distinguish them in practice, i.e., what
order parameters describe the various phase transitions. These
questions are naturally phrased in the language of machine
learning (ML). Namely, the question “How many phases are
there?” is an exercise in unsupervised learning, while the
question “How are different phases distinguished?” is an ex-
ercise in supervised learning. Note that this is an exercise in
distinguishing statistical ensembles and incurs some amount
of uncertainty.

Recently, ML techniques have been applied to these very
tasks. Unsupervised methods such as principal component
analysis, clustering algorithms, and autoencoders have been
used to identify phase transitions (see, e.g., Refs. [1–8]).
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Support vector machines have been shown to be a useful
tool in quantifying characteristics of phase transitions [9–11].
Supervised learning with neural networks has proven useful
in this classification task (see, e.g., Refs. [12–20]) but often
lacks the desired level of interpretability.

In this paper we use persistent homology [21,22] (see
Refs. [23–25] for reviews) as a tool for detecting and
characterizing phase transitions using a supervised learning
approach, although is is amenable to unsupervised learning
as well. As illustrations, we apply our method to study two-
dimensional lattice spin systems. Persistent homology is a
technique from topological data analysis (TDA) that identi-
fies the births and deaths of topological features throughout
a family of discrete complexes. This family often corre-
sponds to the data set at various coarse-graining scales. By
now, persistent homology has been fruitfully applied in a
wide variety of fields, including sensor networks [26], im-
age processing [27], genomics [28], protein structure [29,30],
neuroscience [31,32], cosmology [33,34], and string theory
[35,36], to name only a few. In the context of spin systems,
persistent homology encodes multiscale and high-order cor-
relations in a data set. The main takeaway from our work
is that this representation of a spin system configuration is
not only sufficient to distinguish phases in spin systems but
additionally provides interpretable order parameters for the
phase transitions. For example, we find that persistent ho-
mology identifies such varied phenomena as magnetization,
frustration, and (anti)vortices in spin systems. Additionally,
as a multiscale technique, persistent homology can capture
a system’s approach toward scale invariance, i.e., its critical
behavior. We work with persistence images [37], which are
vectorized representations of persistent homology informa-

2469-9950/2021/104(10)/104426(13) 104426-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.104426&domain=pdf&date_stamp=2021-09-28
https://doi.org/10.1103/PhysRevB.104.104426


ALEX COLE, GREGORY J. LOGES, AND GARY SHIU PHYSICAL REVIEW B 104, 104426 (2021)

FIG. 1. Overview of the considered models. Example spin configurations in the low- and high-temperature phases are shown for each
model.

tion. This framework allows us to define quantitative order
parameters and quantify the uncertainty that a particular spin
configuration belongs to a particular phase.

Persistent topological methods have been applied to
statistical mechanics in a few cases, but so far these appli-
cations have been largely qualitative in terms of statistics.
Reference [38] studied the relationship between phase tran-
sitions and topology changes in configuration space. More
recently, Ref. [39] studied the relaxation dynamics of a two-
dimensional Bose gas with persistent homology, and Ref. [40]
performed unsupervised learning on persistence diagrams to
visualize their phase structure. Reference [41] explores the
properties of a lattice model by computing pairwise distances
under a particular metric on the persistence diagrams and
visualizes the phase diagram via a dimensional reduction.
However, the use of persistent topological methods in ob-
taining quantitative information about statistical mechanics
systems is in our view an underdeveloped subject. The pur-
pose of this paper is to provide an early foray in this important
direction.

In this manuscript we use persistent homology to quanti-
tatively characterize phase transitions in four different lattice
spin systems. We consider discrete and continuous spin mod-
els with and without frustration in the ground state (see Fig. 1).
Each example contains a distinct lesson. We begin with an
obligatory analysis of the two-dimensional Ising model (Is).
We are able to easily identify the model’s phase transition
relying only on training data far from the critical tempera-
ture. The magnetization as order parameter is immediately
extracted from the weights of the corresponding logistic re-
gression. Additionally, we examine the multiscale nature of
the information probed by persistence images. In particu-
lar, we define “persistence” critical exponents that capture
the model’s approach toward criticality, finding interesting

connections to the critical exponents usually considered. We
then turn to the square-ice model (SI), for which there is
no local order parameter due to frustrated low-energy dy-
namics. We again find a successful classification and are
able to identify an order parameter associated with the low-
temperature phase’s “scale of frustration.” Our technique
quickly picks up on the scale of this feature. We subse-
quently turn to continuous spin models, beginning with the
XY model, where a simple logistic regression on the persis-
tence images discovers the Kosterlitz-Thouless (KT) phase
transition and corresponding vortex-antivortex structure in the
low-temperature phase. Vortex-antivortex pairs are shown to
give a distinctive signature in the persistence images that the
logistic regression discovers and decides to use on its own.
Finally, we consider the fully frustrated XY model (FFXY),
where frustration prevents the formation of (anti)vortices in
the low-temperature phase. In this case, our method identi-
fies small scale correlations between next-to-nearest neigh-
bors that reflect the system’s attempt to satisfy competing
constraints.

An important feature of our analysis is the simplicity of
our machine learning architecture. Once the relevant spin
configurations are reduced to persistence images, the phase
classification and extraction of order parameters can be
achieved via a simple logistic regression. This reflects the fact
that persistent homology condenses these data sets into their
most relevant (and interpretable) features.

The code and data used in our analysis are made avail-
able in Ref. [42]. The organization of this manuscript is as
follows. In Sec. II we give a brief introduction to persistent
homology, persistence images, and our computational choices
for applying these techniques to spin models. In Sec. III we
apply our methods to spin models of increasing complexity.
We conclude in Sec. IV.
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II. PERSISTENT HOMOLOGY
AND PERSISTENCE IMAGES

We are interested in developing general interpretable or-
der parameters for phase transitions in spin systems. Some
inspiration can be drawn from the hallowed two-dimensional
(ferromagnetic) Ising model. In this case, spontaneous mag-
netization in the low-temperature phase leads to large,
continuous domains where all spins are aligned. As the tem-
perature is decreased toward T = 0, these domains grow,
so that at sufficiently low temperature, the entire system is
aligned. On the other hand, in the high-temperature phase,
spins receive enough thermal energy to be randomly ori-
ented. In the language of ML, the (non)existence and scale
of magnetic domains manifests as a pattern in the hierarchical
clustering of aligned spins. In other words, if we consider the
set of aligned spins and perform successive coarse-graining
transformations, then we would be able to distinguish these
two phases by the number of domains at different coarse-
graining scales. Note that this is a multiscale concept that
probes high-order correlation functions.

In fact, clustering can be viewed as the most basic
topological information about a data set, giving the total
number of “connected components.” We may then consider
the hierarchical (i.e., multiscale) topologies corresponding to
higher-dimensional features as well, for example loops. A
unified description of topological features of all dimensions is
given by algebraic topology, and the hierarchical or multiscale
version of algebraic topology is persistent homology [21–25].

We now give a brief description of simplicial homology,
referring the reader to Refs. [23,24] for details. We begin
by embedding our data in a discrete complex. We use both
simplicial and cubical complexes in this work. In a sim-
plicial complex, points (0-simplices) may be connected in
pairs by edges (1-simplices), in triples by triangular faces
(2-simplices), and so on. Simplicial complexes must be closed
under taking faces: For example, if a 2-simplex is in the com-
plex, then so, too, must be its three edges and three vertices. A
cubical complex is similar, but it consists of points (0-cubes),
line segments (1-cubes), squares (2-cubes), and so on. Topo-
logical aspects of the simplicial or cubical complex are then
captured by its homology groups. These groups, denoted Hp

(p = 0, 1, 2, . . .), consist of equivalence classes of p-cycles,
where two p-cycles are in the same equivalence class if they
can be smoothly deformed into one another. H0 consists of
connected components, H1 consists of noncontractible loops,
and so on, with the Betti numbers bp giving the number of
inequivalent, nontrivial p-cycles.

The core insight of persistent homology is that such a
procedure can be significantly enhanced in its stability and
information content if instead of a single complex, a mono-
tonically growing family, called a filtration, is considered. We
will generally use ν to denote the scale parametrizing the
filtration. Often the growing of the filtration corresponds to
the increasing of a coarse-graining scale, so that multiscale
information is captured. See Fig. 2. As this coarse-graining
scale increases, p-cycles are created (for example, loops form)
and destroyed (for example, loops are “filled in”). The math-
ematics of persistent homology allows us to track the births
and deaths of individual topological features, where birth

FIG. 2. Top: Four steps in the α filtration for a grid of points, such
as appears in our discrete-spin models. The filtration parameter when
a p-simplex is included is α2, where α is the radius of the simplex’s
circumsphere. The α-complexes are pictured in black/red, with the
most recently added p-simplices being shown in red. The nontrivial
1-cycle around the “gap” in the grid of points is born in the second
step and dies in the last step. Bottom: Four steps in the sublevel
filtration for a scalar function (represented by grayscale, with darker
squares corresponding to larger values) defined on a 4 × 3 grid, such
as appears in our continuous-spin models. The filtration parameter is
the threshold, ν, for the sublevel sets and the cubical complexes are
pictured in red. A nontrivial 1-cycle around the largest value is born
and then dies in the last two steps.

refers to the value of the filtration parameter when the cycle
appears and similarly for death. This information is usually
summarized via a persistence diagram (see Fig. 3), which is a
scatter plot of these births and deaths.

While persistence diagrams are often suitable for visual-
ization, they are not very well suited for statistical analysis. In
the end, we are interested in the statistical task of quantifying
the probability that a given spin configuration belongs to a
particular phase of the system. Therefore, rather than scatter
plots, we might prefer a summary statistic that lives in a
vector space. These also aid us in quantitatively characteriz-
ing the change in the system’s persistent homology as some
parameter is varied. We therefore use persistence images for
our analysis, which are formed by appropriately smoothing
the persistence diagram and binning so as to have a low(er)-
dimensional representation of the persistence data. That is,
for a persistence diagram consisting of a number of points
{(bk, dk )} one chooses a number of bins {bini} and forms

PIi =
∫

bini

dbd p
∑

k

w(pk )

2πσ 2
exp

[
− (b − bk )2 + (p − pk )2

2σ 2

]
,

(1)
where the sum in k runs over all points in the persistence
diagram, and the persistence, pk , for each point is its “life-
time,” dk − bk . The weight w(p) should be chosen to vanish
at zero persistence in order to highlight those more impor-
tant features which are longer lived. In what follows we use
w(p) = log (1 + p). (See Ref. [37] for more details on the
stability properties of persistence images.)
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FIG. 3. Example filtrations along with their corresponding persistence diagrams, showing the individual births and deaths of topological
features, and persistence images. (a) Ising model on 16 × 16 square lattice, T = 3.0. Simplices of radius less than

√
ν are included in the

complex. At ν = 4.0 there remain nontrivial 1-cycles around the holes in the symplicial complex—these correspond to the long-lived blue
points in the upper left region of the persistence diagram and the shaded region around a persistence of three in the H1 persistence image and
(b) XY model on 16 × 16 square lattice, T = 1.4. At low values of the threshold ν, added spins are largely isolated, leading to a number
of 0-cycles (connected components) in the cubical complex which then die as they are connected to other components via intermediate spins
being added. These 0-cycles correspond to the red points in the lower left region of the persistence diagram and the shaded region in the H0

persistence image.

A. Filtrations

The data we consider come from square-lattice spin mod-
els, some with discrete, ±, Ising spins and others with
continuous angles. In all models we employ periodic bound-
ary conditions. We now describe the filtrations we use for
these two cases, and give examples of how features of the spin
configurations are captured by the persistence data.

1. Filtrations for discrete spins

With discrete spins on a square lattice (Ising and square-
ice) we choose to represent our data via a point cloud, taking
the locations of all spins aligned with a predetermined direc-
tion as the data. We choose to take all spins which are aligned
with the total magnetization (no matter how small). After cre-
ating the point cloud from a given spin configuration, we then
use an α filtration to create the persistence diagram/image.
The filtration corresponds to a coarse-graining of the point
cloud, parameterized by the areas of balls enclosing the sim-
plices: See Fig. 2 for a small example.

As an example, Fig. 3(a) shows several steps in the
α filtration for an example Ising model spin configu-
ration in the disordered phase, along with the derived
persistence diagram and H1 persistence image. To compute
the persistence of α-complexes we use the GUDHI class
AlphaComplex [43].

2. Filtrations for continuous spins

We also consider models where the spins are continuous
(XY and fully frustrated XY). In these cases, a spin config-
uration is a function f : � → S1 from the lattice, �, of N
spin sites to their angles. We consider models with global

O(2) symmetry so that we may place the total magnetiza-
tion (no matter how small) at angle θ = 0 and think of the
function f as mapping � into (−π, π ]. The sublevel sets
with threshold ν ∈ (−π, π ], f −1(−π, ν] ⊆ �, consisting of
all lattice sites with angles less than ν then give a filtration
of (periodic) cubical complexes. (Here cubical complexes are
natural because of the underlying cubical lattice.) These sub-
level sets experience topology change when the threshold ν

passes a critical point of f , as is familiar from Morse theory
[44]. In this case 0-cycles have nontrivial births, correspond-
ing to spin values where f has a local minimum. As such
we include both 0- and 1-cycles in the derived persistence
images.

Figure 3(b) shows an example spin configuration for the
XY model in the disordered phase, along with its correspond-
ing persistence diagram and the combined H0, H1 persistence
image. To compute the presistence of cubical complexes we
use the GUDHI class PeriodicCubicalComplex [45].

III. PHASE CLASSIFICATION
AND CRITICAL PHENOMENA

In this section we apply our methods to the task of phase
classification in simple two-dimensional lattice spin models.
We consider four such models: The Ising and square-ice
models have discrete, ±, spins and the XY and fully frus-
trated XY models have continuously varying spins. Sample
spin configurations for each model are generated at a num-
ber of temperatures using standard Monte Carlo sampling
techniques. Example spin configurations at low and high tem-
peratures for each model are shown in Fig. 1.
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For each model considered, classification into two phases
is performed using only the persistence images. A subset of
samples with extreme temperatures are used to train a logistic
regression and then the accuracy of the regression is evaluated
using the known temperatures of all samples. We normalize
our persistence images using the �1-norm, so they may be
interpreted as probability densities for finding cycles with
particular births/deaths for a given system. Unnormalized
persistence images contain information about the total number
of p-cycles and also lead to a successful classification.

A. Logistic regression

In the following sections we will be classifying spin
configurations based on their persistence images. Since the
persistence images are information rich, we are able to use
perhaps the simplest classification scheme, logistic regression,
to great effect. Here we quickly recall the procedure of logistic
regression. One benefit of logistic regression is that it is easy
to tell what aspects of the data are used by the classification
algorithm. We will use these to extract order parameters for
the phase transitions under consideration.

Persistence images PI ∈ Rn [n ∼ O(400) in our examples]
are vectors of positive numbers representing the distribution
of cycles at different values of birth and persistence. A logistic
regression depends on parameters λ0 and λ ∈ Rn and the
sigmoid function σ : R → (0, 1), given by

σ (z) = 1

1 + e−z
. (2)

The sigmoid interpolates between σ (−∞) = 0 and σ (∞) =
1. A persistence image is declared to be in “category 0”
if σ (λ0 + λPI) < 1

2 and in “category 1” if σ (λ0 + λPI) >
1
2 . In our examples “category 0” will correspond to a low-
temperature phase and “category 1” will correspond to a
high-temperature phase. The parameters λi=0,...,n are learned
by training on a subset of the persistence images, PI(k), which
are labeled into the two categories (i.e., phases) with y(k) ∈
{0, 1}. Training amounts to maximizing the log-likelihood,∑

k

(y(k) log {σ [λ0 + λPI(k)]} + (1 − y(k) )

× log {1 − σ [λ0 + λPI(k)]}) − C
∑

i

λ2
i , (3)

with respect to λ0 and λ, where the constant C = 0.1 controls
the �2 regularization used to prevent overfitting. By training
on extreme temperatures, we incur some inaccuracy due to
our extrapolating to intermediate temperatures; these will not
concern us too much, as we will find successful classification
regardless.

On training, the regression can be applied to the rest of
the persistence images to give an “average classification” at
each temperature. This can be interpreted as quantifying the
regression’s certainty that a particular temperature belongs
to a particular phase. The temperature at which the average
classification on testing data is 0.5 gives an estimate of the
critical temperature. In addition, the learned coefficients λi

may be investigated to learn which bins (i.e., regions) of
the persistence images are most discerning when it comes

to distinguishing the low- and high-temperature data. Bins
where λi � 0 will identify features prevalent in the high-
temperature phase, while λ 	 0 will identify features that are
prevalent in the low-temperature phase. Bins where λi � 0
(λi 	 0) will identify the dimensionality, size, and longevity
of features which are characteristic of the high-temperature
(low-temperature) phase. These will constitute our order pa-
rameters.

B. Ising model

The Ising model on a two-dimensional square lattice is
very well understood, largely in part to Onsager’s exact so-
lution [46]. Spins si ∈ {−1, 1} live at the vertices of the lattice
with ferromagnetic interactions governed by the local Hamil-
tonian

HIs = −
∑
〈i, j〉

sis j, (4)

where the sum is over nearest-neighbor pairs. In the ther-
modynamic limit there is a second-order phase transition at
TIs = 2

log (1+√
2)

≈ 2.27. At low temperatures there is sponta-

neous magnetization, while there is a disordered phase at high
temperatures. While this model is well understood, it provides
a good first application of our method. We are able to easily
extract the magnetization as order parameter from a simple
logistic regression. We additionally study the relationship of
new “persistence” critical exponents to those usually studied.

1. Logistic regression and order parameter

For temperatures T ∈ {1.00, 1.05, . . . , 3.50} we generate
1000 sample spin configurations for a N × N square lattice
of N2 spins for N = 15, 25, 50. For each sample we construct
the persistence image using a weight log (1 + p) and σ = 0.5
[see Eq. (1)]. Training of a logistic regression on the persis-
tence images is conducted only on a subset of samples with
extreme temperatures, well within the expected phases (see
the left-hand side of Fig. 4). The classification extrapolates
very well to the intermediate temperatures and for N = 50
gives an estimate of T ≈ 2.37 for the critical temperature.
The discrepancy from the known critical temperature may be
attributed to finite-size effects.

The coefficients of the trained logistic regression (see the
right-hand side of Fig. 4) show that the low-temperature
configurations are identified by their having many small,
short-lived cycles. These may be understood as arising both
from 2 × 2 blocks of aligned spins (which lead to very short-
lived 1-cycles) as well as 1-cycles wrapping small groups of
isolated spins which are flipped relative to the large domains
of aligned spins: The latter become more and more important
as the temperature is increased. In the high-temperature phase,
spins are oriented randomly, leading to a more uniform distri-
bution of 1-cycle sizes. Using persistent homology we are able
to easily identify the magnetization as the order parameter, as
is well known.

2. Multiscale behavior near criticality

Since persistent homology contains multiscale information
about a spin configuration, it seems reasonable that one should
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FIG. 4. Phase classification for the Ising model on an N × N square lattice. [(a) (c)] Example persistence images for the first homology
group below, near, and above the critical temperature. [(d) and (e)] The results of classifying these persistence images into two phases, having
trained a logistic regression only on a subset of persistence image with temperatures in the highlighted regions in (e). The learned coefficients
in (d) indicate that the low-temperature phase is characterized by small, short-lived features.

be able to probe a model’s approach toward scale invariance
via critical exponents. Indeed, we are able to see aspects of
scale invariance appearing at criticality by looking at statis-
tics derived from the persistence diagram. One-dimensional
statistics such as the Betti numbers, births, and deaths can
be found by counting points in different regions of the per-
sistence diagrams. In this way we may compute the 1-cycle
death probability density, DT (d ), at each temperature, which
quantifies the distribution of feature sizes in the spins. In Fig. 5

FIG. 5. Ising model death distributions, N = 50. The slight hor-
izontal stripes in the figure on the right (e.g., at death = 25) are
symptomatic of the underlying lattice.

we see that deaths are exponentially distributed with a long
tail forming at criticality, indicative of a diverging correlation
length and the emergence of power-law behavior.

To be more quantitative, we may fit each DT (d ) to a func-
tion of the form

DT (d ) = A d−μe−d/adeath . (5)

Here d is the filtration parameter at the death scale of a cycle,
and A is a numerical constant. There are two critical exponents
to be extracted: μ gives the power-law behavior at criticality,
while the correlation area adeath diverges at criticality accord-
ing to adeath ∼ |T − Tc|−νdeath . We are limited by the IR cutoff
of the model, namely the finite area of the lattice, but we may
still estimate these exponents. As a consistency check, we
ask how these might be related to previously studied critical
exponents. Using scaling arguments, one can show that at
criticality the proportion of clusters of k aligned spins goes
as

P(cluster of size k) ∼ k−τ , (6)

where the critical exponent is τ ≈ 2.032 [47,48]. The function
DT (d ) is not directly measuring the size of clusters, since the
death of a 1-cycle around an island of spins is influenced non-
trivially by the shape and “nesting” of clusters. Nevertheless,

104426-6



QUANTITATIVE AND INTERPRETABLE ORDER … PHYSICAL REVIEW B 104, 104426 (2021)

FIG. 6. μ and adeath for Ising death distributions, N = 50. The
red dashed lines indicate the previously estimated critical temper-
ature T ≈ 2.37. Error estimates are derived from fitting multiple
simulations.

it seems reasonable to expect that at criticality the distribution
of 1-cycle deaths should follow a similar power-law distribu-
tion. Recall that the value of the filtration parameter at the
death of a 1-cycle is the area of the disks placed on each point
in the point cloud, and so roughly corresponds to the number,
k, of spins enclosed by the 1-cycle.

The fit parameters μ and adeath are shown in Fig. 6, where
we see clearly the diverging correlation area as criticality is
approached from above. The value of μ at our previously

estimated critical temperature, T ≈ 2.37, is consistent with
μ ≈ τ = 2.032 as anticipated above, although a more detailed
study would be needed to determine the value of μ more
exactly. We see also the linear behavior of a−1

death with tem-
perature, indicating νdeath ≈ 1. That this is the same degree
of divergence as the correlation length of the spin-spin cor-
relation function 〈s(0)s(r)〉 ∼ e−r/ξ , ξ ∼ |T − Tc|−1 can be
understood by the following rough argument.

The death of a 1-cycle in the α filtration roughly corre-
sponds to the area of the cluster of spins that it encloses
and DT (d ) roughly corresponds to the probability that a con-
tiguous region of spins with area d is aligned. Consider for
simplicity looking to estimate the probability that a disk of
spins with radius R are all aligned. At infinite temperature
where the spins are randomly aligned, this probability would
simply be 2−πR2/�2

, where � is the lattice spacing. If we sup-
pose that Pdisk(R) ∼ e−R2/a for some “correlation area” a even
at finite temperature, then how is a related to ξ as defined
by 〈s(R)s(0)〉 ∼ e−R/ξ in the disordered phase? To estimate
Pdisk(R + �) ∼ e−(R+�)2/a ≈ e−R2/a−2�R/a, imagine asking that
a circle of ∼R spins all be aligned with the disk of (aligned)
spins of radius R that they encircle. For simplicity, we ignore
conditional aspects of the probability and subleading terms.
This should then take the form e−R2/ae−#R/ξ , from which
we conclude that a ∼ �ξ : In particular, a ∼ ξ ∼ |T − Tc|−ν

FIG. 7. Phase classification for the square ice model on a 50 × 50 lattice. [(a) (c)] Example persistence images for the first homology group
below, near, and above the estimated critical temperature. [(d) and (e)] The results of classifying these persistence images into two phases,
having trained a logistic regression only on a subset of persistence images with temperatures in the highlighted regions in (e). The learned
coefficients in (d) indicate that the phase transition involves a subtle shift to the characteristic length scale in the spin configurations.
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with the same critical exponent as the critical temperature is
approached from above.

It would be interesting to further understand the relation-
ship between the persistence critical exponents we defined and
those typically studied.

C. Square-ice model

The square-ice model places spins, si ∈ {−1, 1}, on the
edges rather than vertices of a square lattice and is governed
by the local Hamiltonian

HSI =
∑
v∈�

(∑
i:v

si

)2

, (7)

where i : v denotes those spins on edges adjacent to the vertex
v. This is a particular instance of the 16-vertex model which
in general has a rich phase structure (e.g., see Refs. [49,50]).
In contrast to the Ising model there is no spontaneous mag-
netization at low temperatures. Rather, the ground state is
highly degenerate: Any configuration with exactly two up
and two down spins adjacent to every vertex has zero en-
ergy. This leads to frustration in the low-energy dynamics,
as adjacent vertices v compete to minimize (

∑
i:v si )2. This

competition takes place at small scales, so that many 1-cycles
die very quickly in the filtration. Nevertheless, we are still
able to identify a shift in the distribution of p-cycle births
and deaths and reliably classify samples into two phases. In

this case, the frustration introduces a particular length scale to
the topological features in the low-temperature phase, while
the distribution of sizes in the high-temperature phase is less
restricted.

1. Logistic regression and order parameter

We generate 1000 sample spin configurations for a
50 × 50 lattice with 5000 spins at temperatures T ∈
{0.0, 0.1, . . . , 4.0}. Each sample gives a persistence image
with a weight log (1 + p). Again training a logistic regression
only on those persistence images with extreme temperatures
(Fig. 7), we find an estimate of T ≈ 1.9 for the critical tem-
perature. From the logistic regression coefficients presented
Fig. 7(d) we see that as the temperature increases there is
a tendency for 1-cycles to be born later or to be longer-
lived. Both are indicative of a changing local structure in
the spin configurations. In the low-temperature phase, it is
energetically beneficial for neighboring vertices to coordinate,
resulting in a regular patterns of alternating up and down
spins. This regularity forces 1-cycles to live at smaller scales
than in the high-temperature phase. More precisely, the do-
mains of alternating spins result in many 1-simplices of radius
1/2 which are filled in at ν = 1/

√
2 ≈ 0.7—this is reflected

in the location of the negative logistic regression coefficients
shown in Fig. 7(d).

FIG. 8. Phase classification for the XY model on an N × N square lattice. [(a) (c)] Example persistence images for both the zeroth and
first homology groups below, near, and above the critical temperature. The gray dashed lines visually separate the infinite persistence 0- and
1-cycles from those which have finite death. [(d) and (e)] The results of classifying these persistence images into two phases, having trained a
logistic regression only on a subset of persistence images with temperatures in the highlighted regions in (e).
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FIG. 9. Example spin configuration with three vortex-antivortex pairs, with seven steps in the sublevel filtration shown. Each vortex-
antivortex pair corresponds to a number of 0-cycles which are born very early and 1-cycles which die late.

D. XY model

The XY model is a continuous-spin generalization of the
Ising model. At each site of the square lattice spins take values
in S1 and are governed by

HXY = −
∑
〈i, j〉

cos (θi − θ j ). (8)

There is a well-known KT phase transition at TXY ≈ 0.892
(see Refs. [51,52], among others). This is an infinite-order
phase transition where at low temperatures there are bound
vortex-antivortex pairs while at high temperatures free vor-
tices proliferate and spins are randomly oriented.

1. Logistic regression and order parameter

With continuous spins each spin configuration implicitly
contains much more information about the underlying dynam-
ics. For temperatures T ∈ {0.05, 0.10, . . . , 1.50} we generate
200 sample spin configurations on a N × N lattice with N2

spins for N = 10, 15, 20. Persistence images are created for
each sample, as in Fig. 3(b). The zeroth homology, in contrast
to the α-complexes used for discrete spins, is very rich for the
cubical complexes and we include both H0 and H1 persistence
data in the persistence images. There is always a single 0-
cycle and two 1-cycles which never die: These correspond
to the p-cycles of the torus on which the lattice lives. We
distinguish these immortal p-cycles from those cycles with
late deaths (d ≈ π ) by giving the former a death of d = 5π

2 by
hand. Omitting these infinite persistence “torus cycles” results
in a comparable phase classification.

Performing a logistic regression of the concatenated H0 and
H1 persistence images by training on configurations with tem-
peratures far away from the anticipated transition leads to the
classification of Fig. 8. The critical temperature is estimated
as TXY ≈ 0.90 for N = 20. We see that the low-temperature
phase is characterized by p-cycles on the “boundary” of the
persistence images. This we can understand in the following
way. A (small-enough) loop around an isolated vortex has
nontrivial winding number, which ensures that there are spins
with angles close to both −π and π if a vortex is present. This
explains the strong blue regions in the corners of the logistic
regression coefficients: For ν ≈ −π a number of 0-cycles are
born very early for each vortex and antivortex, giving the
lower-left corner of the H0 coefficients. One of these 0-cycles
lives forever, giving the upper-left corner of the H0 coeffi-
cients. In addition, there are 1-cycles which are born close to
ν ≈ π , again corresponding to the extreme angles associated
with the (anti)vortices. See Fig. 9 for an example of this in-
terpretation in practice. When vortex-antivortex pairs happen
to not be present at low temperatures, then all of the spins are

aligned close to θ = 0, giving the short-lived features centered
around a birth of zero along the bottom edges of both the H0

and H1 coefficients.
As before we may consider the distribution of p-cycle

deaths as a function of temperature. In Fig. 10 we see that
low temperatures there are two “populations” of both 0- and
1-cycles which merge into one as we pass into the high-
temperature phase. This again can be attributed to the presence
of vortex-antivortex pairs in the following way. Using the raw
spin configurations we may count the number of (anti)vortices
simply by looking for nontrivial winding in 2 × 2 blocks
of the lattice. This can be compared with the number of
0-cycles with early death (e.g., d � − 3π

4 ) and the number
of 1-cycles with late death (e.g., d � 3π

4 ). Averaging over
samples with temperatures below 0.20 where the number of
vortex-antivortex pairs is reasonably small on the 20 × 20
lattice leads to Fig. 11. There is a clear correlation between
the number of extreme-death p-cycles and the number of
vortex-antivortex pairs as determined directly from the spins.
This topological signature of vortex-antivortex pairs should
exist rather generally.

Previous investigations of the XY model and its KT phase
transition using neural networks and PCA have faced diffi-
culties in identifying vortices at low temperatures [4,53]. It
is worth emphasizing the relative ease with which persistent
homology identifies (anti)vortices as an important feature at
low temperatures.

E. Fully frustrated XY model

A frustrated version of the XY model is obtained by
changing some of the nearest-neighbor interactions to be an-
tiferromagnetic. One such choice which is fully frustrated is

HFFXY = −
∑
〈i, j〉

Ji j cos (θi − θ j ), (9)

where Ji j = −1 on every other row of horizontal edges and
Ji j = +1 everywhere else. There are two phase transitions

FIG. 10. XY 0- and 1-cycle death distributions.
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FIG. 11. Average counts of 0- and 1-cycle deaths for fixed num-
ber of vortex-antivortex pairs at low temperatures (T�0.20).

that occur at temperatures which are very close together: A
phase transition at T ≈ 0.454 is associated with the loss of Z2

symmetry, and a phase transition at T ≈ 0.446 is associated
with the loss of the SO(2) rotational symmetry [54]. Because
of their proximity we are unable to identify both transitions
without an extensive set of simulations.

1. Logistic regression and order parameter

We generate 200 sample spin configurations on a
20 × 20 lattice with 400 spins for temperatures T ∈
{0.05, 0.10, . . . , 1.20}. As before with the XY model, the
zeroth homology is quite rich and we include it in the per-
sistence images. Training the logistic regression leads to the
classification in Fig. 12, where the critical temperature is
estimated as TFFXY ≈ 0.39. A more accurate estimation can
be achieved by using training data closer to the phase tran-

sition. The learned coefficients show a strong tendency for
both 0- and 1-cycles to shift to have persistence around 3π

4
in the high-temperature phase. As in the square-ice model, our
order parameter probes the small-scale structure of the frustra-
tion pattern. In particular, the low-temperature phase exhibits
“pseudodomains” where many next-to-nearest neighbors take
similar spin values. The alternating structure induced by the
antiferromagnetic bands therefore leads to more isolated lo-
cal minima (i.e., 0-cycles in the sublevel filtration) in the
low-temperature phase. In the high-temperature phase, most
of the local minima are born at θ ≈ −π , while in the low-
temperature phase there are local minima at higher θ protected
by these pseudodomains. This explains the blue band at the
bottom of the H0 logistic regression coefficients. The lack of
vortices can be seen from the death distribution as a function
of temperature in Fig. 13.

In our discussion we have used a sublevel filtration with
cubical complex to quantify the homology of continuous-spin
configurations. Another approach would be to construct point
clouds by taking the locations of spins in a (sub)levelset
and using an α filtration. By scanning through levelsets one
can capture the topological features of f : � → S1 in a dif-
ferent way. For the fully frustrated XY model this leads
to a comparable classification and estimate for the critical
temperature.

IV. DISCUSSION

In this paper we have explored the use of persistent ho-
mology in quantitatively analyzing the phase structure and

FIG. 12. Phase classification for the FFXY model on a 20 × 20 square lattice. [(a) (c)] Example persistence images for both the zeroth and
first homology groups below, near, and above the critical temperature. The gray dashed lines visually separate the infinite persistence 0- and
1-cycles from those which have finite death. [(d) and (e)] The results of classifying these persistence images into two phases, having trained a
logistic regression only on a subset of persistence images with temperatures in the highlighted regions in (e).
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FIG. 13. FFXY 0- and 1-cycle death distributions.

critical behavior of lattice spin models. While the models
we consider can be understood via other means, the use of
persistent homology provides an interesting perspective into
their statistical properties. Nonlocal features are naturally ac-
counted for in this framework and could prove to be useful in
more complex systems as well. As mentioned in the Introduc-
tion, the ideas exemplified in this work can be and have been
applied to a wide variety of data sets: For other condensed
matter systems one need only find a suitable representation of
the data and choice of accompanying filtration. What we hope
to have conveyed with the examples considered is that even
the most simple-minded choice of data representation (spin
locations or spin directions) can be successful, in part because
the topological summary statistic which is the persistence
image is quite rich. We are hopeful that TDA and persistent
homology will continue to grow as tools in many areas of
physics.

Phase classification using persistence images alone is ac-
complished successfully for the Ising, square-ice, XY, and
fully frustrated XY models, providing a mix of examples
with discrete/continuous spins and some with frustration. The
resulting trained logistic regressions reveal those regions of
the persistence image/diagram which are characteristic of
low- and high-temperature phases. This allows for an easily
interpretable classification, where (sometimes drastic) shifts
in the distributions of p-cycle births and deaths are associ-
ated with a phase transition. In the case of the XY model,

there is a clear correlation between the number of early-death
0-cycles, late-death 1-cycles, and the number of bound vortex-
antivortex pairs at low temperatures. In our classifications we
relied on supervised learning, namely there being two phases
and labeled samples with “extreme” temperatures on which to
train. If the number of phases is unknown or labeled samples
are unavailable, then unsupervised techniques will need to
be used, but we expect the techniques utilized here to still
prove useful in such cases. For example, clustering algorithms
may be used in a straightforward way on the vector-valued
persistence images.

The persistence data also display features of critical phe-
nomena. For the Ising model one observes the emergence of
power-law behavior in the distribution of 1-cycle deaths as the
critical temperature is approached. We are able to estimate two
critical exponents associated with this behavior: The correla-
tion area diverges as adeath ∼ |T − Tc|−νdeath with νdeath ≈ 1 as
expected for the 2D Ising model, and we estimate the critical
exponent μ, introduced through DT (d ) ∼ d−μ, to be μ ≈ 2,
in agreement with expectations from the known power-law
behavior of cluster sizes at criticality.

We have demonstrated the quantitative statistical capabil-
ities of persistent homology for relatively simple 2D lattice
spin systems. It would interesting to apply these ideas and
techniques to more complicated lattice spin models in higher
dimensions or with no known order parameter. In more than
two dimensions the higher homology groups may serve useful
in quantifying nonlocal structures. We leave such work for the
future.
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