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A coupled spin-electron model on a decorated square lattice formed by interconnected trigonal bipyramids is
exactly solved by imposing two mobile electrons per each triangular plaquette with the help of a generalized
decoration-iteration transformation, which establishes a precise mapping correspondence with the effective
Ising model on a square lattice with temperature-dependent interaction. The investigated spin-electron model
exhibits two different macroscopically degenerate ground states. The residual entropy of the first ground state,
which shows a spontaneous ferromagnetic or ferrimagnetic long-range order depending on character of the
exchange coupling, arises from chiral degrees of freedom of the mobile electrons. In contrast, the second ground
state is disordered due to a kinetically driven frustration of the localized Ising spins triggered by the hopping
term of the mobile electrons. The outstanding reentrant phase transitions connected with temperature induced
formation of the spontaneous ferromagnetic or ferrimagnetic order can be found if the spin-electron model is
driven sufficiently close to the ground-state phase boundary, but the disordered frustrated phase is the respective
ground state. It is verified that the bipartite fermionic entanglement between two mobile electrons within the
spontaneously ordered ferromagnetic or ferrimagnetic phase predominantly comes from their charge degrees
of freedom, while the one within the disordered frustrated phase comes from both charge and spin degrees of
freedom of these particles.
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I. INTRODUCTION

Quantum entanglement currently attracts a renewed in-
terest, because it is considered as primary resource for a
development of novel quantum technologies, quantum com-
puters, and quantum information science [1]. However, the
most limiting obstacle preventing progress in this cutting-
edge research field is a lack of suitable physical realization
of a quantum computer, which would serve as a hardware
for performing computational tasks with the help of effi-
cient quantum algorithms [2,3]. Although there are a lot of
promising candidates for a physical realization of quantum
computers such as photonic qubits [4], ionic traps [5], super-
conducting circuits [6], nuclear spins [7], topological qubits
[8], and quantum dots [9], none of these physical systems
still satisfy all DiVincenzo criteria such as scalability, easy
initialization, accurate quantum gate operation, low quantum
decoherence, and reliable readout [10,11].

It should be pointed out, moreover, that the most efficient
quantum algorithms cannot be realized without implementa-
tion of quantum-mechanically entangled qubits [3]. Electron
spin systems afford another promising and tunable platform
for a physical realization of entangled qubits with regard to
a two-level character of the electron spin [12]. A loss of
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quantum information due to a quantum decoherence is, how-
ever, the most principal limiting factor for exploitation of the
electron spin systems for quantum computation [13]. From
this point of view, it appears worthwhile to investigate how
robust is the quantum entanglement of electron spin systems
with respect to rising temperature and magnetic field. While
the robustness of bipartite entanglement of quantum spin
systems is well understood nowadays, the fermionic entan-
glement of correlated electron systems is still far from being
fully understood yet [14].

The complexity of strongly correlated electron systems
usually prohibits their rigorous solution and hence, one should
resort to some numerical or approximate analytical treat-
ment [15]. From this perspective, exact results for coupled
spin-electron systems are very rare and highly desirable, be-
cause they allow comprehensive analysis of the fermionic
entanglement without any artifact stemming from some ap-
proximation. If a quantum-mechanical hopping of the mobile
electrons is restricted to a few lattice sites and they are
merely coupled indirectly through the exchange interaction
with localized Ising spins, then one may adapt the concept
of generalized mapping transformations in order to derive the
relevant exact solutions [16–19]. As a matter of fact, this
concept has been recently adapted for an exact investigation
of a coupled spin-electron diamond chain [20–26], two-leg
ladder [27–30], trimerized chain [31–33], double-tetrahedral
chain [34–39], or doubly decorated square lattice [40–50].
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In the present paper we will propose and exactly solve
a coupled spin-electron model on a decorated square lattice
composed by interconnected trigonal bipyramids, which con-
tain two mobile electrons within each triangular plaquette.
Our main goal is to examine a mutual interplay between a
possible spontaneous long-range order and a fermionic en-
tanglement [51,52]. Although the quantity concurrence has
been originally suggested as a suitable measure of the bi-
partite entanglement only for two-qubit systems [53,54], it
was recently recognized that the concept of fermionic con-
currence can be elaborated much more generally in restricted
Hilbert subspaces. The fermionic concurrences calculated in
this way may thus additionally provide a partial information
on a mutual interplay/competition of the charge and spin
entanglement [55,56]. Another intriguing issue is whether the
charge and spin entanglement compete with a spontaneous
magnetic long-range order or they may concurrently occur
together with a spontaneous magnetic ordering.

Besides the purely academic interest, our theoretical
investigation of a coupled spin-electron model on a dec-
orated square lattice formed by interconnected trigonal
bipyramids is motivated by the copper-based magnetic
compound Cu3Mo2O9, which represents the experimental
realization of the analogous one-dimensional (1D) double-
tetrahedral spin chain [57–59]. Moreover, there exist a few
higher-dimensional geometrically frustrated magnetic com-
pounds such as cobaltates RBaCo4O7 (R is a rare-earth ion)
[60] and anion-radical salts (MDABCO+)(C•−

60 ) (MDABCO+

labels N-methyldiazabicyclooctanium cation and C•−
60 is

radical anion) [61], in which one can clearly identify inter-
connected trigonal bipyramidal units. Although the latter two
magnetic compounds do not represent a precise experimental
realization of the magnetic structure proposed in the present
paper, we hope that a targeted design of the magnetic material
with a magnetic structure consisting of interconnected trig-
onal bipyramids is feasible. The targeted chemical synthesis
involving highly anisotropic spin carriers such Dy3+ or Co2+

magnetic ions and anion-radical salts could possibly afford
desired coupled spin-electron system composed of the local-
ized Ising spins and mobile electrons, whereby the findings
presented in this paper could serve as a strong motivation for
achieving this goal.

The outline of the paper is as follows. In Sec. II we
will describe in detail the investigated spin-electron model
on a decorated square lattice composed from interconnected
trigonal bipyramids and then, the most important steps of an
exact mapping method will be clarified. In Sec. III we will dis-
cuss the most interesting results for the ground state, critical
behavior and temperature dependencies of basic thermody-
namic quantities (magnetization, entropy, specific heat). The
section also includes a detailed discussion about the fermionic
entanglement and its three contributions: charge, zero-spin,
and single spin concurrences. Finally, the paper ends up with
a brief summary of the most interesting findings in Sec. IV.

II. MODEL AND ITS EXACT SOLUTION

Let us consider a coupled spin-electron model on a
decorated square lattice formed by corner-sharing trigonal
bipyramids, which involves the localized Ising spins at nodal

FIG. 1. A schematic representation of the coupled spin-electron
model on a decorated square lattice composed of interconnected
trigonal bipyramids. Empty (white) circles show nodal lattice sites
occupied by the localized Ising spins μ = 1/2, while filled (blue)
circles denote decorating lattice sites available for mobile electrons.
Solid (blue) lines illustrate hopping paths t of the mobile electrons,
while dashed (black) lines show the Ising-type interaction J between
the nodal Ising spins and the mobile electrons from their nearest
decorating sites.

sites of a square lattice and two mobile electrons delocalized
over each decorating triangular plaquette oriented perpendicu-
larly to unit axes of a square lattice (see Fig. 1 for a schematic
illustration). Our attention will be focused on a special case,
which assumes that a quantum-mechanical hopping of the
mobile electrons is restricted to a given decorating triangular
plaquette. In other words, the electron passing between dif-
ferent trigonal bipyramids is forbidden. If the total number
of nodal lattice sites is denoted as N , then the total number
of trigonal bipyramidal units is exactly double, Nu = 2N ,
once periodic boundary conditions are imposed both in hor-
izontal as well as vertical directions in the thermodynamic
limit N → ∞. The total Hamiltonian of the considered spin-
electron model can be accordingly expressed as a sum of cell
Hamiltonians Ĥ j :

Ĥ =
Nu∑
j=1

Ĥ j, (1)

whereas the cell Hamiltonian Ĥ j contains all interaction terms
inherent to the jth trigonal bipyramid:

Ĥ j = −t
∑

σ∈{↑,↓}

3∑
k=1

(ĉ†
j,k,σ

ĉ j,k+1,σ + H.c.)

−J

2

3∑
k=1

(n̂ j,k,↑ − n̂ j,k,↓)
(
μ̂z

j + μ̂z
j+1

)

+U
3∑

k=1

n̂ j,k,↑n̂ j,k,↓. (2)

In above, ĉ†
j,k,σ

(ĉ j,k,σ ) represents fermionic creation (an-
nihilation) operator for mobile electrons with the spin
σ ∈ {↑,↓} (↑ labels the spin state 1/2, while ↓ labels the spin
state −1/2) at the kth site of the jth triangular bipyramid,
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n̂ j,k,σ = ĉ†
j,k,σ

ĉ j,k,σ is the fermion number operator, and μ̂z
j

is the z component of the spin-1/2 operator corresponding
to the Ising spin placed at the jth nodal lattice site. The pa-
rameter t > 0 takes into account the kinetic energy of mobile
electrons performing a quantum-mechanical hopping within
an individual triangular plaquette, J > 0 (J < 0) stands for
the ferromagnetic (antiferromagnetic) Ising-type interaction
between the Ising spins and its nearest-neighbor electrons,
and U > 0 is the on-site Coulomb repulsion between two
electrons occupying the same lattice site of a decorated tri-
angular plaquette. Finally, the periodic boundary conditions
ĉ†

j,4,σ ≡ ĉ†
j,1,σ (ĉ j,4,σ ≡ ĉ j,1,σ ) and μ̂z

Nu+1 ≡ μ̂z
1 are assumed

for the sake of simplicity of further calculations.

A. Energy spectrum of the cell Hamiltonian

The specific form of the cell Hamiltonian Ĥ j clearly
indicates its invariance against the translation of the nodal lat-
tice sites μ̂z

j → μ̂z
j′ ( j 	= j′). Moreover, the operators n̂ j,σ =∑3

k=1 n̂ j,k,σ and Ŝz
j =∑3

k=1 Ŝz
j,k =∑3

k=1(n̂ j,k,↑ − n̂ j,k,↓)/2
emergent in Eq. (2), which correspond to the total number
of mobile electrons with the spin σ and z component of
the total spin per triangular plaquette, represent conserved
quantities with well-defined quantum numbers nj,σ =
{0, 1, 2} and Sz

j = {−1, 0, 1}, respectively. These facts imply
validity of the following commutation relations:

[Ĥ j, Ĥ j′ ] = 0, [Ĥ j, n̂ j,σ ] = 0, [Ĥ j, Ŝz
j] = 0. (3)

The first commutation relation indicates that it is sufficient
to find a full energy spectrum of the cell Hamiltonian (2) in
order to treat exactly the coupled spin-electron model, because
the relevant eigenstates can be simply extended to the whole
system. The exact calculation can be performed in the two-
site Hilbert subspace corresponding to the triangular plaquette
from the jth unit cell, which can be divided into three disjoint
(orthogonal) subspaces with the fixed eigenvalues Sz

j of the z

component of the total spin operator Ŝz
j due to the validity of

the third commutation relation in Eq. (3):

H = HSz
j=−1 ⊕ HSz

j=0 ⊕ HSz
j=1, (4)

where

HSz
j=−1 = {c†

j,1,↓c†
j,2,↓|0〉, c†

j,2,↓c†
j,3,↓|0〉, c†

j,3,↓c†
j,1,↓|0〉},

HSz
j=0 = {c†

j,1,↑c†
j,1,↓|0〉, c†

j,2,↑c†
j,2,↓|0〉, c†

j,3,↑c†
j,3,↓|0〉,

c†
j,1,↑c†

j,2,↓|0〉, c†
j,2,↑c†

j,3,↓|0〉, c†
j,3,↑c†

j,1,↓|0〉,
c†

j,1,↓c†
j,2,↑|0〉, c†

j,2,↓c†
j,3,↑|0〉, c†

j,3,↓c†
j,1,↑|0〉},

HSz
j=1 = {c†

j,1,↑c†
j,2,↑|0〉, c†

j,2,↑c†
j,3,↑|0〉, c†

j,3,↑c†
j,1,↑|0〉}.

In the present notation, |0〉 labels the vacuum state. Con-
sequently, searching for an energy spectrum of the unit
Hamiltonian (2) can also be split into three independent calcu-
lations of the eigenvalues for two 3 × 3 and one 9 × 9 block
matrices corresponding to the triangular plaquette with the
z component of the total spin Sz

j = ∓1 and Sz
j = 0, respec-

tively. The diagonalization of the respective matrices results
to the following unified analytical expression for the energy
spectrum (the set of 10 different eigenvalues) of the unit

Hamiltonian (2):

El, j = −JSz
j (μ

z
j + μz

j+1) + El, j (l = 1, 2, . . . , 10). (5)

In above, El, j denotes the respective eigenvalue of the electron
triangle in the jth bipyramidal unit (see the third column of
Table I). The obtained energy spectrum (5) can be immedi-
ately employed for a comprehensive ground-state analysis as
well as a rigorous evaluation of the partition function of the
studied model.

B. Partition function

Taken into account the commutation relation between
different unit Hamiltonians listed in Eq. (3), the partition
function Z of the considered 2D spin-electron model can be
partially factorized and expressed in terms of eigenenergies of
the unit Hamiltonian (2):

Z =
∑
{μ j}

Nu∏
j=1

Tr j e−βĤ j =
∑
{μ j}

Nu∏
j=1

10∑
l=1

gl e−βEl, j . (6)

In above, β = 1/(kBT ), kB is the Boltzmann’s constant, T
is the absolute temperature of the system, the symbol

∑
{μ j}

denotes the summation over all possible spin states of the
nodal Ising spins, the product symbol

∏Nu
j=1 runs over all

bipyramidal units, and Tr j stands for the trace over all possible
degrees of freedom of two mobile electrons delocalized over
the jth triangular cluster of the appropriate bipyramidal unit.
Finally, the summation symbol

∑10
l=1 counts all eigenenergies

of the unit Hamiltonian (2) given by Eq. (5), whereas gl

denotes the degeneracy of a given energy level El, j . After
performing the summation

∑10
l=1, one obtains the effective

Boltzmann’s weight w(μz
j, μ

z
j+1), whose explicit form gives

the opportunity to use the generalized decoration-iteration
mapping transformation [16–19]:

w(μz
j, μ

z
j+1) =

10∑
l=1

gl e−βEl, j = 2eβt + e−2βt

+ 2(2eβt + e−2βt ) cosh
[
βJ
(
μz

j + μz
j+1

)]
+ 4e−β(t+U )/2 cosh

[
β

2

√
(U − t )2 + 8t2

]

+ 2eβ(2t−U )/2 cosh

[
β

2

√
(U + 2t )2 + 32t2

]

= AeβJeff μ
z
jμ

z
j+1 . (7)

An essence of the used algebraic mapping method lies in
substituting all degrees of freedom of the mobile electrons
by a novel effective Ising-type coupling Jeff between remain-
ing nodal Ising spins. The mapping parameters A and Jeff

emerging in the last line of Eq. (7) are determined by “self-
consistency” of the used decoration-iteration transformation:

A = √
w0w1, Jeff = 2kBT ln

(w1

w0

)
. (8)

In above, w0 = w(±1/2,∓1/2) and w1 = w(±1/2,±1/2).
After substituting Eq. (7) into Eq. (6) one may obtain

the rigorous relation between the partition function Z of the
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TABLE I. The set of 10 different energy eigenvalues El, j of a triangular plaquette from the jth bipyramidal unit corresponding to the cell
Hamiltonian (2), the corresponding degeneracy gl and the eigenvector |φl〉 j (|φL,R

l 〉 j). The superscripts L and R in the eigenvectors |φL,R
2 〉 j ,

|φL,R
4 〉 j , |φL,R

10 〉 j label the left- and right-hand side chiral degrees of freedom of the electron pair at the jth triangular cluster, respectively. The

mixing angles ϕ5−8 in the eigenvectors |φ5−8〉 j are defined through the relations tan ϕl =
√

2
4t (U − El, j ) for l = 5, 6 and tan ϕl =

√
2

2t (U − El, j )
for l = 7, 8.

l Sz
j El, j gl Eigenvector

1 −1 2t 1 |φ1〉 j = 1√
3
(c†

j,1,↓c†
j,2,↓ + c†

j,2,↓c†
j,3,↓ + c†

j,3,↓c†
j,1,↓)|0〉

2 −t 2 |φL,R
2 〉 j =

{
1√
3
(c†

j,1,↓c†
j,2,↓ + e2π i/3c†

j,2,↓c†
j,3,↓ + e4π i/3c†

j,3,↓c†
j,1,↓)|0〉

1√
3
(c†

j,1,↓c†
j,2,↓ + e4π i/3c†

j,2,↓c†
j,3,↓ + e2π i/3c†

j,3,↓c†
j,1,↓)|0〉

3 0 2t 1 |φ3〉 j = 1√
6
(c†

j,1,↑c†
j,2,↓ + c†

j,2,↑c†
j,3,↓ + c†

j,3,↑c†
j,1,↓ + c†

j,1,↓c†
j,2,↑ + c†

j,2,↓c†
j,3,↑ + c†

j,3,↓c†
j,1,↑)|0〉

4 −t 2 |φL,R
4 〉 j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
6

[
c†

j,1,↑c†
j,2,↓ + c†

j,1,↓c†
j,2,↑ + e2π i/3(c†

j,2,↑c†
j,3,↓ + c†

j,2,↓c†
j,3,↑)

+ e4π i/3(c†
j,3,↑c†

j,1,↓ + c†
j,3,↓c†

j,1,↑)
]|0〉

1√
6

[
c†

j,1,↑c†
j,2,↓ + c†

j,1,↓c†
j,2,↑ + e4π i/3(c†

j,2,↑c†
j,3,↓ + c†

j,2,↓c†
j,3,↑)

+ e2π i/3(c†
j,3,↑c†

j,1,↓ + c†
j,3,↓c†

j,1,↑)
]|0〉

5 U
2 − t + 1

2

√
(U + 2t )2 + 32t2 1 |φ5〉 j = 1√

6

[
sin ϕ5

∑3
k=1(c†

j,k,↑c†
j,k+1,↓ − c†

j,k,↓c†
j,k+1,↑) + √

2 cos ϕ5
∑3

k=1 c†
j,k,↑c†

j,k,↓
]|0〉

6 U
2 − t − 1

2

√
(U + 2t )2 + 32t2 1 |φ6〉 j = 1√

6

[
sin ϕ6

∑3
k=1(c†

j,k,↑c†
j,k+1,↓ − c†

j,k,↓c†
j,k+1,↑) + √

2 cos ϕ6
∑3

k=1 c†
j,k,↑c†

j,k,↓
]|0〉

7 U
2 + t

2 + 1
2

√
(U − t )2 + 8t2 2 |φ7〉 j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[
sin ϕ7(c†

j,1,↓c†
j,2,↑ − c†

j,1,↑c†
j,2,↓ − c†

j,3,↓c†
j,1,↑ + c†

j,3,↑c†
j,1,↓)

+√
2 cos ϕ7(c†

j,3,↑c†
j,3,↑ − c†

j,2,↑c†
j,2,↓)

]|0〉
1√
12

{
sin ϕ7

[∑2
k=1(c†

j,2k−1,↑c†
j,2k,↓ − c†

j,2k−1,↓c†
j,2k,↑) − 2(c†

j,2,↑c†
j,3,↓ − c†

j,2,↓c†
j,3,↑)

]
+√

2 cos ϕ7(2c†
j,1,↑c†

j,1,↑ − c†
j,2,↑c†

j,2,↑ − c†
j,3,↑c†

j,3,↓)
}|0〉

8 U
2 + t

2 − 1
2

√
(U − t )2 + 8t2 2 |φ8〉 j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

[
sin ϕ8(c†

j,1,↓c†
j,2,↑ − c†

j,1,↑c†
j,2,↓ − c†

j,3,↓c†
j,1,↑ + c†

j,3,↑c†
j,1,↓)

+√
2 cos ϕ8(c†

j,3,↑c†
j,3,↑ − c†

j,2,↑c†
j,2,↓)

]|0〉
1√
12

{
sin ϕ8

[∑2
k=1(c†

j,2k−1,↑c†
j,2k,↓ − c†

j,2k−1,↓c†
j,2k,↑) − 2(c†

j,2,↑c†
j,3,↓ − c†

j,2,↓c†
j,3,↑)

]
+√

2 cos ϕ8(2c†
j,1,↑c†

j,1,↑ − c†
j,2,↑c†

j,2,↑ − c†
j,3,↑c†

j,3,↓)
}|0〉

9 1 2t 1 |φ9〉 j = 1√
3
(c†

j,1,↑c†
j,2,↑ + c†

j,2,↑c†
j,3,↑ + c†

j,3,↑c†
j,1,↑)|0〉

10 −t 2 |φL,R
10 〉 j =

{
1√
3
(c†

j,1,↑c†
j,2,↑ + e2π i/3c†

j,2,↑c†
j,3,↑ + e4π i/3c†

j,3,↑c†
j,1,↑)|0〉

1√
3
(c†

j,1,↑c†
j,2,↑ + e4π i/3c†

j,2,↑c†
j,3,↑ + e2π i/3c†

j,3,↑c†
j,1,↑)|0〉

coupled spin-electron model given by the Hamiltonian (2)
and the partition function ZIM of the corresponding spin-
1/2 Ising square lattice given by the Hamiltonian HIM =
−Jeff

∑Nu
〈 j,n〉 μz

jμ
z
n:

Z (T, t, J,U ) = ANuZIM(T, Jeff ). (9)

The mapping relation (9) formally closes the rigorous so-
lution of the considered spin-electron model, because the
partition function ZIM of the spin-1/2 Ising model on a
square lattice was exactly calculated in the seminal paper by
Onsager [62–64].

C. Basic thermodynamic quantities and critical temperature

The mapping relation (9) gives an opportunity to rigorously
calculate all basic thermodynamic quantities, as well as a
critical temperature of the considered spin-electron model.
To be specific, the numerical results for the Helmholtz free
energy F , and subsequently for the entropy S and the specific
heat C can be obtained by means of the following fundamental
thermodynamic relations:

F = −kBT lnZ, S = −∂F
∂T

, C = −T
∂2F
∂T 2

. (10)

Furthermore, by combining Eq. (9) with well-known ex-
act theorems developed by Barry et al. [65–68] and the
generalized Callen-Suzuki identity [69–71], the spontaneous
sublattice magnetization per single localized Ising spin (mI)
and triangular plaquette (me) can also be acquired:

mI ≡ 〈μ̂z
j

〉 = 〈μz
j

〉
Jeff

= mIM, (11)

me ≡ 〈Ŝz
j

〉 = 4

w1
(2eβt + e−2βt ) sinh(βJ )mIM. (12)

In above, 〈. . .〉 and 〈. . .〉Jeff denote the canonical ensem-
ble averages performed within the investigated spin-electron
model and the effective spin-1/2 Ising square lattice with the
temperature-dependent nearest-neighbor coupling Jeff given
by Eq. (8). The magnetization mIM in Eqs. (11) and (12)
represents the spontaneous single-site magnetization of the
effective spin-1/2 Ising model on a square lattice, which can
be exactly calculated from the well-known Yang’s formula
obtained in the 1950s [72]. Moreover, it is apparent from
Eq. (12) that the sublattice magnetization me ascribed to the
electron pair of a given bipyramidal unit is odd function of the
exchange constant J . This implies that changing the ferromag-
netic coupling (J > 0) between mobile electrons and localized
spins to the antiferromagnetic one (J < 0) may merely cause
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just a trivial spin flipping of the spin and electron sublattices
with respect to each other, which is reflected in the change
of signs of the corresponding magnetization mI and me from
identical to opposite ones, respectively. In view of the above
notation, the total spontaneous magnetization m of the spin-
electron model on a decorated square lattice composed of
interconnected trigonal bipyramids normalized per unit cell
can be defined as follows:

m = mI + 2me

2
. (13)

Last, the rigorous criterion determining critical temper-
ature of the considered spin-electron model also follows
directly from the mapping relation (7). Namely, the formula
(7) clearly indicates that the coupled spin-electron system may
exhibit critical behavior only if the effective spin-1/2 Ising
model on a square lattice with the temperature-dependent
nearest-neighbor coupling Jeff is at a critical point. Thus, the
critical temperature of the model defined through the Hamil-
tonian (1) can be straightforwardly obtained by setting the
effective coupling Jeff listed in Eq. (8) to its critical value [62]:

βc|Jeff | = 2 ln(1 +
√

2). (14)

In above, βc = 1/(kBTc), wherein Tc represents the critical
temperature of the system.

D. Fermionic concurrence

Another quantity, which might be of particular interest for
the investigated spin-electron model, is the fermionic con-
currence. As will be demonstrated hereafter the fermionic
concurrence provides a useful tool for a rigorous investigation
of a degree of quantum correlations (bipartite entanglement)
between two mobile electrons from the same triangular
plaquette. The fermionic concurrence between two mobile
electrons from the same unit cell can be examined from two
perspectives – in the context of the charge or spin degrees
of freedom of two quantum-mechanically entangled mobile
electrons.

In general, the concurrence of any two-qubit system can be
explicitly expressed by Wootters’ formula [53,54]:

C = max{0, λ1 − λ2 − λ3 − λ4}, (15)

where λi’s (i = 1−4) are the eigenvalues of the Hermitian
matrix Rj,l = √√

ρ j,l ρ̃ j,l
√

ρ j,l with ρ̃ j,l = (σ y ⊗
σ y)ρ∗

j,l (σ
y ⊗ σ y) sorted in descending order λ1 � λ2 �

λ3 � λ4. Here ρ j,l labels the reduced density matrix of a
qubit pair occupying the jth and lth lattice sites, which can be
obtained from the full density matrix ρ by tracing out degrees
of freedom of all other sites except the jth and lth ones, ρ∗

j,l is
the complex conjugate of ρ j,l , and σ y is the usual Pauli matrix.

The total Hilbert space of a single electron pair is six-
dimensional, while the Wootters’ concept of the concurrence
is applicable just to four-dimensional Hilbert spaces. How-
ever, one may first separate charge and spin degrees of
freedom of the electron pairs in order to calculate a degree
of the bipartite entanglement within the respective four-
dimensional Hilbert subspaces [55,56]. As a matter of fact,
the charge concurrence measuring a degree of the bipartite
entanglement between charge degrees of freedom of two

mobile electrons can be rigorously evaluated in the epony-
mous two-site Hilbert subspace {|0, 0〉, |0,↑〉, |↑, 0〉, |↑,↑〉}
(or, equivalently, {|0, 0〉, |0,↓〉, |↓, 0〉, |↓,↓〉}). On the other
hand, one may further distinguish two types of spin con-
currences related to spin degrees of freedom of the mobile
electrons. The single-spin concurrence determines a degree
of the bipartite entanglement within the particular subspace
spanned over four basis states with nonzero local magneti-
zation {|↑,↑〉, |↑,↓〉, |↓,↑〉, |↓,↓〉}. Contrary to this, the
zero-spin concurrence measures a degree of quantum cor-
relations within the particular subspace spanned over four
nonmagnetic (ionic) basis states {|0, 0〉, |0,↑↓〉, |↑↓, 0〉,
|↑↓,↑↓〉}. In any of above three subspaces, the reduced den-
sity matrix associated with an electron pair delocalized over,
e.g., kth and (k+1)st sites of the jth decorating triangular
plaquette, takes the identical α form:

ρα
k,k+1 =

⎡
⎢⎣

uα
1 0 0 0

0 vα
1 zα 0

0 (zα )∗ vα
2 0

0 0 0 uα
2

⎤
⎥⎦ (α = c, s, 0). (16)

Here the superscripts c, s, 0 stand for the charge, single-spin,
and zero-spin subspaces, respectively. The nonzero elements
of the individual density matrices (16) ascribed to three re-
spective subspaces are given by the following formulas in the
charge subspace:

uc
1 = 〈(1 − n̂ j,k,↑)(1 − n̂ j,k+1,↑)〉, (17a)

uc
2 = 〈n̂ j,k,↑n̂ j,k+1,↑〉, (17b)

vc
1 = 〈n̂ j,k,↑(1 − n̂ j,k+1,↑)〉, (17c)

vc
2 = 〈(1 − n̂ j,k,↑)n̂ j,k+1,↑〉, (17d)

zc = (zc)∗ = 〈ĉ†
j,k,↑ĉ j,k+1,↑〉, (17e)

the single-spin subspace:

us
1 = 〈n̂ j,k,↑(1 − n̂ j,k,↓)n̂ j,k+1,↑(1 − n̂ j,k+1,↓)〉, (18a)

us
2 = 〈(1 − n̂ j,k,↑)n̂ j,k,↓(1 − n̂ j,k+1,↑)n̂ j,k+1,↓〉, (18b)

vs
1 = 〈n̂ j,k,↑(1 − n̂ j,k,↓)(1 − n̂ j,k+1,↑)n̂ j,k+1,↓〉, (18c)

vs
2 = 〈(1 − n̂ j,k,↑)n̂ j,k,↓n̂ j,k+1,↑(1 − n̂ j,k+1,↓)〉, (18d)

zs = (zs)∗ = 〈ĉ†
j,k+1,↑ĉ j,k+1,↓ĉ†

j,k,↓ĉ j,k,↑〉, (18e)

and the zero-spin subspace:

u0
1 = 〈(1 − n̂ j,k,↑)(1 − n̂ j,k+1,↑)(1 − n̂ j,k,↓)(1 − n̂ j,k+1,↓)〉,

(19a)

u0
2 = 〈n̂ j,k,↑n̂ j,k,↓n̂ j,k+1,↑n̂ j,k+1,↓〉, (19b)

v0
1 = 〈(1 − n̂ j,k,↑)(1 − n̂ j,k,↓)n̂ j,k+1,↑n̂ j,k+1,↓〉, (19c)

v0
2 = 〈n̂ j,k,↑n̂ j,k,↓(1 − n̂ j,k+1,↑)(1 − n̂ j,k+1,↓)〉, (19d)

z0 = (z0)∗ = 〈ĉ†
j,k,↑ĉ†

j,k,↓ĉ j,k+1,↓ĉ j,k+1,↑〉, (19e)

All statistical mean values entering into Eqs. (17a)–(19e) can
be obtained in the same way as the spontaneous sublattice
magnetization of the mobile electrons me, i.e., by combining
the generalized Callen-Suzuki identity [69–71] with the ex-
act mapping relation (9). The partial fermionic concurrences
quantifying the charge, single-spin and zero-spin bipartite
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entanglement between the mobile electrons residing kth and
(k+1)st site of the jth decorating triangular plaquette can
alternatively be expressed as:

Cα
k,k+1 = 2max

{
0, |zα| −√uα

1 uα
2

}
. (20)

It is also worthy to note that all statistical means values emer-
gent in the sets of Eqs. (17a)–(17e), (18a)–(18e), (19a)–(19e)
are, in fact, identical for all available pairs of lattice sites from
a given decorating triangular plaquette. Owing to this fact, the
same strength of the partial bipartite entanglement between
the mobile electrons is detected for any pair of lattice sites
belonging to the same decorating triangular plaquette, which
means that one may contract specification of lattice sites from
the definition of the partial concurrences Cα

1,2 = Cα
2,3 = Cα

3,1 =
Cα . Of course, the overall bipartite entanglement between two
mobile electrons from the same triangular plaquette is given
by a sum of its three contributions:

C = Cc + Cs + C0, (21)

which turns out to be a monotonic function of von Neumann
entanglement entropy [56].

III. RESULTS AND DISCUSSION

In this section, we will proceed to a discussion of the most
interesting numerical results for the proposed spin-electron
model. Before doing so it is worthy to mention that all the
relations derived in Sec. II are valid for ferromagnetic (J > 0)
as well as antiferromagnetic (J < 0) Ising-type interaction,
whereas the transformation J → −J merely causes a rather
trivial change of relative orientation of the spins of the mobile
electrons with respect to their nearest nodal Ising spins. Tak-
ing into account this fact one may set the absolute value of
the Ising-type interaction |J| as an energy unit when defining
dimensionless quantities t/|J|, U/|J|, and kBT/|J| measuring
relative strengths of the hopping integral, Coulomb repulsion,
and temperature, respectively.

A. Ground state

We start with the analysis of the ground state of the
model, which can be determined directly from the energy
spectrum (5) of the cell Hamiltonian (2) due to validity
of the first commutation relation in Eq. (3). A systematic
inspection of all available combinations of the Ising spins
μz

j and μz
j+1 reveals existence of two different macroscopi-

cally degenerate quantum ground states. The first one can be
classified as the spontaneously long-range ordered ferro- or
ferrimagnetic (FM) phase depending on whether the exchange
coupling between the nodal Ising spins and mobile electrons is
ferromagnetic J > 0 or antiferromagnetic J < 0, respectively.
The FM ground state is unambiguously given by the following
eigenvector and energy per unit cell:

|FM〉 =
Nu∏
j=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣−sgn(J )
1

2

〉
μz

j

⊗ ∣∣φL,R
2

〉
j∣∣∣∣ sgn(J )

1

2

〉
μz

j

⊗ ∣∣φL,R
10

〉
j

, (22a)

EFM = −|J| − t . (22b)

The second ground state can be classified as the disordered
frustrated (FRU) phase given by the eigenvector and energy
per unit cell:

|FRU〉 =
Nu∏
j=1

∣∣∣∣±1

2

〉
μz

j

⊗ |φ6〉 j, (23a)

EFRU = U

2
− t − 1

2

√
(U + 2t )2 + 32t2. (23b)

In above, the product symbol
∏Nu

j=1 runs over all bipyramidal
units, the single-site ket vector | . . .〉μz

j
determines a spin state

of the localized Ising spin from the jth nodal lattice site, and
the state vectors |φL,R

2 〉 j , |φL,R
10 〉 j , |φ6〉 j are eigenstates of two

mobile electrons from the jth decorating triangular plaquette
quoted explicitly in Table I.

One can easily deduce from Eq. (22a) that the macroscopic
degeneracy of the spontaneously ordered FM phase closely
relates to two possible [left- (L) and right-hand side (R)] chiral
degrees of freedom of two mobile electrons from triangular
plaquettes, which may reside one of two energetically equiv-
alent quantum ferromagnetic states |φL,R

2 〉 j with the total spin
Sz

j = −1 or |φL,R
10 〉 j with Sz

j = 1. Depending on the actual
spin arrangement of a couple of the mobile electrons, the
localized Ising spins choose one out of two possible spin states
μz

j = −1/2 and 1/2 in order to maintain the overall ferro-
magnetic (ferrimagnetic) spin arrangement for J > 0 (J < 0).
These findings clearly indicate that the macroscopic degen-
eracy of the FM phase is proportional to the total number
of the triangular plaquettes Nu, since it comes from their
chiral degrees of freedom, namely 2Nu+1 due to a spin-flip
(time-reversal) symmetry of the system. On the other hand,
the overall macroscopic degeneracy of the disordered FRU
phase is proportional to the total number of localized Ising
spins 2N , because its origin closely relates to a paramagnetic
(frustrated) character of the nodal Ising spins being with equal
probability in one of their two available spin states μz

j = −1/2
and 1/2 [see Eq. (23a)]. The paramagnetic character of the lo-
calized Ising spins results from a kinetically driven frustration
caused by the antiferromagnetic spin alignment of the mobile
electrons, which underlie a quantum superposition of six in-
trinsic antiferromagnetic and three nonmagnetic ionic states
(see explicit expression of the corresponding state vector |φ6〉 j

in Table I).
As expected, the stability region of two ground states is

strongly affected by a mutual interplay between the Ising-type
coupling constant, Coulomb parameter and hopping term. The
first two interaction parameters favor presence of the sponta-
neously ordered FM phase, while the hopping term stabilizes
existence of the disordered FRU phase. As a matter of fact,
the spontaneous long-range ordered FM phase is the respec-
tive ground state whenever a relative strength of the hopping
amplitude t/|J| is smaller that the boundary value:

tb
|J| = 1

18

√[
U

|J| + 6sgn(J )

]2

+ 24sgn(J )
U

|J| − 1

18

U

|J| .

(24)
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FIG. 2. The finite-temperature phase diagram showing the crit-
ical temperature kBTc/|J| of the coupled spin-electron model on a
decorated square lattice with interconnected triangular bipyramids as
a function of the hopping parameter t/|J| for several representative
values of the Coulomb term U/|J|. A full phase diagram is depicted
in panel (a) and its detail in a range of very low values of the
hopping term t/|J| ∈ (0, 0.2) in panel (b). The vertical short-dashed
line in the panel (a) at t/|J| = 0.65 demonstrates double reentrant
phase transitions at the critical temperatures kBTc1/|J| ≈ 0.113 and
kBTc2/|J| ≈ 0.286 (dark green circles) for the particular value of the
Coulomb term U/|J| = 7.

Otherwise the disordered FRU phase emerges in the ground
state due to the kinetically driven frustration of the localized
Ising spins.

B. Critical behavior

In this part, the critical temperature determining a break-
down of the spontaneous long-range order pertinent to the
FM ground state will be explored in detail. All valuable in-
formation concerning with the critical behavior can be read
from Fig. 2, where the critical temperature kBTc/|J| associ-
ated with a continuous phase transition of the investigated
spin-electron model is depicted as a function of the hopping
parameter t/|J| for a few fixed values of the Coulomb term
U/|J| in the parameter range covering both the FM and FRU
ground states [Fig. 2(a)] and the limited range t/|J| ∈ (0, 0.2)
[Fig. 2(b)]. The plotted curves represent numerical solution of
the exact critical condition (14). It is worth mentioning that
the displayed critical temperature corresponds to the coupled
spin-electron model with the ferromagnetic (J > 0) as well
as antiferromagnetic (J < 0) Ising-type exchange constant,
because the effective temperature-dependent interaction Jeff

and hence also the critical temperature are even functions of J
[see the second line of Eq. (7)].

As one can see from Fig. 2(a), the critical temperature
delimiting a stability region of the spontaneous long-range

FM order generally declines with increasing of the hopping
term t/|J| until it falls to zero value at the ground-state phase
boundary (24) with the disordered FRU phase. The highest
critical temperature can be accordingly acquired for any value
of the Coulomb term in the limit of vanishingly small hopping
term t/|J| → 0. In this particular limit, the critical tempera-
ture shows a subtle rise from the asymptotic value found for
the absent Coulomb repulsion U/|J| = 0:

kBTc

|J| =
[

ln

(
2 + 5

√
2 +

√
50 + 20

√
2

2

)]−1

≈ 0.456,

(25)
up to the highest possible one acquired for the infinitely strong
Coulomb repulsion U/|J| → ∞:

kBTc

|J| =
[

ln

(
1 + 2

√
2 + 2

√
2 +

√
2

)]−1

≈ 0.496. (26)

It is noteworthy that the latter critical temperature (26) can
be practically achieved already at finite but sufficiently strong
on-site Coulomb repulsion U/|J| ≈ 7 [see Fig. 2(b)].

Furthermore, for any value of the Coulomb term U/|J| one
can also find intriguing double reentrant phase transitions in
a narrow range of the hopping parameter t/|J| � tb/|J| being
sufficiently close to the phase boundary between the FM and
FRU phases [see Fig. 2(a), especially the case U/|J| = 7,
for which the phenomenon is schematically demonstrated
by the vertical short-dashed black line at t/|J| = 0.65 �
(
√

337 − 7)/18, which intersects the corresponding second-
order phase transition (solid green line) at two well-separated
critical temperatures kBTc1/|J| ≈ 0.113 and kBTc2/|J| ≈
0.286 (dark green circles)]. The observed double reentrant
phase transitions clearly indicate that the spontaneous long-
range FM spin arrangement can be thermally induced above
the disordered FRU ground state through the “order by disor-
der” mechanism [73–75]. This type of reentrant phase transi-
tions is entropically driven, because the spontaneously long-
range FM phase has peculiarly higher macroscopic degener-
acy due to chiral degrees of freedom of triangular plaquettes
than the disordered FRU one, whose macroscopic degeneracy
comes from spin degrees of freedom of the nodal Ising spins
(we recall that the total number of triangular plaquettes is
double compared to the number of the nodal Ising spins). Of
course, the reentrance can be detected only in a close vicinity
of the ground-state phase boundary, where the FRU and FM
phases have very close internal energies. Another interesting
finding is that the phenomenon is the more pronounced, the
higher is the value of Coulomb parameter U/|J|. In the special
case of infinitely strong Coulomb repulsion U/|J| → ∞, at
which the interplay between the hopping and Coulomb terms
is equivalent to the effect of antiferromagnetic Heisenberg
coupling [15], the region of double reentrant phase transitions
is nearly doubled in comparison to the zero case U/|J| = 0.

C. Spontaneous magnetization

The reported ground-state spin arrangement and criti-
cal behavior of the investigated spin-electron model can be
independently verified by temperature dependencies of the
spontaneous magnetization.
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FIG. 3. Temperature variations of the spontaneous magnetization
|mI| and |me| of the spin and electron subsystems normalized per one
localized Ising spin (short dashed black lines) and one pair of the
mobile electrons (dash-dotted blue lines), respectively, for the fixed
value of the Coulomb parameter U/|J| = 7 and several different
values of the hopping term t/|J|.

We first focus our attention on temperature variations
of spontaneous sublattice magnetization mI and me normal-
ized per one nodal Ising spin and electron pair, respectively.
This study will bring insight into the effect of temperature
fluctuations on ordering of spin and electron subsystems.
Several typical temperature dependencies of both sublat-
tice magnetization are shown in Fig. 3, where they are
plotted in their absolute values |mI| (short dashed black lines)
and |me| (dash-dotted blue lines) to simultaneously reflect
temperature-induced changes in the sublattice magnetization
of the ferromagnetic (J > 0) as well as ferrimagnetic (J < 0)
version of the model. In accordance with the ground-state
analysis, the hopping amplitude t/|J| smaller than the bound-
ary value (24) prefers the spontaneous FM long-range order
at zero temperature and both sublattice magnetization indeed
start from their maximum zero-temperature asymptotic values
|mI| = 0.5 and |me| = 1. Both they gradually diminish on
increasing of temperature and rapidly fall down to zero at a
critical temperature according to the power law with the crit-
ical exponent βm = 1/8 from the standard Ising universality
class. However, there is an obvious difference in temperature
variations of |mI| and |me| at low and moderate temperatures.
More specifically, the absolute value of the former magne-
tization |mI| remains almost constant over a relatively wide
temperature range for any value t/|J| < tb/|J|, while the latter
|me| falls down more steeply with increasing of temperature
especially if the hopping term is close to t/|J| � tb/|J|. This
fact clearly implies that the electron subsystem is more sen-
sitive with respect to temperature fluctuations than the spin
subsystem.

It is noteworthy that both spontaneous sublattice magneti-
zation start from the nontrivial zero-temperature asymptotic
values |mI| ≈ 0.477 and |me| ≈ 0.636 if the hopping term is
fixed exactly at the ground-state boundary tb/|J| between the
FM and FRU phases. The unsaturated values of the sublattice
magnetization reflect a mutual coexistence of the FM and
FRU phases, which consequently partially destroy a perfect

FIG. 4. Temperature variations of the total spontaneous magne-
tization |m| per unit cell for the same values of the parameters U/|J|,
t/|J| as used in Fig. 3. Solid red (dashed green) lines display the
total magnetization for the ferromagnetic (antiferromagnetic) inter-
action J > 0 (J < 0) between the localized Ising spins and mobile
electrons.

spontaneous long-range order of both electron as well as spin
subsystem. It is somewhat more surprising that spontaneous
magnetization |mI| and |me| of both subsystems display al-
most constant temperature dependencies in a relatively wide
temperature range kBT/|J| < kBTc/|J|, which indicates that
the coexistence of the FM and FRU phases is thermally
quite stable and it abruptly breaks down just slightly be-
low the critical temperature [see the particular case tb/|J| =
(
√

337 − 7)/18 ≈ 0.631 in Fig. 3].
On the other hand, absence of the spontaneous magne-

tization is found at zero temperature for sufficiently strong
hopping terms t/|J| > tb/|J|, which prefer the disordered
FRU ground state instead of the spontaneously ordered FM
one. However, temperature dependencies of both sublat-
tice magnetization |mI| and |me| may display for not too
strong hopping terms t/|J| � tb/|J| an intriguing domelike
temperature dependence pointing to emergence of the spon-
taneous long-range order at lower critical temperature and
its breakdown at upper critical temperature (see the curves
corresponding to t/|J| = 0.65 and 0.66 in Fig. 3). The ob-
served nonmonotonous variations of |mI| and |me| clearly
corroborate an entropically driven activation of the sponta-
neous FM order above the disordered FRU ground state.
Naturally, the afore-described temperature variations of the
sublattice magnetization mI and me significantly affect also
temperature variations of the total spontaneous magnetiza-
tion m normalized per bipyramidal unit cell, which can be
considered as the relevant order parameter for the sponta-
neously long-range ordered FM phase regardless of the nature
(sign) of the Ising-type coupling constant J . This statement
is supported by Fig. 4, where temperature dependencies of
the total magnetization m are depicted for the same values
of the parameters U/|J| and t/|J| as used in Fig. 3 for the
sublattice magnetization. In order to maintain the generality
of the discussion, the absolute value of the total magnetization
|m| is plotted in Fig. 4 against temperature by considering the
ferromagnetic exchange interaction J > 0 (solid red lines) and
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the antiferromagnetic exchange constant J < 0 (dashed green
lines) between the localized Ising spins and mobile electrons.
Obviously, the plotted dependencies of the total magne-
tization |m| faithfully follow predominantly temperature
variations of the spontaneous magnetization of the electron
subsystem |me| including the remarkable nonmonotonous
domelike dependence emergent for t/|J| � tb/|J|. The full
saturation value |m| = 1.25 of the total magnetization is
reached in the zero-temperature asymptotic limit for the
hopping parameters t/|J| < tb/|J| just for the ferromagnetic
coupling constant J > 0. This value reflects a perfect ferro-
magnetic spin alignment of the Ising and electron subsystems.
On the other hand, the zero-temperature asymptotic value
of the total magnetization starts from the unsaturated value
|m| = 0.75, which agrees well with a perfect ferrimagnetic
spin alignment of the spin and electron subsystems when the
antiferromagnetic coupling constant J < 0 is assumed.

D. Specific heat and entropy

Next, we will turn our attention to temperature depen-
dencies of the specific heat C/(NukB) and entropy S/(NukB)
normalized per bipyramidal unit cell of the lattice, which are
depicted in Fig. 5. In this figure, the values of the Coulomb
term U/|J| and the hopping parameter t/|J| were selected
so that the plotted curves are directly comparable to the
finite-temperature phase diagram shown in Fig. 2 and temper-
ature variations of the spontaneous magnetization plotted in
Figs. 3 and 4.

Figure 5(a) illustrates temperature variations of the
quantities C/(NukB) and S/(NukB) (in the inset) which are typ-
ical for the spontaneously ordered FM ground state and zero-
temperature phase boundary between the FM and FRU ground
states. In accordance to the finite-temperature phase diagram
in Fig. 2, all plotted specific heat curves exhibit a single loga-
rithmic divergence from the standard Ising universality class,
which is associated with the continuous (second-order) phase
transition between the spontaneously ordered FM and disor-
dered paramagnetic (PM) phases. Apparently, the logarithmic
divergence becomes the narrower, the closer the hopping
parameter t/|J| is selected to the ground-state boundary
FM-FRU. Moreover, for t/|J| � tb/|J| the low-temperature
part of the specific heat includes a notable round Schottky-
type maximum [see the curve corresponding to t/|J| = 0.6 in
Fig. 5(a)]. A comparison of the specific heat curves displayed
in Fig. 5(a) with corresponding temperature dependencies of
the entropy and sublattice magnetization shown in its inset
and Fig. 3, respectively, clearly indicates that the observed
Schottky peak originates from thermal excitations from the
FM ground state to the low-lying excited state with the
character of the disordered FRU phase. In accordance with
this statement, the low-temperature Schottky-type maximum
is gradually shifted toward zero temperature as the hopping
term approaches the phase boundary between the FM and
FRU phases conditioned by Eq. (24) and completely disap-
pears when tb/|J| is reached [see the curve in Fig. 5(a) plotted
for tb/|J| = (

√
337 − 7)/18].

More diverse temperature variations of the specific heat
and entropy might be even expected when the hopping pa-
rameter t/|J| drives the coupled spin-electron system to the

FIG. 5. Temperature dependencies of the specific heat and en-
tropy (in the insets) per unit cell for the Coulomb term U/|J| = 7 and
a few several different values of the hopping parameter t/|J| typical
for (a) the spontaneous FM ground state and the ground-state phase
transition FM-FRU and (b) the disordered FRU ground state.

disordered FRU ground state. Recall that this happens only
if the hopping terms is greater than the boundary value
tb/|J| given by Eq. (24). Several typical temperature vari-
ations of the specific heat C/(NukB) and entropy S/(NukB)
corresponding to this parameter region are illustrated in
Fig. 5(b). As one can see, the temperature variations of
C/(NukB) may exhibit two pronounced round maxima and
two logarithmic divergences if the value of the hopping term
t/|J| � tb/|J| is selected close enough to the ground-state
phase boundary between the FM and FRU phases [see the
curves corresponding to t/|J| = 0.65 and 0.66 in Fig. 5(b)].
A steep low-temperature variations of the entropy S/(NukB)
shown in the inset of Fig. 5(b) convincingly evidence that
the low-temperature round maximum can be viewed as the
Schottky-type peak originating from vigorous thermal excita-
tions from the FRU ground state to the FM excited state. On
the contrary, high-temperature round maxima in specific heat
curves come from extensive thermally induced excitations
of very diverse character and it cannot be described by the
Schottky theory. Two logarithmic divergences of the specific
heat, which are present in between the round maxima, pro-
vide another independent confirmation of outstanding double
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FIG. 6. Zero-temperature density plots of (a) the charge concurrence Cc, (b) the single-spin concurrence Cs, (c) the zero-spin concurrence
C0, and (d) the overall concurrence C in the t/|J| − U/|J| parameter plane of the investigated spin-electron model.

reentrant phase transitions emergent in a relatively narrow pa-
rameter region t/|J| � tb/|J|. These results perfectly coincide
with the ones previously discussed at the finite-temperature
phase diagram and temperature dependencies of the sponta-
neous sublattice and total magnetization [Figs. 2(a), 3, and
4]. In agreement with the previous findings, two marked
logarithmic divergences of the specific heat gradually get
closer to each other as the hopping term t/|J| further in-
creases until they completely coalesce at a certain value of
the hopping term, above which only disordered FRU phase
is realized. Consequently, the logarithmic divergence of the
specific heat completely disappears from a thermal depen-
dence of the specific heat due to a complete suppression of
the spontaneous FM long-range order at zero as well as any
nonzero temperature by the disordered FRU phase [see the
curve corresponding to t/|J| = 0.7 in Fig. 5(b)].

E. Bipartite fermionic entanglement

In the last subsection we will investigate in detail a bipartite
fermionic entanglement between two mobile electrons delo-
calized over the same triangular plaquette of the considered
spin-electron model. To this end, we have used Eq. (20) to
exactly calculate the charge (Cc), single-spin (Cs), and also
zero-spin (C0) concurrences that quantify intensities of the

bipartite entanglement between particles in eponymous sub-
spaces. Zero-temperature asymptotic values of these three
contributions to the overall concurrence C are explicitly given
in Table II for both available FM and FRU ground states.
Evidently, the bipartite entanglement between the mobile
electrons comes within the FM ground state exclusively from
the charge sector, while the single- and zero-spin sectors do
not contribute to the entanglement at all. Contrary to this,
the entanglement in the FRU ground state is distributed over
all three sectors, whereas individual contributions basically
depend on relative strengths of the interaction parameters
t/|J| and U/|J| through the mixing angle ϕ6 specified in
Table I. For illustration, Fig. 6 displays in the t/|J| − U/|J|
parameter plane the zero-temperature density plots of all three
partial concurrences Cc, Cs, C0, and the overall concurrence

TABLE II. Zero-temperature asymptotic values of the charge
(Cc), single-spin (Cs), and zero-spin (C0) concurrences within two
available ground states FM and FRU. The mixing angle ϕ6 is explic-
itly given in Table I.

Cc Cs C0

FM 1
6 0 0

FRU 1
3 sin2 ϕ6 +

√
2

3 sin 2ϕ6
1
3 sin2 ϕ6

2
3 cos2 ϕ6
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FIG. 7. Temperature dependencies of the charge concurrence Cc, the single-spin concurrence Cs, the zero-spin concurrence C0, and the
overall concurrence C for the fixed Coulomb term U/|J| = 7 and four selected values of the hopping parameter t/|J|. Panels (a) and (b) show
typical temperature variations of the concurrences that are typical for the spontaneous FM ground state, while panels (c) and (d) show the
typical temperature variations of the quantities for the disordered FRU ground state.

C obtained by their summing. It can be easily understood
from Fig. 6 that the strength of the overall bipartite entangle-
ment between the mobile electrons from the same triangular
plaquette as well as its three contributions from the charge,
single-spin and zero-spin sectors are generally stronger in the
FRU ground state than those in the FM ground state regardless
of the values of the Coulomb term U/|J| and/or the hopping
parameter t/|J|. The entanglement present in the FM ground
state is kept constant within whole stability region of the
phase, while that in the FRU phase is generally promoted
by the hopping term t/|J|, but weakened by the Coulomb
repulsion U/|J|. The observed reduction of the bipartite en-
tanglement is a direct consequence of a significant weakening
of quantum correlations in the charge and zero-spin sectors
invoked on strengthening of the Coulomb term U/|J| though
an opposite trend, albeit less intense, can be found in the
single-spin sector [see Figs. 6(a)–6(c)].

To get an insight into the thermal resistance of the bipartite
fermionic entanglement, some typical temperature variations
of the overall concurrence and its three partial contributions
are displayed in Fig. 7 for the fixed Coulomb term U/|J| =
7 and four different values of the hopping parameter t/|J|.
Figures 7(a) and 7(b) capture the situation when the inter-

play between the interaction parameters U/|J|, t/|J| enforces
the spontaneously ordered FM ground state. It can be seen
from these figures that the overall concurrence C is primarily
governed at low and moderate temperatures by the charge
contribution Cc, which is gradually reduced on increasing of
temperature at sufficiently low values of the hopping term
t/|J| [see Fig. 7(a)], or shows a striking initial temperature-
induced rise due to thermal excitations from less entangled
FM ground state to more entangled FRU excited state when
the hopping amplitude t/|J| is taken close enough to the
phase boundary FM-FRU [see Fig. 7(b)]. It turns out, more-
over, that the single-spin concurrence Cs also displays similar
but slightly smaller temperature-induced rise, which becomes
especially pronounced if the hopping term t/|J| is selected
sufficiently close to the ground-state phase boundary between
the FM and FRU ground states emergent at tb/|J| ≈ 0.631. In
any case, the charged concurrence Cc rapidly drops to zero at
a certain temperature, above which the relevant temperature
dependence of the overall concurrence is basically driven by
a relatively small but nonzero zero-spin concurrence C0 [see
the inset in Figs. 7(a) and 7(b)].

Figures 7(c) and 7(d) show typical temperature variations
of the overall concurrence C and its three partial contributions
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FIG. 8. Density plots of (a) the charge concurrence Cc, (b) the single-spin concurrence Cs, (c) the zero-spin concurrence C0, and (d) and
the overall concurrence C in the t/|J| − kBT/|J| parameter plane for the fixed value of the Coulomb term U/|J| = 7. The black solid line
represents the critical temperature kBTc/|J|, above which the spontaneous FM long-range order vanishes.

Cc, Cs, C0 for the hopping terms driving the investigated spin-
electron model toward the FRU ground state. If the hopping
term is selected slightly above the boundary value t/|J| �
0.631, then the charge concurrence Cc displays a relatively
steep decline down to zero in a low-temperature region, which
is followed by a peculiar reentrant temperature dependence
with a domelike shape observable in a range of moderate
temperatures [see in Fig. 7(c)]. Evidently, the single-spin
concurrence Cs exhibits qualitatively similar temperature de-
pendence with exception of that it does not go to zero before
the charge concurrence Cc enters the reentrant region. Note
furthermore that the zero-spin concurrence C0 repeatedly pro-
vides the smallest contribution to the overall concurrence,
which becomes relevant just at sufficiently high temperatures
where the charged and single-spin contributions Cc and Cs

completely diminish. It is quite obvious from Fig. 7(d) that
the outstanding domelike temperature dependencies of the
charge and single-spin concurrences disappear if one con-
siders high-enough values of the hopping term t/|J|. Under
this condition, the concurrences Cc and Cs generally exhibit a
simple monotonous decline with increasing temperature,
whereby the charge concurrence Cc decays more rapidly in
comparison with the single-spin one Cs. The zero-spin concur-
rence C0 still provides the smallest but nonzero contribution to
the overall concurrence C, which has features of the charge
and single-spin concurrences with exception of the high-
temperature region where it is driven by C0 [see Fig. 7(d)].

Last, we have depicted in Fig. 8 density plots of the
charge, single-spin, zero-spin and total concurrences in the
t/|J| − kBT/|J| plane for the fixed value of the Coulomb
term U/|J| = 7 serving for global illustration. It can be seen
from Figs. 8(a)–8(c) that the bipartite fermionic entanglement
ascribed to the spontaneously ordered FM phase comes al-

most exclusively from the charge concurrence Cc, because the
single-spin concurrence Cs and the zero-spin one C0 only pro-
vide small negligible contributions in a vicinity of the phase
boundary between the FM and FRU phases. It is also worth-
while to remark that nonzero values of the charge concurrence
Cc are strictly delimited by the critical temperature kBTc/|J|
of the investigated coupled spin-electron system (black solid
line), which determines a breakdown of the spontaneous FM
long-range order. In opposite to this, all three contributions Cc,
Cs, and C0 spread over much wider temperature range above
the disordered FRU ground state.

IV. CONCLUSIONS

The present work deals with a coupled spin-electron model
on a decorated square lattice composed of interconnected trig-
onal bipyramids, which is exactly solved by the generalized
decoration-iteration transformation establishing a rigorous
mapping correspondence with the effective spin-1/2 Ising
model on a square lattice. In particular, we have compre-
hensively studied ground-state and finite-temperature phase
diagrams, which are additionally complemented by a detailed
analysis of the spontaneous magnetization and basic thermo-
dynamic quantities (entropy, specific heat). Beside to this,
the fermionic concurrence serving as a measure of bipartite
entanglement between two mobile electrons has been exactly
calculated. While the total fermionic concurrence is propor-
tional to the entanglement entropy, its partial contributions
referred to as the charge, single-spin and zero-spin concur-
rences shed light on the origin of the fermionic bipartite
entanglement.

It has been demonstrated that the investigated spin-electron
model exhibits two macroscopically degenerate quantum
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ground states: the ferro- or ferrimagnetic phase (FM) and
the frustrated one (FRU). The macroscopic degeneracy of
the former ground state can be attributed to chiral degrees
of freedom of the mobile electrons hopping within triangular
plaquettes, while that of the latter ground state originates from
the paramagnetic character of the localized Ising spins caused
by a kinetically driven spin frustration. It surprisingly turned
out that the FM phase with higher macroscopic degeneracy
is spontaneously long-range ordered, while the FRU one is
disordered in its character. The higher residual entropy of the
macroscopically degenerate FRU phase is at origin of double
reentrant phase transitions, which can be found in a relatively
narrow parameter region sufficiently close but slightly above
the ground-state phase boundary with the FRU ground state.
The outstanding reentrant phase transitions have been inde-
pendently verified by the respective temperature dependencies
of the spontaneous magnetization and specific heat.

The most interesting finding of the present paper con-
cerns with a detailed investigation of the bipartite fermionic
entanglement quantified by the concept of the fermionic con-
currence and its partial contributions. It has been verified
that the bipartite fermionic entanglement within the sponta-
neously ordered FM phase predominantly comes from the
charge sector and it persists up to the critical temperature,
at which the spontaneous magnetization as the relevant order

parameter vanishes. On the other hand, the charge, single-spin
and zero-spin concurrences provide comparable contributions
to the overall concurrence and hence, the bipartite fermionic
entanglement spreads over much wider temperature range
whenever the coupled spin-electron model is driven to the
disordered FRU phase. It could be thus concluded that the
disordered FRU state fits demanding requirements related to
a stabilization of quantum entanglement and coherence as
indispensable ground for a quantum computation much better
than the spontaneously ordered FM phase. On the other hand,
the chiral degrees of freedom of two electrons delocalized
over triangular plaquettes within the ordered FM state could
be potentially used for encoding qubits. Last, the striking
reentrant phenomenon of the fermionic concurrence can be
attributed to a higher macroscopic degeneracy of the spon-
taneously ordered FM ground state in comparison with the
disordered FRU one.
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[50] H. Čenčariková and J. Strečka, Physica A 566, 125673 (2021).
[51] S. J. Gu, S. S. Deng, Y. Q. Li, and H. Q. Lin, Phys. Rev. Lett.

93, 086402 (2004).
[52] S. S. Deng and S. J. Gu, Chin. Phys. Lett. 22, 804 (2005).
[53] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[54] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[55] A. Rycerz, New. J. Phys. 19, 053025 (2017).
[56] F. Souza, G. M. A. Almeida, M. L. Lyra, and M. S. S. Pereira,

Phys. Rev. A 102, 032421 (2020).

[57] M. Hase, H. Kitazawa, K. Ozawa, T. Hamasaki, H.
Kuroe, and T. Sekine, J. Phys. Soc. Jpn. 77, 034706
(2008).

[58] H. Kuroe, T. Hosaka, S. Hachiuma, T. Sekine, M. Hase, K. Oka,
T. Ito, H. Eisaki, M. Fujisawa, S. Okubo, and H. Ohta, J. Phys.
Soc. Jpn. 80, 083705 (2011).

[59] M. Matsumoto, H. Kuroe, T. Sekine, and M. Hase, J. Phys. Soc.
Jpn. 81, 024711 (2012).

[60] S. Buhrandt and L. Fritz, Phys. Rev. B 90, 094415 (2014).
[61] A. Otsuka, D. V. Konarev, R. N. Lyubovskaya, S. S. Khasanov,

M. Maesato, Y. Yoshida, and G. Saito, Crystals 8, 115
(2018).

[62] L. Onsager, Phys. Rev 65, 117 (1944).
[63] C. Domb, Adv. Phys. 9, 149 (1960).
[64] B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model

(Harvard University Press, Cambridge, 1973).
[65] J. H. Barry, M. Kathun, and T. Tanaka, Phys. Rev. B 37, 5193

(1988).
[66] M. Khathun, J. H. Barry, and T. Tanaka, Phys. Rev. B 42, 4398

(1990).
[67] J. H. Barry, T. Tanaka, M. Khatun, and C. H. Múnera, Phys.

Rev. B 44, 2595 (1991).
[68] J. H. Barry and M. Khathun, Phys. Rev. B 51, 5840 (1995).
[69] H. B. Callen, Phys. Lett. 4, 161 (1963).
[70] M. Suzuki, Phys. Lett. 19, 267 (1965).
[71] T. Balcerzak, J. Magn. Magn. Mater. 246, 213 (2002).
[72] C. N. Yang, Phys. Rev. 85, 808 (1952).
[73] J. Villain, Z. Phys. B 33, 31 (1979).
[74] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys. (Paris)

41, 1263 (1980).
[75] V. M. Rozenbaum, Zh. Eksp. Teor. Fiz. 83, 326 (1982) [Sov.

Phys. JETP 56, 178 (1982)].

104420-14

https://doi.org/10.1016/j.physleta.2015.07.007
https://doi.org/10.1103/PhysRevE.96.052110
https://doi.org/10.1016/j.physa.2016.08.076
https://doi.org/10.1016/j.physb.2017.08.044
https://doi.org/10.1103/PhysRevB.80.174410
https://doi.org/10.1088/1742-6596/200/2/022059
https://doi.org/10.1088/0953-8984/23/17/175602
https://doi.org/10.1016/j.jmmm.2014.05.022
https://doi.org/10.1016/j.physleta.2015.08.027
https://doi.org/10.1016/j.jmmm.2015.11.018
https://doi.org/10.1016/j.jmmm.2017.10.056
https://doi.org/10.1103/PhysRevE.98.062129
https://doi.org/10.1016/j.physleta.2019.125957
https://doi.org/10.1016/j.physe.2019.113717
https://doi.org/10.1016/j.physa.2020.125673
https://doi.org/10.1103/PhysRevLett.93.086402
https://doi.org/10.1088/0256-307X/22/4/007
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1088/1367-2630/aa6bdd
https://doi.org/10.1103/PhysRevA.102.032421
https://doi.org/10.1143/JPSJ.77.034706
https://doi.org/10.1143/JPSJ.80.083705
https://doi.org/10.1143/JPSJ.81.024711
https://doi.org/10.1103/PhysRevB.90.094415
https://doi.org/10.3390/cryst8030115
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1080/00018736000101189
https://doi.org/10.1103/PhysRevB.37.5193
https://doi.org/10.1103/PhysRevB.42.4398
https://doi.org/10.1103/PhysRevB.44.2595
https://doi.org/10.1103/PhysRevB.51.5840
https://doi.org/10.1016/0031-9163(63)90344-5
https://doi.org/10.1016/0031-9163(65)90978-9
https://doi.org/10.1016/S0304-8853(02)00056-2
https://doi.org/10.1103/PhysRev.85.808
https://doi.org/10.1007/BF01325811
https://doi.org/10.1051/jphys:0198000410110126300

