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Classical spin dynamics based on SU(N) coherent states
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We introduce a classical limit of the dynamics of quantum spin systems based on coherent states of SU(N ),
where N is the dimension of the local Hilbert space. This approach, which generalizes the well-known Landau-
Lifshitz dynamics from SU(2) to SU(N ), provides a better approximation to the exact quantum dynamics for a
large class of realistic spin Hamiltonians, including S � 1 systems with large single-ion anisotropy and weakly
coupled multispin units, such as dimers or trimers. We illustrate this idea by comparing the spin structure factors
of a single-ion S = 1 model that are obtained with the SU(2) and SU(3) classical spin dynamics against the exact
solution.
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I. INTRODUCTION

The concept of a “coherent state” was first proposed by
Schrödinger in 1926 [1]. He derived the state as the most
classical (i.e., minimum uncertainty �x�p = h̄/2) state of a
quantum harmonic oscillator. The first practical application
of this concept was introduced by Glauber and Sudarshan
in 1963 [2–5] to describe the maximal coherent light state
in quantum optics, hence the name coherent state. Coherent
states were originally constructed as eigenstates of the an-
nihilation operator and they were generated by applying a
displacement operator of the Heisenberg-Weyl group to the
vacuum state of the harmonic oscillator. In his third seminal
paper [4], Glauber pointed out that there are three equiva-
lent definitions of coherent states: (i) the eigenstate of the
annihilation operator, (ii) the state obtained by applying a
displacement operator of the Heisenberg-Weyl group on the
vacuum state of the harmonic oscillator, and (iii) the state with
minimum Heisenberg uncertainty. Ten years later, Perelomov
[6] and Gilmore [7] observed that the second definition of
Glauber can be extended to an arbitrary Lie group. This
generalization was later considered by Yaffe to explore the
classical limit of quantum systems [8]. Moreover, using this
generalization of coherent states, one can extend and prove
Dirac’s conjecture—the commutator between two quantum
operator times 1/(ih̄) is replaced by the Poisson bracket in
the classical limit—for general Lie groups, where the Poisson
bracket is defined on the classical phase space defined by the
orbit of coherent states.

Classical limits of N-level quantum systems based on
SU(N ) coherent states have been exploited in different ar-
eas of physics [9,10], ranging from atomic physics [11–15]
to quantum chromodynamics [16,17]. The main goal of this
work is to present a comprehensive discussion of the classical
dynamics of a quantum spin system based on SU(N ) coherent
states. To understand our motivation, we must first recognize
that there are two widely used tools for modeling spin dy-
namics: the spin-wave theory (SWT) and the Landau-Lifshitz

dynamics (LLD). The traditional SWT is a semiclassical ap-
proach whose starting point is a mean-field state consisting of
a direct product of SU(2) coherent states [18–24]. Quantum
effects are incorporated order by order via a 1/S expansion
[25–30]. The LLD was first introduced by Landau and Lifshitz
[31] to describe the precession of the magnetization in a solid.
In this classical approximation, the state of the system is
approximated by a direct product of SU(2) coherent states
at any time t . In the absence of damping, the classical LLD
equations can be obtained by taking the classical limit of the
Heisenberg equation following Dirac’s prescription.

While SWT and LLD become exact in the large-S limit,
their applicability to real spin systems (with a finite value
of S) is not just limited by the presence of large quantum
fluctuations. As we will discuss in this work, there are large
classes of realistic spin models whose spin dynamics is not
well described by the traditional SWT or LLD, but still admit
an accurate semiclassical or classical treatment. This apparent
paradox disappears when we recognize that there is more than
one way of taking the classical limit of a spin system [13].

The existence of multiple classical limits is tied to different
choices of the Lie group that defines the orbit of coher-
ent states [6,8,13,32]. For instance, for a three-level system
(S = 1) we can either use a mean-field state that is a direct
product of SU(2) coherent states or one that is a direct product
of SU(3) coherent states. The second of these is the starting
point of the so-called generalized SWT [33], which has been
successfully applied to several models and quantum magnets
[34–42]. An obvious advantage of the use of SU(3) coherent
states for S = 1 systems is that they allow to describe local
quadrupolar and dipolar moments (and their fluctuations) on
an equal foot [33]. In contrast, SU(2) coherent states can only
account for dipolar ordering and dipolar fluctuations.

The SU(N ) generalization of the semiclassical 1/S expan-
sion [42] suggests that the classical limit or LLD dynamics
must also be generalized. However, to the best of our knowl-
edge, the application of the classical SU(N ) dynamics to spin
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systems has not been discussed in the literature. Although the
classical limit of a quantum theory based on SU(N ) coherent
states (for N > 2) was discussed in Refs. [13,32], these works
were mainly focused on mathematical aspects of the SU(N )
coherent states. After recognizing that quantum theories of N-
level systems admit more than one classical limit, it becomes
relevant to ask what is the most adequate choice for each
particular application. In this work we focus on applications
to spin Hamiltonians. Our main motivation is to demonstrate
that the above-mentioned generalization of Dirac’s conjecture
leads to a natural generalization of the LLD that can be used
to model the excitation spectrum of large classes of quantum
magnets for which the traditional LLD dynamics is simply
inadequate.

This paper is organized as follows. In Sec. II we review
the properties of the coherent states of the Heisenberg-Weyl
group, which consists of translation operators of a quan-
tum mechanical point particle in phase space. In particular,
we include the demonstration of Dirac’s conjecture that was
sketched by Yaffe in Ref. [8]. The inclusion of the intermedi-
ate steps of this demonstration is useful to motivate the general
discussion on the classical limit of N-level quantum spin
systems. In Sec. III we review the representation theory of
the SU(N ) group and the construction of the SU(N ) coherent
states for degenerate representations. This section includes the
mathematical background that is needed for the later sections.
The classical limit of a quantum spin system based on SU(N )
coherent states is discussed in Sec. IV, where we show that
the traditional classical limit h̄ → 0 is equivalent to the limit
in which the dimension of the local Hilbert space of the system
is going to infinity. In Sec. V we use the generalized Dirac’s
conjecture to write down explicitly the classical equations of
motion of the SU(2) and SU(3) generators. The generalization
for SU(N ) generators is discussed in the second part of Sec. V.
In Sec. VI, we use a simple single-ion model to illustrate the
importance of generalizing the LLD. The final conclusions are
discussed in the Sec VII.

II. COHERENT STATES FOR A POINT PARTICLE
IN ONE DIMENSION

Together with the identity 1̂, the position x̂ and momentum
p̂ operators of a point particle in one dimension generate the
so-called Heisenberg-Weyl group H3. Correspondingly, these
three operators form a basis of the Lie algebra h3 whose struc-
ture is determined by the canonical commutation relations
[x̂, p̂] = ih̄ and [x̂, 1̂] = [ p̂, 1̂] = 0. The identity, the creation,
and annihilation operators,

â† =
√

1

h̄
(x̂ − i p̂), â =

√
1

h̄
(x̂ + i p̂), (1)

provide an alternative basis of h3. The base state |0〉 for
coherent states is defined by the condition

â|0〉 = 0. (2)

A coherent state is obtained by applying an element of H3 to
the base state [4]

|α〉 = eαâ†−ᾱâ|0〉, (3)

where eαâ†−ᾱâ ∈ H3 is the so-called displacement operator
[43] and α, ᾱ ∈ C. By convention, one can use two real num-
bers p and q with α = q + ip to label a coherent state. The
wave function of |α〉 = |p, q〉 corresponds to the ground state
of a simple harmonic oscillator centered around q

|〈x|p, q〉|2 = (π h̄)−1/2 exp{(1/h̄)[−(x − q)2]}. (4)

The manifold of coherent states forms an over-complete basis
of the Hilbert space of a point particle in one dimension
[44]. The overcompleteness is manifested by the finite overlap
between two coherent states

|〈p, q|p′, q′〉|2 = exp{−(1/2h̄)[(p − p′)2 + (q − q′)2]}
= exp {−(1/2h̄)(α − α′)(ᾱ − ᾱ′)}. (5)

The symbol without the hat denotes the expectation value
of the corresponding operator for a coherent state

A(p, q) ≡ 〈p, q|Â|p, q〉. (6)

Similarly, the expectation value of the product of two opera-
tors 〈p, q|ÂB̂|p, q〉 is given by

(AB)(p, q) =
∫

d p′dq′

2π h̄
|〈p, q|p′, q′〉|2

× 〈p, q|Â|p′, q′〉
〈p, q|p′, q′〉

〈p′, q′|B̂|p, q〉
〈p′, q′|p, q〉 , (7)

where we inserted the resolution of identity

Î =
∫

d p′dq′

2π h̄
|p, q〉〈p, q|. (8)

Dirac’s conjecture can be proved by taking the h̄ → 0 limit of
Eq. (7) [8]. According to Eq. (5), the first factor of the inte-
grand of Eq. (7) is a Gaussian that has a sharp peak at p′ = p
and q′ = q as h̄ → 0. Moreover, notice that for fixed p and q,
the second factor is an analytical function of α′ = (q′ + ip′)
and the third factor is an analytical function of ᾱ′ = (q′ − ip′).
Therefore, we can expand the second and the third factors up
to quadratic order in (α′ − α) and (ᾱ′ − ᾱ), respectively,

〈p, q|Â|p′, q′〉
〈p, q|p′, q′〉 = A(α) + dA

dα′

∣∣∣∣
α′=α

(α′ − α)

+ 1

2

d2A

dα′2

∣∣∣∣
α′=α

(α′ − α)2 + O[(α′ − α)3],

(9)

〈p′, q′|B̂|p, q〉
〈p′, q′|p, q〉 = B(α) + dB

dᾱ′

∣∣∣∣
ᾱ′=ᾱ

(ᾱ′ − ᾱ)

+ 1

2

d2B

dᾱ′2

∣∣∣∣
ᾱ′=ᾱ

(ᾱ′ − ᾱ)2 + O[(ᾱ′ − ᾱ)3].

(10)

By combining the results, we have

(AB)(p, q) �
∫

dαdᾱ

2π h̄
|〈α|α′〉|2

{
A(α)B(α)

+ dA

dα

dB

dᾱ
(α′ − α)(ᾱ′ − ᾱ) + L

}
, (11)
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where L includes terms (up to quadratic order) that vanish
after the integration. After computing the Gaussian integrals
and keeping contributions up to first order in h̄, we obtain

(AB)(p, q) � A(p, q)B(p, q) + h̄

2

dA

dα

dB

dᾱ
. (12)

In the h̄ → 0 limit, we have

lim
h̄→0

(AB)(p, q) = a(p, q)b(p, q), (13)

where

a(p, q) ≡ lim
h̄→0

A(p, q), b(p, q) ≡ lim
h̄→0

B(p, q). (14)

Note that the functions a(p, q) and b(q, p) are assumed to re-
main finite in the h̄ → 0 limit. They are the so-called classical
operators [8] that resemble the the operators Â and B̂ in the
classical limit. The relation (13) gives the factorization rule
for the expectation value of the product of two operators in
the h̄ → 0 limit.

Finally, let us replace B̂ with the Hamiltonian operator Ĥ
and consider the h̄ → 0 limit of the expectation value of the
right-hand side of the Heisenberg equation (HE) of motion
[45]

lim
h̄→0

− i

h̄
[A, H](p, q) = − lim

h̄→0

[
∂A

∂ p

∂H

∂q
− ∂A

∂q

∂H

∂ p

]

= ∂a

∂q

∂h

∂ p
− ∂a

∂ p

∂h

∂q

= {a(p, q), h(p, q)}PB, (15)

where h(p, q) = limh̄→0〈p, q|Ĥ |p, q〉 is the classical Hamilto-
nian. After taking the same expectation value of the left-hand
side of the HE, we obtain

lim
h̄→0

〈p, q|dÂ

dt
|p, q〉 = da(p, q)

dt
= {a(p, q), h(p, q)}PB. (16)

This completes the proof of Dirac’s conjecture. Here the
coherent states of H3 play an important role in linking the
quantum and classical theories for a point particle. As we al-
ready mentioned, the coherent states of H3 can be generalized
to any Lie group [6,7], implying that we can take the classical
limit of a given quantum theory by introducing a manifold of
coherent states of an appropriate Lie group [8]. In the rest of
this paper, we focus our discussion on the SU(N ) group.

III. REVIEW OF THE SU(N) GROUP

A. Representation theory of SU(N)

In this section we review the representation theory of the
Lie group SU(N ) defined as the set of N × N unitary matrices
with determinant one and with the matrix multiplication as
the group operation [46]. This group arises naturally in the
description of an N-level quantum-mechanical system as the
set of all unitary basis transformations with determinant equal
to one. The Lie algebra su(N ), that is defined as the tangent
space at the identity element of SU(N ), is a vector space
over CN of dimension N2 − 1. In the fundamental represen-
tation, the generators (bases) of su(N ) are represented by the

following matrices:

ĝi j (i 	= j), Ĥ1 = 1
2 (ĝ11 − ĝ22), . . . ĤN−1

= 1
2 (ĝN−1N−1 − ĝNN ), (17)

where

ĝi j ≡ |i〉〈 j|, i, j = 1, 2, . . . , N (18)

and

|i〉 = (0, . . . ,
ith
1 , . . . , 0)T (19)

represents the standard basis of CN . The matrices satisfy the
following commutation relations

[ĝi j, ĝkl ] = δk j ĝil − δil ĝk j, (20)

and

[Ĥk, Ĥl ] = 0, k, l = 1, . . . , N − 1, (21)

where the set of N − 1 generators {Ĥk} with k = 1, . . . , N − 1
spans the Cartan subalgebra (maximal commutative subalge-
bra [46]), and the remaining N (N − 1) generators ĝi j are the
so-called raising (lowering) operators if i < j (i > j). It is
important to keep in mind that any basis of matrices that obey
Eqs. (20) and (21) provides a set of generators of su(N ).

Consider a general irreducible representation (irrep) of
su(N ) on the vector space V . The highest-weight state |μ〉 ∈ V
is defined by the condition

ĝi j |μ〉 ≡ 0 ∀ i < j, (22)

i.e., the highest-weight state vanishes under the operation of
any raising operator. Note that |μ〉 is also the common eigen-
vector of the Cartan subalgebra generators

Ĥ1|μ〉 = 1
2λ1|μ〉, . . . , ĤN−1|μ〉 = 1

2λN−1|μ〉. (23)

The N − 1 eigenvalues [λ1, . . . , λN−1] are used to label the ir-
reps of SU(N ) and the dimension of the representation is given
by Weyl’s dimension formula [47]. For the sake of simplicity,
we will focus on su(2) and su(3). The Cartan subalgebra
of su(2) is one-dimensional, and therefore its representation
is labeled by a single number λ1 with dim[λ1] = λ1 + 1,
cf. the familiar result dim[S] = 2S + 1 can be recovered by
setting S = λ1/2. Whereas for su(3), the irreducible repre-
sentations are labeled by λ1 and λ2 and the dimension of the
[λ1, λ2] is given by dim[λ1, λ2] = 1

2 (λ1 + 1)(λ2 + 1)(λ1 +
λ2 + 2). For example, for a spin one system (three-level sys-
tem) with a basis of states {|Sz = 1〉, |Sz = −1〉, |Sz = 0〉},
the generators of the Cartan subalgebra are Ĥ1 = Ŝz/2 and
Ĥ2 = 3(Ŝz )2/4 − Ŝz/4 − 1/2 and the highest-weight state of
the above-mentioned fundamental representation of su(3) is
the state |1〉 (Ŝz|1〉 = |1〉) with λ1 = 1 and λ2 = 0, implying
that the fundamental representation has dim[1, 0] = 3. Note
that the fundamental representation is a special example of a
so-called “degenerate representation” with only one nonzero
eigenvalue λk . In this paper we will focus on the particular
degenerate representations [λ1, 0, . . . , 0] that have a nonzero
eigenvalue only for Ĥ1.
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B. SU(N) coherent states

In this section we discuss the construction of SU(N )
coherent states for degenerate representations. We start by
considering the simplest nontrivial case corresponding to co-
herent states of SU(2). The three operators

Ŝ+ = ĝ12, Ŝ− = ĝ21, Ŝz = Ĥ1, (24)

form a basis of su(2) generators. The corresponding highest-
weight state |μ〉 = |Sz = S〉 (hereafter we will use h̄ as the
unit of angular momentum), which satisfies Ŝ+|Sz = S〉 = 0,
is chosen as the reference state. Like any other state, |μ〉 is
defined up to an arbitrary multiplicative phase. To remove this
redundancy in the definition of coherent states, it is necessary
to identify the isotropic subgroup I that leaves the reference
state invariant up to a multiplicative phase [43]. Since I =
U(1) for the particular case of SU(2), the manifold of coherent
states is isomorphic to the coset space �̂ ∈ SU(2)/U(1):

|�(θ, φ)〉 ≡ �̂(θ, φ)|Sz = S〉 = e−iŜzφe−iŜyθ |Sz = S〉, (25)

where Ŝy = Ŝ+ − iŜ− and θ, φ are two real parameters that
parametrize the two-sphere S2 � CP1. In general, the mani-
fold of the coherent states is isomorphic to G/I [13,43], and
it is known as the quotient orbit. In the fundamental repre-
sentation of SU(2), an arbitrary SU(2) coherent state can be
expressed as

|�(θ, φ)〉 = cos
θ

2
e−iφ/2|1〉 + sin

θ

2
eiφ/2|2〉. (26)

Let us consider now the case of SU(3) coherent states.
The highest-weight state is again chosen to be the refer-
ence state. To identify the isotropic subgroup for degenerate
representations, without loss of generality, we consider the
highest-weight state |1〉 = (1, 0, 0)T in the fundamental rep-
resentation of SU(3). Note that this state is invariant under the
SU(2) group of transformations restricted to the orthogonal
subspace. In addition, the global multiplication by a phase
[U(1) subgroup] also leaves the reference state invariant in
the quantum mechanical sense, implying that the isotropic
group under consideration is I = SU(2) × U(1) � U(2). The
resulting manifold of SU(3) coherent states is then isomorphic
to the coset space SU(3)/U(2) � S5/S1 � CP2. Note that the
dimension of this manifold is 8 − 4 = 4. In the fundamental
representation, a generic SU(3) coherent state can be ex-
pressed as

|�(θ, φ, α1, α2)〉 = R(θ, φ, α1, α2)|1〉
= eiα1 sin θ cos φ|1〉 + eiα2 sin θ sin φ|2〉

+ cos θ |3〉, (27)

where R(θ, φ, α1, α2) ∈ SU(3)/U(2) that takes the form [48]⎛
⎝sin θ cos φeiα1 cos θ cos φeiα1 − sin φe−iα2

sin θ sin φeiα2 cos θ sin φeiα2 cos φe−iα1

cos θ − sin θ 0

⎞
⎠. (28)

A general SU(N ) coherent state with N > 3 can be con-
structed by a straightforward generalization of the procedure
that we used for the SU(2) and SU(3) cases

|�({pi})〉 ≡ �̂({pi})|μ〉, (29)

where �̂({pi}) ∈ SU(N )/I with I � SU(N − 1) × U(1) �
U(N − 1). The SU(N ) coherent state, which is topologically
equivalent to the complex projective space CPN−1, is then
parameterized by N2 − 1 − (N − 1)2 = 2(N − 1) real param-
eters {pi}. The explicit forms of the SU(N ) coherent states
can be found in Ref. [49] [in the spherical coordinates with
2(N − 1) real parameters] and in Ref. [32] (in terms of N − 1
complex parameters). Similarly to the H3 coherent states [see
Eq. (5)], the SU(N ) coherent states form an overcomplete
basis of the Hilbert space of an N-level system. The overlap
between two SU(N ) coherent states and the corresponding
integration measure over the parameters {pi} can be found in
Ref. [49].

IV. CLASSICAL LIMIT FOR A SPIN SYSTEM BASED
ON SU(N) COHERENT STATES

We have seen in Sec. II that the H3 coherent states can
be used to recover the classical mechanics (h̄ → 0 limit)
of a point particle. In this section we will follow similar
steps to obtain a classical limit of a quantum spin-S sys-
tem whose local Hilbert space has a dimension N = 2S + 1
[32]. Since the SU(N ) group consists of all unitary basis
transformations (with determinant equal to 1) of an N-level
quantum-mechanical system, coherent states of SU(N ) pro-
vide a natural platform to define the classical limit of a spin
system. However, as we mentioned previously, the traditional
approach has always been to use SU(2) coherent states to
define a classical limit of spin systems. While the SU(N ) Lie
group is not the only alternative, the purpose of this section
is to introduce this alternative path towards a classical a limit
and later illustrate the advantages of using Lie groups that are
larger than SU(2).

As before, the first step of the process is to take the h̄ → 0
limit of the expectation value of a quantum operator in an
SU(N ) coherent state. We then start by considering as an
example the classical limit of the physical spin operator Ŝz =
h̄Ĥ1 in the highest-weight state of SU(2):

lim
h̄→0

〈Sz = S|Ŝz|Sz = S〉 = lim
h̄→0

h̄S. (30)

Note that we made h̄ explicit in the above equation to indicate
that the spin is an intrinsically quantum-mechanical object,
i.e., the simple definition of the classical operator given in
Eq. (14) does not exist for Ŝz in Eq. (30). However, we can still
obtain a nontrivial classical limit by simultaneously sending
S = λ1/2 to infinity and h̄ to zero, while keeping the product
finite. This simple procedure can be easily generalized to any
quantum operator Â, which is a polynomial function of the
physical SU(N ) generators. The classical limit of an operator
is then defined by taking the expectation value on a coherent
state

a({αρ}) = 〈�({αρ})|Â|�({αρ})〉, (31)

where {αρ} is the set of N − 1 complex parameters that
parametrize the SU(N ) coherent states, and simultane-
ously sending the eigenvalue λ1-degenerate representation of
SU(N )–to infinity.

The second step is to consider the classical limit of the
expectation value of the product of two operators. We ought
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to prove that the factorization rule holds in the classical limit

〈�({αρ})|ÂB̂|�({αρ})〉 classical limit−−−−−−→ a({αρ})b({αρ}). (32)

Indeed, the factorization rule holds for λ1 → ∞. The explicit
proof is provided in Appendix A for the SU(2) case. The
general proof for SU(N ) is nontrivial and can be found in
Ref. [32]. The crucial observation is that two distinct SU(N )
coherent states become orthogonal in the limit λ1 → ∞. As
a result, one can expand the integral associated with the ex-
pectation value in a similar manner as in Eq. (11), but now in
powers of 1/λ1. Finally, by expanding the expectation value
of the commutator between two operators up to the first order
in 1/λ1 and then sending λ1 → ∞, one can prove the general-
ization of Dirac’s conjecture applied to the orbit of the SU(N )
coherent states

{a({αρ}), b({αρ})}PB

=
∑
μ,ν

gμν

(
∂a

∂αν

∂b

∂ᾱμ

− ∂a

∂ᾱμ

∂b

∂αν

)

= lim
λ1→∞

−iλ1〈�({αρ})|[Â, B̂]|�({αρ})〉, (33)

where gμν is the Fubini-Study metric of CPN−1 [50]. The
Poisson bracket of SU(2) is derived in Appendix A and the
general derivation for SU(N ) is given in Ref. [32]. We want to
point out that for practical purposes, it is not always necessary
to know a priori the exact form of the Poisson bracket to
obtain the classical equations of motion. In most cases, it is
simpler to evaluate the right-hand side of Eq. (33). Namely,
Eq. (33) provides us with a simple recipe to derive the classi-
cal dynamics on the manifold of SU(N ) coherent states. We
will follow this recipe in the next section to write down the
generalized classical equations of motion for a quantum spin
system.

V. CLASSICAL EQUATIONS OF MOTION FOR SPINS

In the previous section we saw that the classical SU(N )
dynamics of a quantum spin system becomes exact for λ1 →
∞. However, for most systems of interest, the dimension of
the local Hilbert space is finite and λ1 = 1, implying that
the classical dynamics is just an approximation of the exact
quantum dynamics. The big advantage of this approximation
is that the numerical cost of the simulations drops from an
exponential to a linear dependence in the number of spins.
The mathematical procedure of taking the classical limit can
be physically represented as building a large SU(N ) spin by
ferromagnetically coupling M replicas of the original spin and
then sending M to infinity. By replacing the SU(N ) repre-
sentation [λ1, . . . , 0] with [Mλ1, . . . , 0], the spin—originally
a microscopic object—becomes a macroscopic entity. It is
important to note that the “ferromagnetic” coupling between
replicas corresponds to an SU(N ) ferromagnetic Heisenberg
interaction [26]. In other words, the difference between dif-
ferent classical limits of a given spin system [e.g., SU(2) and
SU(N )] is dictated by the nature of the coupling between dif-
ferent replicas. This raises the question about which classical
limit better approximates the exact quantum dynamics. As we
will explain in this section, the short answer to this question
is that the choice of SU(N ) coherent states with N = 2S + 1

guarantees that the dynamics will capture all the coherent
low-energy modes that can appear for a general Hamiltonian.
To appreciate this important point, we first derive two different
classical dynamics based on SU(2) and SU(3) coherent states
for a common quantum spin Hamiltonian and then we provide
the general recipe to derive the classical dynamics for SU(N )
coherent states.

A. SU(2) and SU(3) Landau-Lifshitz dynamics

Consider the following S = 1 spin Hamiltonian:

Ĥ = 1

2

∑
r,δ

∑
α,β

Ŝα
r Jαβ

δ
Ŝβ

r+δ
+ D

∑
r

(
Ŝz

r

)2
, (34)

where Jαβ

δ
is the exchange tensor on the bond δ and D is the

strength of a single-ion anisotropy term. This S = 1 system
admits two classical limits: one based on SU(2) coherent
states (second representation with λ1 = 2) and another one
based on the SU(3) coherent states (fundamental representa-
tion with λ1 = 1 and λ2 = 0).

We will first consider the SU(2) classical limit. The time
evolution of the spin components [generators of SU(2)] is
dictated by the Heisenberg equation of motion

dŜα
r

dt
= − i

h̄

[
Ŝα

r , Ĥ
]

=
∑

δ

∑
μ,ν,β

Jμν

δ
εαμβ Ŝβ

r Ŝν
r+δ

+ D
∑

β

εα3β
(
Ŝβ

r Ŝz
r + Ŝz

r Ŝβ
r

)
, (35)

where εαμβ is the Levi-Civita symbol. The classical limit of
the interaction term is given by

Ŝβ
r Ŝν

r+δ → 〈�|Ŝβ
r Ŝν

r+δ|�〉
= 〈�r|Ŝβ

r |�r〉〈�r+δ|Ŝν
r+δ|�r+δ〉 = sβ

r sν
r+δ, (36)

where we assumed that the coherent state of this system is
a direct product of local coherent states, i.e., |�〉 = ⊗r|�r〉.
Since the single-ion anisotropy term is quadratic in the spin
operators, we must use the factorization rule given in Eq. (32),
which is only exact in the classical limit

Ŝβ
r Ŝz

r + Ŝz
r Ŝβ

r → 〈�r|Ŝβ
r Ŝz

r + Ŝz
r Ŝβ

r |�r〉 λ1→∞−−−→ 2sβ
r sz

r. (37)

As for the left-hand side of the HE, the classical limit simply
gives

dŜα
r /dt → 〈�r|dŜα

r /dt |�r〉 = dsα
r /dt . (38)

Consequently, the resulting classical equation of motion for
SU(2) coherent states takes the form

dsα
r

dt
=

∑
δ

∑
μ,ν,β

Jμν

δ
εαμβsβ

r sν
r+δ + 2Dεα3βsβ

r sz
r, (39)

which is the well-known Landau-Lifshitz (LL) equation with-
out the damping term

dsα
r

dt
=

∑
μν

εαμνsμ
r bν

r , br = − dh

dsr
, (40)

where h = 〈�|Ĥ|�〉 is the classical Hamiltonian.
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Let us consider now the classical limit based on SU(3)
coherent states. In this case we need to compute the equation
of motion of the eight generators of SU(3), Ô1−8, which can
be regarded as the components of the SU(3) spin. For this
purpose, we are going to use the basis of generators given
in Eq. (B1), which are obtained by applying an SU(3) trans-
formation (change of basis) to the standard basis presented in
Eq. (17). The advantage of the new “physical” basis is that it is
a direct sum of bases of irreps of the SO(3) group of rotations.
The first three elements, Ô1−3, are the three spin operators
Ŝα which represent a local dipole moment and transform as
vectors under rotations [three-dimensional irrep of SO(3)].
The last five elements of the basis Ô4−8 are symmetric and
traceless bilinear forms in the spin operators that represent
a nematic or quadrupolar moment [five-dimensional irrep of
SO(3)]. Each irrep of SO(3) corresponds to a different mul-
tipole and the number of different irreps or multipoles for
the more general SU(N ) group is N − 1. Importantly, the
equations of motion that dictate the dynamics of the different
multipolar components are coupled. For instance, as we will
see below, the dynamics of the dipolar generators of SU(3),
Ô1−3, is coupled to the dynamics of the nematic generators
Ô4−8. By adopting the SU(3) approach, we are treating the
dipolar and the quadrupolar components on equal footing.

The first step is to rewrite the Hamiltonian in terms of the
SU(3) generators

Ĥ = 1

2

∑
r,δ

3∑
i, j=1

Ôi
rJ

i j
δ

Ô j
r+δ

+ D√
3

∑
r

(
Ô8

r + 2√
3

)
. (41)

Note that the second term can be expressed in multiple ways.
This ambiguity is removed by requiring that each Hamiltonian
term must be linear in the SU(3) generators acting on a given
site r [note that the generators of SU(N ) together with the
identity form a complete basis for the complex vector space
of N × N matrices]. As shown in Eq. (B2), the quadrupolar
components Ô4−8 in general do not commute with the dipolar
ones Ô1−3. As a result, the eight Heisenberg equations of
motion for the SU(3) spin components on each site turn out
to be coupled

dÔi
r

dt
=

∑
δ

3∑
j,k=1

8∑
l=1

J jk
r fi jl Ô

l
rÔ

k
r+δ + D√

3

8∑
l=1

fi8l Ô
l
r. (42)

Here i = 1, . . . , 8 and fi jl are the structure constants of su(3)
in the physical basis [see Eq. (B3) for the nonzero structure
constants]. As with the SU(2) case, the classical limit of
the interaction term is again obtained by assuming that the
coherent state is a direct product of coherent states on each
site. An important difference, however, is that the classical
limit of the single-ion term does not require the use of the
factorization rule, which can be a strong approximation for
finite values of λ1 because each term of Eq. (42) is now linear
in the generators of SU(3) acting on a given site r. After taking
the classical limit on the left-hand side of the above equation,
we obtain the classical equations of motion for the SU(3) spins

doi
r

dt
=

∑
δ

3∑
j,k=1

8∑
l=1

J jk
r fi jl o

l
ro

k
r+δ + D√

3

8∑
l=1

fi8l o
l
r, (43)

or
doα

r

dt
=

∑
μν

fαμνoμ
r bν

r , br = − dh

dor
. (44)

Equation (44) can be regarded as a generalization of the
LLD (40).

Clearly, the SU(3) approach becomes strictly necessary
when the ground state of the Hamiltonian under consider-
ation has some form of nematic ordering, 〈Ô1−3〉 = 0 and
〈Ôν〉 	= 0 for some values of 4 � ν � 8, which can either
be spontaneous or induced by a large single-ion anisotropy
term, such as the last term of Ĥ for D � |Jαβ

δ
|. The simple

reason is that the SU(2) coherent states cannot describe a
local quadrupolar moment. The need for the SU(3) dynamics
becomes a bit more subtle when the ground state exhibits
some form of magnetic (dipolar) ordering. Even in that case,
nematic fluctuations can renormalize the magnitude of the
dipole moment or produce coherent low-energy modes, which
are different from the usual spin waves (dipolar fluctuations).
These are the situations in which the SU(3) dynamics becomes
more appropriate than the traditional SU(2) dynamics. In a
few words, the SU(3) approach can faithfully represent all
types of local fluctuations of a three-level system.

B. SU(N) Landau-Lifshitz dynamics

The SU(2) LLD can be straightforwardly generalized to
SU(N ) spins by following the same steps that we described for
the SU(3) case. The classical equations of motion are obtained
by (i) expressing the Hamiltonian in terms of generators of
SU(N ) under the condition that each term must be linear in the
SU(N ) spin components acting on a given site, (ii) comput-
ing the Heisenberg equation of motion for each generator of
SU(N ), and (iii) replacing the operators with their expectation
values for coherent states of SU(N ).

Based on the above discussions, it is apparent that to
faithfully describe all types fluctuations in a spin-S system,
whose classical phase space is isomorphic to CPN−1, we need
to take the classical limit based on SU(N ) coherent states
with N = 2S + 1. We note, however, that for particular spin
Hamiltonians a subgroup of SU(N ) may also provide a good
approximation, as long as it incorporates the relevant com-
ponents of the local order parameter. As an example, we can
just consider the case of pure isotropic Heisenberg models,
whose dynamics is well described by the traditional SU(2)
LLD if the spin S is large enough. The key observation is
that the local order parameter of these systems has a dominant
dipolar character and the normal modes are coherent spin
waves. Nondipolar fluctuations can still be described as a
continuum of multiple spin waves. In other words, the SU(2)
dynamics breaks down when new normal modes associated
with nondipolar fluctuations emerge below the continuum of
multiple spin waves.

VI. SINGLE-ION MODEL

Consider the following integer spin-S single-ion Hamilto-
nian:

ĤSI = D(Ŝz )2, (45)

with D > 0. This term controls the high-temperature dynam-
ics of the Hamiltonian given in Eq. (34) if |D| � |Ji j

δ
|. The
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FIG. 1. Comparisons of the transverse dynamical spin structure factor between the quantum (red triangle) and the SU(2) classical results
(black line) for three different spin values: (a) S = 1, (b) S = 10, and (c) S = 1000. In all three panels, the inverse temperature βDS2 = 10−5,
and the values of the dynamical structure factor are normalized to the maximum intensity of the exact result.

nondegenerate ground state of ĤSI is the eigenstate of Sz

with eigenvalue m = 0: |m = 0〉. The excited states are the
doublets |±m〉 with 1 � m � S. The exact quantum dynamics
can be solved in a closed form as there is no interaction term
in the Hamiltonian. The transverse dynamical spin structure
factor can be computed by using the Lehmann representation

S+−(ω) = 1

2πZ

∫ +∞

−∞
dteiωt Tr[e−βĤSI Ŝ+(t )Ŝ−(0)]

= 1

Z

S−1∑
m=0

e−βm2D(S−m)(S + m + 1)δ[ω−(2m+1)D]

= S−+(ω), (46)

for ω � 0, where

Z = 1 + 2
S∑

m=1

e−βm2D (47)

is the partition function. Similarly,

Szz(ω) = 1

2πZ

∫ +∞

−∞
dteiωt Tr[e−βĤSI Ŝz(t )Ŝz(0)]

= − 1

β

∂Z

∂D
δ(ω). (48)

The classical spin dynamics of this problem can also be
solved analytically. Let us first consider the SU(2) LL equa-
tions

dsx

dt
= −2Dsysz,

dsy

dt
= 2Dsxsz,

dsz

dt
= 0. (49)

The solution is given by

s+(t ) = s+(0)eiω̃−t , s−(t ) = s−(0)eiω̃+t , sz(t ) = sz(0),

(50)

with ω̃± = ±2Dsz(0). The corresponding transverse dynami-
cal spin structure factor is computed by performing a thermal
average over initial SU(2) coherent states (see Appendix. C
for details), which reads

S+−
SU(2)(ω) = S2√βD

(
1 − ω2

4D2S2

)
e−β ω2

4D

2D
√

πerf(
√

βDS)
�(2DS − |ω|)

= S−+
SU(2)(ω), (51)

where erf(x) is the error function and �(x) is the Heaviside
step function. Similarly,

Szz
SU(2) = δ(ω)S2

[
−e−α

√
α

1√
πerf(

√
α)

+ 1

2α

]
, (52)

where α = βDS2.
Figure 1 shows a comparison between the exact result for

the transverse dynamical spin structure factor [see Eq. (46)]
and the SU(2) classical approximation given in Eq. (51) for
three different spin values. Clearly, the quantum mechanical
spectrum consists of discrete absorption peaks corresponding
to �Sz = 1 (for ω > 0) transitions between discrete energy
levels, whereas the SU(2) classical theory produces a broad
continuum of spectral weight centered around ω = 0. The
continuous character of the distribution arises from the de-
pendence of the spin precession frequency on the conserved
quantity, sz(t ) = sz(0), which has a continuous distribution on
the orbit of the SU(2) coherent states. For small values of S,
such as S = 1, the classical result based on SU(2) coherent
states deviates strongly from the exact quantum mechanical
result [see Figs. 1(a) and 1(b)]. Only for very large values
of S [see Fig. 1(c) for S = 1000] the SU(2) classical result
becomes a good approximation. The slow convergence of the
quantum mechanical result to the large-S limit demonstrates
the need of implementing an alternative classical limit for
realistic Hamiltonians, such as ĤSI.

To illustrate the ideas discussed in Sec. V A, we now
consider the classical limit of the single-ion model based on
SU(3) coherent states as an approximation for the extreme
S = 1 case. The generalized SU(3) LL equations take the form

do1

dt
= Do5,

do2

dt
= −Do4,

do4

dt
= Do2,

do5

dt
= −Do1

(53)

do3

dt
= do6

dt
= do7

dt
= do8

dt
= 0. (54)

The solution gives the time evolution of the classical dipole
operators

s±(t ) = 1
2 [s±(0) ∓ o4(0) − io5(0)]eiDt

+ 1
2 [s±(0) ± o4(0) + io5(0)]e−iDt , (55)
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FIG. 2. Comparisons of the transverse dynamical spin structure
factor for the S = 1 single-ion model as a function of the energy
transfer at the inverse temperature βDS2 = 0.1: quantum (red star),
SU(3) classical (blue cross), and SU(2) classical (black line).

where s± = o1 ± io2, and

sz(t ) = sz(0) = o3(0) (56)

is a conserved quantity. By computing the thermal average
over initial SU(3) coherent states of the Fourier transform of
the spin-spin correlation function, we obtain the dynamical
spin structure factor for ω � 0:

S+−
SU(3)(ω) = δω,D

6 + 2eβD(βD − 3) + βD(βD + 4)

β2D2(eβD − βD − 1)

= S−+
SU(3)(ω), (57)

and

Szz
SU(3)(ω) = δω,0

6eβD − βD[6 + βD(3 + βD)] − 6

3β2D2(eβD − βD − 1)
. (58)

Figure 2 shows the comparison between the exact trans-
verse dynamical spin structure factor of the S = 1 single-ion
model and the results obtained with the SU(2) and SU(3)
classical approximations for βDS2 = 0.1. We can see that
by working with the CP2 classical phase space of the S = 1
system, we obtain a single transition at the correct frequency
ω = D, as opposed to the SU(2) classical approach. We also
note that in the infinite temperature limit, βDS2 → 0, the
intensity of the SU(3) classical result coincides with the
exact quantum mechanical result if we renormalize the classi-
cal SU(3) spins O j

r → κO j
r with κ (N = 3, λ1 = 1) = 2. This

renormalization factor is also required to satisfy the sum rule

∑
j

∫
dωO j j (ω) = C1(N = 3, λ1 = 1) = 16

3
, (59)

associated with the quadratic Casimir operator of SU(3) with
eigenvalue C1(N = 3, λ1 = 1), which holds for the SU(3) spin
structure factor

O j j (ω) = 1

2πZ

∫ +∞

−∞
dteiωt Tr[e−βĤÔ j (t )Ô j (0)]. (60)

A similar renormalization factor sα
r → √

1 + 1/Ssα
r must be

applied to the classical spins obtained from SU(2) coherent
states to fulfill the sum rule in the infinite temperature limit
[51]. In general, the renormalization factor that must be ap-
plied to recover the sum rule for arbitrary values of N and λ1

is

κ (N, λ1) =
√

C1(N, λ1)√
(N − 1)3/(2N )λ1

=
√

1 + N/λ1, (61)

where C1(N, λ1) = (N − 1)3λ2
1/(2N ) + (N − 1)3λ1/2 is the

eigenvalue of the quadratic Casimir operator of SU(N ) for the
degenerate irrep [λ1, 0, . . . , 0] [52].

In the low temperature limit, βDS2 → ∞, the dynamics is
controlled by the normal modes of the quadratic fluctuations
around the minimum energy classical state. The intensity of
each excited mode is proportional to T because of the equipar-
tition theorem. The exact quantum mechanical result can be
recovered by multiplying the classical dynamical spin struc-
ture factor by βω, which is a well-known quantum-classical
correspondence for the harmonic oscillator [24,51]. Note also
that the ground state of ĤSI has no net dipole moment, 〈Ŝ〉 =
0, for D > 0. In other words, the state has only a net quadrupo-
lar moment, implying that the orbit of SU(2) coherent states
is not enough to represent the classical limit of this state. This
is another clear indicator of the need of using a bigger Lie
algebra to define a classical limit of ĤSI that captures the
qualitative aspects of the exact quantum mechanical solution.

In summary, the spin dynamics of ĤSI is well approxi-
mated by a classical LLD based on SU(3) coherent states,
but it is not well described by the traditional SU(2) LLD.
Assuming that |D| is comparable or bigger than zJ (z is the
coordination number and J is the characteristic energy scale
of the exchange tensor), this statement holds true for the full
Hamiltonian Ĥ [see Eq. (34)] for two simple reasons. In the
high-T limit, the dynamics of Ĥ is well approximated by the
dynamics of ĤSI. The basic role of the interaction term of Ĥ
is to broaden the delta function shown in Fig. 2. In the low-T
limit, the ground state of Ĥ is a quantum paramagnet with no
net dipolar moment for D > 0. As we already explained for
the single-ion case, such a state has no classical counterpart
within the orbit of SU(2) coherent states. We note that this
statement remains true for the magnetically ordered state if the
system is relatively close the to quantum critical point that di-
vides this phase from the quantum paramagnet [42], implying
that it is still necessary to use SU(3) coherent states to approxi-
mate the spin dynamics of the ordered magnet in the proximity
of the QCP. Interestingly, this statement remains true for the
easy-axis case D < 0 and |D| comparable or bigger than zJ .
In this limit, the ground state is an Ising-like magnetically
ordered state, which definitely has classical counterpart in
SU(2) coherent states. However, the low-energy modes of this
classical ground state include quadrupolar fluctuations [41],
which are not captured by the traditional SU(2) LLD.

VII. CONCLUSION

In this work we exploited the fact that an N-level quan-
tum mechanical system admits more than one classical limit
to generalize the LLD for spin systems. As it was noticed
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by Perelomov [6] and Gilmore [7], different classical limits
can be obtained by introducing coherent states of different
Lie algebras and generalizing Dirac’s conjecture. A spin S
Hamiltonian admits more than one classical limit because it
can be expressed as a function of generators of different Lie al-
gebras [34]. Traditionally, spin S Hamiltonians are expressed
as functions of the components of the physical spin, which
are generators of SU(2) in the spin S irrep. However, one
can express the same Hamiltonian as a function of generators
of SU(2S + 1) in the fundamental representation [34] and
introduce a new classical limit based on coherent states of
SU(2S + 1). While this is not the only alternative to the tradi-
tional classical limit of a spin S system, it has multiple advan-
tages that were discussed in the previous sections of this work.

A clear advantage is that the orbit of coherent states is max-
imized for SU(N ) if N is the local dimension of the coherent
state. Based on the variational principle, the “SU(N ) clas-
sical limit” provides the best estimation of the ground-state
energy in comparison with other classical limits. For the same
reason, SU(N ) coherent states allow us to describe physical
states with no net dipolar moment (they are characterized by
higher order multipoles) and coherent fluctuations that change
the relative magnitude of the different multipolar moments
(i.e., fluctuations that are different from physical rotations).
A common example is provided by the longitudinal modes of
ordered magnets that change the length of the dipole moment.
For a spin one system, these modes correspond to SU(3)
rotations that change the relative magnitudes of the dipolar
and quadrupolar components [41,42].

In general, the main advantage of introducing a classical
limit to approximate the dynamics of interacting quantum spin
systems is a huge reduction in computational cost. While the
cost of computing the exact dynamics grows exponentially in
the number of spins Ns, the cost of simulating the classical
spin dynamics grows linearly in Ns. The only difference in
computational cost between the two classical limits presented
here is a prefactor N2 − 1 associated with the number of
generators of SU(N ) (there is one equation of motion for
each generator). In view of the comparable computational
cost and vast range of applications of the traditional LLD,
we envision that the generalization proposed in this work will
have an important impact on the modeling of large classes of
magnets that either include a large single-ion anisotropy (e.g.,
crystal field splitting of d- and f -electron magnets) or consist
of weakly coupled multispin units (e.g., weakly coupled spin
dimers, trimers, or quadrumers). In this work we used an
example of the first case to illustrate the need of introducing
the SU(N ) classical limit. To understand why weakly coupled
multispin units require a similar treatment, it is enough to
consider the simplest case of weakly coupled S = 1/2 dimers.
The local Hilbert space has dimension four and the eigenstates
of a single-dimer antiferromagnetic Heisenberg Hamiltonian
are the singlet ground state and a triplet of degenerate excited
states. Once again, SU(2) coherent states are not enough to
describe the nonmagnetic character of the singlet state. In
contrast, SU(4) coherent states allow us to describe a quantum
paramagnet, as well as a magnetically ordered state (induced
by a strong enough interdimer coupling) with a strong re-
duction of the magnitude of the ordered moment. Moreover,
the SU(4) classical LLD accounts for the N − 1 = 3 excited

triplon modes of the quantum paramagnet that become dis-
persive for finite inter-dimer coupling. Note that the classical
limit that is obtained with SU(4) coherent states corresponds
to the classical limit of the semiclassical expansion (or gener-
alized spin wave theory) [39,53] that is constructed with the
bond operators introduced by Sachdev and Bhatt [54].
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APPENDIX A: EXPANSION IN SU(2) COHERENT STATES

Consider the expectation value of the product of two on-
site operators Â and B̂ for an SU(2) coherent state

AB(θ, φ) = 〈�(θ, φ)|ÂB̂|�(θ, φ)〉

= 2S + 1

4π

∫
d ��′|〈�|�′〉|2 〈�|Â|�′〉

〈�|�′〉
〈�′|B̂|�〉
〈�′|�〉 ,

(A1)

where we inserted the resolution of identity in terms of SU(2)
coherent states, and

2S + 1

4π
d �� = 2S + 1

4π
dφdθ sin θ (A2)

is the Haar measure of SU(2). The first term of the above
integrand is the overlap between two SU(2) coherent states
[26]

|〈�|�′〉|2 =
(

1 + �� · ��′

2

)2S

, (A3)

where �� = (sin θ cos φ, sin θ sin φ, cos θ ). In the large-S limit
[recall that S = λ1/2 for SU(2)], the overlap becomes ar-
bitrarily small except for ��′ � ��, i.e., two different SU(2)
coherent states become orthogonal to each other. The large
value of S justifies a saddle-point approximation to evaluate
the integral in Eq. (A1). After expanding the term �� · ��′ up to
the quadratic order in δγ = (γ ′ − γ ), where γ = θ, φ,

�� · ��′ = cos θ cos(θ + δθ ) + cos(δφ) sin(θ ) sin(θ + δθ )

= 1 − 1
2 (δθ )2 − 1

2 sin2 θ (δφ)2 + O[(δγ )3], (A4)

we rewrite the square of the overlap as

|〈�|�′〉|2 = eln |〈�|�′〉|2 � e2S ln[1− 1
4 (δθ )2− 1

4 sin2 θ (δφ)2]

� e−S[(θ ′−θ )2/2+sin2 θ (φ′−φ)2/2]. (A5)

Since (for fixed θ and φ) the second factor and the third factor
of the integrand in Eq. (A1) are analytical functions of the
complex variables α′ = sin θ ′φ′ + iθ ′ and ᾱ′ = sin θ ′φ′ − iθ ′,
respectively, we can expand the two terms as we did in Eqs. (9)
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and (10),

AB(θ, φ) � 2S + 1

4π

∫ 2π

0
dφ′

∫ π

0
dθ ′ sin θ ′e−S[(θ ′−θ )2/2+sin2 θ (φ′−φ)2/2]

{
A(θ, φ)B(θ, φ)

− i

2

[
1

sin θ

∂A

∂θ

∂B

∂φ
(θ ′ − θ )2 − 1

sin θ

∂A

∂φ

∂B

∂θ
(sin θ ′φ′ − sin θφ)2

]

+ 1

2

[
1

sin θ

∂A

∂θ

∂B

∂θ
(θ ′ − θ )2 + 1

sin θ

∂A

∂φ

∂B

∂φ
(sin θ ′φ′ − sin θφ)2

]
+ L

}
, (A6)

where L includes terms (up to quadratic order) that vanish
after the integration. Since the width of the Gaussian goes to
zero in the large-S limit, we can extend the integration limits
to infinity and set sin θ ′ = sin θ to recover the familiar form
of the Gaussian integration. In summary, we have

AB(θ, φ) = A(θ, φ)B(θ, φ)
(
1 + 1/(2S)

)

− i

2

1

S sin θ

[
∂A

∂θ

∂B

∂φ
− ∂A

∂φ

∂B

∂θ

]

+ 1

2

1

S sin θ

[
∂A

∂θ

∂B

∂θ
+ ∂A

∂φ

∂B

∂φ

]
+ O[(1/S)2].

(A7)

By taking the large-S limit, we prove the factorization rule for
SU(2)

AB(θ, φ)
S→∞−−−→ A(θ, φ)B(θ, φ). (A8)

The above result also provides the definition of the Poisson
bracket on the orbit of SU(2) coherent states

{A(θ, φ), B(θ, φ)}PB = −i lim
S→∞

S[A, B](θ, φ)

= 1

sin θ

(
∂A

∂φ

∂B

∂θ
− ∂A

∂θ

∂B

∂φ

)
. (A9)

Note that {φ sin θ, θ}PB = 1, implying that φ sin θ and θ play
the role of canonical coordinate and momentum variables
defined on the S2 � CP1 manifold of SU(2) coherent states.
Finally, the SU(2) L-L equation Eq. (40) takes the following
form in terms of these spherical coordinates:

dθ

dt
= − 1

sin θ

∂h

∂φ
= {θ, h}PB,

dφ

dt
= 1

sin θ

∂h

∂θ
= {φ, h}PB, (A10)

where h is the classical Hamiltonian.

APPENDIX B: PHYSICAL BASIS
OF GENERATORS OF SU(3)

The “physical” basis of generators of SU(3) is obtained
by applying the following transformation to the natural basis
defined in Eq. (17):

Ô1 = Ŝx = 1√
2

(ĝ13 + ĝ31 + ĝ23 + ĝ32),

Ô2 = Ŝy = 1√
2

(−iĝ13 + iĝ31 + iĝ23 − iĝ32),

Ô3 = Ŝz = 2Ĥ1,

Ô4 = −(ŜxŜz + ŜzŜx ) = 1√
2

(−ĝ13 − ĝ31 + ĝ23 + ĝ32),

Ô5 = −(ŜyŜz + ŜzŜy) = 1√
2

(iĝ13 − iĝ31 + iĝ23 − iĝ32),

Ô6 = (Ŝx )2 − (Ŝy)2 = (ĝ12 + ĝ21),

Ô7 = ŜxŜy + ŜyŜx = −i(ĝ12 − ĝ21),

Ô8 =
√

3(Ŝz )2 − 2√
3

= 2√
3

(Ĥ1 + 2Ĥ2), (B1)

where Ô1−3 are the three components of the vector known
as dipole moment and Ô4−8 are the five components of the
quadrupolar moment, which is a symmetric traceless tensor of
rank two. The commutation relations between the generators
of SU(3) can be formally written as

[Ôa, Ôb] = i
∑

c

fabcÔc, a, b, c = 1, . . . , 8, (B2)

where the structure coefficients fabc are completely anti-
symmetric in the three indices, generalizing the Levi-Civita
symbol of SU(2). The nonzero coefficients (with zero permu-
tation) take the values

f123 = 1, f147 = 1, f156 = −1, f158 = −
√

3,

f246 = −1, f248 =
√

3, f257 = −1,

f345 = 1, f367 = 2. (B3)

APPENDIX C: CORRELATION FUNCTION
IN THE CLASSICAL LIMIT

In this Appendix we consider the transverse dynamical
spin structure factor of the single-ion problem Eq. (45) to
illustrate how to compute dynamical correlation functions in
the classical limit based on SU(N ) coherent states. The trace
in Eq. (46) now runs over the CPN−1 orbit of SU(N ) coherent
states

S+−(ω) = 1

2π

∫ +∞

−∞
dteiωt 1

Z

∫
D[{αρ}]

×〈�[{αρ}]|e−βĤŜ+(t )Ŝ−(0)|�[{αρ}]〉, (C1)

where D[{αρ}] is the integration measure that can be found in
Ref. [49] and the partition function is

Z =
∫

D[{αρ}]〈�[{αρ}]|e−βĤ|�[{αρ}]〉. (C2)
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By exploiting the factorization rule given in Eq. (32), which is
valid in the classical limit, we obtain

S+−(ω) � 1

2π

∫ +∞

−∞
dteiωt 1

Z

∫
D[{αρ}]e−βh[{αρ }]

× lim
τ→∞

1

τ

∫ +τ/2

−τ/2
dt ′s+(t + t ′)({αρ})s−(t ′)({αρ})

= lim
τ→∞

τ

2πZ

∫
D[{αρ}]e−βh[{αρ }]s+(ω)s−(−ω),

(C3)

where h[{αρ}] = 〈�[{αρ}]|Ĥ ||�[{αρ}]〉 is the classical
Hamiltonian and we used the convolution theorem along with

the time translation symmetry of Ĥ. The quantity

s+(ω) = lim
τ→∞

1

τ

∫ +∞

−∞
dteiωt s+(t ) (C4)

is the Fourier transform of the classical spin operator s+(t )
and s−(−ω) = [s+(ω)]∗. Note that Eq. (C3) provides the
basis for numerical implementations of the traditional LLD
(e.g., Refs. [20,21,24]): the trace over the SU(N ) coherent
states is usually computed by applying the Metropolis-
Hastings Monte Carlo algorithm and T is a finite time much
longer than any characteristic time of the system.
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