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Finite-momentum energy dynamics in a Kitaev magnet
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We study the energy-density dynamics at finite momentum of the two-dimensional Kitaev spin model on
the honeycomb lattice. Due to fractionalization of magnetic moments, the energy relaxation occurs through
mobile Majorana matter, coupled to a static Z2 gauge field. At finite temperatures, the Z2 flux excitations
act as a thermally induced disorder, which strongly affects the energy dynamics. We show that sufficiently
far above the flux proliferation temperature, but not yet in the high-temperature classical regime, disordered
gauge configurations modify the coherent low-temperature energy-density dynamics into a form which is
almost diffusive, with a diffusion kernel that is nearly momentum independent, but which remains retarded,
primarily due to the presence of two distinct relaxation channels of particle-hole and particle-particle nature.
Relations to the thermal conductivity are clarified. Our analysis is based on complementary calculations in the
low-temperature homogeneous gauge configuration and a mean-field treatment of thermal gauge fluctuations,
valid above the flux proliferation temperature.
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I. INTRODUCTION

Ever since the discovery of large magnetic heat transport
in quasi-one-dimensional (quasi-1D) local-moment systems
[1–5], the dynamics of energy in quantum magnets [6–8]
has been of great interest, since it relates directly to the
flow of magnetic energy currents [9–12]. From a fundamental
point of view, magnetic thermal transport is a well-established
probe into the elementary excitations of magnets and their
dissipation [11], which is capable even of revealing topo-
logical properties [13]. From an application point of view,
spin caloritronics [14,15] and magnetic thermal management
devices [16,17] are timely topics. Unfortunately, rigorous the-
oretical progress has essentially remained confined to one
dimension [12]. Above one dimension, understanding en-
ergy dynamics in quantum magnets remains an open issue
at large. In cases where magnetic long-range order (LRO)
is present and magnons form a reliable quasiparticle basis,
various insights have been gained for antiferromagnets and
cuprates [18–21]. In cases where LRO is absent, and, in
particular, in quantum spin liquids (QSLs) [22,23], energy
transport has recently come into focus as a probe of poten-
tially exotic elementary excitations. In fact, experiments in
several quantum disordered, frustrated spin systems in D � 2
suggest unconventional magnetic energy dynamics. For bulk
transport, this pertains, e.g., to quasi-2D triangular organic
salts [24–26] or to 3D quantum spin ice materials [27–29].
For boundary transport, i.e., the magnetic thermal Hall effect,
recent examples include kagome magnets [30–32] and spin
ice [33]. A microscopic description of such observations is
mostly lacking.
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In this context, Kitaev’s compass exchange Hamiltonian
on the honeycomb lattice is of particular interest, as it is
one of the few models in which a Z2 QSL can exactly be
shown to exist [13]. The spin degrees of freedom of this model
fractionalize in terms of mobile Majorana fermions coupled to
a static Z2 gauge field [13,34–37]. Understanding all of this
model’s properties may provide insight into other future po-
tential QSLs. From a materials perspective, a realization of the
original Kitaev model is lacking as of today, with non-Kitaev
exchange being a major obstacle [38]. Among the candidate
systems, α-RuCl3 is under intense scrutiny [39]. Free mobile
Majorana fermions have been invoked to interpret ubiquitous
unconventional continua in spectroscopies on various poten-
tial Kitaev materials, such as inelastic neutron [40–42] and
Raman scattering [43,44], as well as local resonance probes
[45,46].

Majorana fermions should also play a role in the energy
dynamics in putative Kitaev materials. However, bulk thermal
conductivity, i.e., κxx in α-RuCl3 [47–50], seems to be gov-
erned primarily by phonons, with phonon-Majorana scattering
as a potential dissipation mechanism [49,50]. Yet, Majorana
fermions may have been observed in the transverse energy
conductivity κxy in magnetic fields, i.e., in the thermal Hall
effect, and its alleged quantization with central charge 1/2
[51,52]. This would render a bosonic origin of the thermal
Hall effect in α-RuCl3 unlikely and would be consistent with
the behavior at finite fields, of a Kitaev QSL [13], used at zero
field in our study.

Dynamical correlation functions of Kitaev QSLs have
been at the center of many recent theoretical studies, all of
which aim at identifying fingerprints of fractionalized elemen-
tary excitations—Majorana fermions and gauge fluxes, and
their interaction. Examples include the inelastic spin structure
factor [53,54], magnetic Raman scattering [43,55], resonant
inelastic x-ray scattering [56], acoustic phonon and ultrasound

2469-9950/2021/104(10)/104424(11) 104424-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.104424&domain=pdf&date_stamp=2021-09-24
https://doi.org/10.1103/PhysRevB.104.104424


ALEXANDROS METAVITSIADIS AND WOLFRAM BRENIG PHYSICAL REVIEW B 104, 104424 (2021)

renormalization [57,58], optical phonon line shapes [59,60],
optical conductivity [61], and thermal transport, including the
Hall effect [62,63]. See also Ref. [64]. More specifically, these
previous investigations of thermal transport have focused on
the energy-current correlation functions and at zero momen-
tum only. In this paper, we take a different perspective and
consider the energy-density correlation function directly and
at finite momentum. In particular, we will be interested in
the role which the disorder introduced by thermally excited
Z2 gauge fields plays in the long-wavelength regime. There-
fore we map out the energy diffusion kernel of the Kitaev
model and its momentum and energy dependence, ranging
from low up to intermediate temperatures and we contrast
this with expectations for simple diffusion in random systems.
We note that the physics of internal “randomness” induced
by superselection sectors in a priori translationally invariant
models of gauge theories is of current interest not only in
frustrated magnets [65–67] but also as it relates to questions
of many-body localization [68].

The paper is organized as follows. In Sec. II, we briefly
recapitulate the Kitaev model and define the observable of
interest. In Secs. III A and III B, details of our calculations are
provided for the homogeneous and the random gauge configu-
rations. Parts of the technicalities in these sections follow our
previous work [57]. The extraction of the diffusion kernel is
described in Sec. III C. We discuss our results in Sec. IV, com-
prising findings on the homogeneous and the random gauge
configurations, in Secs. IV A and IV B, respectively. The latter
consists of sections on the hydrodynamic description (Sec. IV
B 1), generalized Einstein relations (Sec. IV B 2), and the
temperature dependence (Sec. IV B 3). We provide a summary
in Sec. V. Finally, in Appendix A we detail the finite-size
effects, and in Appendix B we present additional results at
elevated temperature.

II. MODEL

We consider the Kitaev spin model on the two-dimensional
honeycomb lattice

H =
∑
j,α

JαSα
j Sα

j+rα
, (1)

where j = n1R1 + n2R2 runs over the sites of the triangular
lattice with R1[2] = (1, 0), [( 1

2 ,
√

3
2 )] for lattice constant a ≡

1, and rα=x,y,z = ( 1
2 , 1

2
√

3
), (− 1

2 , 1
2
√

3
), (0,− 1√

3
) refer to the

basis sites α = x, y, z, tricoordinated to each lattice site of the
honeycomb lattice. We will remain with the isotropic case,
i.e., Jx,y,z = J . As extensive literature, rooted in Ref. [13],
has clarified, Eq. (1) can be mapped onto a bilinear form
of Majorana fermions in the presence of a static Z2 gauge
field ηj = ±1, residing on, e.g., the z bonds, and its flux
�j = ηjηj+R1

H =
∑

j

hj, hj = − i

2

∑
α

Jηj,α ajcj+rα
. (2)

Here, we introduce ηj,α to unify the notation, with ηj,x(y) =
1 and ηj,z = ηj. There are two types of Majorana particles,
corresponding to the two basis sites. We chose to normalize
them as {aj, aj′ } = δj,j′ , {cm, cm′ } = δm,m′ , and {aj, cm} = 0.

FIG. 1. Kitaev model on the honeycomb lattice. Jx,y,z label bond-
dependent Ising interactions. j labels sites of the triangular lattice
with lattice vectors R1,2. rx,y,z label basis sites. The yellow triangle
comprises sites and bonds of the local energy density hj.

For each gauge configuration, i.e., set of {ηj}, the fermionic
Hilbert space of Eq. (2), the so-called gauge sector, represents
a spin liquid.

To study the energy-density susceptibility, a local energy
density h̃u on some repeating “unit” cluster u has to be chosen.
Obviously, the sum over all units of these local energy densi-
ties should equal the total Hamiltonian, H = ∑

u h̃u. As for
any local density, the latter does not fix h̃u uniquely. Different
shapes of the real-space units u supporting h̃u will typi-
cally lead to differing high-frequency and short-wavelength
spectra for its autocorrelation function [69]. However the low-
frequency, long-wavelength dynamics is governed by energy
conservation and will not depend on a particular choice of h̃u
[69]. For the remainder of this paper we therefore set h̃u = hj,
with hj defined in Eq. (2), i.e., the energy density formed by
the tricoordinated bonds around each site on the triangular
lattice, highlighted by the yellow triangle in Fig. 1. Its Fourier
transform is hq = ∑

j eiq·jhj with h†
q = h−q and h0 = H .

III. ENERGY SUSCEPTIBILITY

In this section, we present our evaluation of the dynami-
cal energy susceptibility. The approach parallels our previous
work on phonon self-energies [57]. For the sake of com-
pleteness, however, we repeat the steps necessary for the
present calculation. We focus on two temperature regimes,
namely, T � T � and T � T �. Here, T � is the so-called flux
proliferation temperature. Well below T �, the gauge field is
in an ordered uniform configuration, i.e., ηj = 1, ∀j. Here,
flipping a gauge field involves an energy cost, the so-called
flux gap � ≈ 0.065J [13]. In the vicinity of T �, other gauge
field or flux configurations get thermally populated [61,70].
This means that mostly gauge field configurations are present,
which no longer conform with translation invariance. These
gauge field configurations act as a thermally induced disorder,
modifying the environment in which the Majorana fermions
move at all temperatures well above T �. Previous analy-
sis [61,63,69,70] has shown that the temperature range over
which a complete proliferation of fluxes occurs is confined to
a rather narrow region—less than a decade centered around
T � ≈ 0.012J for the isotropic exchange used in this paper—
which decreases rapidly with anisotropy [61,70]. Our strategy
therefore is to consider a homogeneous gauge configuration,
i.e., ηj = 1 for T � T � and an average over a sufficiently large
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number of completely random gauge configurations for T �
T �. For brevity we call this the “random gauge (configura-
tion)” hereafter. In the latter case, the ensemble average of the
gauge field vanishes, 〈ηj〉 = 0. This approach has proven to
work very well on a quantitative level in several studies of the
thermal conductivity of Kitaev models [63,70,71]. Note that
for α-RuCl3, and assuming only a plain Kitaev magnet, with a
Kitaev exchange, generally accepted to be |J| ∼ 85 K [40], the
study of T � T � requires temperatures well below the boiling
point of liquid helium-4. Access to T � T � therefore requires
less effort.

A. Homogeneous gauge: T � T �

For ηj = 1, the Hamiltonian (1) can be diagonalized ana-
lytically in terms of complex Dirac fermions. Mapping from
the real Majorana fermions to the latter can be achieved in
various ways, all of which require some type of linear com-
bination of real fermions in order to form complex ones.
Here, we do the latter by using Fourier-transformed Majo-
rana particles, ak = ∑

j e−ik·jaj/
√

N with momentum k and

analogously for ck. The momentum-space quantization is
chosen explicitly to comprise ±k for each |k|. Other ap-
proaches, involving reshaped lattice structures [34,36], may
pose issues regarding the discrete rotational symmetry of the
susceptibility.

The fermions introduced in momentum space are com-
plex with a†

k = a−k, i.e., with only half of the momentum
states being independent. This encodes that for each Dirac
fermion there are two Majorana particles. Standard anticom-
mutation relations apply, {ak, a†

k′ } = δk,k′ , {ck, c†
k′ } = δk,k′ ,

and {a(†)
k c(†)

k′ } = 0. From this, the diagonal form of H reads

H =
∼∑

k,γ=1,2

sgγ εk d†
k,γ dk,γ

, (3)

where the ∼ implies summing over a suitably chosen “pos-
itive” half of momentum space and sgγ = 1 (−1) for γ =
1 (2). The quasiparticle energy is εk = J[3 + 2 cos(kx ) +
4 cos(kx/2) cos(

√
3ky/2)]1/2/2. In terms of reciprocal lattice

coordinates x, y ∈ [0, 2π ], this reads εk = J[3 + 2 cos(x) +
2 cos(y) + 2 cos(x − y)]1/2/2 with k = x G1 + y G2, where
G1[2] = (1,− 1√

3
), [(0, 2√

3
)]. The quasiparticles are given by

[
ck
ak

]
=

[
u11(k) u12(k)
u21(k) u22(k)

][
d1k
d2k

]
,

u11(k) = −u12(k) = i
∑

α e−ik·rα

23/2εk
, (4)

u21(k) = u22(k) = 1√
2
.

From the sign change of the quasiparticle energy between
bands γ = 1 and γ = 2 in Eq. (3) it is clear that the relations
a†

k = a−k and c†
k = c−k for reversing momenta of the origi-

nal Majorana fermions have to change into d†
1(2)k = d2(1)−k,

switching also the bands. Indeed this is also born out of the
transformation (4). Inserting the latter into hq, the energy

density in the quasiparticle basis reads

hq = 1

2

∑̃
k

{
[d†

1k+q d†
2k+q]

×
[
εk+q+εk εk+q−εk
εk−εk+q −εk+q−εk

][
d1k
d2k

]}
. (5)

As is to be expected, hq=0 = H from (3), and the off-diagonal
interband transitions vanish in that limit.

The energy-density susceptibility χ (q, z) is obtained
from Fourier transformation of the imaginary time den-
sity Green’s function χ (q, z) = T

∫ β

0 dτ 〈Tτ (hq(τ )h−q)〉eiωnτ

by analytic continuation of the Bose Matsubara frequency
iωn = i2πnT → z ∈ C and eventually z → ω + i0+. While
the physical momentum of the density q is an element of
all of the Brillouin zone (BZ) of the honeycomb lattice, due
to the mutual dependence of the fermions, and as discussed
directly before Eq. (3), the momentum k is a priori restricted
to only a suitably chosen positive half of the BZ. This seems to
complicate evaluation of χ (q, z) but can readily be simplified
by allowing k sums run over all of the BZ. This implies
a double counting, which can be corrected for by appropri-
ate factors of 1/2, and more important, this comes at the
expense of additional anomalous anticommutators such as,
e.g., {d1k, d2k′ } = δ−k,k′ and their corresponding contractions.
Simple algebra yields [72]

χ (q, z) = χph(q, z) + χpp(q, z),

χph(q, z) = 1

N

∑
k

(εk+q+εk )2 fk+q(T )− fk(T )

z − εk+q + εk
,

χpp(q, z) = 1

2N

∑
k

(εk+q−εk )2{[ fk+q(T )+ fk(T )−1]

×
(

1

z − εk+q − εk
− 1

z + εk+q + εk

)}
, (6)

where the superscripts ph (pp) indicate particle-hole (particle-
particle), or the synonymous intraband (interband), types of
intermediate states of the fermions; fk(T ) = 1/(eεk/T + 1)
is the Fermi function. This concludes the formal details for
T � T �.

B. Random gauge: T � T �

In a random gauge configuration, translational invariance
of the Majorana system is lost, and we resort to a numerical
approach in real space. This has been detailed extensively for
1D [69,71] and 2D [57,63,70] models and is only briefly reit-
erated here for the sake of completeness. First a spinor A†

σ =
(a1 · · · aj · · · aN , c1 · · · cj+rx · · · cN ), comprising the Majorana
fermions on the 2N sites of the lattice, is defined. Using
this, the energy density hq and the Hamiltonian (2), i.e., h0,
are rewritten as hq = A†gqA/2. Boldfaced symbols refer to
vectors and matrices, i.e., gq is a 2N × 2N array. Next a
spinor D†

σ = (d†
1 · · · d†

N , d1 · · · dN ) of 2N complex fermions is
defined by D = FA using the unitary (Fourier) transform F.
The latter is built from two disjoint N × N blocks I i=1,2

σρ =
e−ikσ ·Ri

ρ /
√

N , with Ri
ρ = j and j + rx, for a- and c-Majorana

lattice sites, respectively. k is chosen such that for each k there
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exists one −k, with k �= −k. Finally, for convenience, F is re-
arranged so as to associate the d†

1 · · · d†
N with the 2 (N/2) = N

“positive” k vectors. With this,

hq = D†g̃q D/2, (7)

where õ = FoF†. We emphasize that (i) F does not di-
agonalize hq and (ii) in general the 2N × 2N matrices of
Fourier-transformed operators õ will contain particle number
nonconserving entries of D fermions.

As for the case of the homogeneous gauge in Sec. III A, the
energy-density susceptibility χ (q, z) for a particular gauge
configuration {ηj} is obtained by analytic continuation from
the imaginary time density Green’s function

χ (q, τ ) = 〈Tτ (hq(τ )h−q)〉{ηj}

= 1
4 〈Tτ [(D†g̃qD)(τ )(D†g̃qD)†]〉{ηj}. (8)

This is evaluated using Wick’s theorem for quasiparticles
T = UD, referring to a 2N × 2N Bogoliubov transformation
U, determined numerically for a given distribution {ηj}, so
as to diagonalize g̃0, i.e., (Ug̃0U†)ρσ = δρσ ερ , with ερ =
(ε1 · · · εN , −ε1 · · · − εN ). We get

χ (q, z) =
∑
ρσ

�σρ (z)wσρ,q[w�
ρ̄σ̄ ,q − w�

σρ,q],

�σρ (z) = fσ (T ) − fρ (T )

z − εσ + ερ

,

wρσ,q =
(

1

2
Ug̃qU†

)
ρσ

, (9)

where fσ (T ) = 1/(eεσ /T + 1) and overbars refer to swapping
the upper and lower half of the range of 2N indices, e.g., ρ̄ =
ρ ∓ N for ρ ≷ N [72].

As a final step, χ (q, z) from Eq. (9) is averaged over a suf-
ficiently large number of random gauge configurations {ηj}.
For the numerical evaluations in this paper, we average over
200 such random realizations and—for brevity—refer to this
average simply as the random gauge (configuration) hereafter.
We have tested that this is fully sufficient to have negligible
stochastic errors on the system sizes we use (see Appendix A).
This concludes the formal details of the evaluation of the
energy-density susceptibility for T � T �.

C. Diffusion kernel

We will relate χ (q, z) to a diffusion kernel D(q, z) by the
following phenomenological ansatz, rooted in hydrodynamic
theory and memory function approaches [73]:

χ (q, ω) = χq
iq2D(q, ω)

ω + iq2D(q, ω)
. (10)

For the remainder of this paper, only the real part, i.e., ω,
of the frequency argument z of causal functions is displayed,
and an infinitesimal positive imaginary part, i.e., broadening,
Im(z) = i0+ is implied [74].

Equation (10) should be viewed as a definition of D(q, ω)
and a static energy-density susceptibility χq. This neither
takes into account fine details concerning differences between
static, adiabatic, and isolated susceptibilities nor formulates

FIG. 2. Spectrum, Imχ (q, ω), of energy-density susceptibility vs
ω at fixed small q set by p, for low T = 0.01J � T �, using Eq. (6)
for the homogeneous (hmg) gauge configuration. System size is L2 =
300 × 300. Inset: Blowup of the low-ω region, separating ph (green)
and pp spectra (red), with the dashed vertical line showing the upper
ph-continuum bound at q.

the momentum scaling in terms of harmonics of the honey-
comb lattice instead of the simpler factor of q2. The latter
implies that the momentum dependence of D(q, ω) is adapted
best to the small-q regime. We denote the damping rate
q2D(q, ω) to satisfy perfect q2 scaling, if D(q, ω) is momen-
tum independent, meaning that momentum enters the density
relaxation solely by the q scaling of the gradient in the conti-
nuity equation, leading to a simple Fick’s law with respect to
q.

Since, by construction of (10), D(q, ω) has a proper spec-
tral representation, χq results from the sum rule

χq =
∫ ∞

−∞

dω

πω
Im[χ (q, ω)]. (11)

Introducing a normalized susceptibility χ̄ (q, ω) =
χ (q, ω)/χq, we will extract the diffusion kernel from

D(q, ω) = 1

iq2

ω χ̄ (q, ω)

1 − χ̄ (q, ω)
. (12)

IV. RESULTS

A. Homogeneous gauge: T � T �

We now discuss the density dynamics as obtained from
the previous sections. First we consider the low-T behav-
ior, T � T �, using the homogeneous gauge configuration. As
from Eq. (6), χ (q, ω) sums two channels: (i) particle-hole (ph)
and (ii) particle-particle (pp) excitations. Their spectral sup-
port is 0 < |ω| < εq̃ for ph and εq̃ < |ω| � max(2εk ) = 3J at
|q| � 1 for pp, where q̃ = q + kD refers to the wave vector
with respect to the location of the Dirac cone.

A typical spectrum Imχ (q, ω) is shown in Fig. 2 at small,
albeit finite q. For the remainder of this paper, we label the
discrete momenta of the BZ of the finite 2D lattice in terms
of integer doublets p = [p1, p2], with respect to the recipro-
cal lattice vectors, i.e., q = 2π

∑
i=1,2 Gi pi/L. The inset of
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Fig. 2 depicts a blowup of the low-ω region separating the
spectrum into its ph and pp contributions. While the imaginary
broadening in this plot is chosen such that finite-size oscilla-
tions are acceptably small, the pp channel still exhibits some
weight below its cutoff at εq̃ � 0.208J . This will vanish for
vanishing imaginary broadening, however, at the expense of
larger finite-size oscillations. For the ph channel, the spectral
weight in this energy range is related to the Fermi sea of the
complex fermions. Due to the Dirac cone, the Fermi volume
shrinks to zero in the Kitaev model as T → 0, i.e., occupied
states only stem from a small patch with εk � T around the
Dirac cone. Therefore the weight of the ph channel decreases
rapidly to zero as T → 0. In this regime and for small q,
because of the linear fermion dispersion close to the cones,
only a narrow strip of order ω ∈ [max(0, εq̃ − 2T ), εq̃] from
the spectral support dominates the ph continuum. At the upper
edge of its support the ph DOS is singular. The inset of Fig. 2
is consistent with this, considering the finite system size and
imaginary broadening.

Regarding the pp channel, the complete two-particle con-
tinuum is unoccupied and available for excited states as T →
0. This leads to the broad spectral hump seen in Fig. 2, which
extends out to max(2εk ) = 3J and is two orders of magnitude
larger than the ph process at this temperature.

A fingerprint of potentially diffusive relaxation of den-
sity modes at finite momentum q is the near-linear behavior
of Imχ (q, ω) ∼ χq ω/(Dq2) at small ω. Definitely, neither
should this be expected, nor is it observed in Fig. 2, since for
T � T � the density dynamics is set by coherent two-particle
excitations of the Dirac fermions in the homogeneous gauge
configuration.

B. Random gauge: T � T �

Now we turn to temperatures above the flux proliferation,
i.e., T � T �, using random gauge configurations. To begin,
we first describe the impact of the random gauge by contrast-
ing the dynamic density susceptibilities against each other
with and without the random gauge, for otherwise identical
system parameters and for two different temperatures, T/J =
0.1 and 0.5, in Figs. 3(a) and 3(c), and Figs. 3(b) and 3(d),
respectively. Note, that while the linear system size is smaller
by a factor of 5 with respect to Fig. 2, the wave vector has
also been rescaled accordingly. Therefore Figs. 2 and 3 can
be compared directly. Obviously, in the homogeneous gauge,
significant degeneracies on a 60 × 60 lattice exist, which lead
to rather large discretization effects [e.g., Fig. 3(a)]. Therefore
spectra for the homogeneous gauge in Fig. 3 are displayed
employing an imaginary broadening O(10) times larger than
for the random gauge configuration, where averaging leads
to almost “self-smoothed” spectra. We note that for the ran-
dom gauge, 60 × 60 lattices imply diagonalizations of dense
7200 × 7200 matrices, which is still just within acceptable
reach of standard libraries.

Several features can be observed. First, while the ph chan-
nel in the uniform gauge definitely displays the singular
behavior at ω = εq̃, mentioned earlier and clearly visible be-
cause of the higher temperatures, in the random gauge case,
it displays just a smooth peak. Second, as can be read off the
y axis, the weight of the ph channel strongly increases with

FIG. 3. Spectrum, Imχ (q, ω), of the energy-density susceptibil-
ity vs ω at fixed small q set by p, contrasting the homogeneous gauge
[(a) and (b), blue] with the random (rnd) gauge [(c) and (d), black] for
two temperatures, T = 0.1J [(a) and (c)] and T = 0.5J [(b) and (d)].
For the random gauge, the ph (green), and pp spectra (red) are also
displayed. All system sizes are L2 = 60 × 60. The vertical gray line
in (c) and (d) shows the upper ph-continuum bound at q. Imaginary
broadening in the homogeneous gauge [(a) and (b)] is chosen to leave
singular behavior of the ph-continuum visible.

increasing T . For the temperatures depicted, the pp channel
is much less T dependent. Third, the ph and pp contributions
to Imχ (q, ω) not only can be separated in the uniform gauge
configuration by virtue of Eqs. (6) but also can be separated
in the random gauge configuration, i.e., Eq. (9) can be decom-
posed into addends with εσ ερ ≷ 0. This evidences that in the
latter case, the ph spectrum changes completely. As is obvious
from Figs. 3(c) and 3(d), the ph channel spreads into a broad
feature, extending over roughly the entire one-particle energy
range. The pp channel, on the other hand, seems less affected
by the random gauge, with a shape qualitatively similar to that
in the homogeneous gauge. This can be read off by comparing,
e.g., Figs. 3(a) and 3(c).

Most remarkably, for intermediate temperatures, as in
Fig. 3(d) at T = 0.5J , the overall shape of the spectrum is
very reminiscent of a diffusion-pole behavior at fixed momen-
tum, i.e., Imχ (q, ω) ∝ ω�/(ω2 + �2), with some relaxation
rate �.

1. Hydrodynamic description

To put the preceding findings into perspective, we proceed
and analyze χ (q, ω) in terms of the hydrodynamic expression
(10). To this end, we first extract the static susceptibility χq,
performing the sum rule of Eq. (11) via numerical integration,
using Imχ (q, ω) from random gauge configuration averages.
Typical results are shown in Fig. 4, comprising a complete
irreducible q wedge of the BZ for L2 = 30 × 30 and selected
momenta for L2 = 60 × 60. As is obvious, the finite-size
effects are small. Since energy conservation renders the dy-
namical density response singular at q = 0, this momentum
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FIG. 4. Static susceptibility χq vs momentum in the random
gauge configuration on a complete irreducible wedge of BZ at L2 =
30 × 30 (small solid dots) for three temperatures T/J = 0.1, 0.5, and
0.9 (black, orange, and blue). Big solid red dots show the results on
L2 = 60 × 60 at selected q also ∈ 30 × 30 BZ.

will be excluded hereafter. The main message of this figure is
that χq is a smooth and featureless function.

Next, we consider the global variation with momentum
of the spectrum of the normalized dynamical energy-density
susceptibility [Figs. 5(a) and 5(b)] and that of the diffusion
kernel [Figs. 5(c) and 5(d)], versus ω. Two temperatures, i.e.,
T/J = 0.1 and 0.5, are chosen in Figs. 5(a) and 5(c), and
Figs. 5(b) and 5(d), respectively. Since our focus is on the hy-
drodynamic regime, we consider five small momenta qi=1···5.
These momenta are indicated on a fraction of an irreducible
wedge of the BZ in Fig. 5(b). Their integer doublets are listed
in Fig. 5(d). A spacing of mod(2) of the momenta has been
chosen to allow for later analysis of finite-size effects in com-
parison to systems with a linear dimension that is smaller by a
factor of 2; see Appendix A. While Fig. 5 covers temperatures

FIG. 5. Imaginary part of the normalized density susceptibility
χ̄ (q, ω) [(a) and (b)] and real part of diffusion kernel ReD(q, ω)
[(c) and (d)] in the random gauge, at two temperatures, T/J = 0.1
[(a) and (c)] and T/J = 0.5 [(b) and (d)], vs ω, for five momenta
qi=1···5, set by pi, and displayed on part of the BZ wedge. System
size is L2 = 60 × 60. In (c) and (d), ω � 0.005J; see Sec. IV B 1.

up to intermediate values of T = 0.5J , we find that above this
range, the quantities depicted acquire only little additional
change, as compared with T = 0.5T . For completeness, we
present such results in Appendix B.

There is a clear difference between the spectra of χ̄ (q, ω)
at low and intermediate temperatures, i.e., Figs. 5(a) and
5(b). Both display a broadening of their intensity representing
the ph channel and an increase in weight within the range
of the pp excitations as |q| increases. However, the relative
dominance of these two effects is reversed as the temperature
increases from 0.1 to 0.5J . This is a direct consequence of
the rapid increase in the Fermi volume as T increases.

The real part of the corresponding diffusion kernel
D(q, ω), is depicted in Figs. 5(c) and 5(d). Clearly, at low
T , i.e., Fig. 5(c), the diffusion kernel displays significant
variation with q. This implies that density modes at fixed q
do not relax in proportion to q2 only, and therefore a simple
hydrodynamic picture is not applicable. That is, q2 scaling,
as defined in Sec. III C, does not hold. In contrast to that, at
intermediate T , i.e., Fig. 5(d), the diffusion kernel is almost
momentum independent, i.e., ReD(|q| � 1, ω) � ReD(ω). In
fact, while q2 differs by a factor of 9 between, e.g., p1 and p3,
ReD(q, ω) differs by only ∼20% between the two momenta.
This is approximately consistent with Fick’s law regarding
q scaling. This property persists above this temperature, as
shown in Appendix B.

Regarding the energy, however, the diffusion kernel re-
mains retarded, i.e., D(q, ω) is not constant versus ω.
Speaking differently, any density mode at a given momentum
q will not decay with a plain exponential in time. First, as
ω/J → 0, the diffusion kernel exhibits a very narrow dip, i.e.,
a reduction in its amplitude for ω/J � 0.1. As ω/J → 0, the
numerical accuracy of the transform equation (12), compris-
ing small numbers in the numerator and denominator, is an
issue with respect to system size and imaginary broadening.
Therefore we have to remain with ω � ωmin = 0.005J for the
diffusion kernel, as indicated in the caption of Fig. 5. See also
the discussion of Fig. 8 in Appendix A. In view of the steep
slope in this regime, the limiting value of ReD(|q| � 1, ω =
0) on our finite systems is an open issue. Suggesting a singu-
larly vanishing diffusion kernel at ω = 0 from Figs. 5(c) and
5(d) may be tempting; however, this would imply an insulator
regarding energy transport. Interestingly, exactly the latter
question has already been considered in the literature [63],
where extensive finite-size analysis of a similar low-ω struc-
ture has proven that the energy conductivity remains finite. In
turn, in the thermodynamic limit of ReD(|q| � 1, ω = 0) it
will remain finite and likely of the order of the low-energy
peak height. To substantiate this claim, we will relate our
findings to those of the known energy conductivity in Sec. IV
B 2.

The remaining energy dependence, once again, relates to
the two relaxation channels, i.e., a broad peak from ph excita-
tions followed by a flat shoulder from pp excitations. On top
of this flat shoulder, and at the upper part of its energy range,
some additional “wiggles” can be observed, which are also
visible in χ̄ (q, ω), yet less pronounced. These wiggles are no
numerical artifact or finite-size effect. They stem from known
modulations of the density of states rooted in the scattering
of the fermions from the potentials of the excited static fluxes
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[61,71]. For ω/J � 2.8, the spectral support terminates, and
the diffusion kernel turns purely imaginary ∝ ω−1. The re-
duction of the bandwidth to less than 3J is an effect of the
gauge fluctuations.

In conclusion, at not-too-low temperatures and not-too-
short time scales, random gauge configurations in the Kitaev
magnet lead to an energy-density dynamics, very similar to
conventional diffusion, regarding its momentum scaling, with,
however, some retardation remaining. This should be con-
trasted with the underlying spin model being a translationally
invariant system.

2. Current correlation function

In the limit of q → 0 one may ask whether the dynamical
energy-density diffusion kernel is connected to the dynamical
energy-current correlation function via a generalized Einstein
relation. The zero-momentum current correlation function has
been considered in Ref. [63]. For the sake of completeness,
we now clarify how to relate the latter quantity to the present
work. This serves two purposes. First, it shows that a re-
markable consistency exists between the present work and
other calculations of a different correlation function. Second,
it provides additional insight into the dip at very low ω of
the diffusion kernel. From Mori-Zwanzig’s projection method
[73] we have

1

ω
[χq − χ (q, ω)] = 1

ω − M(q, ω) 1
χq

χq, (13)

where M(q, ω) = 〈Lhq|(ω − QL)−1QLhq〉 is the memory
function. L is the Liouville operator LA = [H, A], and
〈A|B〉 = ∫ β

0 〈A+(λ)B〉dλ − β〈A+〉〈B〉 is Mori’s scalar product,
where A(λ) = eλH Ae−λH = eλLA and β = 1/T is the inverse
temperature. χq is the isothermal energy susceptibility χq =
〈hq|hq〉, and Q is a projector perpendicular to the energy
density, which is formulated using Mori’s product as Q =
1 − |hq〉χ−1

q 〈hq|. We emphasize that Eq. (13) is not a “high-
frequency,” or “slow-mode,” approximation. It is a rigorous
statement. Due to time-reversal invariance, QLhq = Lhq [73].
Moreover, using the continuity equation in the hydrodynamic
regime, i.e., discarding the lattice structure, we have Lhq =
−q · jq, where jq is the energy current. Altogether,

iχqD(q, ω) =
∑
μν

eqμeqν

〈
jqμ

∣∣∣∣ 1

ω − QL
jqν

〉
, (14)

where eqμ are the components of the unit vector in the q
direction. While for arbitrary q the right-hand side refers
to a so-called current relaxation function with a dynamics
governed by a projected Liouville operator QL, for q →
0 one finds that limq→0〈 jqμ|(ω − QL)−1 jqν〉 = 〈 j0μ|(ω −
L)−1 j0ν〉 [73], which is the genuine current relaxation function
comprising the complete Liouvillean dynamics. This turns
Eq. (14) into an Einstein relation for q → 0. Finally, the spec-
trum of the current relaxation function can be related to that
of a standard current correlation function Cμν (t ) = 〈 j0μ(t ) j0ν〉
by the Kubo relation and the fluctuation dissipation

FIG. 6. Current correlation function C(q, ω) in the random
gauge, at two temperatures, T = 0.1J (a) and 0.5J (b), vs ω �
0.005J , for five momenta qi=1···5, identical to Fig. 5(b), set by pi.
System size is L2 = 60 × 60.

theorem

C(q, ω) = 2ω

1 − eω/T
χq ReD(q, ω), (15)

C(ω) = lim
q→0

C(q, ω). (16)

Here, we have discarded questions of anisotropy. While the
focus of this paper is on q �= 0, it is now very tempting to
evaluate the left-hand side of Eq. (15) using, e.g., the two
temperatures of Figs. 5(c) and 5(d) and to consider its evo-
lution with the momenta displayed therein. This is shown
in Fig. 6. This figure should be compared with Figs. 5(b)
and 5(d) of Ref. [63]. For this, and because of a different
energy unit and normalization of spectral densities in the latter
reference, T has to rescaled by 4, and the y axis has to be
rescaled by 43/π . While the rescaled temperatures T = 0.025
and 0.525 of Ref. [63] are not completely identical to the ones
we use, it is very satisfying to realize that the limit q → 0 of
Eq. (16), which can be anticipated from Figs. 6(a) and 6(b), is
completely in line with Figs. 5(b) and 5(d) of Ref. [63]. This
includes the dip at very low ω. This is even more remarkable
in view of the numerical representation and treatment of the
Majorana fermions used in this paper and in Ref. [63] being
decisively different.

Apart from these considerations being a consistency check
on the present work, we can now rely on the extensive finite-
size analysis performed in Ref. [63] to suggest that in the
thermodynamic limit the narrow dip will eventually leave
ReD(|q| � 1, ω = 0) finite and of the order of the low-energy
peak height.

3. Temperature dependence

Turning to the temperature dependence of the diffusion
kernel, we consider two representative momenta q and several
energies. The corresponding diffusion kernel ReD(q, ω) and
the static susceptibility χq are shown versus T in Figs. 7(a)
and 7(b) and Figs. 7(c) and 7(d), respectively. The temperature
range has been restricted to T � 0.25J . The latter is motivated
by the discussion of Figs. 5(c) and 5(d). There we showed that
while for T = 0.1J � T � the gauge is clearly in its random
configuration, the Fermi volume is not yet large enough to
allow for a diffusion process with hydrodynamic q2 scaling.
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FIG. 7. Real part of the diffusion kernel ReD(q, ω, T ) [(a) and
(b)], for four energies ω/J = 0.1 · · · 1.0, and static susceptibility
χq(T ) [(c) and (d)], in the random gauge vs T , for two momenta,
set by p = [6, 0] [(a) and (c)] and [1,0] [(b) and (d)]. System size is
L2 = 30 × 30.

At T = 0.5J , however, we observe approximate q2 scaling.
Therefore we start the analysis at a temperature roughly in be-
tween. Figures 7(a) and 7(b) clearly demonstrate, that for T �
0.5J , the diffusion kernel rapidly settles onto some almost
constant value, set by energy and momentum. This can also
be seen by comparing Fig. 5(d) with Fig. 9(b) in Appendix B.
These figures evidence only weak overall change between the
diffusion kernels for intermediate and elevated temperatures.
As a consequence, the global T dependence of χ (q, ω) for
T � 0.5J is essentially set by the static energy susceptibility.
As Figs. 7(c) and 7(d) show, the latter exhibits a maximum
roughly at the start of this temperature range. For T/J � 1,
χq approaches its high-temperature classical limit, decaying
∝ T −1, which can also be read off from the high-temperature
expansion of the Fermi functions of Eqs. (11) and (9). Such
behavior is typical also for other static susceptibilities of spin
systems at high temperatures.

V. DISCUSSION

To recapitulate, we have studied the energy dynamics of
the Kitaev model on a honeycomb lattice. Exchange frustra-
tion [see Fig. 1 and Eq. (1)] induces a fractionalization of
spin operators into a Z2 gauge field and itinerant Majorana
fermions [Eq. (2)]. This leads to a very interesting energy
dynamics with three distinct temperature regimes. At very low
temperatures T � T ∗, the gauge field is frozen into a homo-

geneous configuration, and therefore the itinerant fermions
transfer energy in a uniform medium, in a ballistic way. At
somewhat higher, yet still rather low temperatures, in a range
of approximately T ∗ � T/J � 0.1, the thermal population
of random gauge field configurations forces the fermions to
move in a disordered environment, despite the fact that the
model in the spin representation is translationally invariant.
The energy dynamics in this regime ceases to be ballistic but
is also not diffusive. This is manifest through, for example,
the strong q dependence of the diffusion kernel [Fig. 5(c)].
We attribute this behavior to the restricted phase space at the
bottom of the Dirac cone, distorted by gauge flips. Finally,
starting at intermediate temperatures, T � 0.5J , which is still
well below the high-temperature classical limit, T � J , the
relaxation of the energy density in Kitaev magnets at finite
momentum is remarkably similar to diffusion in random me-
dia, with, however, a clearly notable difference. On the one
hand, the relaxation practically displays a hydrodynamic q2

scaling, with a diffusion kernel that is almost momentum
independent. On the other hand, the diffusion kernel is not
completely frequency independent, i.e., it displays some retar-
dation within its support. The origin of the latter can be traced
back to the presence of two distinct relaxation channels for the
energy density, comprising particle-hole and particle-particle
excitations of the Dirac fermions. Their combination does not
lead to a constant diffusion rate of the energy versus frequency
at fixed momentum. The physical significance of this is that
any density mode at given momentum q will not decay with a
plain exponential in time.

Another interesting observation arises at extremely low
energies, ω/J → 0, in Fig. 5, where we observe a depletion
of the diffusion kernel in a very narrow ω range. This is
consistent with a similar behavior of the dynamical thermal
conductivity [62,63,70], to which we find that our results
connect consistently via generalized Einstein relations. This
low-frequency dip at D(q, ω) is one more indication of the
reduction in energy transport by the fermions due to the ther-
mally induced disorder caused by the gauge field fluctuations.
Interpreting the low-energy dip as one contribution to the
retardation, it implies a slowing down of the density relaxation
at long times scales.

From a more general perspective, the very details described
in this paper are certainly specific to the Kitaev model, in-
cluding the particular gauge field with no dynamics and an
exponentially large number of conserved flux configurations.
While this also relates to the integrability of the model, the
main point rather is that the majority of gauge sectors break
translational invariance. The latter is not specific to the Kitaev
model only, and connects to the broader physics of internal
“randomness,” self-localization, and questions of ergodicity,
induced by superselection sectors in a priori translationally
invariant models of gauge theories, which is of current interest
in various other systems [65–67] and in the context many-
body localization [68].

Future analysis, focusing not only on the hydrodynamic
regime but also on wave vectors close to the high-symmetry
points of the Brillouin zone, could further improve un-
derstanding of the energy dynamics in such spin liquids.
In particular, studying the real-space dependence, instead
of the momentum-space dependence, of the energy-density
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FIG. 8. Relative (a) and absolute (b) difference, �(q, ω) and
�(q, ω), respectively, of the real part of the diffusion kernel at T =
0.5J , between a L2 = 30 × 30 and a L2 = 60 × 60 system, in the
random gauge, vs ω � 0.005J , at five momenta qi=1···5, displayed on
parts of the respective BZ wedge and set by pi(2pi) for L2 = 30 × 30
(60 × 60).

relaxation could be interesting in order to predict finite-
temperature quench dynamics, as, e.g., in pump-probe exper-
iments.
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APPENDIX A: NUMERICAL ACCURACY

Here, we provide some rough measure of the numeri-
cal errors from the random realizations, finite-size effects,
and sum-rule transforms involved in our calculations. To
this end, we consider both the absolute and the rela-
tive difference between the real parts of the diffusion
kernels, �(q, ω) = |Re[D30×30(q, ω) − D60×60(q, ω)]| and
�(q, ω) = 2�(q, ω)/|Re[D30×30(q, ω) + D60×60(q, ω)]|, on
N = 30 × 30-site and N = 60 × 60-site systems, respec-
tively, for identical wave vectors.

Regarding the wave vectors, this requires a factor of 2 dif-
ference between their integer representations p in terms of the

FIG. 9. Imaginary part of the normalized density susceptibility
χ̄ (q, ω) (a) and real part of diffusion kernel ReD(q, ω) (b) in the
random gauge, at an elevated temperature T = 0.9J , vs ω, for five
momenta qi=1···5 shown in Fig. 5(b) and set by pi. System size is
L2 = 60 × 60. In (b), ω � 0.005J; see Sec. IV B 1.

reciprocal lattice vectors G1,2. This divisibility by 2 has been
taken into account in our calculations on N = 60 × 60-site
systems, as can be seen in the caption of Figs. 5(b) and 5(d).

�(q, ω) and �(q, ω) are shown in Figs. 8(a) and 8(b).
They display very low statistical noise from the finite num-
ber of 200 random gauge realizations employed throughout
this paper, justifying the use of this number. The increase in
�(q, ω) at the upper edge of the spectrum is due only to its
definition, comprising a division by a very small number in
this regime.

Except for very small ω and the aforementioned upper
spectral edge, the relative finite-size errors, �(q, ω), are less
than ∼6%. As is to be expected, this error is largest for the
smallest wave vector and is actually even less than ∼3% for
all remaining wave vectors.

Finally, for ω � 0.01, where �(q, ω) is O(10%), the error
is not of finite size, or statistical origin, but stems from the
systematic numerical inaccuracies, mentioned in Sec. IV B 1,
and is generated by the denominator in Eq. (12) with χ (q, ω)
obtained from Eq. (9) as ω → 0. In turn, D(q, ω) at very low
ω � 0.01 may be inaccurate by ∼10%. This explains why we
have remained with ω � 0.005J in figures displaying results
related to the diffusion kernel versus ω.

APPENDIX B: ELEVATED TEMPERATURE, T > 0.5J

For the sake of completeness, in this Appendix, i.e., in
Fig. 9, we show additional results for the normalized dynam-
ical susceptibility and the diffusion kernel, similar to Fig. 5,
at a rather elevated temperature T = 0.9J , which, however,
is still well below the high-temperature classical limit, as
discussed with respect to Fig. 7. As is obvious, there is neither
a qualitative nor a significant quantitative difference between
results at T = 0.5J [Figs. 5(b) and 5(d)] and results at T =
0.9J [Figs. 9(a) and 9(b)]. This is completely consistent with
the discussion of Fig. 7, where it was shown that above T �
0.5J the temperature dependence is essentially encapsulated
in χq.
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